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COMPLEXITY OF DECISION PROBLEMS FOR XML SCHEMAS
AND CHAIN REGULAR EXPRESSIONS†

WIM MARTENS‡¶, FRANK NEVEN§ , AND THOMAS SCHWENTICK‡

Abstract. We study the complexity of the inclusion, equivalence, and intersection problem of
extended CHAin Regular Expressions (eCHAREs). These are regular expressions with a very simple
structure: they basically consist of the concatenation of factors, where each factor is a disjunction of
strings, possibly extended with “∗”, “+”, or “?”. Though of a very simple from, the usage of such ex-
pressions is widespread as eCHAREs, for instance, constitute a super class of the regular expressions
most frequently used in practice in schema languages for XML. In particular, we show that all our
lower and upper bounds for the inclusion and equivalence problem carry over to the corresponding
decision problems for extended context-free grammars, and to single-type and restrained competition
tree grammars. These grammars form abstractions of Document Type Definitions (DTDs), XML
Schema definitions (XSDs) and the class of one-pass preorder typeable XML schemas, respectively.
For the intersection problem, we show that obtained complexities only carry over to DTDs. In
this respect, we also study two other classes of regular expressions related to XML: deterministic
expressions and expressions where the number of occurrences of alphabet symbols is bounded by a
constant.

1. Introduction. Although the complexity of the basic decision problems for
regular expressions (inclusion, equivalence, and non-emptiness of intersection) have
been studied in depth in the seventies [25, 28, 51], the fragment of (extended) CHAin
Regular Expressions (eCHAREs) has been largely untreated and is motivated by the
much more recent rise of XML Theory [29, 42, 45, 55]. Although our initial motiva-
tion to study this particular fragment stems from our interest in schema languages for
XML, simple regular expressions like eCHAREs also occur outside the realm of XML.
For instance, eCHAREs are a superset of the sequence motifs used in bioinformat-
ics [39] and are used in verification of lossy channel systems [1], where they appear
as factors of simple regular expressions.1 The presentation of the paper is therefore
split up in two parts. The first part considers the complexity of the basic decision
problems for eCHAREs and two other classes. The second part shows how results
on decision problems for regular expressions can be lifted to corresponding results on
decision problems for XML schema languages.

1.1. Extended Chain Regular Expressions. In brief, an eCHARE is an ex-
pression of the form e1 · · · en, where every ei in turn is a factor of the form (w1 + · · ·+
wm) — possibly extended with Kleene-star, plus or question mark — and each wi is
a string.2 Table 1.1 provides a total list of the factors that we allow, with an abbrevi-
ated notation for each of them. As an example, (a∗+ b∗)+cd(ab + b)∗ is an eCHARE,
whereas, (a + b)∗ + (c + d)∗ is not. Our interest in eCHAREs is confirmed by a study
by Bex, Neven, and Van den Bussche [8] stipulating that the form of most regular
expressions occurring in practical XML schema languages like DTDs and XSDs is not
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Factor Abbr.
a a
a∗ a∗

a+ a+

a? a?
w∗ w∗

w+ w+

w? w?

Factor Abbr.
(a1 + · · ·+ an) (+a)
(a1 + · · ·+ an)∗ (+a)∗
(a1 + · · ·+ an)+ (+a)+
(a1 + · · ·+ an)? (+a)?
(a∗1 + · · ·+ a∗n) (+a∗)
(a+

1 + · · ·+ a+
n ) (+a+)

Factor Abbr.
(w1 + · · ·+ wn) (+w)
(w1 + · · ·+ wn)∗ (+w)∗
(w1 + · · ·+ wn)+ (+w)+
(w1 + · · ·+ wn)? (+w)?
(w∗1 + · · ·+ w∗n) (+w∗)
(w+

1 + · · ·+ w+
n ) (+w+)

Table 1.1
Possible factors in extended chain regular expressions and how they are denoted (a, ai ∈ Σ,

w, wi ∈ Σ+).

arbitrary but adheres to the structure of eCHAREs. In a follow-up examination of
the investigated corpus [7], it was observed that the number of occurrences of the
same symbol in a regular expressions is rather low, most of the time even equal to
one. We therefore also consider the class RE≤k of arbitrary regular expressions where
every symbol can occur at most k times. A third class we consider, are the one-
unambiguous or deterministic regular expressions [10]. They are discussed in more
detail in Section 1.2.

RE-fragment inclusion equivalence intersection
a, a+ in ptime (DFA!) in ptime in ptime (3.12)
a, a∗ conp (3.1) in ptime (3.6) np (3.7)
a, a? conp (3.1) in ptime (3.6) np (3.7)

a, (+a+) conp (3.1) in conp np (3.7)
a+, (+a) conp (3.1) in conp np (3.7)

a, w+ conp (3.1) in conp in np (3.7)
all− {(+a)∗, (+w)∗,

(+a)+, (+w)+} conp (3.1) in conp np (3.7)

a, (+a)∗ pspace (3.1) in pspace np (3.7)
a, (+a)+ pspace (3.1) in pspace np (3.7)

all− {(+w)∗, (+w)+} pspace (3.1) in pspace np (3.7)
a, (+w)∗ pspace (3.1) in pspace pspace ([4])
a, (+w)+ pspace (3.1) in pspace pspace ([4])

all pspace (3.1) in pspace pspace ([4])
RE≤k (k ≥ 3) in ptime (3.2) in ptime pspace (3.10)

one-unambiguous in ptime in ptime pspace (3.10)
Table 1.2

Summary of our results. Unless specified otherwise, all complexities are completeness results.
The theorem numbers are given in brackets. The mentioned complexities for inclusion and equiva-
lence also hold for DTDs, single-type EDTDs, and restrained competition EDTDs with the respec-
tive regular expressions (Theorem 4.10). The complexities for intersection also hold for DTDs
with the respective regular expressions (Theorem 4.14).

We consider the following problems for regular expressions:
• inclusion: Given two expressions r and r′, is every string in r also defined

by r′?
• equivalence: Given two expressions r and r′, do r and r′ define the same

set of strings?
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• intersection: Given r1, . . . , rn, do they define a common string?
Recall that these three decision problems are pspace-complete for the class of all

regular expressions [28, 51]. We briefly discuss our results. They are summarized in
Table 1.2.

• We show that inclusion is already conp-complete for several, seemingly very
innocent expressions: when every factor is of the form (i) a or a∗, (ii) a or
a?, (iii) a or (a+

1 + · · · + a+
n ), (iv) a or w+ and (v) a+ or (a1 + · · · + an)

with a, a1, . . . , an arbitrary alphabet symbols and w an arbitrary string with
at least one symbol. Even worse, when factors of the form (a1 + · · ·+ an)∗ or
(a1+ · · ·+an)+ are also allowed, we already obtain the maximum complexity:
pspace. When such factors are disallowed the complexity remains conp. The
inclusion problem is in ptime for RE≤k).

• The precise complexity of equivalence largely remains open. Of course, it
is never harder than inclusion, but we conjecture that it is tractable for a
large fragment of the eCHARES. We only prove a ptime upper bound for
expressions where each factor is a or a∗, or a or a?. Even for these restricted
fragments the proof is non-trivial. Basically, we show that two expressions are
equivalent if and only if they have the same sequence normal form, modulo one
rewrite rule. Interestingly, the sequence normal form specifies factors much in
the same way as XML Schema does. For every symbol, an explicit upper and
lower bound is specified. For instance, aa∗bbc?c? becomes a[1, ∗]b[2, 2]c[0, 2].

• intersection is np-complete when each factor is either of the form (i) a
or a∗, (ii) a or a?, (iii) a or (a+

1 + · · · + a+
n ), (iv) a or (a1 + · · · + an)+

or of the form (v) a+ or (a1 + · · · + an). As we can see, the complexity of
intersection is not always the same as for inclusion. There are even cases
where inclusion is harder and others where intersection is harder. In case
(iv), for example, inclusion is pspace-complete, whereas intersection
problem is np-complete. Indeed, intersection remains in np even if we
allow all kinds of factors except (w1 + · · ·+wn)∗ or (w1 + · · ·+wn)+. On the
other hand, intersection is pspace-hard for RE≤3 and for deterministic (or
one-unambiguous) regular expressions [12], whereas their inclusion problem
is in ptime. The only tractable fragment we obtain is when each factor is
restricted to a or a+.

We denote subclasses of extended chain regular expressions by RE(X), where X is
a list of the allowed factors. For example, we write RE((+a)∗, w?) for the set of regular
expressions e1 · · · en where every ei is either (i) (a1+· · ·+am)∗ for some a1, . . . , am ∈ Σ
and m ≥ 1, or (ii) w? for some w ∈ Σ+. As mentioned above, the complexity of the
basic decision problems for regular expressions have been studied in depth [25, 28, 51].
From these, the most related result is the conp-completeness of equivalence and
inclusion of bounded languages [25]. A language L is bounded if there are strings
v1, . . . , vn such that L ⊆ v∗1 · · · v∗n. It should be noted that the latter class is much
more general than, for instance, our class RE(w∗). More recently, inclusion for two
fragments of extended chain regular expressions have been shown to be tractable:
inclusion for RE(a?, (+a)∗) [1] and RE(a, Σ, Σ∗) [37, 36]. This last result should
be contrasted with the pspace-completeness of inclusion for RE(a, (+a), (+a)∗), or
even RE(a, (+a)∗). Further, Bala investigated intersection for regular expressions
of limited star height [4]. He showed that it is pspace-complete to decide whether
intersection for RE((+w)∗) expressions contains a non-empty string. We show how
to adapt Bala’s proof to obtain pspace-hardness of intersection for RE(a, (+w)∗)
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or RE(a, (+w)+) expressions. The study of eCHAREs has been extended to include
numerical occurrence constraints in [20] while [21] obtained a fragment of eCHAREs
admitting a polynomial time algorithm for inclusion. In [7], algorithms have been
proposed to learn general RE≤1-expressions and expressions which are both RE≤1

and eCHAREs.

1.2. XML Theory: Schema Optimization. XML is an abbreviation for eX-
tensible Markup Language and has become the standard data exchange format for
the World Wide Web [2]. As XML documents can be adequately abstracted by la-
beled trees (with or without links) many tools and techniques from formal language
theory have been revisited in this context. More specifically, a renewed interest has
grown in the specification formalism of regular expressions. For instance they are in-
cluded in navigational queries expressed by caterpillar expressions [13], XCPath

reg , Xreg,
and XPath with transitive closure [35, 52], and regular path queries [14]. Therefore,
lower bounds for optimization problems for eCHAREs readily imply lower bound for
optimization problems for navigational queries.

Another application of regular expressions surfaces in the description of schemas
for XML documents. Within a community, parties usually do not exchange arbitrary
XML documents, but only those conforming to a predefined format. Such a format
is usually called a schema and is specified in some schema language. The presence
of a schema accompanying an XML document has many advantages: it allows for
automation and optimization of search, integration, and processing of XML data (cf.,
e.g., [5, 17, 27, 31, 43, 56]). Furthermore, for typechecking or type inference of XML
transformations [24, 32, 38, 44], schema information is even crucial. The inclusion,
equivalence, and intersection problems for schemas are among the basic building
blocks for many of the algorithms for the above mentioned problems. They are defined
similarly as for regular expressions:

• inclusion: Given two schemas E and E ′, is every XML document in E also
defined by E′?

• equivalence: Given two schemas E and E ′, do E and E′ define the same
set of XML documents?

• intersection: Given E1, . . . , En, do they define a common XML document?
It is therefore important to establish the exact complexity of these problems.

Although many XML schema languages have been proposed, Document Type
Definitions (DTDs) [9], XML Schema Definitions (XSDs) [50], and Relax NG [40] are
the most prevalent ones. In particular, DTDs correspond to context-free grammars
with regular expressions (REs) at right-hand sides, while Relax NG is abstracted by
extended DTDs (EDTDs) [44] or equivalently, unranked tree automata [11], defining
the regular unranked tree languages. While XML Schema is usually abstracted by
unranked tree automata as well, recent results indicate that XSDs correspond to a
strict subclass of the regular tree languages and are much closer to DTDs than to tree
automata [34]. In fact, they can be abstracted by single-type EDTDs. We also con-
sider restrained competition EDTDs [41, 34], which is a class of schema languages that
lies strictly between single-type EDTDs and general EDTDs in terms of expressive
power. They have been proposed by Murata et al., and have been shown to capture
the class of EDTDs that can be typed in a streaming fashion [34, 6]. That is, when
reading an XML document as a SAX-stream, they allow to determine the type of any
element when its opening tag is met (that is, one-pass preorder typing).

As grammars and tree automata have already been studied in depth for many
decades, it is not surprising that the complexity of some of the above mentioned deci-
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sion problems is already known. Indeed, in the case of DTDs, the problems reduce to
their counterparts for regular expressions: all three problems are pspace-complete [28,
51]. For tree automata, they are well-known to be exptime-complete [47, 48].

We discuss the determinism constraint imposed on regular expressions: the XML
specification requires DTD content models to be deterministic because of compat-
ibility with SGML (Section 3.2.1 of [9]). In XML Schema, this determinism con-
straint is referred to as the unique particle attribution constraint (Section 3.8.6 of [50]).
Brüggemann-Klein and Wood[12] formalized the regular expressions adhering to this
constraint as the one-unambiguous regular expressions. A relevant property is that
such expressions can be translated in polynomial time to an equivalent deterministic
finite state machine. Hence, it immediately follows that inclusion and equiva-
lence for such regular expressions, and hence also for practical DTDs and XSDs,
are in ptime. In contrast, we show in Theorem 3.10 that intersection of one-
unambiguous regular expressions remains pspace-hard (even when every symbol can
occur at most three times). Nevertheless, we think it is important to also study the
complexity of eCHAREs without the determinism constraint as there has been quite
some debate in the XML community about the restriction to one-unambiguous regular
expressions (cf., for example, page 98 of [53] and [30, 49]). Indeed, several people want
to abandon the notion as its only reason for existence is to ensure compatibility with
SGML parsers and, furthermore, because it is not a transparent one for the average
user which is witnessed by several practical studies [8, 16] that found a number of
non-deterministic content models in actual DTDs. In practice, XSDs allow numerical
occurrence constraints in their regular expressions, which complicates the definition
of determinism even more [26, 19]. In fact, Clarke and Murata already abandoned
the notion in their Relax NG specification [54], the most serious competitor for XML
Schema.

From our results, it becomes clear that, if one would choose to abandon the
one-unambiguity constraint in DTD or XML Schema, the complexity of inclusion
and equivalence would significantly increase, even for regular expressions that have
severe syntactical restrictions.

In the second part of this paper, we present a finer analysis of the complexity
of the basic decision problems for schema languages for XML. Clearly, complexity
lower bounds for inclusion, equivalence, or intersection for a class of regular
expressions R imply lower bounds for the corresponding decision problems for DTDs,
single-type EDTDs, and restrained competition EDTDs with right-hand sides in R.
Probably one of the most important results of this paper is that, for inclusion and
equivalence, the complexity upper bounds for the string case also carry over to
DTDs, single-type EDTDs, and restrained competition EDTDs. For intersection, the
latter still holds for DTDs, but not for single-type or restrained competition EDTDs.

In this respect, the second part of the paper can be used to revive the interest
in studying the complexity of inclusion and equivalence for regular expressions,
as most such results will carry over to DTDs and single-type EDTDs. In particular,
all the results in this paper on subclasses of regular expressions carry over to the
considered XML schema languages.

Organization. In Section 2, we introduce the necessary definitions and show
some preliminary lemmas. In Section 3, we consider inclusion, equivalence, and non-
emptiness of intersection of extended chain regular expressions, respectively. Here,
we also treat RE≤k and one-unambiguous regular expressions. In Section 4, we re-
late decision problems for XML schemas to the corresponding decision problems on
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regular expressions. In Section 5, we present concluding remarks.

2. Preliminaries. For the rest of the paper, Σ always denotes a finite alphabet.
A Σ-symbol (or simply symbol) is an element of Σ, and a Σ-string (or simply string)
is a finite sequence w = a1 · · ·an of Σ-symbols. We define the length of w, denoted by
|w|, to be n. We denote the empty string by ε. The set of positions of w is {1, . . . , n}
and the symbol of w at position i is ai. By w1 ·w2 we denote the concatenation of two
strings w1 and w2. For readability, we often also denote the concatenation of w1 and
w2 by w1w2. The set of all Σ-strings is denoted by Σ∗. A string language is a subset
of Σ∗, for some Σ. For two string languages L, L′ ⊆ Σ∗, we define their concatenation
L ·L′ to be the set {w ·w′ | w ∈ L, w′ ∈ L′}. We abbreviate L ·L · · ·L (i times) by Li.
If w = a1 · · ·wn is a string and i ≤ j + 1, we write w[i, j] for the substring ai · · · aj .
Note that w[i + 1, i] is always the empty string.

