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Abstract. We derive an exact (classical and quantum) expression for the
entropy production of a finite system placed in contact with one or several
finite reservoirs, each of which is initially described by a canonical equilibrium
distribution. Although the total entropy of system plus reservoirs is conserved,
we show that system entropy production is always positive and is a direct
measure of system–reservoir correlations and/or entanglements. Using an
exactly solvable quantum model, we illustrate our novel interpretation of the
Second Law in a microscopically reversible finite-size setting, with strong
coupling between the system and the reservoirs. With this model, we also
explicitly show the approach of our exact formulation to the standard description
of irreversibility in the limit of a large reservoir.
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1. Introduction

Starting with the ground-breaking work of Boltzmann, there have been numerous attempts to
construct a microscopic derivation of the Second Law. The main difficulty is that the prime
microscopic candidate for entropy, namely the von Neumann entropy S = −Trρln ρ, with ρ the
density matrix of the total or compound system, is a constant in time by virtue of Liouville’s
theorem. Related difficulties are the time reversibility of the microscopic laws and recurrences
of the micro-states. A common way to bypass these difficulties is to introduce irreversibility in
an ad hoc way, for example by reasoning that the system is in contact with idealized infinitely
large heat reservoirs. Nevertheless, as was realized early on by Onsager, a consistent description
of the resulting irreversible behavior still carries the undiluted imprint of the underlying time
reversibility and Liouville’s theorem for the system. Examples are the symmetry of the Onsager
coefficients and the fluctuation dissipation theorem. As examples of more recent discussions,
we cite the results on work theorems and fluctuation theorems [1]–[3]. Even more relevant to
the question pursued here, we cite the microscopic expression for entropy production as the
breaking, in a statistical sense, of the arrow of time [4]–[10]. We also mention that significant
effort has been devoted to a detailed description and understanding of the interaction with heat
reservoirs, in particular the difficulties of dealing with the case of strong coupling [11, 12].

In this paper, we show that the problem of entropy production can be addressed within
a microscopically exact description of a finite system, without resorting to infinitely large
heat reservoirs and without any assumption of weak coupling. Whereas the von Neumann
entropy of system plus reservoirs is conserved, the entropy production of the system is
always positive, even though it displays oscillations and recurrences typical of the finite total
system. Interestingly, this entropy production is expressed in terms of the correlations and/or
entanglements between system and reservoirs, so that its positivity can be explained by a
corresponding negative entropy contribution contained in the correlations and/or entanglements
with the reservoirs. As the size of the reservoirs increases, the recurrences die out, the negative
entropy contribution is diluted in an intricate way over the increasing number of correlations
with reservoir degrees of freedom, and the entropy production of the system itself approaches
the standard thermodynamic form. We will illustrate this novel interpretation of the Second Law
on an exactly solvable model, namely, a spin interacting with an N -level quantum system via

New Journal of Physics 12 (2010) 013013 (http://www.njp.org/)

http://www.njp.org/


3

a random matrix coupling. We focus on the derivation for the quantum case, but the analogous
treatment for the classical system is straightforward.

2. An exact form for entropy production

The setup is as follows. We consider one or several finite quantum systems r which play the
role of finite-size heat reservoirs. Accordingly, their density matrices ρr(t) at initial time t = 0
are assumed to be of canonical equilibrium form,

ρr(0) = ρeq
r = exp (−βr Hr)/Zr . (1)

Here βr , Hr and Zr are the corresponding inverse temperature at t = 0 (Boltzmann’s constant kB

is set equal to 1), the Hamiltonian, and the partition function at t = 0. Being reservoir systems,
it is natural to assume that their Hamiltonians Hr are time independent. At time t = 0, we
connect a finite quantum system s, characterized by Hamiltonian Hs(t) and density matrix
ρs(t), to the reservoirs by switching on an interaction Hamiltonian V (t). The initial state of the
compound system, characterized by the density matrix ρ(t), does not display any entanglement
or correlation,

ρ(0) = ρs(0)
∏

r

ρeq
r . (2)

Correlations and/or entanglements do develop in the subsequent time evolution of ρ(t), which
obeys Liouville’s equation for the total Hamiltonian

H(t) = Hs(t) +
∑

r

Hr + V (t). (3)

Note that in addition to the issue of relaxation of a system in contact with a reservoir, this
scenario includes ingredients for the study of a driven system via time dependence of the
system’s Hamiltonian, as well as that of a non-equilibrium steady state, which can be realized
in view of the presence of several heat reservoirs. In fact, the above construct can easily
be generalized to include particle reservoirs described via grand-canonical distributions. This
would allow the consideration of particle flows in addition to heat flows.

