
Made available by Hasselt University Library in https://documentserver.uhasselt.be

A Multi-Camera Framework for Interactive Videogames

Peer-reviewed author version

CUYPERS, Tom; VANAKEN, Cedric; FRANCKEN, Yannick; VAN REETH, Frank &

BEKAERT, Philippe (2008) A Multi-Camera Framework for Interactive Videogames.

In: International Conference on Computer Graphics Theory and Applications

(GRAPP 2008). Proceedings. p. 443-449..

Handle: http://hdl.handle.net/1942/10474

A-Multi-Camera System for Interactive Videogames

Cuypers Tom

May 23, 2007

I

Word of Thanks

First of all I would like to thank my promotor Prof. dr. Philippe Bekaert who made
it possible to me to make this thesis. Also a lot of graditude goes to Yannick Francken and
Cedric Vanaken who guided me during this work. I could always count on them to get answers
to problems regarding this thesis. Even though I spent the first five months of this this year
in Spain as an Erasmus student, they were still able to help me. I also would like to thank
Chris Hermans, Maarten Dumont and Bert Dedecker for sharing their time and information
with me. This thesis would not have been the same without them.
At the Universitat de les Illes Balears, which was my Erasmus university in Mallorca, I
received a lot of help too. I especially like to thank my tutor dr. Francisco J. Perales. He
made it possible to me to do research by providing information and hardware. I would also
like to thank Antoni Jaume Capo and Dr. Jose Maria Buades for their guidance during my
time there.
Eventually I would like to express my thanks to my parents and brothers for supporting me
and helping me revising this work.

Contents

1 Introduction 1
1.1 Computer Vision . 1
1.2 Previous Work . 2
1.3 Overview . 2

2 Related Work 5
2.1 Calibration . 6

2.1.1 Description of a Camera . 6
2.1.2 Epipolar Geometry . 7
2.1.3 Calibrated Cameras . 8

2.2 Depth Estimation . 10
2.2.1 General Concept of Depth Estimation 10
2.2.2 Representation . 11
2.2.3 Structure of a Stereo Algorithm . 12
2.2.4 Calculating the Disparity Map . 14
2.2.5 Depth Estimation from Unrectified Images 15

2.3 Visual Hull . 18
2.3.1 Definition and Properties of the Visual Hull 18
2.3.2 Representation . 20
2.3.3 Background Subtraction . 21
2.3.4 Calculating the Visual Hull . 21
2.3.5 Visual Hull for Rendering . 24
2.3.6 Use of the Visual Hull . 26

2.4 Object Tracking . 27
2.4.1 Kalman Filter . 27
2.4.2 The Extended Kalman Filter . 30
2.4.3 Kalman Filter for Object Tracking . 31
2.4.4 Particle Filter . 32
2.4.5 Condensation Algorithm . 36
2.4.6 Particle Filter for Object Tracking . 36
2.4.7 Tracking of Hands and Face . 38
2.4.8 Kinematics . 41

3 Implementation 43
3.1 Depth Estimation . 43

3.1.1 Disparity Calculation . 43
3.1.2 Optimalizations . 43
3.1.3 Noise reduction . 46

II

CONTENTS III

3.2 Visual Hull . 49
3.2.1 Cubic Visual Hull . 49
3.2.2 Octree Visual Hull . 49
3.2.3 Sliced Visual Hull . 53

3.3 Object Tracking . 57
3.3.1 Condensation Algorithm . 57
3.3.2 Tracking of Hands and Face . 58
3.3.3 Inverse Kinematics . 63

4 Results 65
4.1 Camera Setup . 65
4.2 Resolution of the Images . 66
4.3 Number of Cameras . 68
4.4 Desired Framerate . 69
4.5 Type of Game . 69

4.5.1 Drawing Game . 70
4.5.2 Frogger . 70
4.5.3 Mapping Player to a Game Engine . 73
4.5.4 Collision Detection Game . 73
4.5.5 Spiral . 73
4.5.6 Roboshoot . 73

5 Conclusions 78

6 Future Work 81

List of Figures

1 Camera Model . ii
2 Visual Hull Constructie . iv
3 Resultaten . ix

1.1 Decathlete . 3
1.2 Eye Toy : Kinetic Combat . 3

2.1 Camera representation . 6
2.2 Point correspondence geometry . 7
2.3 CCD Camera coordinates . 9
2.4 Camera and world coordinate frame . 9
2.5 Disparity example . 10
2.6 Disparity concept . 11
2.7 Cuboid for matching costs . 15
2.8 Intersection of two lines . 17
2.9 Volume intersection . 18
2.10 Visual Hull Cone . 19
2.11 Active-Inactive surface . 20
2.12 Visual Hull Representation . 22
2.13 Euler distance of silhouette . 23
2.14 Sliced representation . 25
2.15 Camera weights . 26
2.16 Kalman filter result . 33
2.17 Monte Carlo Example . 34
2.18 A step of the condensation algorithm . 37
2.19 Relation between Cb-Cr and skin color . 39
2.20 Kinematics Skeleton . 41

3.1 Tsukuba . 44
3.2 Result of disparity calculation . 44
3.3 Summing up windows . 45
3.4 Minimum sorting list for median . 46
3.5 Result of the median filter . 47
3.6 Tsukuba in 3D . 48
3.7 Cubic visual hull . 50
3.8 Preprocessing stage for octree visual hull . 51
3.9 Octree visual hull . 52
3.10 GPU pipeline . 53
3.11 The projection of one camera on every slice 55

IV

LIST OF FIGURES V

3.12 Sliced visual hull . 56
3.13 Condensation algorithm for location and orientation of an object 57
3.14 Skin detection . 60
3.15 Skin detection compared . 61
3.16 Handsheadtracking . 62
3.17 Inverse Kinematic model for a human player 63
3.18 Jacobian Transpose Methode . 64
3.19 Inverse Kinematics Result . 64

4.1 Camera Setup . 66
4.2 Camera Setup for Visual Hull . 66
4.3 Occlusions . 69
4.4 Drawing game . 71
4.5 Frogger . 72
4.6 Player in a Game Engine . 74
4.7 Collision Detection Game . 75
4.8 A digital version of the game spiral . 76
4.9 Roboshoot . 77

5.1 Difficulties with camera based games . 79
5.2 Comparison with Playstation Eyetoy . 80

List of Tables

4.1 Time results for disparity calculation . 67
4.2 Time results for calculating a visual hull (image resolution) 68
4.3 Time results for calculating a visual hull (number of cameras) 68
4.4 Time results for particle filter . 70

