
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Answering Why and Why Not Questions in Ubiquitous Computing

Peer-reviewed author version

VERMEULEN, Jo; VANDERHULST, Geert; LUYTEN, Kris & CONINX, Karin (2009)

Answering Why and Why Not Questions in Ubiquitous Computing. In: 11th

International Conference on Ubiquitous Computing (Ubicomp 2009). p. 210-213..

Handle: http://hdl.handle.net/1942/10369

Answering Why and Why Not
Questions in Ubiquitous Computing

Abstract

Users often find it hard to understand and control the

behavior of a Ubicomp system. This gives rise to

usability problems and can lead to loss of user trust,

which may hamper the acceptance of these systems.

We are extending an existing Ubicomp framework to

allow users to pose why and why not questions about

its behavior. Initial experiments suggest that these

questions are easy to use and could help users in

understanding how Ubicomp systems work.

Keywords

Why, questions, explanations, intelligibility, context.

ACM Classification Keywords

H5.m. Information interfaces and presentation (e.g.,

HCI): Miscellaneous.

Introduction

The combination of implicit input and complex decision

making algorithms poses difficulties for users in

understanding how a ubiquitous computing (Ubicomp)

system works [1]. Previous studies have demonstrated

the potential of allowing users to ask why and why not

questions about the behavior of complex [2] and

context-aware software [3]. To the best of the authors’

knowledge, however, there is to date no Ubicomp

Copyright is held by the author/owner(s).

UbiComp 2009, Sep 30 – Oct 3, 2009, Orlando, FL, USA

Jo Vermeulen

Hasselt University – tUL – IBBT

Expertise Centre for Digital Media

Wetenschapspark 2,

B-3590 Diepenbeek, Belgium

jo.vermeulen@uhasselt.be

Geert Vanderhulst

Hasselt University – tUL – IBBT

Expertise Centre for Digital Media

Wetenschapspark 2,

B-3590 Diepenbeek, Belgium

geert.vanderhulst@uhasselt.be

Kris Luyten

Hasselt University – tUL – IBBT

Expertise Centre for Digital Media

Wetenschapspark 2,

B-3590 Diepenbeek, Belgium

kris.luyten@uhasselt.be

Karin Coninx

Hasselt University – tUL – IBBT

Expertise Centre for Digital Media

Wetenschapspark 2,

B-3590 Diepenbeek, Belgium

karin.coninx@uhasselt.be

 2

Figure 1. The scenario: a visitor of an

interactive museum notices that a

documentary stops playing on a nearby

display, and poses a why question to figure

out why this happened.

Figure 2. The why menu, the timeline view

and the answer to the question in the

scenario. The why menu shows a sorted list

of questions relevant to end-users (most

recent first), while the timeline shows all

events (including system events).

framework available that supports these questions. This

paper describes our ongoing effort of extending the

ReWiRe framework [4] with support for why and why

not questions, arising respectively from unexpected

events that occurred or expected events that did not

occur. Our system mainly differs from existing

implementations such as Crystal [2] in that it can trace

events and actions across distributed applications and

supports questions about the interplay of these

networked components. A first experiment with our

prototype suggested that these questions are easy to

use and can help in understanding the behavior of a

Ubicomp system.

Scenario

Consider a user walking around in an interactive

museum (Figure 1). The user carries a personal device

(e.g. an Ultra-Mobile) for easy access to the services in

the museum and for asking why (not) questions. When

she walks up to a display case containing Roman

pottery, a related documentary movie starts playing on

a nearby screen. When she moves a few steps

backwards to get a better look at the screen, the movie

suddenly stops. She is surprised by this behavior, and

decides to use the why questions to find out why this

happened. As shown in Figure 2, the why menu shows

her a list of questions she can ask. She selects the first

question and learns that the movie stopped because

she was too far away from the display case. Having

understood how the system works, she then moves a

bit closer to get the movie to play again.

Implementation

Generating Questions and Answers

We built our implementation of why (not) questions on

top of the existing ReWiRe framework [4]. Context-

aware behavior in ReWiRe is defined by means of

Event-Condition-Action (ECA) rules. To present users

with possible why (not) questions and to generate

corresponding answers to these questions, we have

annotated these ECA rules in three ways. First, events

that affect end-users are annotated with a why label for

generating the questions in the why menu. Secondly,

actions need to provide a list of events they can

possibly trigger, in order to create a list of why not

questions about events that did not occur when these

actions were not executed. Finally, each event, action

and condition is provided with a short descriptive label.