We are primarily interested in the occurrence and characterization of irreversible behavior
in the system. We thus focus our attention on entropy S(t) of the system,

S(t) ≡ −Trsρs(t) ln ρs(t), (4)

where ρs(t) is the trace of ρ(t) over the degrees of freedom of all the reservoirs. Contrary
to the total von Neumann entropy, the entropy of the system is in general a function of time,
because technically speaking the dynamics of ρs(t) is not unitary. More to the point for the
ensuing discussion, we note that from the thermodynamic point of view we are dealing with
an energetically open system. We now show that it is precisely the time invariance of the total
von Neumann entropy that induces a natural separation of the entropy change of the system into
separate contributions from an entropy flow and an entropy production. Using

−Trρ(t) ln ρ(t) = −Trρ(0) ln ρ(0) = −Trsρs(0) ln ρs(0) −

∑
r

Trrρ
eq
r ln ρeq

r , (5)
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we find for the entropy change of the system

1S(t) = S(t) − S(0) = −Trρ(t) ln ρs(t) + Trρ(t) ln ρ(t) −

∑
r

Trrρ
eq
r ln ρeq

r

= − Trρ(t) ln

{
ρs(t)

∏
r

ρeq
r

}
+ Trρ(t) ln ρ(t) +

∑
r

Trr [ρr(t) − ρeq
r ] ln ρeq

r . (6)

We conclude that the change in the entropy of the system can be written in standard
thermodynamic form [13]–[16]

1S(t) = 1i S(t) + 1e S(t). (7)

Entropy flow, representing the reversible contribution to the system entropy change due to heat
exchanges, is identified as the last term in (6). After some manipulation using the explicit form
of ρeq

r , it can be written in standard thermodynamic form

1e S(t) =

∑
r

βr Qr(t), (8)

where the heat flowing from reservoir r is

Qr(t) ≡ 〈Hr〉0 − 〈Hr〉t . (9)

We use the notation 〈•〉t ≡ Tr[ρ(t)•]. Of particular interest is the resulting expression for the
entropy production,

1i S(t) ≡ D

[
ρ(t)||ρs(t)

∏
r

ρeq
r

]
, (10)

which represents the irreversible contribution to the entropy change of the system. Here,
D[ρ||ρ ′] is the quantum relative entropy between two density matrices ρ and ρ ′,

D[ρ||ρ ′] ≡ Trρ ln ρ − Trρ ln ρ ′. (11)

It has the following important properties [17, 18]. The relative entropy is positive, and
equal to zero only when the two matrices are identical. We thus conclude that the entropy
production introduced above is indeed a positive quantity, 1i S(t)> 0, and vanishes only
when the system and reservoirs are totally decorrelated. Furthermore, relative entropy is a
measure of the ‘distance’ between two density matrices. Hence, as mentioned earlier, entropy
production explicitly expresses how ‘far’ the actual state ρ(t) of the total system is from the
decorrelated/disentangled product state ρs(t)

∏
r ρeq

r .
We have thus derived in a Hamiltonian framework the central thermodynamic relation,

(7) with (8) and (10), for the entropy evolution of a system out of equilibrium.

3. Discussion

To further clarify the significance of our central result (7), we make a number of additional
comments.
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3.1. Meaning of entropy production

Firstly, we note that the sum of the system and reservoir entropies is not the entropy of the total
system because it lacks the entropy contribution contained in the correlations and entanglement
between the system and the reservoirs. We thus define the correlation entropy, Sc(t), by

S(t) +
∑

r

Sr(t) + Sc(t) = −Trρ(t) ln ρ(t), (12)

where the entropy of the reservoir r is

Sr(t) ≡ −Trrρr(t) ln ρr(t). (13)

We note that Sc(0) = 0 because no initial correlations are present (2). Because the entropy of
the total system is conserved, we find that

Sc(t) = −1S(t) −

∑
r

1Sr(t). (14)

Using definition (11), we verify that

D

[
ρ(t)||ρs(t)

∏
r

ρr(t)

]
= 1S(t) +

∑
r

1Sr(t)> 0, (15)

so that from (14) and (15) we conclude that

Sc(t) = −D

[
ρ(t)||ρs(t)

∏
r

ρr(t)

]
6 0. (16)

The entropy contribution contained in the correlation is thus always negative or zero.
Using (10), we see that in the thermodynamic limit, when the reservoirs can be assumed to
remain at equilibrium, i.e. ρr(t) = ρeq

r , the correlation entropy becomes equal to minus the
entropy production Sc(t) = −1i S(t). Furthermore, since

1i S(t) + Sc(t) = −

∑
r

βr Qr(t) −

∑
r

1Sr(t) =

∑
r

D[ρr(t)||ρ
eq
r ]> 0, (17)

we find that the entropy production is an upper bound to minus the always negative correlation
entropy, i.e.