VI

Abstract

Modern days, the traditional input devices for computer games are keyboard, mouse and
joystick. But there also exists other hardware to interact with games, for example a micro-
phone or a camera. Most of them are still in research state, but they are finding their way to
the commercial world. The Eye Toy of Sony Playstation 2 is a good example for this. The
purpose of this thesis is to describe such an alternative input for games by using two or more
cameras. Because of this, the player must be able to interact intuitively in 3D computer games
without physical contact with any gaming device so that everyone can play those games.
Using multiple cameras for computer games has to meet with two properties, it has to be
cheap and it has to be interactive. In the past there has been a lot of research for creating
cheap and efficient hardware for this purpose, but modern cameras are often cheap enough.
So the first property is not a problem anymore because for example web cams are very low
cost. The second demand has been researched in the computer vision and image processing
area a lot and there are many ways to do this, each one has his advantages and disadvantages.
It is a large research domain and there are no specific formulations of how computer vision
problems should be solved. This work will present a collection of techniques and algorithms
capable of extracting useful information from captured images in real time and how this infor-
mation can be used for interaction in computer games. This can all be done with a standard
single processor computer and no specialized hardware.

Nederlandse samenvatting:
Een multi-camera systeem voor interactieve

videospellen

Introductie

Het doel van deze thesis is om computerspellen aan te sturen met behulp van twee of meerdere
camera’s. De bedoeling is uiteraard dat deze interactie real time gebeurt opdat een inter-
actief spel bekomen kan worden. De wijze waarop dit kan gebeuren wordt gezocht in het
domein computervisie welke zich bezig houdt met het halen van informatie uit een of meerdere
beelden [1].
Gelijkaardige verwezenlijkingen kunnen gevonden worden in het vakgebied mens computer
interactie en virtuele realiteit waar een persoon interactief met een computer kan interageren
door middel van bewegingen en gebaren [2, 3]. De muis kan als voorbeeld vervangen worden
door een camera waardoor de gebruiker objecten kan selecteren en verplaatsen door er gewoon
naar te wijzen. Er zijn ook reeds interactieve computerspellen die aangestuurd worden door
middel van een webcam op de commerciële markt verschenen. De meest bekende tegenwoordig
is de Eyetoy van Playstation 2 [4], maar ook in het verleden zijn er reeds succesvolle spellen
uitgekomen. Door middel van de Artifical Retine Chip van Mitsubishi Electronics [2, 5] pre-
senteerde Sega Saturn drie spellen: Nights, Magic Carpet en Decathlete.
Maar in tegenstelling tot dit werk maken alle vorige toepassingen gebruik van slechts 1 camera.
Hierdoor is enkel twee dimensionale informatie beschikbaar. Wanneer meerdere beelden ge-
bruikt worden als invoer kan ook de diepte informatie in rekening gebracht worden voor het
aansturen van een spel.
Deze samenvatting start met een beschrijving van enkele veel onderzochte technieken uit
de computervisie. Deze zullen eerst zeer beknopt beschreven worden. Vervolgens komt er
een overzicht van de algoritmen die gëımplementeerd zijn geweest voor de computerspellen,
gevolgd door de resultaten. Tot slot wordt er een besluit en toekomstig werk gegeven.

Gerelateerd werk

Deze sectie beschrijft enkele veel gebruikte computervisie technieken die bovendien ook ge-
bruikt kunnen worden voor interactieve spellen. Ze worden onderverdeeld in diepte schatting,
visual hull constructie en object tracking. Vooraleer er met meerdere camera’s gewerkt kan
worden, moet de relatie ertussen bekend zijn. Dit wordt ook wel camera kalibratie genoemd.
Dit concept wordt als eerst aangehaald voordat wordt in gegaan op de computervisie metho-
den.

Nederlandse samenvatting ii

Figure 1: Een camera met centrum C en projectievlak P . Het drie dimensionaal assenstelsel
(X, Y , Z) bevindt zich in de oorsprong van de camera. Het assenstelsel (x, y) is
het twee dimensionaal assenstelsel van de foto op het vlak P . Bij het maken van
een foto worden alle punten uit de drie dimensionale ruimte, A en B, geprojecteerd
op het projectievlak, respectievelijk op de punten a en b.

Camera kalibratie

Voor het verder verloop van dit werk is het natuurlijk belangrijk om te weten hoe een camera
werkt en hoe het gebruikt kan worden. Een camera bestaat uit een projectiecentrum en een
projectievlak. Wanneer een foto genomen wordt, wordt de gefotografeerde scène geprojecteerd
op dit projectievlak en deze projectie is de foto welke als resultaat bekomen wordt, zie foto 1.
Dit proces kan wiskundig beschreven worden door een 4 × 3 projectiematrix welke een punt
uit de drie dimensionale ruimte omzet naar een twee dimensionaal punt op het vlak. Een
veel gebruikte matrix hiervoor is de interne kalibratiematrix welke de oorsprong van het drie
dimensionale assenstelsel plaatst in het projectiecentrum van de camera. Camera’s kunnen
dan als volgt gekalibreerd worden door ervoor te zorgen dat het assenstelsel van de scène
hetzelfde gekozen wordt voor elk van hen.
Als er met slechts twee camera’s gewerkt wordt kan de relatie tussen de beelden ook beschreven
worden met de fundamentele matrix. Wanneer er een punt op het eerste beeld bekend is kan
de overeenkomstige rechte op het tweede beeld berekend worden door middel van deze matrix.
Deze relateert dus een punt van één beeld met een rechte op het andere beeld, dit omdat het
onmogelijk is exact te bepalen wat de projectie op het andere beeld is. Dit komt omdat de
diepte van het eerste punt niet beschikbaar is [1].

Diepte schatting

De naam diepte schatting vertelt al ongeveer wat deze techniek inhoud. Met behulp van ten
minste twee camera’s wordt de afstand van een object tot een bepaalde camera ingeschat. Het
principe hierachter kan vergeleken worden met het menselijk oog. Een mens ziet twee keer
dezelfde scène, maar telkens vanuit een andere positie, linkeroog en rechteroog. Hierdoor is hij
in staat de diepte van een voorwerp te bepalen. Deze diepte informatie kan gehaald worden

Nederlandse samenvatting iii

uit de verschillen van de twee beelden. Een object dat zich dichter bij de waarnemer bevindt,
heeft de eigenschap meer verplaatst te zijn tussen de twee beelden dan een object verder weg.
Deze eigenschap wordt ook in de computervisie uitgebuit om een afstand te bepalen. Een
scène wordt gefilmd door twee dicht bij elkaar geplaatste camera’s. Voor iedere pixel in het
eerste beeld kan zijn correspondeerde pixel gezocht worden in het tweede beeld. De locaties
waar gezocht moeten worden naar het overeenkomstige punt kunnen bepaald worden door
middel van de kalibratie data. Ter vereenvoudiging wordt vaak met gerectificeerde beelden
gewerkt, welke de eigenschap hebben dat de projectie van een punt op de twee beelden op
dezelfde hoogte ligt. Daarom kan een overeenkomstige pixel gezocht worden op een horizontale
rechte.
Een veel gebruikte voorstelling van de diepte informatie is een dieptemap. Dit is een twee
dimensionale matrix met dezelfde resolutie als de invoer beelden waarvan iedere waarde gelijk
is aan de diepte met de overeenkomstige pixel uit het referentiebeeld. Het berekenen van
deze dieptemap kan op verschillende manieren gedaan worden, maar deze algoritmen bestaan
vaak uit dezelfde vier stappen [6]. Deze stappen zijn overeenkomst berekenen, overeenkomsten
aggregeren, berekenen van verplaatsing en verbetering aanbrengen.