2.1. Regular Expressions. The set of regular expressions over Σ, denoted by
RE, is defined in the usual way:

• ∅, ε, and every Σ-symbol is a regular expression; and
• when r and s are regular expressions, then r · s, r + s, and r∗ are also regular

expressions.
Brackets can be added to improve readability and to disambiguate expressions.

The language defined by a regular expression r, denoted by L(r), is inductively
defined as follows:

• L(∅) = ∅;
• L(ε) = {ε};
• L(a) = {a};
• L(rs) = L(r) · L(s);
• L(r + s) = L(r) ∪ L(s); and
• L(r∗) = {ε} ∪

⋃∞
i=1 L(r)i.

The size of a regular expression r over Σ, denoted by |r|, is the number of Σ) {+, ∗}-
symbols occurring in r. By r? and r+, we abbreviate the expressions r + ε and rr∗,
respectively.

In many of our proofs, we reason about of how a string can be matched against a
regular expression. We formalize this by the notion of a match. A match m between
a string w = a1 · · ·an and a regular expression r is a mapping from pairs (i, j),
1 ≤ i ≤ j + 1 ≤ n, of positions of w to sets of subexpressions of r. This mapping has
to be consistent with the semantics of regular expressions, that is,
(1) if ε ∈ m(i, j), then i = j + 1;
(2) if a ∈ m(i, j) for a ∈ Σ, then i = j and ai = a;
(3) if (r1 + r2) ∈ m(i, j), then r1 ∈ m(i, j) or r2 ∈ m(i, j);
(4) if r1r2 ∈ m(i, j), then there is a k such that r1 ∈ m(i, k) and r2 ∈ m(k + 1, j);
(5) if r∗ ∈ m(i, j), then there are k1, . . . , kt such that r ∈ m(i, k1), r ∈ m(kt + 1, j)

and r ∈ m(k! + 1, k!+1), for all ", 1 ≤ " < t.
Furthermore, m has to be minimal with these properties. That is, if m′ fulfills (1)–(5)
and m′(i, j) ⊆ m(i, j) for each i, j, then m′ = m. We say that m matches a substring
ai · · · aj of w onto a subexpression r′ of r when r′ ∈ m(i, j) and write w[i, j] |=m r′.
Often, we leave m implicit whenever this cannot give rise to confusion. We then say
that ai · · · aj matches r′ or write w[i, j] |= r′. It should be noted that m is uniquely
determined by the values m(i, i), for all positions i. Therefore, we sometimes write
m(i) for the unique symbol from σ in m(i, i).

The eCHAREs are formally defined as follows.
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Definition 2.1. A base symbol is a regular expression s, s∗, s+, or s?, where s is
a non-empty string; a factor is of the form e, e∗, e+, or e? where e is a disjunction of
base symbols of the same kind. That is, e is of the form (s1 + · · ·+sn), (s∗1 + · · ·+s∗n),
(s+

1 + · · · + s+
n ), or (s1? + · · · + sn?), where n ≥ 0 and s1, . . . , sn are non-empty

strings. An extended chain regular expression (eCHARE) is ∅, ε, or a concatenation
of factors.

For example, the regular expression ((abc)∗ + b∗)(a + b)?(ab)+(ac + b)∗ is an
extended chain regular expression. (We give an explanation below.) The expression
(a + b) + (a∗b∗), however, is not, due to the nested disjunction and the nesting of
Kleene star with concatenation.

We introduce a uniform syntax to denote subclasses of extended chain regular
expressions by specifying the allowed factors. We distinguish whether the string s
of a base symbol consists of a single symbol (denoted by a) or a non-empty string
(denoted by w) and whether it is extended by ∗, +, or ?. Furthermore, we distinguish
between factors with one disjunct or with arbitrarily many disjuncts: the latter is
denoted by (+ · · · ). Finally, factors can again be extended by ∗, +, or ?. A list of
possible factors, together with their abbreviated notation, is displayed in Table 1.1.
This table only shows factors which give rise to extended chain regular expressions
with different expressive power.

The regular expression ((abc)∗ + b∗)(a + b)?(ab)+(ac + b)∗ mentioned above has,
in the notation of Table 1.1, factors of the form (+w∗), (+a)?, w+, and (+w)∗, from
left to right.

In the remainder of the paper, we restrict ourselves to the factors listed in Ta-
ble 1.1. Notice that other factors, such as, e.g., (w∗1 + · · ·+w∗n)∗ or (w1?+ · · ·+wn?)∗
are superfluous because they can be equivalently rewritten as (w1+· · ·+wn)∗. Similar
rewritings are possible for other factors not listed in Table 1.1.

We denote subclasses of extended chain regular expressions by RE(X), where X
is a list of the allowed factors. For example, we write RE((+a)∗, w?) for the set of
regular expressions e1 · · · en where every ei is either (i) (a1 + · · · + am)∗ for some
a1, . . . , am ∈ Σ and m ≥ 1, or (ii) w? for some w ∈ Σ+.

If A = {a1, . . . , an} is a set of symbols, we often denote (a1 + . . . + an) simply by
A. We denote the class of all extended chain regular expressions by RE(all).

2.1.1. One-Unambiguous Regular Expressions. We recall the notion of
one-unambiguous regular expressions [12]. A marking of a regular expression r is
an assignment of different subscripts to every alphabet symbol occurring in r. More
formally, the marking of a regular expression r, denoted by mark(r), is obtained from
r by replacing the i-th alphabet symbol a in r by ai (counting from left to right).
For instance, the marking of (a + b)∗ab is (a1 + b2)∗a3b4. For w ∈ L(mark(r)), we
denote by w# the string obtained from w by dropping the subscripts. For instance,
then (a1a3b4)# = aab.

Definition 2.2. A regular expression r is one-unambiguous if for all strings
u, v, w and symbols x, y, the conditions uxv, uyw ∈ L(mark(r)) and x *= y imply
that x# *= y#. The intuition behind one-unambiguous regular expressions is that,
when reading a string from left to right, there is always at most one Σ-symbol in
the regular expression that matches the current symbol (while being consistent with
the subexpressions that match the prefix of the string that is already read). One-
unambiguous regular expressions are therefore also referred to as deterministic regular
expressions in the literature. For instance, r1 = (a + b)(a + b)∗ is a one-unambiguous
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regular expression, while r2 = (a + b)∗(a + b) is not. Intuitively, r2 is not one-
unambiguous as when reading a string starting with an a, there is no way of knowing
whether to match the first or the second a in r2. Indeed, mark(r2) = (a1+b2)∗(a3+b4),
a1a3 ∈ mark(r2) and a1a1a3 ∈ mark(r2). If we take u = a1, x = a3, v = ε, y = a1

and w = a3, we see that x *= y and x# = y#, which contradicts the definition.

2.2. Decision Problems. The following three problems are fundamental to this
paper.

Definition 2.3. Let R be a class of regular expressions.
• inclusion for R: Given two expressions r, r′ ∈ R, is L(r) ⊆ L(r′)?
• equivalence for R: Given two expressions r, r′ ∈ R, is L(r) = L(r′)?
• intersection for R: Given an arbitrary number of expressions r1, . . . , rn ∈
R, is

⋂n
i=1 L(ri) *= ∅?

Notice that if R is the class of arbitrary regular expressions all these problems are
pspace-complete [28, 51]. Given two regular expressions r and r′, we also say that r
is included in r′ (resp., is equivalent to) if L(r) ⊆ L(r′) (resp., L(r) = L(r′)).

2.3. Automata on Compressed Strings. We introduce some more notions
that are frequently used in our proofs. We use the abbreviations NFA and DFA for
non-deterministic and deterministic finite automata, respectively. Such automata are
5-tuples (Q, Σ, δ, I, F ), where Q is the state set, Σ is the input alphabet, δ : Q×Σ →
2Q is the transition function, I is the set of initial states and F is the set of final
states. Furthermore, a DFA is an NFA with the property that I is a singleton, and
δ(q, a) contains at most one element for every q ∈ Q and a ∈ Σ.

A compressed string is a finite sequence of pairs (w, i), where w ∈ Σ∗ is a string
and i ∈ N − {0}. The pair (w, i) stands for the string wi. The size of a pair (w, i)
is |w| + -log i.. The size of a compressed string v = (w1, ii) · · · (wn, in) is the sum
of the sizes of (w1, i1), . . . , (wn, in). By string(v), we denote the decompressed string
corresponding to v, which is the string wi1

1 · · ·win
n . Notice that string(v) can be

exponentially larger than v.

The following lemma shows that we can decide in polynomial time whether a
compressed string is accepted by an NFA. We use it later in the article as a tool to
obtain complexity upper bounds.

Lemma 2.4. Given a compressed string v and an NFA A, we can test whether
string(v) ∈ L(A) in time polynomial in the size of v and A.

Proof. The idea is based on a proof by Meyer and Stockmeyer [51], which
shows that the equivalence problem for regular expressions over a unary alphabet
is conp-complete. Let v = (w1, i1) · · · (wn, in) be a compressed string and let A =
(QA, Σ, δA, IA, FA) be an NFA with QA = {1, . . . , k}. The goal is to test in poly-
nomial time whether δ∗(IA, string(v)) ∩ FA = ∅. It is sufficient to compute, for
each j, the transition relation Rj , i.e., all pairs (p, q) of states of A such that q ∈
δ(p, string(wj , ij)). To this end, we first compute the transition relation of wj and get
Rj by -log ij. iterated squarings (sometimes also called successive squaring [46]).

2.4. Tiling systems. A tiling system is a tuple D = (T, H, V, b̄, t̄, n) where n is
a natural number, T is a finite set of tiles; H, V ⊆ T × T are horizontal and vertical
constraints, respectively; and b̄, t̄ are n-tuples of tiles (b̄ and t̄ stand for bottom row and
top row, respectively). A corridor tiling is a mapping λ : {1, . . . , m}×{1, . . . , n}→ T ,
for some m ∈ N, such that b̄ = (λ(1, 1), . . . , λ(1, n)) and t̄ = (λ(m, 1), . . . , λ(m, n)).
Intuitively, the first and last row of the tiling are b̄ and t̄, respectively. A tiling is correct
if it respects the horizontal and vertical constraints. That is, for every i = 1, . . . , m
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and j = 1, . . . , n − 1, (λ(i, j), λ(i, j + 1)) ∈ H , and for every i = 1, . . . , m − 1 and
j = 1, . . . , n, (λ(i, j), λ(i + 1, j)) ∈ V .

With every tiling system we associate a tiling game as follows: the game consists
of two players (Constructor and Spoiler). The game is played on an N×n board.
Each player places tiles in turn. While Constructor tries to construct a corridor
tiling, Spoiler tries to prevent it. Constructor wins if Spoiler makes an illegal
move (with respect to H or V ), or when a correct corridor tiling is completed. We
say that Constructor has a winning strategy if she wins no matter what Spoiler
does.

In the sequel, we use reductions from the following problems:
• Corridor Tiling: given a tiling system, is there a correct corridor tiling?
• Two-Player Corridor Tiling: given a tiling system, does Constructor

have a winning strategy in the corresponding tiling game?
The following theorem is due to Chlebus [15].
Theorem 2.5.
1. Corridor Tiling is pspace-complete.
2. Two-player Corridor Tiling is exptime-complete.

3. Decision Problems for Chain Regular Expressions. We turn to the
complexity of inclusion, equivalence, and intersection for the chain regular
expressions themselves.

3.1. Inclusion. We start our investigation with the inclusion problem. As men-
tioned before, it is pspace-complete for general regular expressions. The following
tractable cases have been identified in the literature:

• inclusion for RE(a?, (+a)∗) can be solved in linear time. Whether p ⊆
p1 + · · ·+ pk for p, p1, . . . , pk from RE(a?, (+a)∗) can be checked in quadratic
time [1].

• In [37] it is stated that inclusion for RE(a, Σ, Σ∗) is in ptime. In this
fragment, only disjunctions over the full alphabet are allowed. A proof can
be found in [36].

Some of the fragments we defined are so small that one expects their containment prob-
lem to be tractable. Therefore, it came as a surprise to us that even for RE(a, a?) and
RE(a, a∗) the inclusion problem is already conp-complete, especially when comparing
to the linear time result for, e.g., RE(a?, (+a)∗). That inclusion for RE(a?, (+a)∗)
is in linear time is quite easy to see: given two expressions, r1 and r2, one can use a
greedy algorithm that reads the expressions from left to right and tries to match as
much as possible of r1 into r2. If everything of r1 is matched, we are done because the
remainder of r2 always matches the empty string. The main difference when adding
the a-factor is that the remainder of the expression r2 can now require that r1 still
needs to produce at least some symbols, hence, this greedy left-to-right approach does
no longer work.

Maybe even more surprising is that RE(a, (+a)∗) and RE(a, (+a)+) already yield
the maximum complexity: pspace-completeness. The pspace-hardness of inclusion
of RE(a, (+a)∗) expressions highly contrasts with the ptime inclusion for RE(a, Σ, Σ∗)
mentioned above.

Our results, together with corresponding upper bounds are summarized in Theo-
rem 3.1. Let RE(all−{(+a)∗, (+w)∗, (+a)+, (+w)+}) denote the fragment of RE(all)
where no factors of the form (a1 + · · · + an)∗, (w1 + · · · + wn)∗, (a1 + · · · + an)+ or
(w1 + · · ·+ wn)+ are allowed for n ≥ 2.
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Theorem 3.1.
(a) inclusion is conp-hard for

(1) RE(a, a∗),
(2) RE(a, a?),
(3) RE(a, w+),
(4) RE(a, (+a+)), and
(5) RE(a+, (+a));

(b) inclusion is pspace-hard for
(1) RE(a, (+a)+); and
(2) RE(a, (+a)∗);

(c) inclusion is in conp for RE(all − {(+a)∗, (+w)∗, (+a)+, (+w)+}); and
(d) inclusion is in pspace for RE(all).

Theorem 3.1 does not leave much room for tractable cases. Of course, inclusion
is in ptime for any class of regular expressions for which expressions can be trans-
formed into DFAs in polynomial time. An easy example of such a class is RE(a, a+).
Another case is covered by the following theorem.

Theorem 3.2. inclusion for RE≤k is in ptime when k is fixed.
Proof. Let r be an RE≤k expression. Let Ar = (Q, Σ, δ, I, F ) be the Glushkov

automaton for r [22] (see also [12]). As the states of this automaton are basically the
positions in r, after reading a symbol there are always at most k possible states in
which the automaton might be. Therefore, determinizing A only leads to a DFA of
size |A|k. As k is fixed, inclusion of such automata is in ptime.

It should be noted though that the upper bound for the running time is O(nk),
therefore k should be very small to be really useful. Fortunately, this seems to be the
case in many practical scenarios. Indeed, recent investigation has pointed out that in
practice, for over ninety percent of the regular expressions DTDs or XML Schemas,
k is equal to one [7].

In the rest of this section, we prove Theorem 3.1. We start by showing Theo-
rem 3.1(a), i.e., that inclusion is conp-hard for
(1) RE(a, a∗),
(2) RE(a, a?),
(3) RE(a, (+a+)),
(4) RE(a, w+); and
(5) RE(a+, (+a)).
In all five cases, we construct a logspace reduction from validity of propositional
formulas in disjunctive normal form with exactly three literals per clause (3DNF).
The validity problem asks, given a propositional formula Φ in 3DNF with variables
{x1, . . . , xn}, whether Φ is true under all truth assignments for {x1, . . . , xn}. The
validity problem for 3DNF formulas is known to be conp-complete [18]. We note
that, for the cases (1)–(3), we even show that inclusion is already conp-hard when
the expressions use a fixed-sized alphabet.

Our proof technique is inspired by a proof of Miklau and Suciu, showing that
the inclusion problem for XPath expressions with predicates, wildcard, and the axes
“child” and “descendant” is conp-hard [36]. We present a robust generalization of the
technique and use it to show conp-hardness of all five fragments.

We now proceed with the proof. Thereto, let Φ = C1∨ · · ·∨Ck be a propositional
formula in 3DNF using variables {x1, . . . , xn}. In the five cases, we construct regular
expressions R1, R2 such that

L(R1) ⊆ L(R2) if and only if Φ is valid. (∗)
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α

rtrue

ztrue

rall

rfalse

rtrue/false

zfalse

Fig. 3.1. Inclusion structure of regular expressions used in conp-hardness of inclusion.

More specifically, we encode truth assignments for Φ by strings. The basic idea is
to construct R1 and R2 such that L(R1) contains all string representations of truth
assignments and a string w matches R2 if and only if w represents an assignment
which makes Φ true.

To define R1 and R2 we use auxiliary regular expressions W and N , a string u
and expressions F (C) associated with clauses C:

• The strings of L(W ) will be interpreted as truth assignments. More precisely,
for each truth assignment A, there is a string wA ∈ L(W ) and for each string
w ∈ L(W ) there is a corresponding truth assignment Aw.

