
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Plug-and-Design: Bringing a Design Environment to a Mobile Device

Peer-reviewed author version

MESKENS, Jan; LUYTEN, Kris & CONINX, Karin (2009) Plug-and-Design: Bringing

a Design Environment to a Mobile Device. In: Engineering Interactive Computing

Systems (EICS'09). p. 149-153..

Handle: http://hdl.handle.net/1942/10367

Plug-and-Design: Embracing Mobile Devices as Part of the
Design Environment

Jan Meskens Kris Luyten Karin Coninx

Hasselt University – tUL – IBBT
Expertise Centre for Digital Media

Wetenschapspark 2, 3590 Diepenbeek, Belgium
{firstname.lastname}@uhasselt.be

ABSTRACT
Due to the large amount of mobile devices that continue to appear
on the consumer market, mobile user interface design becomes in-
creasingly important. The major issue with many existing mobile
user interface design approaches is the time and effort that is needed
to deploy a user interface design to the target device. In order to ad-
dress this issue, we propose the plug-and-design tool that relies on
a continuous multi-device mouse pointer to design user interfaces
directly on the mobile target device. This will shorten iteration
time since designers can continuously test and validate each design
action they take. Using our approach, designers can empirically
learn the specialities of a target device which will help them while
creating user interfaces for devices they are not familiar with.

Categories and Subject Descriptors
H.5.2 [Information interfaces and presentation]: User Interfaces
– Graphical user interfaces, Prototyping

General Terms
Design

Keywords
Design tools, Mobile UI design, GUI builder

1. INTRODUCTION
User Interface (UI) designers often adopt a “thinking-by-doing” [11]

design approach in which they try a set of design alternatives in
search of the best solution. The iterative production of intermediate
UI prototypes provides the crucial element of surprise, unexpected
realizations that the designer could not have arrived at without pro-
ducing a concrete manifestation of her ideas. Intermediate proto-
types also reveal the characteristics of the target device that need to
be taken into account, such as the sensitivity of a mobile device’s
touch screen or the screen resolution of a tablet PC. Consequently,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EICS’09, July 15–27, 2009, Pittsburgh, Pennsylvania, USA.
Copyright 2009 ACM 978-1-60558-600-7/09/07 ...$5.00.

Figure 1: The plug-and-design system uses a continuous mouse
pointer to design UIs directly on the target device.

prototypes created during design iterations provide invaluable in-
put to end up with a user interface that is optimized for the targeted
device(s).

For the creation of mobile UI prototypes, Graphical User Inter-
face (GUI) builders such as those provided in traditional software
development environments can be used. These tools hide complex
programming constructs and allow designers to concentrate on the
look and feel of the design. After deploying a design as a “live”
UI to the target device, the runtime characteristics of this prototype
can be observed. Due to postponing the deployment on the target
device to the final stage, there is a large gap between the design
inside the GUI builder and the live GUI on the target device, of-
ten defined as the gulf of evaluation [14]. Our approach closes this
gap by using a live editing approach without losing the power of a
traditional design environment.

Live UI editing approaches [5, 9, 12, 20], allow designers to edit
a GUI directly on the target device while the GUI is running. This
way, designers get instant feedback about the implications of their
design decisions which bridges the aforementioned gulf of evalua-
tion. Live UI editing avoids switching between run and edit mode
and thus reduces iteration time and effort. This will stimulate de-
signers to test and verify their design ideas continuously throughout
the whole design process. However, based on our own experiences,
we noticed that it becomes challenging to build live editing environ-
ments for mobile devices that are as powerful as traditional design
tools [7]. The major problem here is that many operations have to
be supported while mobile devices have constraints such as limited
input, screen space limitations or low screen resolutions.

In this paper, we present the plug-and-design system that com-
bines live editing and graphical user interface design tools for mo-

1

bile devices. The cornerstone of this approach is a continuous
multi-device mouse pointer which can for example start on the
desktop PC of the designer, cross the bezel of the screen and end
on the screen of the mobile device (see Figure 1). After plugging
a target device into our system, designers can use the mouse to
start designing a UI directly on this target device. A traditional
mouse pointer can be used for repositioning and resizing UI ele-
ments, adding new elements by dragging an element from the tool-
box on the designer’s PC to the running UI on the target device and
changing the properties of UI elements.