Overeenkomst berekenen

Eerst moet de overeenkomst tussen twee pixels berekend kunnen worden. Dit wordt vaak
gedaan door de absolute waarde of het kwadraat van hun verschil te nemen. Hoe kleiner deze
waarde is hoe groter de overeenkomst tussen de twee pixels.

Overeenkomsten aggregeren

De overeenkomst tussen twee pixels alleen geeft onvoldoende informatie, daarom wordt de
overeenkomst vaak over een venster rond de pixel berekend. Een groter venster geeft beter
aan hoe goed twee pixels op elkaar gelijken. Veelgebruikte methoden hier zijn de som van
het absolute verschil en de som van het kwadraat van de verschillen. Hierbij worden de
overeenkomsten van de pixels over een volledig venster met elkaar opgeteld.

Berekenen van verplaatsing

Voor iedere pixel in het eerste beeld wordt de overkomst bepaald met alle mogelijk correspon-
derende pixels uit het andere beeld. De keuze van overeenkomstige pixel kan dan op twee
verschillende manieren gebeuren: lokaal of globaal. Wanneer lokaal gewerkt wordt, wordt de
corresponderende pixel deze met het kleinste verschil. In een globaal algoritme daarentegen
streeft men naar een globaal minimum. De verplaatsing tussen een pixel en zijn overeenkom-
stige wordt in de dieptemap bijgehouden.

Verbetering aanbrengen

In de laatste stap worden soms nog enkele verbeteringen uitgevoerd om het resultaat te
optimaliseren. Deze proberen ruis te vermijden of foute oplossingen te elimineren.

Visual hull constructie

Deze techniek houdt in dat er een drie dimensionale reconstructie wordt gemaakt van een
object of persoon aan de hand van enkele projecties en wordt vaak ook shape-from-silhouette

Nederlandse samenvatting iv

Figure 2: Het object wordt gefotografeerd met 4 verschillende cameras. Deze projecties wor-
den terug geprojecteerd naar de ruimte in de vorm van een ”kegel”. De doorsnede
van deze kegels, hier rood gearceerd, vormt de visual hull van het object.

genoemd. Een silhouette is een binair beeld welke alle pixels bevat van de projectie van het
object en waarvan dus de achtergrond verwijderd is. Dit silhouette kan terug geprojecteerd
worden naar de ruimte in de vorm van een ”kegel” met het middelpunt van de camera als top.
Deze kegel is dan de verzameling van alle drie dimensionale punten die geprojecteerd worden
ergens op een voorgrondpixel. In het geval dat er meerdere beelden beschikbaar zijn wordt er
een doorsnede genomen van deze kegels. Het resultaat van deze bewerking wordt ook wel een
visual hull genoemd. Dit model is de verzameling van alle punten in de ruimte die op elke
gegeven silhouette geprojecteerd worden. Deze reconstructie is daarom ook de best mogelijk
oplossing startende van silhouetten [7]. Een twee dimensionaal voorbeeld wordt getoond op
figuur 2.
De wijze waarop deze berekend kan worden, hangt grotendeels af van de manier hoe deze
visual hull gaat voorgesteld worden. De meest voor de hand liggende representatie noemt
constructive solid geometry (CGS). Deze beschrijft een drie dimensionaal model door middel
van primitieven en operaties ertussen. In dit geval kunnen de primitieven de terug gepro-
jecteerde kegels zijn en de operatie ertussen is de doorsnede. Een andere methode gaat de
ruimte voorstellen door blokken, welke ook wel voxels worden genoemd. De term voxel is
een samensmelting van de woorden volumetric en pixel en kan dus beschouwd worden als een
drie dimensionale pixel. Deze blokken kunnen allemaal dezelfde grootte hebben, maar dit is
niet noodzakelijk. Een voorbeeld is een octree [8] waarbij de ruimte bestaat uit een grote
voxel, maar deze wordt steeds in acht opgesplitst wanneer het niet volledig binnen of volledig
buiten de visual hull ligt. Een laatste voorbeeld van representatie is het definiëren van de
randen. Dit kan gedaan worden door het model te benaderen met vlakken of hogere graads
curves [9, 10].
Nadat de visual hull berekend is kan het gebruikt worden voor collision detection of om een
drie dimensionaal model van de speler in het spel te plaatsen.

Nederlandse samenvatting v

Object tracking

De laatste computervisie techniek die beschreven wordt in deze thesis heet object tracking
en heeft als doel objecten te gaan lokaliseren en te volgen in een scène. Hiervoor zijn in de
laatste 50 jaar veel algoritmen voor ontwikkeld waarvan in het bijzonder de Kalman filter [11]
en de particle filter [12]. Deze twee zijn algoritmen voor algemene doeleinden en kunnen
daarom gebruikt worden voor verschillende soorten objecten. Aan de andere kant bestaan er
ook algoritmen speciaal bedoeld voor één soort tracking zoals het gezicht en de handen van
personen [13, 14].

Kalman filter

Een Kalman filter is een efficiënte recursieve filter welke gebruikt kan worden om een toestand
van een lineair systeem te schatten wanneer de metingen maar beperkt zijn en ruis bevatten.
Deze toestand kan bijvoorbeeld de locatie en snelheid van het object zijn die gevolgd moet
worden. Deze toestand kan door deze filter benaderd worden door een reeks geobserveerde
posities, welke ook fouten kunnen bevatten.
Een uitbreiding op dit algoritme is de extended Kalman filter welke er niet vanuit gaat dat
het systeem lineair is. Deze filter kan bijvoorbeeld gebruikt worden om een persoon te volgen
in een scène. Hierbij is het mogelijk een benadering van de speler zijn locatie te vinden zonder
de volledige scène te moeten doorzoeken [11, 15, 16, 17].