• For each clause C and every w ∈ L(W ) it will hold that w |= F (C) if and
only if Aw |= C.

• The string u matches every expression F (C).
• Finally, N can match the concatenation of up to k occurrences of the string

u.
Then we define

R1 = ukWuk,
R2 = NF (C1) · · ·F (Ck)N .

Intuitively, L(R1) ⊆ L(R2) now holds if and only if every truth assignment (matched
by the middle part of R1) makes at least one disjunct true (i.e., matches at least one
F (Ci)).

For each of the cases (1)–(5), we construct the auxiliary expressions with the help
of five basic regular expressions rtrue, rfalse, rtrue/false, rall, and α, which must adhere
to the inclusion structure graphically represented in Figure 3.1 and formally stated
by the following properties (INC1)–(INC5).

α ∈ L(rfalse) ∩ L(rtrue) (INC1)

L(rtrue/false) ⊆ L(rfalse) ∪ L(rtrue) (INC2)

L(rtrue/false) ∪ {α} ⊆ L(rall) (INC3)

ztrue ∈ L(rtrue/false)− L(rfalse) (INC4)

zfalse ∈ L(rtrue/false)− L(rtrue) (INC5)

Intuitively, the two dots in Figure 3.1 are strings ztrue and zfalse, which represent
the truth values true and false, respectively. The expressions rtrue and rfalse are used
to match ztrue and zfalse in F (C), respectively. The expression rtrue/false is used in
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(1) RE(a, a∗) (2) RE(a, a?) (3) RE(a, w+)
α a a aaaa
rtrue aa∗b∗a∗ aa? a+(aa)+
rfalse b∗a∗ a? (aa)+

rtrue/false a∗b∗a∗ a?a? aa+

rall a∗b∗a∗ a?a? a+

ztrue ab aa aaa
zfalse ba ε aa
W #rtrue/false$ · · · #rtrue/false$ · · · #rtrue/false$ · · ·

· · · $rtrue/false# · · · $rtrue/false# · · · $rtrue/false#
N (#∗a∗$∗ · · · $∗a∗#∗)k (#?a?$? · · · $?a?#?)k (#aaaa$ · · · $aaaa#)+
u #α$ · · · $α# #α$ · · · $α# #α$ · · · $α#

Table 3.1
Definition of basic and auxiliary expressions for cases (1)–(3). In the definition of W, N and

u the repetition indicated by · · · is always n-fold and does not include #.

W to generate both, true and false. Finally, α is used in u and rall is used for the
definition of F (C).

The definition of the basics expressions and of W, N and u for cases (1)-(3) is
given in Table 3.1. We will consider cases (4) and (5) later.

It is straighforward to verify that the conditions (INC1)–(INC5) are fulfilled for
each of the fragments. Note that the expressions use the fixed alphabet {a, b, $, #}.

The association between strings and truth assignments is now straightforward.
• For w = #w1$ · · · $wn# ∈ L(W ) let Aw be defined as follows:

Aw(xj) :=

{
true, if wj ∈ L(rtrue);
false, otherwise.

• For a truth assignment A, let wA = #w1$ · · · $wn#, where, for each j =
1, . . . , n,

wj =

{
ztrue if A(xj) = true
zfalse otherwise.

• Finally, for each clause C, we define F (C) = #e1$ · · · $en#, where for each
j = 1, . . . , n,

ej :=






rfalse, if xj occurs negated in C,
rtrue, if xj occurs positively in C, and
rall, otherwise.

Claim 3.3. If Aw |= C then w ∈ L(F (C)). If wA ∈ L(F (C)) then A |= C.
Proof of Claim 3.3. Let w = #w1$ · · · $wn# ∈ W be a string with Aw |= C and

let F (C) = #e1$ · · · $en# be as defined above. We show that w ∈ L(F (C)). To this
end, let j ≤ n. There are three cases to consider:
1. If xj does not occur in C then ej = rall. Hence, as wj ∈ L(rtrue/false), and by

condition (INC3), we have that wj ∈ L(ej).
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2. If xj occurs positively in C, then ej = rtrue. As Aw |= C, Aw(xj) = true and, by
definition of Aw, we get wj ∈ L(rtrue) = L(ej).

3. If xj occurs negatively in C, then ej = rfalse. As Aw |= Ci, Aw(xj) = false and
thus wj *∈ L(rtrue) by definition of Aw. Thus, wj ∈ L(rtrue/false) − L(rtrue) and
thus in L(ej) = L(rfalse) by condition (INC2).

Therefore, for each j = 1, . . . , n, wj ∈ L(ej) and thus w ∈ L(F (C)).
We show the other statement by contraposition. Thereto, let A be a truth assign-

ment such that does not make clause C true. We show that wA *∈ L(F (C)). There
are two cases:
1. Suppose there exists an xj which occurs positively in C and A(xj) is false. By

definition, the ej component of F (C) is rtrue and, by definition of wA, the wj

component of wA is zfalse *∈ L(rtrue). Hence, wA *∈ L(F (C)).
2. Otherwise, there exists an xj which occurs negatively in C and A(xj) is true. By

definition, the ej component of F (C) is rfalse and, by definition of wA, the wj

component of wA is ztrue *∈ L(rfalse). Hence, wA *∈ L(F (C)).
In the proof of (∗) we will make use of the following properties.
Claim 3.4.

(a) ui ∈ L(N) for every i = 1, . . . , k.
(b) u ∈ L(F (Ci)) for every i = 1, . . . , k.
(c) If ukwuk ∈ L(R1) ∩ L(R2), then w matches some Fi.

Proof of Claim 3.4. (a) can be easily checked and (b) follows immediately from
conditions (INC1), (INC3), and the definition of F . In the following, we abbreviate
F (Ci) by Fi. To show (c), suppose that ukwuk ∈ L(R1) ∩ L(R2). We need to show
that w matches some Fi. Observe that the strings u, w, and every string in every
L(Fi) is of the form #y# where y is a non-empty string over the alphabet {a, b, $}.
Also, every string in L(N) is of the form #y1##y2# · · ·#y!#, where y1, . . . , y! are
non-empty strings over {a, $}. Hence, as ukwuk ∈ L(R2) and as none of the strings
y, y1, . . . , y! contain the symbol “#”, w either matches some Fi or w matches a sub-
expression of N .

We now distinguish between fragments (1–2) and fragment (3). Let m be a match
between ukwuk and R2.

• In fragments (1–2) we have that " ≤ k. Towards a contradiction, assume
that m matches a superstring of ukw to the left occurrence of N in R2. Note
that ukw is a string of the form #y′1##y′2# · · ·#y′k+1#, where y′1, . . . , y

′
k+1

are non-empty strings over {a, b, $}. But as " ≤ k, no superstring of ukw
can match N , which is a contradiction. Analogously, no superstring of wuk

matches the right occurrence of the expression N in R2. So, m must match
w onto some Fi.

• In fragment (3), we have that " ≥ 1. Again, towards a contradiction, assume
that m matches a superstring of ukw onto the left occurrence of the expresion
N in R2. Observe that every string that matches F1 · · ·FkN is of the form
#y′′1##y′′2 # · · ·#y′′!′#, where "′ > k. As uk is not of this form, m cannot
match uk onto F1 · · ·FkN , which is a contradiction. Analogously, m cannot
match a superstring of wuk onto the right occurrence of the expression N in
R2. So, m must match w onto some Fi.

Now we can complete the proof of (∗) for fragments (1)–(3).

Proof of (∗). (⇒) Assume that L(R1) ⊆ L(R2). Let A be an arbitrary truth
assignment for Φ and let v = ukwAuk. As v ∈ L(R1) and L(R1) ⊆ L(R2), also
v ∈ L(R2). By Claim 3.4 (c), it follows that wA matches some F (C). Hence, by



14 MARTENS, NEVEN, AND SCHWENTICK

(4) RE(+a+) (5) RE(a+, (+a))
α a a
rtrue
j (a+ + b+

j ) (a + bj)
rfalse
j (a+ + c+

j ) (a + cj)
rtrue/false
j (b+

j + c+
j ) (bj + cj)

rall
j (a+ + b+

j + c+
j ) (a + bj + cj)

ztrue
j bj bj

zfalse
j cj cj

W rtrue/false
1 · · · rtrue/false

n rtrue/false
1 · · · rtrue/false

n

N a+ a+

u αn αn

Table 3.2
Definition of basic and auxiliary expressions for cases (4) and (5).

Claim 3.3, A |= C and, consequently, A |= Φ. As A is an arbitrary truth assignment,
we have that Φ is a valid propositional formula.

(⇐) Suppose that Φ is valid. Let v be an arbitrary string in L(R1). By definition
of R1, v is of the form v = ukwuk. As Φ is valid, there is a clause C of Φ that becomes
true under Aw. Due to Claim 3.3, w ∈ L(F (C)). Furthermore, as u |= F (Cj) for
every j = 1, . . . , k by Claim 3.4 (b), and as L(N) contains u! for every " = 1, . . . , k by
Claim 3.4 (a), we get that v = ukwuk ∈ L(R2). As v is an arbitrary string in L(R1),
it follows L(R1) ⊆ L(R2).

This completes the proof of Theorem 3.1(a) for fragments (1)–(3).
We still need to deal with the fragments (4) and (5). The main difference with the

fragments (1)–(3) is that we will no longer use an alphabet with fixed size. Instead,
we use the symbols bj and cj , for j = 1, . . . , n. Instead of the basic regular expressions
rtrue, rfalse, rtrue/false, and rall, we will now have expressions rtrue

j , rfalse
j , rtrue/false

j ,
and rall

j for every j = 1, . . . , n. We will require that these expressions fulfill the
properties (INC1)–(INC5), for each j, where rtrue, rfalse, rtrue/false, rall are replaced by
the expressions rtrue

j , rfalse
j , rtrue/false

j , and rall
j , respectively. The definitions of the

basic and auxiliary expressions are given in Table 3.2.
The association between strings and truth assignments is now defined as follows.
• For w = w1 · · ·wn ∈ L(W ), where for every j = 1, . . . , n, wj ∈ rtrue/false

j , let
Aw be defined as follows:

Aw(xj) :=

{
true, if wj ∈ L(rtrue);
false, otherwise.

• For a truth assignment A, let wA = w1 · · ·wn, where, for each j = 1, . . . , n,

wj =

{
ztrue

j if A(xj) = true and
zfalse

j otherwise.

• Finally, for each clause C, we define F (C) = e1 · · · en, where for each j =
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1, . . . , n,

ej :=






rfalse
j , if xj occurs negated in C,

rtrue
j , if xj occurs positively in C, and

rall
j , otherwise.

In order to prove (∗) for fragments (4) and (5), we have to show that Claims 3.3
and 3.4 hold. For Claim 3.3 this can be done similarly as before, and for Claim 3.4
(a) and (b) it is again easy to see. We complete the proof of Theorem 3.1 by showing
Claim 3.4 (c).

To this end, suppose that ukwuk ∈ L(R1) ∩ L(R2). We need to show that w
matches some Fi. Let m be a match between ukwuk and R2. For every j = 1, . . . , n,
let Σj denote the set {bj, cj}. Observe that the string w is of the form y1 · · · yn, where,
for every j = 1, . . . , n, yj is a string in Σ+

j . Moreover, no strings in L(N) contain
symbols from Σj for any j = 1, . . . , n. Hence, m cannot match any symbol of the
string w onto N . Consequently, m matches the entire string w onto a subexpression
of F1 · · ·Fk in R2.

Further, observe that every string in every Fi, i = 1, . . . , k, is of the form y′1 . . . y′n,
where each y′j is a string in (Σj ∪ {a})+. As m can only match symbols in Σj onto
subexpressions with symbols in Σj , m matches w onto some Fi.

This concludes the proof of Theorem 3.1(a).

We prove Theorem 3.1(b) by a reduction from Corridor Tiling.

Theorem 3.1(b). inclusion is pspace-hard for
(1) RE(a, (+a)+); and
(2) RE(a, (+a)∗).

Proof. We first show that inclusion is pspace-hard for RE(a, (+a)+) and we
consider the case of RE(a, (+a)∗) later. In both cases, we use a reduction from the
Corridor Tiling problem, which is known to be pspace-complete.

To this end, let D = (T, H, V, b̄, t̄, n) be a tiling system. Without loss of generality,
we assume that n ≥ 2. We construct two regular expressions R1 and R2 such that

L(R1) ⊆ L(R2) if and only if there exists no correct corridor tiling for D.

We will use symbols from Σ = T × {1, . . . , n}, where, for each i, Σi = {[t, i] | t ∈ T }
will be used to tile the i-th column. For ease of exposition, we denote Σ ∪ {$} by Σ$

and Σ∪{#, $} by Σ#,$. We encode candidates for a correct tiling by strings in which
the rows are separated by the symbol $, that is, by strings of the form

$b̄$Σ+$Σ+$ · · · $Σ+$t̄$. (†)

The following regular expressions detect strings of this form which do not encode a
correct tiling:

• Σ+
$ [t, i][t′, j]Σ+

$ , for every t, t′ ∈ T , where i = 1, . . . , n − 1 and j *= i + 1.
These expressions detect consecutive symbols that are not from consecutive
column sets;

• Σ+
$ $[t, i]Σ+

$ for every i *= 1 and [t, i] ∈ Σi, and Σ+
$ [t, i]$Σ+

$ for every i *= n
and [t, i] ∈ Σi. These expressions detect rows that do not start or end with
a correct symbol. Together with the previous expressions, these expressions
detect all candidates with at least one row not in Σ1 · · ·Σn.
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• Σ+
$ [t, i][t′, i + 1]′Σ+

$ , for every (t, t′) *∈ H , and i = 1, . . . , n− 1. These expres-
sions detect all violations of horizontal constraints.

• Σ+
$ [t, i]Σ+$Σ+[t′, i]Σ+

$ , for every (t, t′) *∈ Σ and for every i = 1, . . . , n. These
expressions detect all violations of vertical constraints.

Let e1, . . . , ek be an enumeration of the above expressions. Notice that k = O(|D|2).
It is straightforward that a string w in (†) does not match

⋃k
i=1 ei if and only if w

encodes a correct tiling.
Let e = e1 · · · ek. Because of leading and trailing Σ+

$ expressions, L(e) ⊆ L(ei)
for every i = 1, . . . , k. We are now ready to define R1 and R2:

R1 =

k times e︷ ︸︸ ︷
#e#e# · · ·#e# $b̄$Σ+

$ $t̄$

k times e︷ ︸︸ ︷
#e#e# · · ·#e# and

R2 = Σ+
#,$#e1#e2# · · ·#ek#Σ+

#,$.
Notice that both R1 and R2 are in RE(a, (+a)+) and can be constructed using

only logarithmic space. It remains to show that L(R1) ⊆ L(R2) if and only if there
is no correct tiling for D.

We first show the implication from left to right. Thereto, assume L(R1) ⊆ L(R2).
Let uwu′ be an arbitrary string in L(R1) such that w ∈ $b̄$Σ+

$ $t̄$ and u, u′ ∈
L(#e#e# · · ·#e#). Hence, uwu′ ∈ L(R2). Let m be a match such that uwu′ |=m R2.
Notice that uwu′ contains 2k +2 times the symbol “#”. However, as uwu′ starts and
ends with the symbol “#”, m matches the first and the last “#” of uwu′ onto the
Σ+

#,$ sub-expressions of R2. Thus vwv′ |=m #e1#e2# · · ·#ek#, for some suffix v of
u and prefix v′ of u′. In particular, w |=m ei, for some i. So, w does not encode
a correct tiling. As the $b̄$Σ+

$ $t̄$ defines all candidate tilings, the system D has no
solution.

To show the implication from right to left, assume that there is a string uwu′ ∈
L(R1) that is not in R2, where u, u′ ∈ L(#e#e# · · ·#e#). Then w *∈

⋃k
i=1 L(ei) and,

hence, w encodes a correct tiling.
The pspace-hardness proof for RE(a, (+a)∗) is completely analogous, except that

every “Σ+” has to be replaced by a “Σ∗” and that

R2 = #Σ∗#,$#e1#e2# · · ·#ek#Σ∗#,$#.

Theorem 3.1(c). inclusion is in conp for

RE(all − {(+a)∗, (+w)∗, (+a)+, (+w)+}).

Proof. Let r1, r2 be expressions in RE(all− {(+a)∗, (+w)∗, (+a)+, (+w)+}). It is
clear that there is a number Nr1,r2 , at most exponential in |r1|+ |r2| such that there
is a DFA for L(r1) − L(r2) of size at most Nr1,r2 . In particular, if L(r1) *⊆ L(r2),
there is a counterexample string s of length at most Nr1,r2 .

We show next that, because of the restricted form of r1, it is possible to encode
strings s ∈ L(r1) of length up to Nr1,r2 as compressed strings of size polynomial in
|r1|. Indeed, r1 is of the form e1 · · · en where each ei is of the form (w1 + · · · + wk),
(w1 + · · ·+ wk)?, (w∗1 + · · ·+ w∗k) or (w+

1 + · · ·+ w+
k ), for k ≥ 1 and w1, . . . , wk ∈ Σ+.