The main contribution in this paper is the tool support for plug-
and-design, which is a novel live editing approach for creating mo-
bile UI prototypes. After describing related work, we present a
scenario of use that illustrates how our plug-and-design approach
works. Finally, the implementation and underlying architecture of
the plug-and-design system is discussed.

2. RELATED WORK
In this section we discuss related work from two different ar-

eas that are combined in our approach: live UI design and multi-
display systems. To the authors’ knowledge, the uniqueness of our
approach lies in the combination of work from these two areas.

2.1 Live User Interface Design
A design framework closely related to the design methodology

embodied in our plug-and-design environment is presented by de
Sá et al. [6]. Their framework divides the design activity in two
phases. The first phase allows designers to create sketches or soft-
ware prototypes for mobile and/or desktop devices inside a design
tool. After deploying these designs to the target device, the second
phase allows designers to polish the UI using direct manipulation
on the target device itself. By providing an integrated environment,
our approach blurs the distinction between these two phases which
means designers can build UIs directly on the target device during
the whole design process.

User interface adaptation tools allow designers or end-users to
edit user interfaces while they are running. Pagetailor [5], User In-
terface Façades [20] and the work presented by Demeure et al. [7]
are examples of such approaches. While Pagetailor allows end-
users to adapt the layout of a website on a mobile device using
direct manipulation, User Interface Façades is limited to desktop
computers and allows users to copy screen elements from one run-
ning program to another or replace interactors by other ones. The
tool presented by Demeure et al., on the other hand, allows end-
users to specify at runtime how a user interface should scale over
various screen sizes. Compared with our plug-and-design approach,
most UI adaptation systems only support a limited set of design op-
erations and are often hard to use when designing user interfaces
from scratch.

The Morphic user interface construction environment [12] intro-
duces the concepts liveness and directness as a way user interface
designers can examine or change the attributes, structure and be-
haviour of user interface components by pointing at their graphical
presentation (directness) while the user interface is running (live-
ness). These properties were applied during the development of
the Parks PDA [15], which showed that doing small amounts of
programming directly on the target device saves development ef-
fort. More recently, the concepts of liveness and directness were
integrated in Sun’s lively kernel [9]. The idea behind the afore-
mentioned live editing construction environments matches with the
idea behind our approach. However, we believe that not every com-
puting platform is suited to act as a complete development or design
platform due to the limited availability of input devices or screen

space. The distributed nature of our approach can solve this prob-
lem since parts of the UI design tool are located on the PC of the
designer.

2.2 Multi-display Systems
Notable examples for doing cross-display operations in a multi-

display environment are Stitching [8], Pick-and-Drop [17] and Hy-
perDragging [18]. These approaches allow to use a pen or a mouse
to e.g. drag elements from a tablet Pc to a Personal Digital Assis-
tant (PDA). Besides traditional input devices like a pen or mouse,
researchers have proposed other ubiquitous input devices such as
the Smart Phone [2] or Soap [4]. To manage how different input
devices can be used within (large scale) multi-device and multi-
display environments, architectures like iStuff [3], PointRight [10]
and Synergy [1] have been proposed. Compared with our approach,
the aforementioned systems do not focus on the design of user in-
terfaces. We adopt a multi-display mouse pointer as a mean to
design user interfaces for different types of mobile devices while
they are running.

3. SCENARIO OF USE
We illustrate the use of our system by walking through an exam-

ple scenario in which Emma creates a music player UI for a PDA
using the plug-and-design system.

The plug-and-design environment running on Emma’s PC (see
Figure 2(a), A) contains two main parts: a setup dialog to plug the
target device in the system and a design tool to manipulate a user
interface design that is running on the target device. Emma starts
by connecting the PDA to the local network and runs a plug-and-
design client application on this PDA. As she starts this client, the
PDA appears in the list of online device of the setup dialog (see
Figure 2(a), B). She can now select this PDA in order to get some
more information about device characteristics such as the installed
operating system, toolkit and screen resolution (see Figure 2(a),
C). The next step is to specify where the target device is located
with respect to Emma’s PC screen (see Figure 2(a), D), which is on
the east side in this example scenario (see Figure 1). The property
defined here is used by the underlying system to compute how the
mouse pointer can move between the PC and the target device.