Particle filter

Een particle filter heeft hetzelfde doel als de Kalman filter maar gaat dit op een andere manier
aanpakken. Hierbij wordt een dichtheidsfunctie opgesteld van de mogelijke waarden van de
toestand, welke benaderd wordt door middel van een Monte Carlo simulatie. Deze simulatie
creëert particles welke een bepaalde toestand beschrijven, zoals de locatie van het object.
Bovendien bevat iedere particle ook een gewicht welke de waarschijnlijkheid van de toestand
voorstelt. Bij het uitvoeren van deze filter zal de particle dichtheid rond de echte toestand van
het object het grootste zijn. Een intuitieve variant op de particle filter heet het condensation
algoritme en wordt later nog beschreven [12, 18].

Kinematica

Na het lokaliseren van bepaalde lichaamsdelen is het mogelijk om het volledig menselijk
lichaam in de vorm van een skelet voor te stellen. Dit skelet is een boomstructuur van
beenderen die verbonden zijn met gewrichten. Een pose is een mogelijk opstelling van dit
skelet door alle hoeken van alle gewrichten te bepalen, wat ook wel voorwaartse kinematica
wordt genoemd.
In andere methode wordt de gewenste locatie van de gewichten op het einde van de boom,
zoals bijvoorbeeld de handen, bepaald en de hoeken van de tussenliggende gewichten berekend
zodat deze doel locatie bereikt wordt. Dit wordt meestal op een incrementele manier gedaan
zodat er een vlotte beweging gegenereerd wordt. Deze laatste techniek wordt ook wel inverse
kinematica genoemd [19, 20].

Nederlandse samenvatting vi

Implementatie

De hierboven beschreven technieken kunnen gebruikt worden voor het aansturen van computer
spellen. In dit gedeelte worden daarom enkele algoritmes besproken die dienen voor het
berekenen van een dieptemap, visual hull of locatie van objecten.

Diepte schatting

Een eerste algoritme wordt gebruikt om een dieptemap te berekenen van een bepaalde scène [21].
De invoerbeelden zijn gerectificeerd zodat een corresponderende pixel op dezelfde hoogte
gezocht moet worden in beide invoerbeelden. Om de overeenkomst te bepalen wordt de som
van het absoluut verschil over een venster berekend. De verplaatsing waarvoor het verschil
tussen de pixels het kleinste is wordt gekozen.
Om dit algoritme te optimaliseren worden berekeningen die reeds gebeurd zijn niet meer op-
nieuw uitgevoerd. Dit is vooral van toepassing bij het berekenen van de som van het absoluut
verschil van een venster. Nadat deze waarde over het venster berekend is, wordt het venster
één stap naar rechts opgeschoven. De nieuwe overeenkomst kan dan berekend worden door de
linkse kolom van het venster van de vorige uitkomst af te trekken en enkel de rechtse kolom
erbij op te tellen. Hierdoor worden alle waarden ertussen behouden en moeten ze niet meer
herberekend worden. Een andere optimalisatie houdt in dat de volgorde van de for-lussen
goed worden geschikt. Deze lussen dienen om door de x en y coordinaten te lopen en door
de diepte. Door deze volgorde aan te passen wordt het cache geheugen meer optimaal ge-
bruikt resulterend in een enorme versnelling. Een laatste optimalisatie zorgt niet voor een
versnelling, maar voor een verbetering van de dieptemap. Door een mediaanfilter over de
dieptemap uit te voeren wordt de ruis gereduceerd.

Visual hull

Een eerste punt welke bij al deze algoritmen aan bod komt is het verwijderen van de achter-
grond. Hiervoor is het noodzakelijk om de scène te kennen. Dynamische achtergronden [22]
kunnen dit proces bemoeilijken en daarom is er meestal voor gekozen om een groen doek
achter de speler op te hangen. Elke pixel waarbij de groene component groter is dan de rode
en de blauwe wordt als achtergrond beschouwd, de rest als voorgrond.
Wanneer de visual hull wordt voorgesteld door kubus vormige voxels bestaat er een een-
voudige manier om deze te construeren. Het centrum van elke voxel wordt geprojecteerd op
elk projectievlak en wanneer deze binnen elke silhouette ligt, wordt de voxel aan de visual
hull toegevoegd. Een octree voorstelling kan ook real time berekend worden zonder eerst de
bovenstaande visual hull te berekenen. Dit gebeurt door in een eerste stap voor elke pixel te
berekenen wat zijn afstand tot de rand van de silhouette is. Wanneer er dan een beslissing
moet genomen worden of een voxel in acht opgesplitst moet worden of niet kan het centrum
geprojecteerd worden. Door de afstand die de pixel bevat te vergelijken met de doorsnede van
de voxel kan er snel nagegaan worden of deze volledig binnen of volledig buiten is. Wanneer
geen van beiden vastgesteld kan worden zal er verder opgesplitst moeten worden [23].
De visual hull kan tegenwoordig ook op de grafische kaart geprogrammeerd worden. Een voor-
beeld hiervan is waar de ruimte wordt voorgesteld door een serie parallel lopende vlakken.
Op elk vlak worden de verschillende invoerbeelden geprojecteerd. Pixels die deel uitmaken
van de voorgrond krijgen een alfa waarde van 1, de achtergrond een waarde van 0. In een

Nederlandse samenvatting vii

fragmentshader wordt de doorsnede van deze verschillende projecties berekend en de kleur van
ieder fragment wordt op een gewogen manier samengesteld vanuit de referentiebeelden. Deze
gewichten zijn bepaald door de oriëntatie tussen de virtuele camera en de reële camera’s [24].

Object tracking

Het eerste algoritme voor object tracking heet het condensation algoritme en is een variant op
de particle filter. Het wordt toegepast om een object te vinden en te volgen op basis van de
kleur. Als voorbeeld is een rode pingpong bal gekozen. In de voorbereidende stap wordt een
verzameling particles aangemaakt die elk eenzelfde gewicht krijgen. Iedere keer wanneer er
nieuwe invoer is, worden drie stappen uitgevoerd om de locatie van de bal te bepalen [25, 26].

Selectie stap

In de eerste stap wordt een nieuwe verzameling particles aangemaakt op basis van de vorige
verzameling en hun gewichten. Hierbij worden de oude particles met een hoog gewicht vaker
herkozen terwijl deze met een gewicht 0 niet meer opnieuw zullen voorkomen. Dit gebeurt
met behulp van het cumulatieve gewicht van de particles.