Hence, s can be written as s1 · · · sn, where each si matches ei. If ei is of the form
(w∗1 +· · ·+w∗k) or (w+

1 +· · ·+w+
k ), then si = w!

j , for some j, " where " ≤ Nr1,r2 . So, the
binary representation of " has polynomial length in |r1|. We can therefore represent si
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by the pair (wj , "). In all other cases, |si| ≤ |ei| and we represent si simply by (si, 1).
To check L(r1) *⊆ L(r2), it thus suffices to guess a compressed string of polynomial
length and to check that it matches r1 but not r2. We conclude that testing inclusion
is in conp.

Notice that, in the proof of Theorem 3.1(c), we actually did not make use of
the restricted structure of the expression r2. We can therefore state the following
corollary:

Corollary 3.5. Let r1 be an RE(all−{(+a)∗, (+w)∗, (+a)+, (+w)+}) expression
and let r2 be an arbitrary regular expression. Then, deciding whether L(r1) ⊆ L(r2)
is in conp.

Theorem 3.1(d) holds as even the containment problem for arbitrary regular ex-
pressions is in pspace. This concludes the proof of Theorem 3.1.

3.2. Equivalence. In the present section, we merely initiate the research on the
equivalence of chain regular expressions. Of course, upper bounds for inclusion imply
upper bounds for equivalence, but testing equivalence can be simpler. We show
that the problem is in ptime for RE(a, a?) and RE(a, a∗, a+) by showing that such
expressions are equivalent if and only if they have a corresponding sequence normal
form (defined below). We conjecture that equivalence remains tractable for larger
fragments, or even the full fragment of chain regular expressions. However, showing
that equivalence is in ptime is already non-trivial for RE(a, a?) and RE(a, a∗, a+)
expressions.

We now define the required normal form for RE(a, a?) and RE(a, a∗, a+) ex-
pressions. To this end, let r = r1 · · · rn be a chain regular expression with factors
r1, . . . , rn. The sequence normal form of r is obtained in the following way. First, we
replace every factor of the form

• s by s[1, 1];
• s? by s[0, 1];
• s∗ by s[0, ∗]; and,
• s+ by s[1, ∗],

where s is an alphabet symbol. We call s the base symbol of the factor s[i, j]. Then,
we replace successive subexpressions s[i1, j1] and s[i2, j2] with the same base symbol
s by

• s[i1 + i2, j2 + j2] when j1 and j2 are integers; and by
• s[i1 + i2, ∗] when j1 = ∗ or j2 = ∗,

until no such replacements can be made anymore. For instance, the sequence normal
form of aa?aa?b∗bb?b∗ is a[2, 4]b[1, ∗]. When r′ is the sequence normal form of a chain
regular expression, and s[i, j] is a subexpression of r′, then we call s[i, j] a factor of
r′.

Unfortunately, there are equivalent RE(a, a∗) expressions that do not share the
same sequence normal form. For instance, the regular expressions

r1(a, b) = a[i, ∗]b[0, ∗]a[0, ∗]b[1, ∗]a[l, ∗]

and

r2(a, b) = a[i, ∗]b[1, ∗]a[0, ∗]b[0, ∗]a[l, ∗]

are equivalent but have different sequence normal forms. So, whenever an expression
of the form r1(a, b) occurs, it can be replaced by r2(a, b). The strong sequence normal
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form of an expression r is the expression r′ obtained by applying this rule as often as
possible. It is easy to see that r′ is unique.

We extend the notion of a match between a string and a regular expression in the
obvious way to expressions in (strong) sequence normal form.

Theorem 3.6. equivalence is in ptime for
(1) RE(a, a?), and
(2) RE(a, a∗, a+).

Proof. We need to prove that, for both fragments, two expressions are equivalent
only if they have the same strong sequence normal form.

We introduce some notions. If f is an expression of the form e[i, j], we write
base(f) for e, upp(f) for the upper bound j and low(f) for the lower bound i. If r =
r1 · · · rn is an expression in sequence normal form, we write max(r) for the maximum
number in r different from ∗, that is, for max{{upp(ri) | upp(ri) *= ∗}∪{low(ri) | 1 ≤
i ≤ n}}. (We need the low(ri) the case that all upper bounds are ∗.) Finally, we call
a substring v of a string w a block of w when w is of the form ak1

1 · · · akn
n , where for

each i = 1, . . . , n− 1, ai *= ai+1 and v is of the form aki
i for some i.

In the following, we prove that if two expressions r and s from one of the two
stated fragments are equivalent, their strong sequence normal forms r′ and s′ are
equal. The proof is a case study which eliminates one by one all differences between
the strong normal forms of the two equivalent expressions.

Therefore, let r and s be two equivalent expressions and let r′ = r1 · · · rn and
s′ = s1 · · · sm be the strong sequence normal form of r and s, respectively. We
assume that every r1, . . . , rn and s1, . . . , sm is of the form e[i, j]. Let k := 1 +
max(max(r′), max(s′)), that is, k is larger than any upper bound in r′ and s′ different
from ∗.

We first show that m = n and that, for every i = 1, . . . , n, base(ri) = base(si).
Thereto, let vmax = vmax

1 · · · vmax
n , where, for every i = 1, . . . , n,

vmax
i =

{
base(ri)k if upp(ri) = ∗,
base(ri)upp(ri) otherwise.

Obviously, vmax is an element of L(r). Hence, by our assumption that r is equivalent
to s, we also have that vmax ∈ L(s). As vmax contains n blocks, s′ must have at least
n factors, so m ≥ n. Correspondingly, we define the string wmax = wmax

1 · · ·wmax
m ,

where, for every j = 1, . . . , m,

wmax
j =

{
base(sj)k if upp(sj) = ∗,
base(sj)upp(sj) otherwise.

As wmax has to match r, we can conclude that r′ has at least m factors, so n ≥
m. Hence, we obtain that m = n. Furthermore, for each i = 1, . . . , n, it follows
immediately that base(ri) = base(si).

We now show that, for every i = 1, . . . , n, upp(ri) = upp(si). If, for some i,
upp(ri) = ∗ then vmax

i has to be matched in s′ by a factor with upper bound ∗.
The analogous statement holds if upp(si) = ∗. Hence, upp(ri) = ∗ if and only if
upp(si) = ∗. Finally, we similarly get that upp(ri) = upp(si) for factors ri, si with
upp(ri) *= ∗ and upp(si) *= ∗.

It only remains to show for each i = 1, . . . , n, that we also have that low(ri) =
low(si). By considering the string v≥1 = v≥1

1 · · · v≥1
n , in which we have that each
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v≥1
i = base(ri)max (low(ri),1) and its counterpart w≥1 = w≥1

1 · · ·w≥1
n , in which each

w≥1
i = base(si)max (low(si),1), it is immediate that, for each i = 1, . . . , n, low(si) =

low(ri) whenever low(si) ≥ 2 or low(ri) ≥ 2. In addition, if we consider the string
vmin = vmin

1 · · · vmin
n , for which each vmin

i = base(ri)low(ri) and its counterpart wmin =
wmin

1 · · ·wmin
n , in which each wmin

i = base(si)low(si), it is immediate that, between
every pair of lower bounds which are at least two, the sequences of base symbols with
lower bound one are the same in r′ and s′. Similarly, we immediately have that

• before the leftmost lower bound which is at least two, and
• after the rightmost lower bound which is at least two,

the sequences of lower bounds which are zero or one are the same in r′ and s′.
For the sake of a contradiction, let us now assume that there exists an imin ∈

{1, . . . , n} with low(rimin) < low(simin) and imin is minimal with this property. With-
out loss of generality, we can assume that there is no index j with low(sj) < low(rj)
and j < imin. We consider two cases.

Case 1: If low(rimin) > 0, we define the string v′ by replacing vmax
imin

in vmax by
the sequence base(rimin)low(rimin). As low(simin) > low(rimin) this string can not be
matched by s′. Indeed, as v′ has n blocks, the only possible match for s′ would match
the imin-th block base(rimin)low(rimin) onto simin . As this would mean that r is not
equivalent to s, this gives the desired contradiction.

Case 2: In the second case, assume that 0 = low(rimin) < low(simin). As shown
above, if low(simin) ≥ 2 then low(rimin) ≥ 2. Hence, the only possibility is that
0 = low(rimin) < low(simin) = 1.

• If imin = 1, then the string vmax
2 · · · vmax

n does not match s′, as the string
starts with the wrong symbol. However, the string matches r′, which is a
contradiction.

• If imin = n, then the string vmax
1 · · · vmax

n−1 does not match s′, as the string
ends with the wrong symbol. However, the string matches r′, which is a
contradiction.

Hence, we know that 1 < imin < n.
Let x be the string vmax

1 · · · vmax
imin−1v

max
imin+1 · · · vmax

n which matches r′ and therefore
also matches s′. If base(rimin−1) *= base(rimin+1), then x has n − 1 blocks. Recall
that for every j = 1, . . . , n, base(rj) = base(sj). As base(simin) *= base(simin+1) and
base(simin) *= base(simin−1), simin can only match vmax

j , for some j > imin + 1 or
j < imin − 1. But then all the blocks before vmax

j or after vmax
j (which are at least

imin or n − imin + 1 blocks, respectively) must match s1 · · · simin−1 or simin+1 · · · sn,
respectively, which is impossible.

We are left with the case where base(rimin−1) = base(rimin+1).
(a) If r and s are from RE(a, a?) then neither simin−1 nor simin+1 matches vmax

imin−1v
max
imin+1

as the length of this string is upp(rimin−1) + upp(rimin+1) = upp(simin−1) +
upp(simin+1), which is strictly more than max(upp(simin−1), upp(simin+1)). This
would mean again that simin can only match vmax

j , for some j > imin + 1 or
j < imin − 1. But this again implies that all the blocks before vmax

j or after
vmax

j (which are at least imin or n − imin + 1 blocks, respectively) must match
s1 · · · simin−1 or simin+1 · · · sn, respectively, which is impossible. We again have
that s can not match x, a contradiction.

(b) Now let r and s be from RE(a, a∗). Let jmin > imin be minimal such that
low(rjmin) > 0. As we already obtained that the sequence of non-zero lower
bounds is the same in r′ and s′,

• such a jmin must exist,
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b

imin

imin

jmin
r′ :

s′ :

Index such that a != base(r!) != b

Smallest index jmin > imin such that low(rjmin
) > 0

Smallest index such that low(rimin
) < low(simin

)

Largest index !′ < imin such that a != base(r!′) != b

aa

!′ ! n

n

b b

Fig. 3.2. Graphical representation of several indices defined in the proof of Theorem 3.6

• base(rjmin) = base(rimin) = base(simin), and
• low(rjmin) = low(simin) = 1.

Let b be the symbol base(rjmin) = base(rimin) and let a be base(rimin−1) =
base(rimin+1). Notice that a *= b due to the definition of sequence normal form.
Our goal is to get a contradiction by showing that r′ is not the strong sequence
normal form of r. On our way we have to deal with a couple of other possible
cases.
Towards a contradiction, assume that there is some ", imin < " < jmin, with
a *= base(r!) *= b. Let "′ < imin be maximal such that a *= base(r!′) *= b. If
there is no such "′, we set "′ = 0. We present the ordering of the defined indices
imin, jmin, "′, and " in Figure 3.2. Recall that, for each d = 1, . . . , n, v≥1

d was
defined by

v≥1
d =

{
base(rd)1 if low(rd) = 0,
base(rd)low(rd) otherwise.

Let x′ = v≥1
1 · · · v≥1

!′ vmin
!′+1 · · · vmin

!−1v
≥1
! · · · v≥1

n . As x′ matches r, x′ also matches
s. Note that, in this match, v≥1

!′ has to be matched by s!′ , because the string
v≥1
1 · · · v≥1

!′ contains "′ blocks. Analogously, v≥1
! has to be matched by s! because

v≥1
! · · · v≥1

n contains n− " + 1 blocks.
As imin is minimal such that low(rimin) < low(simin), as base(rimin) = b, and as
all factors f in rimin · · · r! have low(f) = 0, we know that the number of factors
f in s!′+1 · · · s!−1 with base(f) = b and low(f) > 0 is larger than the number of
such factors in r!′+1 · · · r!−1. Hence, the number of b’s in x′ between v≥1

!′ and v≥1
!

is smaller than the sum of the numbers low(f) over the factors f in s!′+1 · · · s!−1

with base(f) = b. This contradicts the fact that x′ matches s. We can conclude
that there is no such ", that is, all factors between position imin and jmin have
symbol a or b.
Let us consider next the possibility that the symbol base(rjmin+1) exists and is
different from a and b, say base(rjmin+1) = c. If low(sjmin) = 0 then the string
v≥1
1 · · · v≥1

jmin−1v
≥1
jmin+1 · · · v≥1

n (consisting of n−1 blocks, as c is different from a or b)
matches s, because v≥1

1 · · · v≥1
n matches s. However, v≥1

1 · · · v≥1
jmin−1v

≥1
jmin+1 · · · v≥1

n

does not match r because low(rjmin) > 0. This contradicts that r and s are
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equivalent. Let "′ be defined as before. If low(sjmin) ≥ 1 then the string v≥1
1 · · · v≥1

!′

vmin
!′+1 · · · vmin

jmin
v≥1

jmin+1 · · · v≥1
n matches r but not s (as it has too few bs between "′

and jmin). Analogously, we can obtain that jmin < n. Hence, rjmin+1 exists and
base(rjmin+1) = a, because base(rjmin) = b.
We still need to deal with the case where base(rjmin+1) = a. Hence, between
position imin−1 and jmin+1, r′ consists of a sequence of factors f which alternate
between base(f) = a and base(f) = b, and ends with the factor rjmin+1 for which
base(rjmin+1) = a. Furthermore,

• all the factors f = rimin , . . . , rjmin−1 have low(f) = 0,
• low(rimin−1) = low(simin−1), and
• low(rjmin) = low(simin) = 1.

It follows immediately that r′ is not the sequence normal form of r as it contains
a subsequence of the form a[i, ∗]b[0, ∗]a[0, ∗]b[1, ∗]a[l, ∗].

3.3. Intersection. For arbitrary regular expressions, intersection is pspace-
complete. We show that the problem is np-hard for the same seemingly innocent
fragments RE(a, a∗), RE(a, a?), RE(a, (+a+)) and RE(a+, (+a)) already studied in
Section 3.1. By RE(all− {(+w)∗, (+w)+}), we denote the fragment of RE(all) where
we do not allow factors of the form (w1 + · · ·+ wn)∗ or (w1 + · · ·+ wn)+ for which

• n ≥ 2 and
• there is a 1 ≤ j ≤ n such that the length of wj is at least two.

In other words, we still allow factors of the form (a1+· · ·+an)∗ and (a1+· · ·+an)+ with
single-label disjuncts but we exclude factors in which some disjunct has at least two
symbols. For the fragment RE(all−{(+w)∗, (+w)+}), we obtain a matching np-upper
bound. intersection is already pspace-hard for RE(a, (+w)∗) and RE(a, (+w)+)
expressions. This follows from a result of Bala, who showed that it is pspace-hard
to decide whether the intersection of an arbitrary number of RE((+w)∗) expressions
contains a non-empty string [4]. Compared to the fragments for which we settled the
complexity of inclusion in Theorem 3.1 in Section 3.1, we only need to leave the
precise complexity of RE(a, w+) open, i.e., we only prove an np upper bound. These
results are summarized in the following theorem:

Theorem 3.7.
(a) intersection is np-hard for

(1) RE(a, a∗);
(2) RE(a, a?);
(3) RE(a, (+a)+);
(4) RE(a, (+a+)); and
(5) RE(a+, (+a));

(b) intersection is in np for RE(all − {(+w)∗, (+w)+});
(c) intersection is pspace-hard for

(1) RE(a, (+w)∗); and
(2) RE(a, (+w)+); and,

(d) intersection is in pspace for RE(all).
As in Section 3.1, we split the proof of Theorem 3.7 into several parts to improve

readability.
We start by proving Theorem 3.7(a). This proof is along the same lines as the

proof of Theorem 3.1(a). However, we would like to point out that the intersection
problem is not simply dual to the inclusion problem. This is witnessed by, for
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instance, the fragments RE(a, (+a)∗) and RE(a, (+a)+) for which intersection is
np-complete, while inclusion is pspace-complete.

In all five cases, it is a logspace reduction from satisfiability of propositional
3CNF formulas. The satisfiability problem asks, given a propositional formula
Φ in 3CNF with variables {x1, . . . , xn}, whether there exists a truth assignment for
{x1, . . . , xn} for which Φ is true. The satisfiability problem for 3CNF formulas is
known to be np-complete [18]. We note that, for the cases (1)–(3), intersection is
already np hard when the expressions use a fixed-size alphabet.