After selecting the target device, Emma can start using the design
tool. This tool provides a toolbox with all user interface elements
for the design and a properties panel to change the properties of
these elements. The design itself is located on the target device
and can be reached by the mouse of Emma’s PC. When she moves
her mouse pointer over the right edge - as specified in the setup
dialog - of her PC screen, the mouse pointer appears on the PDA
and is considered as a design pointer to add, select and manipu-
late elements of the running design. The actions performed with
this design pointer will not affect the internal state of the user in-
terface elements and thus clearly separates design actions from the
UI behaviour. For example, clicking on a checkbox element with
the design pointer will not check or uncheck this element (= design
action) whereas pressing on the same checkbox through the PDA’s
touchscreen will check or uncheck this element (= UI behaviour).

Emma adds a button by dragging a button element from the tool-
box to the design on the PDA. She immediately tests this button
and discovers that it is too small and occluded by her finger when
pressing on it. Using the mouse, and thus the design pointer, Emma
now selects the button which makes a black modifier visible around
this control (see Figure 2(b)). This modifier allows to resize and
move the control with the design pointer using direct manipulation.
She now enlarges the button until it is large enough to perceive its
feedback. Emma also changes the label of this button into “Play”

2

(a) The plug-and-design system allows to plug a device into the environment using a setup dialog. (b) The plug-and-design
client hosts the running UI.

Figure 2: Screenshots of the plug-and-design environment on the PC of the designer (a) and the target device (b).

Figure 3: The plug-and-design system is implemented as a dis-
tributed system on top of an XMPP layer.

through the properties panel. After adding the play button, Emma
adds two other buttons for selecting the previous and next song.
She also inserts two tab pages: one for changing the settings of the
player, and another one that shows the complete play list. The final
music player UI created with the plug-and-design environment is
shown in Figure 2(b).

4. IMPLEMENTATION
The plug-and-design software is distributed over three devices:

a mouse server, the target mobile device and the PC of the designer
(see Figure 3). The Extensible Messaging and Presence Protocol
(XMPP) [19] is used as the communication protocol between these
devices. As shown by Pierce et al. [16], this Instant Messaging
(IM) protocol provides the functionalities and flexibility to build
multi-device infrastructures. To participate in the plug-and-design
environment, each device has to authenticate itself through the net-
work to an XMPP server.

The mouse server maintains a data structure that describes the
spatial relation between the target device and the designer’s PC.
This data structure is based on the space topology description as
suggested in the PointRight system [10]. It consists of screens,
represented by their respective sizes, and connections to specify
mouse transitions that are possible between these screens. For ex-

ample, Figure 3 shows the data structure specifying that the mouse
pointer can “jump” from the PC screen to the PDA screen when it
passes the right border of the PC screen. Designers can configure
the spatial relation between the target device and PC using the setup
menu that runs on the PC (see Figure 2(a)).

The mouse used by the designer is directly connected to theÂă-
mouse server using e.g. Bluetooth or USB. Each time this mouse is
manipulated, the server queries the aforementioned data structure
to detect the device that should get mouse input. Next, the mouse
pointing position is rescaled in order to fit within the screen size of
the selected device. Finally, the mouse server encodes the mouse
event into an XMPP message and sends this to the right device. The
mouse events that are currently sent by our system are mouse move,
left/right mouse down and left/right mouse release.

Both the target device and PC contain a mouse simulation layer
which listens for mouse messages and uses these to steer the lo-
cal mouse cursor. On the PC side, the mouse simulator generates
real mouse events using the P/Invoke .NET API1. The simulator
that is located on the target device steers the design pointer. This
custom made pointer is closely integrated into the live design tool
and enables UI editing by direct manipulation on the target device.
For now, we have a C# implementation of this live design tool that
runs on all .NET distributions. On the other hand, several “proof
of concept” implementations are under development for Java ME2

and Adobe AIR3.
A connected target device describes its characteristics such as the

installed operating system and screen resolution in a vCard which
is accessible for all other participating machines through the vcard-
temp XMPP extension4. While the setup tool uses this vCard to
show details of the target device to the designer (see Figure 2(a)),
the mouse server queries the vCard to set the screen size of the tar-
get device in its data structure. This vCard also contains a visual
and textual description of the UI elements that can be provided by
the target device’s UI toolkit. Using this description, the design
tool can build up its toolbox that shows icons of all these UI ele-
ments. When a designer drags an element from the toolbox to the

1http://www.pinvoke.net
2http://java.sun.com/javame/
3http://www.adobe.com/products/air/
4http://xmpp.org/extensions/xep-0054.html

3

http://www.pinvoke.net
http://java.sun.com/javame/
http://www.adobe.com/products/air/
http://xmpp.org/extensions/xep-0054.html

target device, an identifier representing this UI element is sent to
the live design tool on the target device. After releasing the mouse
in this live design tool, the UI component that corresponds to this
identifier is added at the position of the design pointer.