1i S(t)>−Sc(t) = 1S(t) +
∑

r

1Sr(t)> 0. (18)

Neglecting a part of the negative entropy contribution contained in the correlation, 1i S(t) +
Sc(t), is actually quite natural from an operational point of view: while one has full
microscopic access to the system’s properties, one only controls or measures the energy and
no other properties of the reservoir. In this sense, the above procedure leading to the central
thermodynamic relation, (7) with (8) and (10), can be viewed as a coarse graining operation that
retains the full microscopic description of the system but reduces the reservoirs plus correlations
to an idealized heat reservoir description. In the limit of large reservoirs, it is likely that this
latter description deviates very little from the actual one. The reservoir entropy can then be
approximated by minus the entropy flow

∑
r 1Sr(t) ≈ −1e S(t) = −

∑
r βr Qr(t). Concerning

the correlations, one expects that they will be diluted over the exponentially many higher order
correlations, becoming in effect irretrievable so that Sc(t) ≈ −1i S(t). Furthermore, this will
happen exponentially fast in time if the reservoirs display non-integrable, chaotic properties.
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3.2. Recurrences

Secondly, while 1i S(t) is a positive quantity, it does not increase monotonically in time. In fact,
oscillations are bound to arise in view of recurrences in the state of the finite total system. In
this respect, it is important to stress that we consider the entropy production starting from the
natural but specific initial condition (2). The transient decreases of 1i S(t) can be interpreted
as the reappearance of the negative entropy, hidden in the correlations, as system and reservoir
transiently return to states close to this decoupled initial state. In the limit of large reservoirs,
recurrences will become less and less likely, and 1i S(t) is expected to converge to a convex
monotonically increasing function of t .

3.3. Connection to the First Law

Thirdly, we discuss the appropriate definition of work and free energy in a driven system
strongly coupled to a heat reservoir. We consider the case of a single reservoir at temperature
T = β−1, for convenience dropping the subscript r . Using the fact that TrH(t)ρ̇(t) = 0, the
work done on the total system can be written as

W ≡ 〈H(t)〉t − 〈H(0)〉0 =

∫ t

0
dτTr(Ḣs(t) + V̇ (t))ρ(t). (19)

Using Tr(Hs(t) + V (t))ρ̇(t) = −TrHr ρ̇(t), we can rewrite heat (9) as

Q(t) =

∫ t

0
dτTr(Hs(t) + V (t))ρ̇(t). (20)

The change of the energy of the system, including the contribution of the interaction term, reads

1U (t) ≡ 〈(Hs(t) + V (t))〉t − 〈(Hs(0) + V (0))〉0 (21)

and can be written, in accordance with the First Law, as the sum of work and heat,

1U (t) = W (t) + Q(t). (22)

Next, introducing the non-equilibrium free energy

1F(t) ≡ 1U (t) − T 1S(t), (23)

we can rewrite expression (7) for entropy production in the standard thermodynamic form for a
driven system in contact with a heat reservoir,

T 1i S(t) = W (t) − 1F(t)> 0. (24)

This expression is exact. If we assume that the total system relaxes to a final canonical
equilibrium at temperature β−1, this non-equilibrium free energy difference reduces to the
equilibrium expression identified in the context of the work theorem in both the weak
coupling [2, 4, 19] and strong coupling regimes [11, 12].

3.4. Entropy production in the weak coupling limit

Finally, we discuss the connection with the following alternative definition for entropy
production, proposed in open quantum system theory [18]:

1i S̄(t) ≡ D[ρs(0)||ρeq
s ] − D[ρs(t)||ρ

eq
s ] = 1S(t) − 1e S̄(t). (25)
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Entropy flow is now defined as

1e S̄(t) ≡ β(〈Hs〉t − 〈Hs〉0) (26)

and ρeq
s = exp(−β Hs)/Zs . To compare this expression with our definition (10) for entropy

production, we note that total energy is conserved by the dynamics, 〈H〉t = 〈H〉0, and hence

1i S(t) = 1i S̄(t) − β(〈V 〉t − 〈V 〉0)> 0. (27)