Let Φ = C1 ∧ · · · ∧ Ck be a 3CNF formula using variables {x1, . . . , xn}. Let, for
each i, Ci = Li,1 ∨ Li,2 ∨ Li,3 be the ith clause. Our goal is to construct regular
expressions R1, . . . , Rk and S1, S2 such that

L(R1) ∩ · · · ∩ L(Rk) ∩ L(S1) ∩ L(S2) *= ∅ if and only if Φ is satisfiable. (†)

Analogously as in the proof of Theorem 3.1(a), we encode truth assignments for Φ
by strings. We construct S1 and S2 such that L(S1 ∩ S2) contains all syntactically
correct encodings and a string w matches Ri if and only if w represents an assignment
which makes Ci true.

To define S1, S2 and R1, . . . , Rk we use auxiliary regular expressions W1, W2, and
N , a string u, and expressions F (Li,j) associated with literals Li,j :

• The strings of L(W1)∩L(W2) will be interpreted as truth assignments. More
precisely, for each truth assignment A, there is a string wA ∈ L(W1)∩L(W2)
and for each string w ∈ L(W1)∩L(W2) there is a corresponding truth assign-
ment Aw.

• For each literal Li,j and every w ∈ L(W1) ∩ L(W2) it will hold that w |=
F (Li,j) if and only if Aw |= Li,j.

• The string u matches every expression F (Li,j).
• Finally, N can match the concatenation of up to 3 occurrences of the string

u.
Then we define

S1 = u3W1u3,
S2 = u3W2u3,
Ri = NF (Li,1)F (Li,2)F (Li,3)N ,

for i = 1, . . . , k. Intuitively, L(R1) ∩ · · · ∩ L(Rk) ∩ L(S1) ∩ L(S2) *= ∅ now holds if
and only if every truth assignment (matched by the middle parts of S1 and S2) makes
at least one literal true in each conjunct (i.e., matches at least one F (Li,j) for every
i = 1, . . . , k).

For each of the cases (1)–(5), we construct the auxiliary expressions with the help
of five basic regular expressions rtrue, rfalse, rtrue/false, rall, and α, which must adhere
to the inclusion structure graphically represented in Figure 3.3 and formally stated
by the following properties (INT1)–(INT4).

α ∈ L(rfalse) ∩ L(rtrue) ∩ L(rall) (INT1)

zfalse ∈ L(rfalse) ∩ L(rtrue/false) ∩ L(rall) (INT2)

ztrue ∈ L(rtrue) ∩ L(rtrue/false) ∩ L(rall) (INT3)

L(rfalse) ∩ L(rtrue) ∩ L(rtrue/false) = ∅ (INT4)

Intuitively, the two dots in Figure 3.3 are strings ztrue and zfalse, which represent
the truth values true and false, respectively. The expressions rtrue and rfalse are
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α
ztrue

rfalsezfalse
rtrue

rtrue/false
rall

Fig. 3.3. Inclusion structure of regular expressions used in np-hardness of intersection.

(1) RE(a, a∗) (2) RE(a, a?) (3) RE(a, (+a)+)
α a a a
rtrue aa∗b∗ ab? (a + b)+
rfalse b∗aa∗ b?a (a + c)+

rtrue/false aa∗bb∗ + bb∗aa∗ ab + ba (b + c)+

strue/false b∗aa∗b∗ b?ab?
(s′)true/false a∗bb∗a∗ a?ba?
rall a∗b∗a∗ a?b?a? (a + b + c)+
ztrue ab ab b
zfalse ba ba c
W1 #strue/false$ · · · #strue/false$ · · · #rtrue/false$ · · ·

· · · $strue/false# · · · $strue/false# · · · $rtrue/false#
W2 #(s′)true/false$ · · · #(s′)true/false$ · · · #rtrue/false$ · · ·

· · · $(s′)true/false# · · · $(s′)true/false# · · · $rtrue/false#
N (#∗a∗$∗ · · · $∗a∗#∗)3 (#?a?$? · · · $?a?#?)3 (# + $ + a)+
u #α$ · · · $α# #α$ · · · $α# #α$ · · · $α#

Table 3.3
Definition of basic and auxiliary expressions for cases (1)–(3). In the definition of W1, W2, N

and u the repetition indicated by · · · is always n-fold and does not include #.

used to match ztrue and zfalse in the F (Li,j), respectively. The expression rtrue/false

is defined through the intersection of W1 and W2 to generate both true and false.
Finally, α is used in u and rall for the definition of F .

The definition of the basics expressions and of W, N and u for cases (1)–(3) is
given in Table 3.3. We will consider cases (4) and (5) later.

It is straighforward to verify that the conditions (INT1)–(INT4) are fulfilled for
each of the fragments. Note that the expressions use the fixed alphabet {a, b, c, $, #}.

The association between strings and truth assignments is now straightforward.
• For w = #w1$ · · · $wn# ∈ L(W1) ∩ L(W2) let Aw be defined as follows:

Aw(xj) :=

{
true, if wj ∈ L(rtrue);
false, otherwise.

• For a truth assignment A, let wA = #w1$ · · · $wn#, where, for each j =
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1, . . . , n,

wj =

{
ztrue if A(xj) = true
zfalse otherwise.

• Finally, for each literal Li,j , we define F (Li,j) = #e1$ · · · $en#, where for
each " = 1, . . . , n,

e! :=






rtrue, if Li,j = x!,
rfalse, if Li,j = ¬x!, and
rall, otherwise.

Notice that only one e! among {e1, . . . , en} is different from rall.
Claim 3.8. If A |= Li,j then wA ∈ L(F (Li,j)). If w ∈ L(F (Li,j)) then Aw |=

Li,j.
Proof of Claim 3.8. Let A be a truth assignment such that A |= Li,j and let

wA = #w1$ · · · $wn# be defined as above. Let F (Li,j) = #e1$ · · · $en# be defined
as above. We need to show that wA ∈ L(F (Li,j)). To this end, let " ≤ n. There are
three cases to consider:

1. If Li,j = x! then A(x!) = true. Hence, as w! = ztrue, as e! = rtrue, and by
condition (INT3), we have w! ∈ L(e!).

2. If Li,j = ¬x! then A(x!) = false. Hence, as w! = zfalse, as e! = rfalse, and by
condition (INT2), we have w! ∈ L(e!).

3. Otherwise, we have that w! is either ztrue or zfalse. As e! = rall we have that
w! ∈ L(e!) by (INT3) in the former case and by (INT2) in the latter case.

Therefore, for each " = 1, . . . , n, w! ∈ L(e!) and thus wA ∈ L(F (Li,j)).
We show the other statement by contraposition. Thereto, let w ∈ L(W1)∩L(W2)

be a string such that Aw is a truth assignment that does not make literal Li,j true.
We show that w *∈ L(F (Li,j)). Let F (Li,j) = #e1$ · · · $en# as above. There are two
cases:

1. Suppose that Li,j = x! for some 1 ≤ " ≤ n. Then Aw(x!) = false and
therefore, w! /∈ L(rtrue). By definition of F (Li,j), we have e! = rtrue and
therefore w! /∈ L(e!). Hence, w *∈ L(F (Li,j)).

2. Suppose that Li,j = ¬x! for some 1 ≤ " ≤ n. Then Aw(x!) = true and
therefore, w! ∈ rtrue. By definition of F (Li,j), we have e! = rfalse. As w ∈
L(W1)∩L(W2) we have that w! ∈ rtrue/false. Because of (INT4) we therefore
have that w! *∈ rfalse and therefore w! /∈ L(e!). Hence, w *∈ L(F (Li,j)).

In the proof of (†) we will make use of the following properties.
Claim 3.9.

(a) ui ∈ L(N) for every i = 1, . . . , 3.
(b) u ∈ L(F (Li,j)) for every i = 1, . . . , k and j = 1, 2, 3.
(c) If u3wu3 ∈ L(S1) ∩ L(S2) ∩ L(R1) ∩ · · · ∩ L(Rk), then w matches some F (Li,j)

in every Ri.
Proof of Claim 3.9. (a) can be easily checked and (b) follows immediately from

condition (INT1) and the definition of F . In the following, we abbreviate F (Li,j) by
Fi,j . To show (c), suppose that u3wu3 ∈ L(S1) ∩ L(S2) ∩ L(R1) ∩ · · · ∩ L(Rk). We
need to show that w matches some F (Li,j) in every Ri.

Observe that the strings, u, w, and every string in L(Fi,j) is of the form #y#,
where y is a non-empty string over alphabet {a, b, c, $}. Hence, as for every i =
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1, . . . , k, u3wu3 ∈ L(Ri), and as none of the strings y contain the symbol “#”, w
either matches some Fi,j or w matches a sub-expression of N .

Fix an i = 1, . . . , k. Let m be a match between u3wu3 and Ri. Let y1, . . . , y7

be such that #y1##y2##y3##y4##y5##y6##y7# = u3wu3. Let " be maximal
such that m matches #y1# · · ·#y!# onto the left occurrence of N in Ri. We now
distinguish between fragments (1–2) and fragment (3).

• In fragments (1–2) we have that " ≤ 3 by definition of N . We now prove
that m matches w onto some Fi,j . Towards a contradiction, assume that m
matches w onto the left occurrence of N in Ri. But this would mean that m
matches a superstring of #y1# · · ·#y4# onto this leftmost occurrence of N ,
which contradicts that " ≤ 3. Analogously, m cannot match w onto the right
occurrence of N in Ri. So, w must match by some Fi,j for j = 1, 2, 3.

• In fragment (3), we have that " ≥ 1 by definition of N . Again, towards
a contradiction, assume that m matches w onto the right occurrence of N
in Ri. Observe that any string that matches NFi,1Fi,2Fi,3 is of the form
#y′1##y′2# · · ·#y′!′#, where "′ > 3. As u3 is not of this form, m cannot
match u3 onto NFi,1Fi,2Fi,3, which is a contradiction. Analogously, m cannot
match w against the left occurrence of N in Ri. So, m must match w onto
some Fi,j for j = 1, 2, 3.

Now we can complete the proof of (†) for fragments (1)–(3).
Proof of (†). (⇒) Assume that S1∩S2∩

⋂k
i=1 Ri *= ∅. Hence, there exists a string

v = u3wu3 in S1 ∩ S2 ∩
⋂k

i=1 Ri. By Claim 3.9, w matches some F (Li,j) in every
Ri. By Claim 3.8, Aw |= Li,j for every i = 1, . . . , k. Hence, Φ is true under truth
assignment Aw, so Φ is satisfiable.

(⇐) Suppose now that Φ is true under some truth assignment A. Hence, for every
i, some Li,j becomes true under A and therefore wA ∈ L(F (Li,j)) by Claim 3.8. As
u, u2, and u3 are in L(N) and as u is in each L(F (Li,j)) by Claim 3.9, we get that
the string u3wAu3 is in L(S1) ∩ L(S2) ∩ L(R1) ∩ · · · ∩ L(Rk).

This completes the proof of Theorem 3.7(a) for the fragments (1)–(3).

We still need to deal with the fragments (4) and (5). As in the proof of Theo-
rem 3.1(a), we will no longer use an alphabet with fixed size. Instead, we use symbols
bj and cj for j = 1, . . . , n. Instead of the basic regular expressions rtrue, rfalse,
rtrue/false, and rall, we will now have expressions rtrue

j , rfalse
j , rtrue/false

j , and rall
j for

every j = 1, . . . , n. We will require that these expressions have the same properties
(INT1)–(INT4), but only between the expressions rtrue

j , rfalse
j , rtrue/false

j , and rall
j with

the same index j, and α. The definitions of the basic and auxiliary expressions are
given in Table 3.4.

The association between strings and truth assignments is now defined as follows.
• For w = w1 · · ·wn ∈ L(W1) ∩ L(W2) let Aw be defined as follows

Aw(xj) :=

{
true, if wj ∈ L(rtrue

j ),
false, otherwise.

• For a truth assignment A, let wA = wA = w1 · · ·wn where, for each j =
1, . . . , n,

wj :=

{
ztrue

j if A(xj) = true
zfalse

j otherwise.
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(4) RE(a, (+a+)) (5) RE(a+, (+a))
α a a
rtrue
j (a+ + b+

j ) (a + bj)
rfalse
j (a+ + c+

j ) (a + cj)
rtrue/false
j (b+

j + c+
j ) (bj + cj)

rall
j (a+ + b+

j + c+
j ) (a + bj + cj)

ztrue
j bj bj

zfalse
j cj cj

W1(= W2) rtrue/false
1 · · · rtrue/false

n rtrue/false
1 · · · rtrue/false

n

N a+ a+

u αn αn

Table 3.4
Definition of basic and auxiliary expressions for cases (4)–(5).

• Finally, for each literal Li,j , we define F (Li,j) = e1 · · · en,, where, for each
" = 1, . . . , n,

e! :=






rfalse
! , if Li,j = ¬x!,

rtrue
! , if Li,j = x!,, and

rall
! , otherwise.

Notice that only one e! among {e1, . . . , en} is different from rall
! .

In order to prove (†) for fragments (4) and (5), we have to show that Claims 3.8
and 3.9 hold. For Claim 3.8 this can be done similarly as before, and for Claim 3.9(a)
and (b) it is again easy to see. We complete the proof of Theorem 3.7(a) by showing
Claim 3.9(c).

To this end, suppose that u3wu3 ∈ L(S1) ∩ L(S2) ∩ L(R1) ∩ · · · ∩ L(Rk). We
need to show that w matches some Fi,j in every Ri. To this end, let mi be a match
between u3wu3 and Ri, for every i = 1, . . . , k. For every " = 1, . . . , n, let Σ! denote
the set {b!, c!}. Observe that the string w is of the form y1 · · · yn, where, for every
" = 1, . . . , n, y! is a string in Σ+

! . Moreover, no strings in L(N) contain symbols from
Σ! for any " = 1, . . . , n. Hence, mi cannot match any symbol of the string w onto N .
Consequently, mi matches the entire string w onto a subexpression of Fi,1Fi,2Fi,3 in
every Ri.

Further, observe that every string in every Fi,j , j = 1, 2, 3, is of the form y′1 . . . y′n,
where each y′! is a string in (Σ! ∪ {a})+. As mi can only match symbols in Σ! onto
subexpressions with symbols in Σ!, mi matches w onto some Fi,j .

This completes the proof of Theorem 3.7(a).
The following part of Theorem 3.7 makes the difference between inclusion and

intersection apparent. Indeed, inclusion for RE(all − {(+w)∗, (+w)+}) expres-
sions is pspace-complete, while intersection for such expressions is np-complete.
The latter, however, does not imply that inclusion is always harder than intersec-
tion. Indeed, we obtained that for any fixed k, inclusion for RE≤k is in ptime.
Later in this section, we will show that intersection is pspace-hard for RE≤3 ex-
pressions (Theorem 3.10).

Theorem 3.7(b). intersection is in np for RE(all− {(+w)∗, (+w)+}).
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Proof. Let r1, . . . , rk be RE(all − {(+w)∗, (+w)+}) expressions. We prove that
if

⋂k
i=1 L(ri) *= ∅, then the shortest string w in

⋂k
i=1 L(ri) has a representation as a

compressed string of polynomial size. The idea is that the factors of the expressions
ri induce a partition of w into at most kn substrings, where n = max{|ri| | 1 ≤
i ≤ k}. We show that each such substring is either short or it is matched by an
expression of the form xw!y for some ". In the latter case, this substring can be
written as (x, 1)(w, ")(y, 1), for a suitable ", where x and y are a suffix and prefix of
w, respectively. This immediately implies the statement of the theorem, as guessing
v and verifying that string(v) is in each L(ri) is an np algorithm by Lemma 2.4.

For simplicity, we assume that all ri have the same number of factors, say n′.
Otherwise, some expressions can be padded by additional factors ε. Let, for each i,
ri = ei,1 · · · ei,n′ where every ei,j is a factor.

Let u = a1 · · · amin be a minimal string in
⋂k

i=1 ri. We will show that there is a
polynomial size compressed string v such that string(v)=u. As the straightforward
nondeterministic product automaton for

⋂k
i=1 ri has at most nk states, |u| ≤ nk.

Let, for each i = 1, . . . , k, mi be a match between u and ri. Notice that, for each
i = 1, . . . , k and j = 1, . . . , n′, there is a unique pair (", "′) such that u[", "′] |=mi ei,j

and such that, for all other pairs ("0, "′0) with u[", "′] |=mi ei,j we have " ≤ "0 ≤
"′0 + 1 ≤ "′. That is, there is a unique pair (", "′) that subsumes all others. In the
remainder of this proof, we only consider such pairs (", "′). We call a pair (p, p′)
of positions homogeneous, if, for each i, there are "i, "′i and j such that "i ≤ p,
p′ ≤ "′i and u["i, "′i] |=mi ei,j . Intuitively, a pair is homogeneous if, for each i, all
its symbols are subsumed by the same subexpression ei,j. We call a pair (p, p′)
maximally homogeneous, if (p, p′) is homogeneous, but (p, p′ + 1) and (p − 1, p′) are
not homogeneous.