Voorspellende stap

Om elke particle opnieuw een unieke locatie te geven wordt er bij iedere x, y en z coördinaat
een gaussiaanse random waarde opgeteld. Dit zorgt voor een verstrooiing. Het resultaat na
deze twee stappen is dat er zich rond de positie van het te volgen object veel meer particles
bevinden dan elders in de ruimte.

Meet stap

Tot slot krijgt iedere particle een nieuw gewicht toegekend. Dit gebeurt door de locatie te
projecteren op de invoerbeelden en de overkomst met het gezochte te gaan berekenen. Hoe
groter deze overkomst hoe hoger het gewicht.

Een tweede algoritme dat nuttig kan zijn voor het aansturen van interactieve computerspellen
dient voor het lokaliseren van de handen en het gezicht van de speler. Ook deze is opgesplitst
in drie stappen [14].
Dit start in de eerste stap met het detecteren van pixels die gelijken op de huidskleur van
de speler. Dit kan gedaan worden op basis van enkele voorbeeld pixels van de persoon. Aan
elkaar grenzende pixels met huidskleur kunnen gegroepeerd worden tot een zogenaamde blob.
Een volgende stap associeert deze blobs met de reeds gekende locaties van handen en gezicht
uit de vorige frame door te kijken hoeveel pixels ze gemeen hebben. De nieuwe posities worden
geüpdate door de locatie van de overeenkomstige blobs te gebruiken. Eens de locaties bekend
zijn op de twee invoerbeelden kan de drie dimensionale positie berekend worden. Dit gebeurt
door het terug projecteren van de punten naar een rechte in de ruimte en hun doorsnede te
berekenen, ook wel bekend as triangulatie.
In een volgende stap kunnen de gevonden locaties gebruikt worden voor het aansturen van
een skelet door middel van inverse kinematica. In dit werk is dit gebeurd met behulp van de
getransponeerde jacobiaan methode [19].

Nederlandse samenvatting viii

Resultaten

De beschreven algoritmen hebben uiteenlopende eigenschappen waardoor ze elk hun voor- en
nadelen kennen. De keuze welke gebruikt moeten worden in een spel hangt daarom af van
verschillende factoren. Deze zijn hieronder opgesomd samen met hun sterkten en zwakten.

Camera opstelling

Twee soorten opstellingen kunnen onderscheiden worden voor camera’s. Deze worden small
baseline en wide baseline genoemd. Hierbij staan de camera’s respectievelijk dicht bij elkaar
of zijn ze ver van elkaar verwijderd. Voor een diepteschatting is het beter dat ze dicht bij
elkaar staan, maar voor een visual hull reconstructie is het net omgekeerd. Deze opstelling zal
dus in grote mate de keuze van algoritme bëınvloeden. Voor een commerciëel product heeft
een small baseline opstelling nog een extra voordeel. De camera’s kunnen in een opstelling
aan elkaar vast gemaakt worden waardoor ze niet gekalibreerd moeten worden voordat een
spel gaat beginnen.

Resolutie van de invoerbeelden

De complexiteit van sommige algoritmen, waaronder constructie van een octree [23] visual
hull en het volgen van handen en gezicht [14], hangt af van de resolutie van de invoerbeelden.
Dit is vooral duidelijk voor het berekenen van een dieptemap. Als er een berekening voor
elke pixel moet uitgevoerd worden is het natuurlijk veel voordeliger dat de resolutie laag is.
Algoritmen zoals het berekenen van de visual hull bestaande uit kubus vormige voxels en de
particle filter kennen geen vertraging wanneer de invoerbeelden een hogere resolutie hebben.

Aantal camera’s

De berekening van een octree visual hull heeft een eerste stap waarin voor elk beeld een
transformatie plaatsvindt. Hierdoor resulteren meerdere beelden in een enorme vertraging.
Ditzelfde geldt voor het het berekenen van een dieptemap en het volgen van handen en gezicht.
Langs de andere kant zorgen meerdere camera’s ook voor een beter resultaat. Een dieptemap
kan verbeterd worden omdat er meer referenties zijn en een visual hull kan nauwkeuriger
berekend worden omdat de doorsnede compacter wordt. Ook object tracking kent een voordeel
dat occlusies kunnen aanpakt worden. Zolang het object zichtbaar is in ten minste twee
beelden kan zijn locatie gevonden worden.

Gewenste framerate

Omdat het zeer belangrijk is voor een interactief computer spel dat er een bepaalde framerate
wordt gehaald moet de nauwkeurigheid van het algoritme aangepast kunnen worden. Door
nauwkeurigheid op te offeren kan het algoritme sneller uitgevoerd worden resulterend in een
hogere framerate. Het aantal voxels waaruit een visual hull bestaat bëınvloedt op deze manier
de snelheid van het spel. Voor de particle filter als ander voorbeeld is deze parameter het
aantal particles.

Nederlandse samenvatting ix

Figure 3: (a) Een 3d tekenspel waarbij de enkel bewegingen voor een bepaalde afstand
geregistreerd worden (b) De locatie van de speler worden bepaald met behulp
van een dieptemap en naar het spel Frogger gemapt (c) De speler wordt door
middel van een visual hull gelocaliseerd en in de 3d engine irrlicht [28] geplaatst
(d) Een skelet in het spel doet dezelfde bewegingen als de speler, de bedoeling is
om de gele ballonnen af te schieten (e) De speler moet de objecten in de ruimte
proberen allelei objecten te ontwijken (f) De speler moet een pad afleggen met
een ringvormig object zonder de spiraal aan te raken.

Speltype

Tot slot bepaalt uiteraard het soort spel dat gemaakt wordt welke de achterliggende algo-
ritmen zijn. In dit werk worden 6 verschillende spellen gepresenteerd, allen gebruikmakend
van een ander invoer algoritme. Bovendien zijn er ook verschillende manieren van uitvoer ge-
bruikt. Een eerste spel is een drie dimensionaal tekenspel waarbij bewegingen op een bepaalde
afstand opgenomen worden. Frogger is het tweede spel waarbij de locatie van de speler bere-
kend wordt met behulp van de dieptemap en naar een twee dimensionaal spel gemapt wordt.
De volgende twee spellen maken elk gebruik van een visual hull. Door naar het centrum van
de massa te kijken van de visual hull kan een persoon in een drie dimentionaal spel geplaatst
worden en kunnen enkele animaties toegevoegd worden. Door bijvoorbeeld te kijken naar de
hoogte van dit punt kan er verondersteld worden of de speler rechtstaat, gebukt is of springt.
Het andere spel gebruikt de visual hull voor collision detection en response tussen de speler
en de virtuele objecten. Een vijfde spel gebruikt de particle filter om een object te tracken
en zijn locatie en orientatie te mappen naar een virtuele wereld [27]. Als finaal spel worden
de handen en gezicht van de speler gedetecteerd en gebruikt om een skelet in het spel aan te
sturen met behulp van inverse kinematica. Deze worden getoond op figuur 3.