5. DISCUSSION AND FUTURE WORK
In the plug-and-design system, mobile user interfaces are de-

signed by using a continuous mouse pointer that connects a design
tool, running on the PC of the designer, directly with the UI on the
target mobile device. Mouse transitions between the PC screen and
the mobile device screen are done by passing the mouse pointer
over the borders of these screens. This interaction method is simi-
lar to how a mouse is used in dual screen setups that are currently
common place for desktop PCs and notebooks. We believe this
similarity prevents designers from having to learn new interaction
techniques for using our design environment.

Most mobile devices have a Pc-based emulation layer for de-
sign purposes. These emulators allow designers to layout mobile
UIs on their Pc using a traditional mouse and keyboard. However,
since these emulators run on a Pc, they do not provide the same in-
teraction experience as the actual mobile target device. Using our
approach, design actions and runtime actions can be intertwined
on the actual target devices. This way, designers can immediately
test and verify the impact of each design step directly on the target
device.

Currently, the plug-and-design approach works for the design of
mobile user interfaces. We believe this can be extended to other
computing platforms too. For example, it should be possible to im-
plement a plug-and-design client that runs on a multi-touch table or
a digital TV and to connect such a target device to our design tool.
An interesting area of future research here is to explore how the live
design tool has to be positioned within the designer’s environment.
This is an important issue since the position of the target device
with respect to the designer’s PC screen can complicate tasks like
reading text or manipulating objects [13].

The data structure that is currently maintained by the mouse
server is flexible enough to define mouse transitions between an
unlimited set of devices [10]. This opens up the possibility to plug
multiple target devices simultaneously into the plug-and-design sys-
tem. Further investigations might explore how designers could ben-
efit from this when designing applications that have to run across
multiple devices. For example, it would be interesting to support
designers when creating a media player that is optimized for as well
a mobile phone as an ultra mobile PC.

In our current plug-and-design architecture, mouse events are
streamed by the mouse server using the XMPP protocol. How-
ever, depending on the network load, we noticed there could be too
much latency to track cursor motion at adequate rates. In order to
optimize this, we are currently integrating a direct socket commu-
nication channel between the mouse server and the other devices
based on XMPP’s Jingle5 extension. In future versions of our tool,
this channel will be used to stream consecutive mouse events such
as mouse movements.

6. CONCLUSION
We have presented the plug-and-design system, a GUI builder for

mobile devices that uses a continuous multi-device mouse pointer
to design directly on the target device. Because designers are work-
ing directly on the running UI, they can test and observe their de-
sign decisions throughout the whole design process. This immedi-

5http://xmpp.org/extensions/xep-0166.html

ate feedback will reduce iteration time and guides designers to cre-
ate optimal user interfaces for the target device. Plug-and-design is
built on top of a networked architecture with the potential value to
target a wide set of mobile platforms. Based on the current status of
our work, we will continue the development of the plug-and-design
system. Additional, thorough validation is needed to estimate the
value of our system for UI designers and developers.

Acknowledgments
Part of the research at EDM is funded by ERDF (European Re-
gional Development Fund) and the Flemish Government. The AMASS++
(Advanced Multimedia Alignment and Structured Summarization)
project IWT 060051 is directly funded by the IWT (Flemish sub-
sidy organization).

7. REFERENCES
[1] Synergy. http://synergy2.sourceforge.net.
[2] R. Ballagas, J. Borchers, M. Rohs, and J. G. Sheridan. The

smart phone: A ubiquitous input device. IEEE Pervasive
Computing, 5(1):70, 2006.

[3] R. Ballagas, M. Ringel, M. Stone, and J. Borchers. istuff: a
physical user interface toolkit for ubiquitous computing
environments. In CHI ’03: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages
537–544, New York, NY, USA, 2003. ACM.

[4] P. Baudisch, M. Sinclair, and A. Wilson. Soap: a pointing
device that works in mid-air. In UIST ’06: Proceedings of the
19th annual ACM symposium on User interface software and
technology, pages 43–46, New York, NY, USA, 2006. ACM.