Let "0, . . . , "maxpos be a non-decreasing sequence of positions of u such that "0 =
0, "maxpos = min (i.e., the last position in u), and each pair ("p +1, "p+1) is maximally
homogeneous. Notice that "0, . . . , "maxpos maximally contains kn′ positions.

Let, for each p = 1, . . . , maxpos, up denote the substring u["p−1 + 1, "p] of u. We
consider each substring up separately and distinguish the following cases:

• If up is a substring of u[", "′] for which there is at least one mi with u[", "′] |=mi

x, where x is of the form a, a?, w, w?, (+a), (+a)?, (+w), or (+w)? (in
abbreviated notation), then |up| ≤ |e| ≤ n. We define vp = up.

• If there exist, for each i, " and "′ such that up is a substring of every u[", "′]
and u[", "′] |=mi xi for every mi, where each xi is either of the form (+a)∗
or (+a)+ (in abbreviated notation) then up must have length zero or one.
Otherwise, deleting a symbol of up in u would result in a shorter string u′

which is still in every L(rp), which contradicts that u is a minimal string in⋂k
i=1 L(ri).

• The only remaining case is that up is contained in some interval u[", "′] for
which there is at least one mi with u[", "′] |=mi x, where x is of the form a∗,
w∗, a+, w+, (+a∗), (+w∗), (+a+) or (+w+). Hence, up can be written as
xwiy for some i, a postfix x of w and a prefix y of w. Notice that the length
of x and y is at most n. We define vp = (x, 1)(w, i)(y, 1). Of course, i ≤ nk,
hence |vp| = O(n).

Finally, let v = v1 · · · vmin. Hence, v is a compressed string with string(v)= u and
|v| = O(kn′ · n), as required.



28 MARTENS, NEVEN, AND SCHWENTICK

Bala has shown that deciding whether the intersection of RE((+w)∗) expressions
contains a non-empty string is pspace-complete [4]. In general, the intersection prob-
lem for such expressions is trivial, as the empty string is always in the intersection.
However, adapting Bala’s proof to our intersection problem is just a technicality.
We next present a simplified proof of the result of Bala (which is a direct reduction
from acceptance by a Turing machine that uses polynomial space), adapted to show
pspace-hardness of intersection for RE(a, (+w)∗) and RE(a, (+w)+) expressions.
It should be noted that the crucial idea in this proof comes from the proof of Bala [4].

Theorem 3.7(c). intersection is pspace-hard for
(1) RE(a, (+w)∗) and
(2) RE(a, (+w)+).

Proof. We first show that intersection is pspace-hard for RE(a, (+w)+) and
we consider the case of RE(a, (+w)∗) later. In both cases, we use a reduction from
Corridor Tiling, which is pspace-complete [15].

To this end, let D = (T, H, V, b, t, n) be a tiling system. Without loss of generality,
we assume that n ≥ 2 is an even number. We construct n+3 regular expressions BT,
Horeven, Horodd, Ver1, . . . , Vern such that

L(BT) ∩ L(Horeven) ∩ L(Horodd) ∩
n⋂

j=1

L(Verj) *= ∅

if and only if there exists a correct corridor tiling for D.

Let T = {t1, . . . , tk} be the set of tiles of D. In our regular expressions, we will use
a different alphabet for every column of the tiling. To this end, for every j = 1, . . . , n,
we define Σj := {ti,j | ti ∈ T }, which we will use to tile the j-th column. We define
Σ :=

⋃
1≤j≤n Σj . For a set of Σ-symbols S, we denote by S the disjunction of all the

symbols of S, whenever this improves readability.
We represent possible tilings of D as strings in the language defined by the regular

expression

!(4nΣ14nΣ24n · · ·4nΣn4n#)∗", (')

where !, ",4, and # are special symbols not occurring in Σ. Here, we use the
symbols “!” and “"” as special markers to indicate the begin and the end of the
tiling, respectively. Furthermore, the symbol “#” is a separator between successive
rows. The symbol “4” is needed to enforce the vertical constraints on strings that
represent tilings, which will become clear later in the proof. It is important to note
that we do not use the regular expression (') itself in the reduction, as it is not a
RE(a, (+w)+) expression.

We are now ready for the reduction. We define the necessary regular expressions.
Let b = (bot1, . . . , botn) and t = (top1, . . . , topn). In the expressions below, for each
i = 1, . . . , n, boti,i and topi,i denote the copies of boti, resp., topi in Σi.

• The following RE(a, (+w)+) expression ensures that the tiling begins and
ends with the bottom and top row, respectively:

BT := !4nbot1,14n · · ·4nbotn,n4n

(Σ ∪ {#,4})+

4ntop1,14n · · ·4ntopn,n4n#"
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• The following expression verifies the horizontal constraints between tiles in
colums " and "+1, where " is an even number between 1 and n. Together with
Horodd, this expression also ensures that the strings in the intersection are
correct encodings of tilings. (That is, the strings are in the language defined
by (').)

Horeven :=
( ∑

2≤!≤n−2
! is even

(ti,tj )∈H

(4nti,!4ntj,!+1)

+ (!4nbot1,1) + (4ntopn,n4n#") +
∑

1≤i≤k
1≤j≤k

(4nti,n4n#4ntj,1)
)+

.

The last three disjuncts take care of the very first, very last and all start and
end tiles of intermediate rows.

• The following expression verifies the horizontal constraints between tiles in
columns " and "+1, where " is an odd number between 1 and n−1. Together
with Horver, this expression also ensures that the strings in the intersection
are correct encodings of tilings. (That is, the strings are in the language
defined by (').)

Horodd :=
(

(!4nbot1,14nbot2,2) + (4ntopn−1,n−14ntopn,n4n#")

+
∑

1≤!≤n−1
! is odd

(ti,tj)∈H

(4nti,!4ntj,!+1) + (4n#)
)+

.

• Finally, for each " = 1, . . . , n, the following expressions verify the vertical
constraints in column ".

Ver! :=
( ∑

(bot!,!,ti)∈V

(!4nbot1,14n · · ·4nbot!,!4n−i)

+
∑

1≤i≤n
1≤j≤k

m%=!

(4itj,m4n−i) +
∑

1≤i≤n

(4i#4n−i) +
∑

1≤i≤n

(4i#")

+
∑

1≤i≤n
(ti,tj)∈V

(4iti,!4n−j)
)+

.

The crucial idea is that, when we read a tile in the "-th column, we use the
string 4n−i to encode that we want the tile in the "-th column of the next
row to be ti. By using the disjunctions over the vertical constraints, we can
express all the possibilities of the tiles that we allow in the next column.
We explain the purpose of the five disjunctions in the expression. We can
assume here that the strings are already in the intersection of Horodd and
Horeven. This way, we know that (i) the strings encode tilings in which every
row consists of n tiles, (ii) we use symbols from Σj to encode tiles from the
j-th column, and that (iii) the string 4n occurs between every two tiles. The
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first disjunction allows us to get started on the bottom row. It says that we
want the "-th tile in the next row to be a ti such that (bot!, ti) ∈ V . The
second, and third disjunction ensure that this number i is “remembered”
when reading (a) tiles that are not on the "-th column or (b) the special
delimiter symbol “#” which marks the beginning of the next row. The fourth
disjunction can only be matched at the end of the tiling, as the symbol "
only occurs once in each correctly encoded tiling. Finally, the fifth disjunction
does the crucial step: it ensures that, when we matched the "-th tile tk in the
previous row with an expression ending with tk,!4n−i, and we remembered
the number i when matching all the tiles up to the current tile, we are now
obliged to use a disjunct of the form 4iti,!4n−j to match the current tile. In
particular, this means that the current tile must be ti, as we wanted. Further,
the disjunction over (ti, tj) ∈ V ensures again that the "-th tile in the next
column will be one of the tj ’s.

It is easy to see that a string w is in the intersection of BT, Horeven, Horodd,
Ver1, . . . , Vern, if and only if w encodes a correct tiling for D.

The pspace-hardness proof for RE(a, (+w)∗) is completely analogous, except that
every “+” (which stands as abbreviation for “one or more”) needs to be replaced by
the Kleene star “∗”.

Theorem 3.7(d) holds as intersection for arbitrary regular expressions is in
pspace. This concludes the proof of Theorem 3.7.

Theorem 3.10. intersection is pspace-complete for

(a) one-unambiguous regular expressions; and for
(b) RE≤3.

Proof. The pspace upper bound is immediate as intersection is in pspace for
regular expressions in general.

We proceed by showing the lower bound. We reduce Corridor Tiling, which is
pspace-complete [15], to both intersection problems. We first show that intersec-
tion is pspace-hard for one-unambiguous regular expressions and then adapt these
expressions so that they only contain up to three occurrences of the same alphabet
symbol. The result for (a) is obtained by defining the regular expressions in such
a way that they use separate alphabets for the last rows of the tiling and by using
separate alphabets for odd and even rows. The result for (b) is obtained by care-
fully defining the reduction such that each symbol in the expressions is only used for
positions with the same offset in a tiling row and the same parity of row number.

Let D = (T, H, V, b, t, n) be a tiling system. Without loss of generality, we assume
that every correct tiling has at least four rows, an even number of rows, and that the
tiles T are partitioned into three disjoint sets T0 ) T ′ ) T ′′. The idea is that symbols
from T ′′ are only used on the uppermost row and the symbols from T ′ only on the
row below the uppermost row. We denote symbols from T ′ and T ′′ with one and
two primes, respectively. The assumption for an even number of rows simplifies the
expressions that check the vertical constraints.

From D we construct regular expressions BT , Hor-oddt,i, Hor-event,i, Ver-oddt,j ,
Ver-event,j , and Ver-lastt,j for every t ∈ T , i ∈ {1, . . . , n − 1}, and j ∈ {1, . . . , n}.
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These expressions are constructed such that, for every string w, we have that

w encodes a correct tiling for D if and only if

w ∈ L(BT ) ∩
⋂

t,i

(
L(Hor-oddt,i) ∩ L(Hor-event,i)

)

∩
⋂

t,j

(
L(Ver-oddt,j) ∩ L(Ver-event,j) ∩ L(Ver-lastt,j)

)
(♦)

For a set S of tiles, we denote by S the disjunction of all symbols in S whenever
this improves readability. We also write Si to indicate that S is used to tile the i-th
column in our encoding. Furthermore, for 1 ≤ i ≤ j ≤ n, we write Si,j to abbreviate
Si · · ·Sj . We define the following regular expressions:

• Let b = b1 · · · bn and t = t′′1 · · · t′′n. Then the expression

BT := b1 · · · bn

(
T 1,n

0

(
T 1,n

0 + (T ′)1,n
))∗

t′′1 · · · t′′n

expresses that (i) the tiling consists of an even number of rows, (ii) the first
row is tiled by b, and (iii) the last row is tiled by t. It is easy to see that this
expression is one-unambiguous.

• The following expressions verify the horizontal constraints. For t ∈ T and
each j ∈ {1, . . . , n − 1}, the expression Hor-oddt,j ensures that the right
neighbor of t is correct in odd rows, where t is a tile in the j-th column.

Hor-oddt,j :=
(
T 1,j−1

(
t(s1 + · · ·+ s!) + ((T − {t})T )

)
T j+2,nT 1,n

)∗
,

where s1, . . . , s! are all tiles si with (t, si) ∈ H . Similarly, we define

Hor-event,j :=
(
T 1,nT 1,j−1

(
t(s1 + · · ·+ s!) + ((T − {t})T )

)
T j+2,n

)∗
.

All expressions Hor-oddt,j and Hor-event,j are one-unambiguous.
• Correspondingly, we have expressions for the vertical constraints. For each

t and each j ∈ {1, . . . , n}, there are three kinds of expressions checking the
vertical constraints in the j-th column for tile t: Ver-oddt,j checks the ver-
tical constraints on all odd rows but the last, Ver-event,j checks the vertical
constraints on the even rows, and Ver-lastt,j checks the vertical constraints
on the last two rows. We assume that {s1, . . . , s!} is the set of tiles si with
(t, si) ∈ V .

Ver-oddt,j := T 1,j−1
0[[

(tT j+1,n
0 T 1,j−1

0 (s1+· · ·+s!))+((T0−{t})T j+1,n
0 T 1,j

0 )
]
T j+1,n

0 (T 1,j−1
0 +T ′1,j−1)

]∗

T ′j,nT ′′1,n

Intuitively, every occurrence of the tile t in the j-th column of any odd row
(except the last odd row) of a tiling matches the leftmost t in Ver-oddt,j . The
n-th tile starting from t then has to match the disjunction (s1 + · · · + s!),
which ensures that the vertical constraint is satisfied. If the tile in the j-th
column is different from t (which is handled by the subexpression (T0−{t})),
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the expression allows every tile in the j-th column in the next row. Further,
it is easy to see that every string matching the subexpression in the Kleene
star has length 2n, and that the expression Ver-oddt,j is one-unambiguous.

Ver-event,j := T 1,n
0 T 1,j−1

0[((
tT j+1,n

0

[
(T 1,j−1

0 (s1 + · · ·+ s!)) + (T ′1,j−1(s′1 + · · ·+ s′!))
])

+ ((T0 − {t})T j+1,n
0 (T 1,j

0 + T ′1,j))
)

(T j+1,n
0 + T ′j+1,n)(T 1,j−1

0 + T ′′1,j−1)
]∗

T ′′j,n

Here, every occurrence of the tile t in the j-th column of any even row (except
the last row) of a tiling matches the leftmost t in Ver-oddt,j . Depending
whether the n-th tile starting from t is on the row tiled with T ′ or not, the
tile then either has to match the disjunction (s1 + · · ·+ s!) or (s′1 + · · ·+ s′!).
This ensures that the vertical constraint is satisfied. If the tile in the j-
th column is different from t (which is again handled by the subexpression
(T0−{t})), the expression allows every tile in the j-th column in the next row.
It is easy to see that every string matching the subexpression in the Kleene
star has length 2n, and that the expression Ver-event,j is one-unambiguous.
Finally, we define the expressions Ver-lastt,j as follows:

Ver-lastt,j := (T 1,n
0 T 1,n

0 )∗T ′1,j−1

(
t′T ′j+1,nT ′′1,j−1(s′′1 + · · ·+ s′′! )

)
+

(
(T ′ − {t′})T ′j+1,nT ′′1,j

)

T ′′j+1,n

If the j-th tile of the second-last row of the tiling is t′, it matches the leftmost
occurrence of t′ in Ver-lastt,j . The expression then ensures that the j-th tile
in the last row is in {s′′1 + · · · + s′′! }. If the j-th tile of the second-last row
is different from t′ (which is handled by the subexpression (T ′ − {t′})), the
expression allows every tile in T ′′ in the j-th position of the last row. It is
easy to see that this expression is one-unambiguous.

From the above discussion, it now follows that (♦) holds. Hence, we have shown
(a).

We proceed by showing how the maximal number of occurrences of each alphabet
symbol can be reduced to three. Notice that we can assume that the given tiling
system D uses pairwise disjoint alphabets Tj to tile the j-th column of a tiling.
Moreover, we can also assume that D uses pairwise disjoint alphabets to tile the odd
rows and the even rows of the tiling, respectively. Hence, the tiles of D are partitioned
into the pairwise disjoint sets T j

odd, T j
even, T ′jodd, and T ′′jeven for every j = 1, . . . , n. Here,

T ′jodd and T ′′jeven are the sets that are used to tile the j-th column of the second-last
and the last row of the tiling, respectively.

When we assume that D meets these requirements, we now argue that the above
defined regular expressions can be rewritten such that every tile of T occurs at most
three times. The rewriting of the above expressions is simply the following: we only
use symbols from T j

odd for the j-th column of odd rows, and analogously for T j
even,
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T ′jodd, and T ′′jeven for every j = 1, . . . , n. For example, the leftmost occurrence of T 1,n
0

in BT is rewritten to T 1,n
even. In the arguments below, we still refer to the original

notation in the expressions for readability.
• Expression BT : Each tile occurs at most twice. The only place where tiles

occur more than once is where the tiles of b1, . . . , bn are repeated in the right
occurrence in T 1,n

0 . (The left occurrence of T 1,n
0 would contain only even-row

tiles, which are different from the odd-row tiles b1, . . . , bn.)
• Expression Hor-oddt,j: Each tile occurs at most twice. The only place where

tiles occur more than once is where tiles of s1, . . . , s! are repeated in the right
occurrence of T (without superindex). Even-row tiles only occur in T 1,n and
the remainder of the expression only contains odd-row tiles.