Nederlandse samenvatting x

Conclusie

In dit werk werden verschillende spellen voorgesteld die aangestuurd worden door middel van
meerdere camera’s. Hiervoor is gebruikt gemaakt van diepteschatting, visual hull constructies
en object tracking technieken om drie dimensionale informatie uit meerdere invoer beelden
te verkrijgen. Ze werden gebruikt voor het localiseren van de speler, objecten of bepaalde
gebeurtenissen zoals bewegingen om zo de verschillende interactieve spellen aan te sturen.
Voor spellen is nauwkeurigheid vaak minder belangrijk dan de interactie en daarom wordt
de berekeningstijd vaak beperkt. De visual hull is bijvoorbeeld slechts een benadering van
de speler en is bovendien weinig gedetaileerd berekend om toch interactief te kunnen blijven.
Maar toch blijkt dat deze geschikt is voor een realistische interactie tussen speler en virtuele
objecten. Ook inverse kinematica wordt slechts gebruikt voor het schatten van de houding
van de speler omdat enkel de locaties van de handen en gezicht bekend zijn. Toch geeft deze
methode een realistisch resultaat tegen een hoge snelheid.
De speler heeft geen fysiek contact met de computer en toch kan hij het spel op een intüıtieve
manier aansturen omdat de avatar in het spel dezelfde bewegingen maakt als hem. Hierdoor
onstaan ook enkele onrealistische situaties zoals een muur in het spel waar de speler niet door
kan gaan terwijl er in werkelijkheid geen muur staat.
De extra diepte informatie die gewonnen kan worden door het gebruik van meerdere camera’s
zorgt voor een enorme verhoging van het aantal mogelijke spellen die kunnen gecreërd worden.
De conclusie van dit werk is dat de oplossing voor het maken van een multi camera video spel
te vinden is in het computervisie vakgebied. Hier zijn slechts enkele algoritmen gepresenteerd,
maar er bestaan nog talrijke andere die voor hetzelfde doel kunnen gebruikt worden.

Toekomstig werk

Om meer nauwkeurige oplossingen te bekomen kan er ook gebruik gemaakt worden van de
grafische kaart. Deze is reeds nuttig bevonden voor het berekenen van een dieptemap [29, 30]
of collision detection [31, 32].
Een andere mooie uitbreiding is het detecteren van botsingen in ”imagespace”, zonder eerst
een visual hull te berekenen [33].
Het schatten van de houding van de speler door middel van inverse kinematica heeft mo-
menteel nog de beperking dat er verwacht wordt dat de speler gedurende het spel op dezelfde
plaats blijft staan. Deze beperking zou bijvoorbeeld weggewerkt kunnen worden door verschil-
lende technieken te combineren. Door bijvoorbeeld eerst de locatie van de speler te bepalen
door middel van een visual hull en pas nadien de houding door object tracking en inverse
kinematica.
De spellen in dit werk zijn beperkt gebleven tot één enkele speler per spel. Om dit uit te
breiden naar meerdere spelers kunnen we twee scenarios onderscheiden. De meerdere spe-
lers bevinden zich in dezelfde ruimte en worden met dezelfde camera’s gefilmd. In dit geval
moet de informatie van de verschillende spelers onderscheiden kunnen worden. De tweede
situatie is waar de verschillende spelers zich in verschillende ruimten bevinden. De computers
waarop de spellen draaien zijn dan in een netwerk op elkaar aangesloten. Hiervoor is het dus
nodig het netwerkaspect te onderzoeken opdat de vertraging, door het versturen van de juiste
informatie over het netwerk, minimaal is.

1
Introduction

The purpose of this work is to use two or more calibrated cameras to film the scene and the
player. From those the necessary data will be extracted, depending on the kind of information
required. Because a game has to be interactive, the framerate must be high and therefore
it is not always necessary to obtain every detail of the player. Detecting his location for
example can sometimes also be useful and more efficient. But when more information is
extracted, more sophisticated games can be created. The purpose is to only extract the
required information to reach the decent frame rate. The extraction of this kind of data is
researched in the area of computer vision.
To achieve a natural interaction based on computer vision we would require visual competence
near the level of a human being, which is still beyond the state of art [34]. Therefore the vision
problem must be restricted to the information needed. For example if a person is walking
around in a room. The only interest is his location while an understanding of the full activity
of the person or the description of the room is not necessary. Some of those sub-problems
can be solved with computer vision techniques.

1.1 Computer Vision

Making a computer see is something that started in the field of Artificial Intelligence in the
sixties. The real studies started in the late 1970’s, because before computers were not capa-
ble of processing large data sets like for example images. Current days this problem is still
unsolved. The field, called computer vision, has emerged as a discipline in itself with strong
connections to mathematics and computer science. One of the reasons why this problem is
still being researched is the fact that perception in general and visual perception in particular
are far more complex than was initially thought. Over the years, computer vision researchers
have obtained some outstanding successes, both practical and theoretical [1].
One example of the practical accomplishments is the possibility of guiding vehicles such as
cars on regular roads or on rough terrain using computer vision. This was demonstrated
many years ago in Europe, USA and Japan. This requires a real time three dimensional

1.2 Previous Work 2

dynamic scene analysis. Today, many car manufacturers are slowly incorporating some of
these functions in their products.
On the theoretical side, there are a lot of achievements in the area of geometric computer vi-
sion. This is the field that researches the way the appearance of objects changes when viewed
from different viewpoints as a function of the objects’ shape and the camera parameters, by
using sophisticated mathematical techniques encompassing many areas of geometry.

