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SYNONYMS

XML schemas
DEFINITION

To constrain the structure of allowed XML documents, for instance with respect to a specific application,
a target schema can be defined in some schema language. A schema consists of a sequence of type
definitions specifying a (possibly infinite) class of XML documents. A type can be assigned to every
element in a document valid w.r.t. a schema. As the same holds for the root element, also the document
itself can be viewed to be of a specific type. The schema languages DTDs, XML Schema, and Relax
NG, are, on an abstract level, different instantiations of the abstract model of unranked regular tree
languages.
HISTORICAL BACKGROUND

Brüggemann-Klein, Murata, and Wood [3] where the first to revive the theory of regular unranked tree
automata [14] for the modelling of XML schema languages. Murata et al. [10] provided the formal
taxonomy as presented here. Martens et al. [8] characterized the expressiveness of the different models
and provided type-free abstractions.
SCIENTIFIC FUNDAMENTALS

Intuition

Consider the XML document in Figure 1 that contains information about store orders and stock contents.
Orders hold customer information and list the items ordered, with each item stating its id and price.
The stock contents consists of the list of items in stock, with each item stating its id, the quantity in
stock, and – depending on whether the item is atomic or composed from other items – some supplier
information or the items of which they are composed, respectively. It is important to emphasize that
order items do not include supplier information, nor do they mention other items. Moreover, stock
items do not mention prices. DTDs are incapable of distinguishing between order items and stock items
because the content model of an element can only depend on the element’s name in a DTD, and not
on the context in which it is used. For example, although the DTD in Figure 2 describes all intended
XML documents, it also allows supplier information to occur in order items and price information to
occur in stock items.
The W3C specification essentially defines an XSD as a collection of type definitions, which, when
abstracted away from the concrete XML representation of XSDs, are rules like

store → order[order ]∗, stock[stock ] (?)

that map type names to regular expressions over pairs a[t] of element names a and type names t.
Intuitively, this particular type definition specifies an XML fragment to be of type store if it is of the
form

<order> f1 </order> . . . <order> fn</order> <stock> g </stock>



<store>

<order>

<customer>

<name>John Mitchell</name>

<email> j.mitchell@yahoo.com </email>

</customer>

<item> <id> I18F </id>

<price> 100 </price>

</item>

<item> ... </item> ... <item> ... </item>

</order>

<order> ... </order> ... <order> ... </order>

<stock>

<item>

<id> IG8 </id> <qty> 10 </qty>

<supplier> <name> Al Jones </name>

<email> a.j@gmail.com </email>

<email> a.j@dot.com </email>

</supplier>

</item>

<item>

<id> J38H </id> <qty> 30 </qty>

<item>

<id> J38H1 </id> <qty> 10 </qty>

<supplier> ... </supplier>

</item>

<item>

<id> J38H2 </id> <qty> 1 </qty>

<supplier> ... </supplier>

</item>

<item> ... </item> ... <item> ... </item>

</item>

...

<item> ... </item>

</stock>

</store>

Figure 1: Example XML document.

<!ELEMENT store (order∗, stock)>
<!ELEMENT order (customer, item+)>
<!ELEMENT customer (name, email∗)>
<!ELEMENT item (id, price + (qty, (supplier

+ item+)))>
<!ELEMENT stock (item+)>
<!ELEMENT supplier (name, email∗)>

root → store[store]
store → order[order ]∗, stock[stock ]
order → customer[person], item[item1]

+

person → name[emp], email[emp]+

item1 → id[emp], qty[emp], price[emp]
stock → item[item2]

+

item2 → id[emp], qty[emp],
(supplier[person] + item[item2]

+)
emp → ε

Figure 2: A DTD and an XSD describing the document in Figure 1.

where n ≥ 0; f1, . . . , fn are XML fragments of type order ; and g is an XML fragment of type stock .
Each type name that occurs on the right hand side of a type definition in an XSD must also be defined
in the XSD, and each type name may be defined only once. Using types, an XSD can specify that an
item is an order item when it occurs under an order element and is a stock item otherwise. For example,
Figure 2 shows an XSD describing the intended set of store document. Notice in particular the use of
the types item1 and item2 to distinguish between order items and stock items.
It is important to remark that the ‘Element Declaration Consistent’ constraint of the W3C specification
requires multiple occurrences of the same element name in a single type definition to occur with the
same type. Hence, type definition (?) is legal, but

persons → (person[male] + person[female])+

is not, as person occurs both with type male and type female. Of course, element names in different
type definitions can occur with different types (which is exactly what yields the ability to let the content
model of an element depend on its context). On a structural level, ignoring attributes and the concrete
syntax, the structural expressiveness of Relax NG corresponds to XSDs without the EDC constraint.
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A formalization of Relax NG

An XML fragment f = f1 · · · fn is a sequence of labeled trees where every tree consists of a finite number
of nodes, and every node v is assigned an element name denoted by lab(v). There always is a virtual
root root which acts as the common parent of the roots of the different fi. For a set EName and Types

of element and type names, respectively, the set of elements is defined as {a[t] | a ∈ EName, t ∈ Types}.
The set of regular expressions is given by the following syntax:

r ::= ε | α | r, r | r + r | r∗ | r+ | r?