The two definitions thus differ by the interaction term, which vanishes in the limit of either weak
coupling or high temperature. Definition (25) has the obvious advantage of being exclusively
expressed in terms of the system density matrix, whereas our definition (10) requires the total
density matrix. However, we will show that, contrary to our expression, (25) is not always a
positive quantity. The positivity of (25) can be proven when ρeq

s is the stationary solution of
the reduced system dynamics [18]. This will generically be the case in the weak-interaction
large-reservoir limit, i.e. precisely when the interaction term in (27) can be neglected and
(25) becomes identical to (10). An even stronger statement can be made when, in the same
limit, the system dynamics can be described by a Markovian quantum master equation of the
form ρ̇s(t) = Lρs(t), where L is a superoperator satisfying Lρeq

s = 0. An example of such L
is the Redfield superoperator that can be derived using second-order perturbation theory in
the system–reservoir interaction [18, 20]. Under these conditions, it is known that entropy
production is a convex functional of the system density matrix [18], with a positive rate of
entropy production

d

dt
1i S(t) ≈

d

dt
1i S̄(t)> 0. (28)

4. Model system

We will now illustrate the above findings in a two-level quantum spin coupled to an N -level
reservoir via a random matrix. The total Hamiltonian reads

H =
1

2
σz + Hr + λσx R. (29)

σx,z are the well-known Pauli matrices. The reservoir Hamiltonian Hr is a diagonal matrix with
N equally spaced eigenvalues between −0.5 and 0.5. The coupling matrix is R = X/

√
8N ,

where X is a Gaussian orthogonal random matrix of size N with probability density proportional
to exp(−1

4TrX 2) [21, 22]. This model is similar to the spin-Gaussian orthogonal random
matrices (GORM) model of Esposito and Gaspard [23]. The system is initially assumed to be in
the pure lower energy state ρs(0) = |0〉〈0|, where σz|0〉 = −|0〉, and the reservoir is initially
in a canonical equilibrium state at temperature β−1. In the weak-coupling large-reservoir
limit, the resulting Redfield equation leads to the following closed relaxation equation for the
z-component of the spin (h̄ = 1):

〈σz〉t = 〈σz〉eq + (〈σz〉0 − 〈σz〉eq)e
−γ t , (30)

where

γ = 2πλ2(α̃(1) + α̃(−1)), 〈σz〉eq =
α̃(−1) − α̃(1)

α̃(−1) + α̃(1)
. (31)
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Figure 1. 1Si (resp. 1S̄i ) is entropy production (10) [(25)] calculated using
the exact numerical dynamics. 1S̄i (QME) is the irreversible entropy production
(25) calculated using the Redfield equation (30). Parameters are 1 = 0.1, β = 10
and λ = 0.1.

Here α̃(ω) is the Fourier transform of the reservoir correlation function

α(t) ≡ Trrρ
eq
r exp [iHr t]R exp [−iHr t]R, (32)

α̃(|ω|) =
1

16

e−β/2eβ|ω|
− eβ/2

e−β/2 + eβ/2
= eβ|ω|α̃(−|ω|). (33)

The x- and y-components of the spin evolve independently of the z-component, and are zero
for our initial condition.

We are now in a position to compare our definition (10) of entropy production with
definition (25) calculated from the exact dynamics as well as from Redfield theory. This is
accomplished through an exact numerical solution of our model for finite N . The results are
summarized in figure 1. Note that we show single realizations of the random matrix. For
small N , we observe a pronounced oscillatory behavior of our entropy production (10) and even
near-recurrences very close to zero. Whereas our entropy production always remains positive,
entropy production (25) can be negative for small values of N , which is clearly not acceptable. In
the limit of a large reservoir (N → ∞), both expressions converge to one another and coincide
with the positive and convex irreversible entropy production predicted by the Redfield equation.

5. Conclusions

We conclude that (10) is a proper definition for entropy production, one that remains valid
for a small system strongly coupled to small reservoirs. In the limit of large reservoirs, it
converges to a convex irreversible entropy, coinciding with the familiar definition of entropy
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production [18] for the quantum master equation. Our identification of entropy production
(10) within an exact microscopic framework vindicates the description of irreversibility as a
property of open systems, with the entropy production rather than entropy of the total system
playing the central role. The microscopic origin of entropy production, explained in terms of
correlations established between the system and its reservoirs, is reminiscent of Boltzmann’s
Stosszahlansatz. However, our analysis of the micro-dynamics and the identification of the
entropy production of the system are exact. The appearance of irreversibility as the omission,
in the reservoirs, of its correlations with the system provides a natural, precise and transparent
interpretation of the Second Law.
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