1.2 Previous Work

There has been a lot of research about interaction with a computer using one or more cam-
eras. The biggest research domains are Human Computer Interaction, Virtual Reality, but
also computer games. The collection of applications is very large like using hand gestures
instead of a remote control for your television as presented by Ohta et al [2]. This technique
will record the actor and track his hands. When it locates the hand it will try to understand
the actors pose and the movements he makes. Eventually, it will take the corresponding
action.
A good example in the category virtual reality is interacting with a virtual human presented
by Thalmann [3]. The actor is recorded and placed into a virtual reality world. In this world
there are also virtual characters which will correspond to the actions of the actor. Another
example is replacing the mouse in your computer with a camera. The actor can point with
his finger to the screen to select an object. This was presented by Marc Erick Latoschik [35].
There has been a lot of inventions in the domain Interactive Computer Games as well. Be-
cause of the need for low cost and high speed Mitsubishi Electric invented the Artificial Retina
Chip [36] (by analogy with biological retinas which also combine the functions of detection
and processing) in 1996. This chip is 6.5 by 6.5 millimeters and has a built-in detector for
32 × 32 to 256 × 256 images. The detected image is just a matrix and the processing can
therefore be expressed as a matrix equation [2, 5]. The used algorithms are called images
moments and orientation histograms to extract information for interacting with the game.
Three games where published for Sega Saturn using this chip : Nights, Magic Carpet and
Decathlete (figure 1.1). Also the Nintento Gameboy Camera used the artificial retina chip in
1998 to allow the an image of the players face to be inserted into a simple game.
Eventually Sony created a commercial camera for the Playstation 2 and soon for the Playsta-
tion 3, called the Eye Toy [4]. Figure 1.2 shows an image of Eye toy : kinetic combat presented
at E3 2006.
But all these previous described image based games only used one input camera and therefore
only two dimensions, no depth information. When working with multiple cameras there is
the possibility to use three dimensional information from the scene.

1.3 Overview

The remains of this thesis is divided into several chapters. The next chapter will give a
small overview of some of the current computer vision techniques which can be used for
interacting between real objects and virtual objects. These techniques are divided into depth
estimation, visual hull and object tracking. The important topics for these techniques are the
representation of the data, the calculation and how they can be used.

1.3 Overview 3

Figure 1.1: Decathlete is a game for Sega Saturn where the movements of the player are
projected into the game

Figure 1.2: Eye toy : kinetic combat. A game for playstation 2 using 1 camera to map the
player in a combat game.

1.3 Overview 4

After describing some algorithms to obtain this kind of information a more detailed description
of the implementation is given. Chapter 3 describes the implementation of the algorithms
used in this thesis.
These algorithms will be compared with each other in chapter 4. Each algorithm has its
advantages and disadvantages. These can be defined based on some parameters like image
resolution and number of cameras. Also six example games are presented in that chapter.
The conclusions are given in chapter 5.
The final chapter describes shortly the future work of this thesis.

2
Related Work

This chapter gives an overview of some modern computer vision techniques which can be used
for obtaining useful information from a scene.
Because computer vision usually needs more then one camera it is necessary to have an un-
derstanding of the location and orientation of each of them. So the relationship between the
cameras must be known. This relationship is called camera calibration and a short introduc-
tion is given in section 2.1.
The next section, section 2.2, describes the first common used technique for extracting three
dimensional information. The technique is called depth estimation and as the name suggests
it is used to estimate the depth of an object. In other words, the distance from a camera to
an object can be estimated using two or more cameras. With this depth information a three
dimensional reconstruction of the scene can be estimated.
Section 2.3 describes the visual hull. This is a three dimensional model of an object, created
from two or more images. This technique is often also called shape-from-silhouette because it
only requires the silhouettes of the object on several image planes. This reconstruction is not
always equal to the real object, but it is the best approximation possible from silhouettes.
The last technique uses a different approach. Instead of trying to create a three dimensional
model of the scene, it is used for locating and following objects or part of them. Therefore
this technique is called object tracking. It can be used to only obtain necessary information
and can give a better understanding of the scene. For example after reconstructing a person
with visual hull techniques the location of the hands and face are still unknown. This is given
in section 2.4.

2.1 Calibration 6

Figure 2.1: A camera is represented by a centre point (C) and an image plane (P). Three
dimensional point A and B in space are projected on the image plane at respec-
tively point a and b. The closest point on the imageplane to C is p and is called
the principle point.

2.1 Calibration

Before starting this work, it sounds logic to explain what a camera is and how it works. In
other words, the link between three dimensional entities and their images must be described.
Another step towards computer vision is knowing the relationship between multiple cameras.
These basic principles are explained in the next sections before going on to the computer
vision techniques. The same notation as Hartley et al [1] is used here.

2.1.1 Description of a Camera

A camera in computer vision is generally represented as a centre point and an image plane.
This is shown at figure 2.1. The image plane P is the actual image received from the camera.
The recorded world is projected onto this plane with the centre point C as centre of projection.
This is described for the three dimensional points A and B. They are projected on the image
plane by taking the intersection between respectively the line CA and CB with the plane P ,
resulting in the points a and b.
The relationship between the three dimensional location and the projected location can be
expressed as a matrix multiplication. The mapping from a point in a world coordinate frame
to a point in image coordinates is given by:

x = PX (2.1)

where P is a 4 × 3 matrix, because of the use of homogeneous coordinates. The concrete
values of this matrix are explained later when calibrated cameras are introduced.
The point on the imageplane which is the closest to the centre of projection is called the
principle point p. The line created from the centre of projection through this point is therefore
called the principle line. At last, the distance C to p is called the focal length f .

2.1 Calibration 7

Figure 2.2: The two cameras with centre points C1 and C2 and image planes P1 and P2.
The camera centres and the three dimensional space point X define the plane
π. The projections x1 and x2 on the cameras are in the same plane. If only the
projection x1 is known, the exact location of X is restricted to a line in space,
this line projected onto P2 is l2

2.1.2 Epipolar Geometry

The epipolar geometry is the intrinsic projective geometry between two views. It is indepen-
dent of scene structure, and only depends on the cameras’ internal parameters and relative
pose.
This geometric relation between two views is essentially the geometry of the intersection of
the image planes with the pencil of planes having the baseline as axis. The baseline is the
line joining the camera centres. The geometric relation is usually motivated by considering
the search for corresponding points in stereo matching.
When the projection of a three dimensional point is known on the first image, the corre-
sponding projection onto the other image is constrained. This is shown in figure 2.2 where
the projection x1 of X is known. The real location of X is now constrained to a line started
in C1 and going through x1. This line together with the centre of projection C2 of the other
image define a plane π. The possible locations of x2 is the intersection of π and image plane
P2. This intersection is the line l2.
The geometric entities involved in epipolar geometry are:

• The epipole of imageplane P1 is the point of intersection of the line C1C2, joining the
camera centres, with the plane P1. This point is shown in figure 2.2 as e1.

• An epipolar plane is a plane containing the baseline and going through a point in space.
The plane π is for example the epipolar plane going through the point X.

• An epipolar line is the intersection of an epipolar plane with the image plane. All
epipolar lines intersect at the epipole. l2 is an epipolar line on image plane P2.