where ε denotes the empty string and α is an element. Their semantics is the usual one and is therefore
omitted.
An XSchema is a tuple S = (EName, Types, ρ, t0) where EName and Types are finite sets of elements and
types, respectively, ρ is a mapping from Types to regular expressions, and, t0 ∈ Types is the start type.
A typing τ of f is a mapping assigning a type τ(v) ∈ Types to every node v in f (including
the virtual root). For a node v with children v1, . . . , vm, define child-string(τ, v) as the string
lab(v1)[τ(v1)] · · · lab(v1)[τ(v1)]. An XML fragment f then conforms to or is valid w.r.t. S if there
is a typing τ of f such that for every node v, child-string(τ, v) matches the regular expression ρ(τ(v)),
and τ(root) = t0. The mapping τ is then called a valid typing.
Despite the clean formalization, the above definition does not entail a validation algorithm. One
possibility is to compute for each node v in f a set of possible types ∆(v) ⊆ Types such that for
each type t ∈ ∆(v), the XML subfragment rooted at v is valid w.r.t. the schema with start type t. The
XML fragment is then valid w.r.t. S itself when the start type t0 belongs to ∆(root). The sets ∆(v)
can be computed in a bottom-up fashion. Indeed, t ∈ ∆(v) iff (1) v is a leaf node and ρ(t) contains
the empty string; or, (2) v is a non-leaf node with children v1, . . . , vn and there are t1 ∈ ∆(v1), . . . ,
tn ∈ ∆(vn) such that lab(v1)[t1] · · · lab(vn)[tn] ∈ ρ(t). A valid typing can then be computed from the
sets ∆ by an additional top-down pass through the tree. Although this kind of bottom-up validation is
a bit at odds with the general concept of top-down or streaming XML processing, the algorithm can be
adapted to this end (cf., for instance, [10, 13]). For general XSchema’s, a valid typing is not necessarily
unique and can not always be computed in a single pass [8].
XSchemas as defined above correspond precisely to the class of unranked regular hedge languages [3] and
can be seen as an abstraction of Relax NG. Note that the present formalization is overly simplistic w.r.t.
attributes as Relax NG treats them in a way uniform to elements using attribute-element constraints [6].

Relationship with tree and hedge automata

Although an XML fragment can consist of a sequence of labeled trees, in the literature it is accustomed
to restrict this sequence to simply one tree. XSchemas as defined above then define precisely the
unranked regular tree languages [3, 11]. Although several automata formalism capturing this class have
been defined [3, 4, 5], each with their own advantages [9], XSchemas correspond most closely to the
model of Brüggemann-Klein, Murata, and Wood [3] which is defined as follows. A tree automaton
A = (Q,EName, δ, q0) where Q is the set of states (or, types), q0 ∈ Q is the start state (start type),
and δ maps pairs (q, a) ∈ Q × EName to regular expressions over Q. An input tree f is accepted by
the automaton if there exists a mapping τ from the nodes of f to Q, called a run (or, a typing), such
that the root is labeled with the start state, and for every non-root node v with children v1, . . . , vn, the
string lab(v1) · · · lab(vn) matches δ(τ(v), lab(v)). The translation between XSchemas and tree automata
is folklore and can for instance be found in [3].
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Deterministic regular expressions

The unique particle attribution constraint (UPA) requires regular expressions to be deterministic in
the following sense: the form of the regular expression should allow to match each symbol of the input
string uniquely against a position in the expression when processing the input string in one pass from
left to right. That is, without looking ahead in the string. For instance, the expression r = (a + b)∗a
is not deterministic as already the first symbol in the string aaa can be matched to two different a’s in
r. The equivalent expression b∗a(b∗a)∗, on the other hand, is deterministic. Unfortunately, not every
regular expression can be rewritten into an equivalent deterministic one [2]. Moreover, it is not a very
robust subclass, as it is not closed under union, concatenation, or Kleene-star, prohibiting an elegant
constructive definition [2]. Deterministic regular expressions are characterized as one-unambiguous
regular expressions by Brüggemann-Klein and Wood [2]. Deciding whether a regular expression is one-
unambiguous can be done in quadratic time [1]. Furthermore, it can be decided in exptime whether
there is a deterministic regular expression equivalent to a given regular expressions [2]. If so, the
algorithm can return an expression of a size which is double exponential. It is unclear whether this can
be improved.

A formalization of DTDs and XSDs

Let S = (EName, Types, ρ, t0) be an XSchema. Then, S is local when EName = Types and regular
expressions in ρ are defined over the alphabet {a[a] | a ∈ EName}. This simply means that the name
of the element also functions as its type. Furthermore, S is single-type when there are no elements
a[t1] and a[t2] in a ρ(t) with t1 6= t2. A DTD is then a local XSchema where regular expressions are
restricted to be deterministic. Finally, an XSD is then a single-type XSchema where regular expressions
are restricted to be deterministic.

Expressiveness and complexity

XSchemas form a very robust class, for instance, equivalent to the monadic second-order logic (MSO)
definable classes of unranked trees [12], and are closed under the Boolean operations. XSDs on the other
hand are not closed under union or complement [8, 10]. They define precisely the subclasses of XSchemas
closed under ancestor-guarded subtree exchange and are much closer to DTDs than to XSchemas as
becomes apparent from the following equivalent type-free alternative characterization. A pattern-based
XSD P is a set of rules {r1 → s1, . . . , rm → sm} where all ri are horizontal regular expressions and all
si are deterministic vertical regular expressions. An XML fragment f is valid with respect to P if, for
every node v of f , there is a rule r → s ∈ P such that the string formed by the labels of the nodes on
the path from the root to v match r and the string formed by the children of v match s (c.f.. [7, 8]
for more details). The single-type restriction further ensures that XSDs can be uniquely typed in a
one-pass top-down fashion. To be precise, one-pass typing in a top-down fashion means that the first
time a node is visited a type should be assigned (so only based on what has been seen up to now) and
that a child can be visited only when its parent is already visited. Type inclusion and equivalence is
exptime-complete for XSchemas and is in ptime for DTDs and XSDs. In fact, w.r.t. the latter, the
problem reduces to the corresponding problem for the class of employed regular expressions [8].
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