These short labels are used together with the available

information in the ECA rules (e.g. causal dependencies)

to automatically generate answers to the questions.

Allowing Users to Intervene

Our system provides basic control mechanisms that

allow users to correct unwanted behavior. Users might

want to reverse an effect — or undo — when asking a

why question (as they did not expect it to happen).

Similarly, users may want to achieve an effect — or do

— when asking a why not question (as they expected

the effect to occur while it did not). Answer dialogs

therefore include an undo or do button depending on

the type of question, as seen in Figure 2. Do is

implemented by simply executing the action part of the

corresponding ECA rule that would have achieved the

desired effect, but which was not executed. Undo is

realized by supplying each rule with an inverse action

that reverses the effects of the rule’s action. When the

user undoes an effect, the system will execute the

inverse action of the corresponding rule which caused

the effect to happen. While our implementation of undo

and do is relatively straightforward, we believe it is

 3

Figure 3. The control UI for the ―Play

media‖ task. This UI is shown when users

click the ―How can I play media?‖ button in

the answer dialog of Figure 2. It provides

fine-grained control over playing of music or

video in the environment. Similar UIs exist

for other tasks (e.g. controlling lighting).

sufficient for getting a sense of the potential of these

control mechanisms in a first user experiment.

Besides these basic control operations, users can also

invoke a specific user interface (UI) related to the

question they asked. This UI provides more fine-

grained control over the system and is activated by

clicking on an ―How can I … ?” button in the

explanation dialog. To make this possible, actions are

annotated with related user tasks (e.g. playing media,

controlling lighting, etc.). Each of these user tasks has

an associated control UI which can be invoked at any

time. In the answer dialog of Figure 2, for example,

clicking the ―How can I play media?‖ button will result

in the control UI of Figure 3.

Preliminary User Study

We conducted a pilot study to get an idea of the ease of

use of our prototype. Five voluntary researchers from

our lab were asked to use our techniques to understand

and control the behavior of an interactive Ubicomp

room in three situations. Participants used a networked

Ultra-Mobile PC (UMPC) to ask why questions and view

the corresponding answers. All subjects were able use

the questions to find the cause of events in these tasks.

After the test, we conducted a semi-structured

interview in which participants generally indicated that

they found our technique useful and easy to use.

One of the main problems users faced is that the why-

menu quickly became cluttered when many events

were firing in a short time span. This made it hard for

subjects to find the question they wanted to ask.

Participants also found it hard to predict the effect of

invoking undo and do, which might suggest that more

specific labels (e.g. ―Play video‖) are needed. On a

positive note, the majority of participants were able to

use the specific control UIs (see Figure 3).

Ongoing and Future Work

Our immediate ongoing work consists of improving our

prototype based on feedback from the informal study.

At a later stage, we plan to conduct a more formal

evaluation and investigate the required developer effort

to make existing ReWiRe applications ―why question‖-

ready.

Acknowledgements

The authors would like to thank the study participants

for their time and other researchers at our lab for their

feedback and advice on this work. Part of the research

at EDM is funded by ERDF (European Regional

Development Fund), the Flemish Government and the

Flemish Interdisciplinary Institute for BroadBand

Technology (IBBT).

References
[1] V. Bellotti and W.K. Edwards, ―Intelligibility and
accountability: human considerations in context-aware
systems,‖ Hum.-Comput. Interact., vol. 16, 2001, pp.
193-212.

[2] Myers, Weitzman, Ko, and Chau, ―Answering why
and why not questions in user interfaces,‖ Proc. CHI
’06, ACM, 2006, pp. 397-406.

[3] B.Y. Lim, A.K. Dey, and D. Avrahami, ―Why and
Why Not Explanations Improve the Intelligibility of
Context-Aware Intelligent Systems,‖ Proc. CHI ’09,
ACM, 2009, pp. 2119-2128.

[4] G. Vanderhulst, K. Luyten, and K. Coninx,
―ReWiRe: Creating interactive pervasive systems that
cope with changing environments by rewiring,‖ Proc. IE
’08, IET, 2008, pp. 1-8.