• Expression Hor-event,j: This is similar to Hor-oddt,j.
• Expression Ver-oddt,j: Each tile occurs at most twice. The only places where

tiles occur more than once are (i) in the leftmost occurrence of T 1,j−1
0 and

the rightmost occurrence of T 1,j−1
0 (ii) in T 1,j−1

0 (s1 + · · ·+ s!) and T 1,j
0 and

(ii) in the leftmost occurrence and middle occurrence of T j+1,n
0 . All other

symbols are different because they are either in different columns, or in a row
of different parity.

• Expression Ver-event,j: Each tile occurs at most three times. The only tiles
that occur three times are the ones of the first j columns in odd rows. These
tiles occur in T 1,n

0 in the beginning, in T 1,j−1
0 (s1 + · · · s!) in the middle of the

expression, and in the disjunction (T 1,j
0 + T ′1,j) in the middle. The tiles that

occur twice are the ones
– in the last n− j columns of odd rows: in the T 1,n

0 subexpression in the
beginning and in the rightmost T j+1,n

0 subexpression.
– in the first j−1 columns of even rows: in the leftmost and the rightmost

occurrence of T 1,j−1
0 .

– in the last n−j columns of even rows: in the first and second occurrence
of T j+1,n

0 , counting from left to right.
– in the first j columns of the second-to-last row: in the subexpressions

T ′1,j−1(s′1 + · · ·+ s′!) and (T 1,j
0 + T ′1,j).

All other tiles occur only once.
• Expression Ver-lastt,j: Each tile occurs at most twice. The only places where

tiles occur more than once are (i) in the two T ′j+1,n subexpressions, and (ii)
in T ′′j,j−1(s′′1 + · · ·+ s′′! ) and T ′′1,j.

This concludes the proof of (b).

Corollary 3.11. intersection is pspace-complete for one-unambiguous RE≤3

expressions.

A tractable fragment is the following:
Theorem 3.12. intersection is in ptime for RE(a, a+).
Proof. Suppose we are given RE(a, a+) expressions r1, . . . , rn in sequence normal

form. We describe a ptime method to decide non-emptiness of L(r1) ∩ · · · ∩ L(rn).
First of all, the intersection can only be non-empty, if all ri have the same number

m of factors and, for each j ≤ n, the j-th factor of each ri has the same base symbol
aj . That is, each ri can be written as ei,1 · · · ei,n and each ei,j is of the form aj [ki

j , l
i
j ],

for some ki
j , l

i
j , where ki

j ≥ 1.
Let, for each j ≤ m, pj := max{ki

j | i ≤ n} and qj := min{lij | i ≤ n}. It is easy
to check that L(r1)∩ · · ·∩L(rn) is non-empty, if and only if, for each j ≤ m, pj ≤ qj .
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4. Decision Problems for DTDs and XML Schemas. As explained in the
introduction, an important motivation for this study comes from reasoning about
XML schemas. In this section, we describe how the basic decision problems for such
schemas reduce to the equivalence and inclusion problem for regular expressions. We
also address the problem whether a set of schemas defines a common XML document.
In the case of DTDs, the latter problem again reduces to the corresponding problem
for regular expressions; in contrast, for XML Schema Definitions (XSDs) it does not,
unless np = exptime.

<store>
<dvd>
<title> "Amelie" </title>
<price> 17 </price>

</dvd>
<dvd>
<title> "Good bye, Lenin!" </title>
<price> 20 </price>

</dvd>
<dvd>
<title> "Pulp Fiction" </title>
<price> 11 </price>
<discount> 6 </discount>

</dvd>
</store>

(a) An example XML document.

store

dvd

title

“Amelie”

price

17

dvd

title

“Good bye, Lenin!”

price

20

dvd

title

“Pulp Fiction”

price

11

discount

6
(b) Its tree representation with data values.

store (ε)

dvd (1)

title
(1 1)

price
(1 2)

dvd (2)

title
(2 1)

price
(2 2)

dvd (3)

title
(3 1)

price
(3 2)

discount
(3 3)

(c) Tree without data values. The nodes are annotated next to the
labels, between brackets.

Fig. 4.1. An example of an XML document and its tree representations.

4.1. Trees. It is common to view XML documents as finite trees with labels from
a finite alphabet Σ. There is no limit on the number of children of a node. Figure 4.1
gives an example of an XML document, together with its tree representation. Of
course, elements in XML documents can also contain references to nodes. But as
XML schema languages usually do not constrain these, nor the data values at leaves,
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it is safe to view schemas as simply defining tree languages over a finite alphabet.
In the rest of this section, we introduce the necessary background concerning XML
schema languages.

We define the set of unranked Σ-trees, denoted by TΣ, as the smallest set of strings
over Σ and the parenthesis symbols “(” and “)” such that, for a ∈ Σ and w ∈ T ∗Σ ,
a(w) is in TΣ. So, a tree is either ε (empty) or is of the form a(t1 · · · tn) where each
ti is a tree. In the tree a(t1 · · · tn), the subtrees t1, . . . , tn are attached to the root
labeled a. We write a rather than a(). Notice that there is no a priori bound on the
number of children of a node in a Σ-tree; such trees are therefore unranked. For every
t ∈ TΣ, the set of nodes of t, denoted by Dom(t), is the set defined as follows:

• if t = ε, then Dom(t) = ∅; and
• if t = a(t1 · · · tn), where each ti ∈ TΣ, then Dom(t) = {ε} ∪

⋃n
i=1{iu | u ∈

Dom(ti)}.
Figure 4.1(c) contains a tree in which we annotated the nodes between brackets.
Observe that the n child nodes of a node u are always u1, · · · , un, from left to right.
The label of a node u in the tree t = a(t1 · · · tn), denoted by labt(u), is defined as
follows:

• if u = ε, then labt(u) = a; and
• if u = iu′, then labt(u) = labti(u′).

We define the depth of a tree t, denoted by depth(t), as follows: if t = ε, then
depth(t) = 0; and if t = a(t1 · · · tn), then depth(t) = max{depth(ti) | i = 1, . . . , n}+1.
In the sequel, whenever we say tree, we always mean Σ-tree. A tree language is a set
of trees.

4.2. XML Schema Languages. We use extended context-free grammars and
a restriction of extended DTDs [44] to abstract from DTDs and XML schemas.

Definition 4.1. Let M be a class of representations of regular string languages
over Σ. A DTD over Σ is a tuple (Σ, d, sd) where d is a function that maps Σ-symbols
to elements of M and sd ∈ Σ is the start symbol.

For convenience of notation, we often denote (Σ, d, sd) by d and leave the alphabet
and start symbol sd implicit whenever this cannot give rise to confusion. A tree
t satisfies d if (i) labt(ε) = sd and, (ii) for every u ∈ Dom(t) with n children,
labt(u1) · · · labt(un) ∈ L(d(labt(u))). By L(d) we denote the set of trees satisfying d.

For clarity, we write a → r rather than d(a) = r in examples. In this notation,
a simple example of a DTD defining the inventory of a store which sells DVDs is the
following:

store → dvd dvd∗

dvd → title price
title → ε
price → ε.

The start symbol of the DTD is “store”. The DTD defines trees of depth two, where
the root is labeled with “store” and has one or more children labeled with “dvd”.
Every “dvd”-labeled node has two children labeled “title” and “price”, respectively.

We recall the definition of an extended DTD from [44]. The class of tree languages
defined by EDTDs corresponds precisely to the regular (unranked) tree languages [11].

Definition 4.2. An extended DTD (EDTD) is a 5-tuple E = (Σ, Σtype, d, sd, µ),
where Σtype is an alphabet of types, (Σtype, d, sd) is a DTD over Σtype, and µ is a
mapping from Σtype to Σ. Notice that µ can be extended to define a homomorphism
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on trees. A tree t then satisfies an extended DTD if t = µ(t′) for some t′ ∈ L(d).
Again, we denote by L(E) the set of trees satisfying E.

In the sequel, we also denote by µ the homomorphic extension of µ to strings,
trees, regular expressions, or classes of regular expressions. For ease of exposition, we
always take Σtype = {ai | 1 ≤ i ≤ ka, a ∈ Σ, i ∈ N} for some natural numbers ka, and
we set µ(ai) = a. For a node u in a Σ-tree t, we say that ai is a type of u with respect
to E when
(1) there exists a Σtype-tree t′ ∈ L(d) such that µ(t′) = t; and
(2) labt′(u) = ai.

For simplicity, we also denote EDTDs in examples in a way similar to DTDs, that
is, we write ai → r rather than d(ai) = r.

Example 4.3. A simple example of an EDTD is the following:

store1 → (dvd1 + dvd2)∗dvd2(dvd1 + dvd2)∗

dvd1 → title1 price1

dvd2 → title1 price1 discount1

title1 → ε
price1 → ε
discount1 → ε

The start symbol is store1. Here, dvd1 defines ordinary DVDs, while dvd2 defines
DVDs on sale. The rule for store1 specifies that there should be at least one DVD
on sale. A tree in the language defined by this EDTD can be found in Figure 4.1(c).
We refer to (dvd1 + dvd2)∗dvd2(dvd1 + dvd2)∗ as a typed expression and to (dvd +
dvd)∗dvd(dvd + dvd)∗ as its untyped version.

The following restriction on EDTDs corresponds to the expressiveness of XML
Schema [41, 34].

Definition 4.4. A single-type EDTD (EDTDst) is an EDTD (Σ, Σtype, d, sd, µ)
with the property that for every ai ∈ Σtype, in the regular expression d(ai) no two types
bj and bk with j *= k occur.

Example 4.5. The EDTD of Example 4.3 is not single-type as both dvd1 and
dvd2 occur in the rule for store1. A simple example of a single-type EDTD is the
following:

store1 → regulars1 discounts1

regulars1 → (dvd1)∗

discounts1 → dvd2 (dvd2)∗

dvd1 → title1 price1

dvd2 → title1 price1 discount1

title1 → ε
price1 → ε
discount1 → ε

Although there are still two element definitions dvd1 and dvd2, they can only occur in
different right hand sides.

The following restriction of EDTDs corresponds to the semantic notion of one-
pass preorder typing: it characterizes precisely the tree languages defined by EDTDs
that allow to type documents in a streaming fashion. That is, when traversing a tree
in a depth-first left-to-right order, they allow to determine the type of every node
when it is met for the first time. Or, more formally, the type ai of a node v w.r.t. the
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t

v

Fig. 4.2. Illustration of the preceding of a node v in the tree t. In a one-pass preorder typeable
EDTD E, the type ai of v w.r.t. E is functionally determined by the striped area in t.

EDTD is functionally determined by the preceding of v in t and the label of v itself.
We illustrate the notion of the preceding of v in Figure 4.2. Here, the preceding of
v is the striped area in t. For a more detailed discussion on the notion of one-pass
preorder typing and its relation to restrained competition EDTDs defined next, we
refer the reader to [34, 6].

Definition 4.6. Let E = (Σ, Σtype, d, sd, µ) be an EDTD. A regular expression
r over Σtype restrains competition if there are no strings waiv and wajv’ in L(r) with
i *= j. An EDTD E is restrained competition (EDTDrc) if all regular expressions
occurring in the definition of d restrain competition.

Although the above definition seems superficially similar to the notion of one-
unambiguous regular expressions, they are not equivalent. An expression is one-
unambiguous if and only if its marking, seen as a typed expression, restrains compe-
tition. One-unambiguous regular expressions specify unique left-to-right matching of
words without looking ahead, while restrained competition regular expressions spec-
ify the possibility to uniquely associate types in a left-to-right manner without look-
ing ahead. For instance, in the example below, a dvd-symbol in a string matching
dvd∗discounts dvd is assigned the type dvd1 when it is not preceded by a discount-
symbol and type dvd2 otherwise. The expression corresponding to store in Exam-
ple 4.3 does not restrain competition. Furthermore, when the untyped expression is
one-unambiguous then clearly the typed extension restrains competition. The con-
verse is not true: the expression (a1 + b2)∗a1 is not one-unambiguous but restrains
competition. This is discussed in more detail in [34].

Example 4.7. An example of a restrained competition EDTD that is not single-
type is given next:

store1 → (dvd1)∗ discounts1 (dvd2)∗

discounts1 → ε
dvd1 → title1 price1

dvd2 → title1 price1 discount1

title1 → ε
price1 → ε
discount1 → ε

The start symbol is store1.
Notice that any single-type EDTD is also restrained competition. The classes

of tree languages defined by the grammars introduced above are included as follows:
DTD ! EDTDst ! EDTDrc ! EDTD [41].
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Remark 4.8. Murata et al. observed that there is a straightforward deterministic
algorithm to check validity of a tree t with respect to an EDTDst or EDTDrc E [41, 34].
It proceeds top-down and assigns to every node with some symbol a a type ai. To
the root the start symbol of d is assigned; then, for every interior node u with type
ai, it is checked whether the children of u match µ(d(ai)); if not, the tree is rejected;
otherwise, as E is restrained competition, to each child a unique type can be assigned.
The tree is accepted if this process terminates at the leaves without any rejection.

We say that a DTD (Σ, d, sd) is reduced if for every symbol a that occurs in d,
there exists a tree t ∈ L(d) and a node u ∈ Dom(t) such that labt(u) = a. Hence,
for example, the DTD (Σ, d, a) where d(a) = a is not reduced because there exists no
finite tree satisfying the DTD. We say that an EDTD (Σ, Σtype, d, sd, µ) is reduced if
d is reduced.

We can reduce a DTD (Σ, d, sd) in linear time in four steps:
(1) Compute in a bottom-up manner the set of all symbols S = {a | L((Σ, d, a)) *= ∅}.
(2) Replace every occurrence of a symbol in Σ \ S in all regular expressions in the

definition of d by ∅, and remove all symbols in Σ \ S from the DTD.
(3) In the resulting DTD, compute the set R ⊆ (Σ \ S) of symbols that are reachable

from the start symbol sd. Here, a symbol a is reachable from sd if there is a string
w1aw2 ∈ L(d(b)) and b is reachable from sd. Furthermore, sd is reachable from
sd.

(4) Remove all symbols in S \R in all regular expressions in the definition of d, and
remove their respective regular expressions.

We note that this algorithm is not new. It appears as Theorem 1 in [3]. It is easy to see
that the resulting DTD (S ∩R, d′, sd) is reduced and that L(d) = L(d′). Concerning
the time complexity of the algorithm, Steps (2) and (4) are obviously in linear time.
Step (1) is known to be in linear time since testing whether a symbol in a context-free
grammar can produce a non-empty string of terminals. It is shown in [3] that the
algorithm for standard context-free grammars can be lifted to extended ones. Step
(3) can be carried out in linear time by a straightforward reachability algorithm.
Hence, the overall algorithm can also be carried out in linear time. Unless mentioned
otherwise, we assume in the sequel that all DTDs and EDTDs are reduced.

We consider the same decision problems for XML schemas as for regular expres-
sions.

Definition 4.9. Let M be a subclass of the class of DTDs, EDTDs, EDTDsts
or EDTDrcs.

• inclusion for M: Given two schemas d, d′ ∈M, is L(d) ⊆ L(d′)?
• equivalence for M: Given two schemas d, d′ ∈M, is L(d) = L(d′)?
• intersection for M: Given an arbitrary number of schemas d1, . . . , dn ∈
M, is

⋂n
i=1 L(di) *= ∅?

4.3. Inclusion and Equivalence of XML Schema Languages. We show
that the complexity for inclusion and equivalence of DTDs, EDTDst s, and EDTDrcs
reduces to the corresponding problem on regular expressions. For a class R of regu-
lar expressions over Σ ) Σtype, we denote by DTD(R), EDTD(R), EDTDst(R), and
EDTDrc(R), the class of DTDs, EDTDs, EDTDst and EDTDrcs with regular expres-
sions in R. By Rtype and Rlabel we denote the expressions in R restricted to Σtype

and Σ, respectively.
We call a complexity class C closed under positive reductions if the following holds

for every O ∈ C. Let L′ be accepted by a deterministic polynomial-time Turing ma-
chine M with oracle O (denoted L′ = L(MO)). Let M further have the property that
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L(MA) ⊆ L(MB) whenever A ⊆ B. Then L′ is also in C. For a more precise defini-
tion of this notion we refer the reader to [23]. For our purposes, it is sufficient that
important complexity classes like ptime, np, conp, and pspace have this property,
and that every such class contains ptime.

Let, for every Σ-symbol a, Sa be the set {a} ∪ {ai | i ∈ N}. We say that a
homomorphism h on strings is label-preserving if h(Sa) ⊆ Sa for every Σ-symbol a.
We call a class of regular expressions R closed under label-preserving homomorphisms
if, for every r ∈ R and every label-preserving homomorphism h, h(r) ∈ R. For
our purposes, it is important to note that CHAREs, and their restricted fragments
we study in this article, and one-unambiguous regular expressions are closed under
label-preserving homomorphisms. For RE≤k, we say that a typed expression is in
RE≤k whenever its untyped version is. So, RE≤k is closed under label-preserving
homomorphisms.