[5] N. Bila, T. Ronda, I. Mohomed, K. N. Truong, and
E. de Lara. Pagetailor: reusable end-user customization for
the mobile web. In MobiSys ’07: Proceedings of the 5th
international conference on Mobile systems, applications
and services, pages 16–29, New York, NY, USA, 2007.
ACM.

[6] M. de Sá, L. Carriço, L. Duarte, and T. Reis. A mixed-fidelity
prototyping tool for mobile devices. In AVI ’08: Proceedings
of the working conference on Advanced visual interfaces,
pages 225–232, New York, NY, USA, 2008. ACM.

[7] A. Demeure, J. Meskens, K. Luyten, and K. Coninx. Design
by example of graphical user interfaces adapting to available
screen size. pages 1–6, 2008. In Proc. CADUI 2008,
Albacete, Spain, June 11-13, 2008.

[8] K. Hinckley, G. Ramos, F. Guimbretiere, P. Baudisch, and
M. Smith. Stitching: pen gestures that span multiple
displays. In AVI ’04: Proceedings of the working conference
on Advanced visual interfaces, pages 23–31, New York, NY,
USA, 2004. ACM.

[9] D. Ingalls. The lively kernel: just for fun, let’s take javascript
seriously. In DLS ’08: Proceedings of the 2008 symposium
on Dynamic languages, pages 1–1, New York, NY, USA,
2008. ACM.

[10] B. Johanson, G. Hutchins, T. Winograd, and M. Stone.
Pointright: experience with flexible input redirection in
interactive workspaces. In UIST ’02: Proceedings of the 15th
annual ACM symposium on User interface software and
technology, pages 227–234, New York, NY, USA, 2002.
ACM.

[11] S. R. Klemmer, B. Hartmann, and L. Takayama. How bodies
matter: five themes for interaction design. In DIS ’06:
Proceedings of the 6th conference on Designing Interactive
systems, pages 140–149, New York, NY, USA, 2006. ACM.

4

http://xmpp.org/extensions/xep-0166.html
http://synergy2.sourceforge.net

[12] J. H. Maloney and R. B. Smith. Directness and liveness in
the morphic user interface construction environment. In
UIST ’95: Proceedings of the 8th annual ACM symposium
on User interface and software technology, pages 21–28,
New York, NY, USA, 1995. ACM.

[13] M. A. Nacenta, S. Sakurai, T. Yamaguchi, Y. Miki, Y. Itoh,
Y. Kitamura, S. Subramanian, and C. Gutwin. E-conic: a
perspective-aware interface for multi-display environments.
In UIST ’07: Proceedings of the 20th annual ACM
symposium on User interface software and technology, pages
279–288, New York, NY, USA, 2007. ACM.

[14] D. A. Norman. The design of everyday things. Doubleday,
New York, 1990.

[15] Y. Ohshima, J. Maloney, and A. Ogden. The parks pda: a
handheld device for theme park guests in squeak. In
OOPSLA ’03: Companion of the 18th annual ACM
SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 370–380, New
York, NY, USA, 2003. ACM.

[16] J. S. Pierce and J. Nichols. An infrastructure for extending
applications’ user experiences across

multiple personal devices. In UIST ’08: Proceedings of the
21st annual ACM symposium on User interface software and
technology, pages 101–110, New York, NY, USA, 2008.
ACM.

[17] J. Rekimoto. Pick-and-drop: a direct manipulation technique
for multiple computer environments. In UIST ’97:
Proceedings of the 10th annual ACM symposium on User
interface software and technology, pages 31–39, New York,
NY, USA, 1997. ACM.

[18] J. Rekimoto and M. Saitoh. Augmented surfaces: a spatially
continuous work space for hybrid computing environments.
In CHI ’99: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 378–385, New
York, NY, USA, 1999. ACM.

[19] P. Saint-Andre. Extensible messaging and presence protocol
(xmpp): Core. Internet RFC 3920, October 2004.

[20] W. Stuerzlinger, O. Chapuis, D. Phillips, and N. Roussel.
User interface façades: towards fully adaptable user
interfaces. In UIST ’06: Proceedings of the 19th annual
ACM symposium on User interface software and technology,
pages 309–318, New York, NY, USA, 2006. ACM.

5