We now show that deciding inclusion or equivalence for DTDs, EDTDsts, or
EDTDrcs is essentially not harder than deciding inclusion or equivalence for the
regular expressions that they use. The overall scheme of the proof of the following
theorem is to construct a polynomial time deterministic Turing Machine that solves
the problem for the DTD class under consideration which uses the corresponding
problem for regular expressions as an oracle.

Theorem 4.10. Let R be a class of regular expressions which is closed under
label-preserving homomorphisms. Let Rlabel and Rtype be as defined above. Let C be
a complexity class which is closed under positive reductions. Then the following are
equivalent:
(a) inclusion for Rlabel-expressions is in C.
(b) inclusion for DTD(Rlabel) is in C.
(c) inclusion for EDTDst(Rtype) is in C.
(d) inclusion for EDTDrc(Rtype) is in C.
The corresponding statements hold for equivalence.

Proof. The implications from (d) to (c) and (b) to (a) are immediate.
For the implication from (c) to (b), let (Σ, d1, s1) and (Σ, d2, s2) be two DTDs in

DTD(Rlabel). Let, for every i = 1, 2, d′i be the DTD obtained from di by replacing
every Σ-symbol a with ν(a) and every regular expression di(a) by ν(di(a)), where ν is
the label-preserving homomorphism mapping every Σ-symbol b to the type b1. As R is
closed under label-preserving homomorphisms, the EDTDsts E1 = (Σ, Σtype, d′1, s

1
1, µ)

and E2 = (Σ, Σtype, d′2, s
1
2, µ) are in EDTDst(Rtype). It is easy to see that L(d1) =

L(E1) and L(d2) = L(E2). Hence, L(d1) ⊆ L(d2) (respectively, L(d1) = L(d2)) if and
only if L(E1) ⊆ L(E2) (respectively, L(E1) = L(E2)).

It remains to prove that (a) implies (d). To this end, let E1 = (Σ, Σtype
1 , d1, s1, µ1)

and E2 = (Σ, Σtype
2 , d2, s2, µ2) be two reduced EDTDrc(Rtype)s. We define a corre-

spondence relation R ⊆ Σtype
1 × Σtype

2 as follows:
(1) (s1, s2) ∈ R; and,
(2) if (ai, aj) ∈ R, w1b

kv1 ∈ L(d1(ai)), w2b
!v2 ∈ L(d2(aj)) and µ1(w1) = µ2(w2) then

(bk, b!) ∈ R.
We need the following observation further in the proof. The observation follows

immediately from the restrained competition property of E1 and E2 and the fact that
E1 and E2 are reduced.

Observation 4.11. A pair (ai, aj) is in R if and only if there is a tree t with a
node u labeled a, such that:
(1) the algorithm of Remark 4.8 assigns type ai to u with respect to E1; and
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(2) the algorithm of Remark 4.8 assigns type aj to u with respect to E2.
Notice that we do not require that t matches E1 or E2 overall.
We show that the relation R can be computed in ptime in a top-down left-to-right

manner. To this end, let Aai = (Qai , Σtype
1 , δai , Iai , Fai) and Aaj = (Qaj , Σtype

2 , δaj , Iaj ,
Faj ) be the Glushkov-automata of d1(ai) and d2(aj), respectively (see [22, 12]). We
now give an nlogspace decision procedure that tests, given (ai, aj) ∈ R, whether
there are w1b

kv1 ∈ L(d1(ai)) and w2b
!v2 ∈ L(d2(aj)) with µ1(w1) = µ2(w2). The

algorithm guesses the strings w1b
k and w2b

! one symbol at a time, while simulating
Aai on w1b

k and Aaj on w2b
!. For both strings, we only remember the last symbol

we guessed. We also only remember one state per automaton. Initially, this is the
start state of Aai and the start state of Aaj . Every time, after guessing a symbol x1

of w1b
k and a symbol x2 of w2b

!, we verify whether µ1(x1) = µ2(x2) and we overwrite
the current states q1 ∈ Qai and q2 ∈ Qaj by a state in δai(q1, x1) and δaj (q2, x2),
respectively. We nondeterministically determine when we stop guessing the strings
w1b

k and w2b
!. The algorithm is successful when, from the moment that we stopped

guessing, final states of Aai and Aaj are reachable from the current states q1 and q2,
which can also be decided in nlogspace. As we only remember two states and two
alphabet symbols at the same time, we only use logarithmic space.

We now show how testing inclusion and equivalence for EDTDrcs reduces to
testing inclusion and equivalence for the regular expressions. This follows from
Claim 4.12 below and the closure property of C. The statement for equivalence
follows likewise.

Claim 4.12. With the notation as above, L(E1) is included in (resp., equal to)
L(E2) if and only if, for every ai ∈ Σtype

1 and aj ∈ Σtype
2 with (ai, aj) ∈ R, the regular

expression µ1(d1(ai)) is included in (resp., equivalent to) µ2(d2(aj)).
Proof. We give a proof for inclusion. equivalence then immediately follows.

We can assume without loss of generality that µ1(s1) = µ2(s2).
(⇒) We prove this direction by contraposition. Suppose that there is a pair (ai, aj) ∈
R for which the regular expression µ1(d1(ai)) is not included in µ2(d2(aj)). We then
need to show that L(E1) is not included in L(E2).

Thereto, let w be a counterexample Σ-string in L(µ1(d1(ai))) − L(µ2(d2(aj))).
From Observation 4.11, we now know that there exists a tree t ∈ L(E1), with a node
u ∈ Dom(t), such that the following holds:

• the type assigned to u with respect to E1 is ai;
• the type assigned to u with respect to E2 is aj ; and
• the concatenation of the labels of u’s children is w.

Obviously, t is not in L(E2) as u’s children do not match µ2(d2(aj)). So, L(E1) is not
included in L(E2).
(⇐) We prove this direction by contraposition. Suppose that L(E1) is not included
in L(E2), so there is a tree t matching E1 but not E2. We need to show that there is
an ai ∈ Σtype

1 and aj ∈ Σtype
2 , with (ai, aj) ∈ R, such that µ1(d1(ai)) is not included

in µ2(d2(aj)).
As t *∈ L(E2), there is a node to which the algorithm in Remark 4.8 assigns a type

aj of E2, but for which the concatenation of the labels of the children do not match
the regular expression µ2(d2(aj)). Let u ∈ Dom(t) be such a node such that no other
node on the path in t from the root to u has this property. Let ai be the type that the
algorithm in Remark 4.8 assigns to u with respect to E1. So, by Observation 4.11, we
have that (ai, aj) ∈ R. Let w be the concatenation of the labels of u’s children. But
as w ∈ L(µ1(d1(ai))), and w is not in L(µ2(d2(aj))), we have that µ1(d1(ai)) is not
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included in µ2(d2(aj)).
This concludes the proof of Theorem 4.10
Although Theorem 4.10 is only stated for a single class R of regular expressions,

the proof of the theorem analogously allows to carry over the complexity of inclusion
testing between regular expressions from two different classes of regular expressions
R∞ and R∈ to the complexity of inclusion testing between two schemas E1 and E2

such that E1 only uses expressions from R∞ and E2 only from R∈.

4.4. Intersection of DTDs and XML Schemas. We show in this section that
the complexity of the intersection problem for regular expressions is an upper bound
for the corresponding problem on DTDs. In Theorem 4.14, we show how the intersec-
tion problem for DTDs reduces to testing intersection of the regular expressions that
are used in the DTDs.

Unfortunately, a similar property probably does not hold for the case for single-
type EDTDs or restrained competition EDTDs, as we show in Theorem 4.15. Theo-
rem 4.15 shows that there is a class of EDTDsts for which the intersection problem
is exptime-hard. As the intersection problem for the regular expressions we use in
the proof is in np, the intersection problem for single-type or restrained competi-
tion EDTDs cannot be reduced to the corresponding problem for regular expressions,
unless np = exptime.

We start by showing that the intersection problem for DTDs can be reduced
to the corresponding problem for regular expressions. Thereto, let R be a class
of regular expressions. The generalized intersection problem for R is to determine,
given an arbitrary number of expressions r1, . . . , rn ∈ R and a set S ⊆ Σ, whether⋂n

i=1 L(ri) ∩ S∗ *= ∅.
We first show that the intersection problem and the generalized intersection prob-

lem are equally complex.
Lemma 4.13. For each class of regular expressions R and complexity class C

closed under positive reductions, the following are equivalent:
(a) The intersection problem for R is in C.
(b) The generalized intersection problem for R is in C.

Proof. The direction from (b) to (a) is trivial. We prove the direction from (a)
to (b). Let r1, . . . , rn be regular expressions in R and let S ⊆ Σ. Let r′i be obtained
from ri by replacing every occurrence of a symbol in Σ− S by the regular expression
∅. Then,

⋂n
i=1 L(r′i) *= ∅ if and only if

⋂n
i=1 L(ri) ∩ S∗ *= ∅.

We are now ready to show the theorem for DTDs.
Theorem 4.14. Let R be a class of regular expressions and let C be a complexity

class which is closed under positive reductions. Then the following are equivalent:
(a) The intersection problem for R expressions is in C.
(b) The intersection problem for DTD(R) is in C.

Proof. We only prove the direction from (a) to (b), as the reverse direction is
trivial. Thereto, let d1, . . . , dn be in DTD(R). We assume without loss of generality
that d1, . . . , dn all have the same start symbol. We compute, for each 1 ≤ i ≤ |Σ|+1,
the set Si of symbols with the following property:

a ∈ Si if and only if there is a tree of depth at most i

in L((Σ, d1, a)) ∩ · · · ∩ L((Σ, dn, a)). (∗)

Notice that we have replaced the start symbols of d1, . . . , dn with a in the above
definition. Initially, we set S1 = {a | ε ∈ L(dj(a)) for all j ∈ {1, . . . , n}}. For every
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i > 1, Si is the set Si−1 extended with all symbols a for which S∗i−1 ∩L(d1(a))∩ · · ·∩
L(dn(a)) *= ∅. Clearly, Sk+1 = Sk for k := |Σ|. It can be shown by a straightforward
induction on i that (∗) holds. So, there is a tree satisfying all DTDs if and only if the
start symbol belongs to Sk.

It remains to argue that Sk can be computed in C. Clearly, for any set of regular
expressions, it can be checked in ptime whether their intersection accepts ε. So, S1

can be computed in ptime and hence in C. From Lemma 4.13, it follows that Si

can be computed from Si−1 in C. As only k sets need to be computed, the overall
algorithm is in C. This concludes the proof of Theorem 4.14.

The following theorem shows that single-type and restrained competition EDTDs
probably cannot be added to Theorem 4.14. Indeed, by Theorem 3.7, the intersection
problem for RE((+a), w?, (+a)?, (+a)∗) expressions is in np and by Theorem 4.15,
the intersection problem is already exptime-complete for single-type EDTDs with
RE((+a), w?, (+a)?, (+a)∗) expressions. The proof of Theorem 4.15 is similar to
the proof that intersection of deterministic top-down tree automata is exptime-
complete [48]. However, single-type EDTDs and the latter automata are incompara-
ble. Indeed, the tree language consisting of the trees {a(bc), a(cb)} is not definable
by a top-down deterministic tree automaton, while it is defined by the EDTD con-
sisting of the rules a1 → b1c1 + c1b1, b1 → ε, c1 → ε. Conversely, the tree language
{a(b(c)b(d))} is not definable by a single-type EDTD, but is definable by a top-down
deterministic tree automaton.

Theorem 4.15. intersection for EDTDst((+a), w?, (+a)?, (+a)∗) is exptime-
complete.

Proof. The upper bound can be obtained by a straightforward logspace reduc-
tion to the intersection problem for non-deterministic tree automata, which is in
exptime.

For the lower bound, we use a reduction from Two-Player Corridor Tiling.
Let D = (T, H, V, b̄, t̄, n) be a tiling system with T = {t1, . . . , tk}. We construct
several single-type EDTDs such that their intersection is non-empty if and only if
player Constructor has a winning strategy.

As Σ we take T ) {#}. We define E0 to be a single-type EDTD defining all
possible strategy trees. Every path in such a tree will encode a tiling. The root is
labeled with #. Inner nodes are labeled with tiles. Nodes occurring on an even depth
are placed by player Constructor and have either no children or have every tile
in T as a child representing every possible answer of Spoiler. Nodes occurring on
an odd depth are placed by player Spoiler and have either no children or precisely
one child representing the choice of Constructor. The rows b̄ and t̄ will not be
present in the tree. The start symbol of E0 is #. The EDTD E0 uses the alphabet
Σtype = {#, error, t11, . . . , t

1
k, t21, . . . , t

2
k}. The rules are as follows:

• # → (t11 + · · ·+ t1k);
• for every t ∈ T and 1 ≤ i ≤ k, t1i → (t21 · · · t2k)?; and
• for every t ∈ T and 1 ≤ i ≤ k, t2i → (t11 + · · ·+ t1k + error)?.

Here, a tile with label ti is assigned the type t1i (respectively t2i ) if it corresponds to
a move of player Constructor (respectively Spoiler). We use the special symbol
error to mark that player Spoiler has placed a wrong tile.

All other single-type EDTDs will check the correct shape of the tree and the
horizontal and vertical constraints.

To simplify the exposition below, we start by making the following observation.
Essentially, we argue that a single-type EDTD can test whether a regular condition
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holds on all paths of a tree. More precisely, given a DFA M such that each string
accepted by M starts with the same symbol, there exists a single-type EDTD EM

that defines precisely the trees for which each sequence of labels from the root to a leaf
is accepted by M . Furthermore, this EDTD can be constructed from M using only
logarithmic space. To make this more concrete, let M be an arbitrary DFA accepting
strings over alphabet Σ = T ) {#}. We can assume without loss of generality that
M ’s state set is {0, . . . , m} for some m ∈ N, that is, M = (QM , Σ, δM , {0}, FM) with
state set Q = {0, . . . , m}. Furthermore, let M have the property that there is an
a ∈ Σ such that every string in L(M) starts with a. Then, the single-type EDTD EM

can be constructed as follows. Intuitively, we will use the types of EM to remember
the current state of M . That is, EM will assign type bi to a node x in a tree if it is
labeled with b and M arrives in state i when having read the sequence of Σ-symbols
on path from the root to x. Formally, EM = (Σ, Σtype, d, al, µ), where Σ = T ) {#},
Σtype = {bi | b ∈ Σ, i ∈ QM}, and l ∈ Q is the unique state such that δM (0, a) = l.
Hence, for the root node labeled a, EM assigns the type al such that M is in state l
after having read a. It is now easy to generalize this. Indeed, for every i, j ∈ Q and
b ∈ Σ for which δM (i, b) = {j}, d contains the rule (i) bi → (tj1 + · · · + tjk + #j)∗

if i ∈ F , and (ii) bi → (tj1 + · · · + tjk + #j)+, otherwise. In case (i), when i ∈ F ,
then the path from the root to the b-labeled node is accepted by M . Hence, the label
b is allowed to be a leaf. In case (ii), when i *∈ F , then the path to the b-labeled
node is not accepted by M . Hence, b is not allowed to be a leaf. This concludes our
observation.

Let M1, . . . , M! be a sequence of DFAs that check the following properties:
• Every string starts with #, has no other occurrences of #, and either (i) ends

with error or (ii) its length is one modulo n. This can be checked by one
automaton.

• All horizontal constraints are satisfied, or player Spoiler places the first tile
which violates the horizontal constraints. This tile is followed by the special
symbol error. This can be checked by one automaton.

• For every position i = 1, . . . , n, all vertical constraints on tiles on a position
i (mod n) are satisfied, or player Spoiler places a tile which violates the
vertical constraint. This tile is followed by the special symbol error. This
can be checked by n automata.

• For every position i = 1, . . . , n, the ith tile of b̄ and the ith tile of the first row
should satisfy the vertical constraints. This can be checked by one automaton.

• For every position i = 1, . . . , n, the ith tile of the last row and the ith tile of t̄
should satisfy the vertical constraints. This can be checked by one automaton.

Clearly, L(E0) ∩ L(EM1) ∩ · · · ∩ L(EM!) is non-empty if and only if player Con-
structor has a winning strategy.

5. Conclusion. We addressed the complexity of the basic decision problems for
a very simple fragment of regular expressions: chain regular expressions. Surprisingly,
inclusion of RE(a, a∗) and RE(a, (+a)∗) is already hard for conp and pspace respec-
tively, in contrast to inclusion for RE(a, Σ, Σ∗), which is in ptime. We left the fol-
lowing complexities open: (i) intersection of RE(a, w+) expressions; and, equivalence
for the general class of CHAREs or any fragment extending RE(a, a∗) or RE(a, a?).
Moreover, we showed that the complexities of the inclusion, equivalence and inter-
section problems carry over to the corresponding problems for DTDs. For inclusion
and equivalence, the complexity bounds for regular expressions also carry over to
single-type and restrained competition extended DTDs.
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