The fundamental matrix F is the algebraic representation of epipolar geometry. It is a
3× 3 matrix of rank 2. The relationship between the projections x1 and x2 is given as:

xT
2 Fx1 = 0 (2.2)

2.1 Calibration 8

2.1.3 Calibrated Cameras

To work with multiple cameras, a projection matrix for each of them is used. Each matrix
describes the relationship between the Euclidean position in space and its image coordinates.
To calculate this matrix the camera calibration matrix of each camera is required. A simplified
representation of this matrix is described as follows

K =

f 0 px

0 f py

0 0 1

 (2.3)

and its parameters are

• f is the focal length as described before. This is the distance between the centre of
projection and the principle point.

• (px, py) are the coordinates of the principle point.

The parameters contained in K are called the internal camera parameters.
This representation of the camera calibration matrix is correct when the image cordinates
are Euclidean coordinates having equal scales in both axial directions. In reality this is not
always the case. The next equation represents the calibration matrix if the number of pixels
per unit distance in image coordinates are mx and my in the x and y direction.

K =

αx s x0

0 αy y0

0 0 1

 (2.4)

In this equation αx = fmx and αy = fmy, which represent the focal length of the camera in
terms of pixel dimensions in the x and y direction respectively. These parameters are shown
on figure 2.3.
For generality, the parameter s is also added to the matrix which is referred to as the skew
parameter. The skew parameter will be zero for most normal cameras.
In addition to the linear effects summarized in the K matrix, there are other nonlinear and
second order effects such as lens distortion. The variables in K and the second-order effects
can be approximated and compensated for via standard corrective warping techniques [37].
Each camera has a camera coordinate frame with origin in the centre of projection and the

principle axis of the camera pointing down the z-axis. For a point Xcam expressed in this
coordinate system its projection is calculated with the camera calibration matrix:

x = K[I|0]Xcam (2.5)

Normaly a different Euclidean coordinate frame is used, known as the world coordiante frame.
If X̃ is the coordinates of a point in the world coordinate frame, and X̃cam represents the
same point in the camera coordinate frame, then the next equation is valid:

X̃cam = R(X̃ − C̃) (2.6)

where C̃ represents the coordinates of the camera centre in the world coordinate frame, and
R is a 3 × 3 rotation matrix representing the orientation of the camera coordinate frame.

2.1 Calibration 9

Figure 2.3: (x, y) is the coordinate system of the image, p the principle point of the camera.
(xcam, ycam) is the coordinate system of the camera. mx and my is the number
of pixels per unit distance.

Figure 2.4: The left image is a representation of the camera coordinate frame with centre
C. The right image is the world coordinate frame. The relation between them
is the orientation R and the translation t [1]

These coordinate frames are presented in figure 2.4.
The next step is to find the projection matrix for this world coordinate frame. This is done
using the external parameters. These parameters are R and C̃ which relate the camera
orientation and position to a world coordinate system. The projection matrix can then be
written as:

P = KR[I| − C̃] (2.7)

Instead of using the camera centre explicit, the world to image transformation is represented
as X̃cam = RX̃ + t. Here is t = −RC̃. Therefore the projection matrix for the camera is
defined as:

P = K[R|t] (2.8)

Given this projection matrix for a camera and a three dimensional point, the projection can
be calculated on the image.

x = PX (2.9)

If all the cameras use the same world coordinate frame, then they are calibrated.

2.2 Depth Estimation 10

Figure 2.5: These images are from the same scene but the camera is translated over the x
axis. The blue dot is a point on a book in the background, the red dot is the
corner of the lamp and the purple dot is a point on the statue. They are marked
in both images to show their disparity.

2.2 Depth Estimation

This is a three dimensional computer vision technique for calculating the depth of a scene
given two-dimensional images [6]. Just like the human vision uses two eyes, multiple images
can be made of the same scene as well. Then by searching for the displacements of objects
in the two images the computer makes an estimate of the distance from the camera to the
object. This displacement is often called disparity in human vision literature.
This is a very active research areas in computer vision. A lot of these algorithms only use
two input images and are therefore called stereo depth estimation.
To make it easier to understand the concept of disparity calculation a small example is given
in next section.

2.2.1 General Concept of Depth Estimation

Depth estimation is possible when two or more cameras are available by comparing the images.
Figure 2.5 shows two images from the same scene. The two cameras that make the images
were placed next to each other just like the human eyes. In the two images three specific
points are marked. The blue mark is a point on a book in the background, the red mark
the corner of the lamp which is close the cameras and the purple mark is a point on the
statue. In the right image the three marks have the same x coordinate, but not in the left
image. Objects closer to the camera have a larger translation in the two images then objects
further away. So the displacement of the lamp is larger then the displacement of a book in
the background. This concept is shown in figure 2.6. Here a point on the left image is back
projected into space and as shown, the further it is away from the camera the more it is
translated on the other image plane.

2.2 Depth Estimation 11

Figure 2.6: The three dimensional points X1, X2 and X3 are projected on the images with
viewpoints V1 and V2. The projections on the first image are on all the same
point, but the further Xi is from the first image the further it is translated on
the second image.

2.2.2 Representation

Most stereo correspondence methods compute a uni-valued disparity function d(x, y) with
respect to one of the input images meaning that every pixel, with coordinate (x, y), of the
reference image has a single disparity value. The disparity is kept for each pixel of a reference
image. Some other representations are:

• Multi-valued representation: instead of working in (x, y, d) space, (x, y, d, k) space is
used where k refers to the index of the input image. The coordinates x, y and d are the
coordinates with respect to a virtual camera. Szeliski et al [38] used this representation.

• Voxel-based representation: for example by identifying a set of invariant voxels which
together form a spatial reconstruction of the scene (Seitz et al [39]).

• Layer-based representation: by representing the scene as a collection of approximately
planar layers with a per-pixel opacity and depth offset relative to the plane (Szeliski [40]).

• Triangulated meshes: the scene is represented by a regular three dimensional triangu-
lation like the algorithm by Fau et al [41].

This disparity function d(x, y) is also called the disparity map and the (x, y, d)-space is there-
fore called disparity space. Several researchers have defined this disparity as a three di-
mensional projective transformation of 3D space (X, Y, Z). The enumeration of all possible
matches in such a generalized disparity space can be achieved by projecting, for every disparity
d, all images onto a common plane using a perspective projection, also called a homograph.
A common constraint is that the input images should be horizontal linear rectified. This
means that the projection of a given point in the scene is on the same horizontal line in all

2.2 Depth Estimation 12

reference images. Therefore if (x, y) and (x′, y′) are projections of the same scene point the
following equation is valid : {

x′ = x + sd(x, y)
y′ = y

(2.10)

where s = ±1 and the sign is chosen so that disparities are always positive.
Another concept to be introduced is the disparity space image (DSI). This is any image or
function defined over a continuous or discredited version of disparity space. In practice, the
DSI usually represents the cost or likelihood of a particular match implied by d(x, y).

2.2.3 Structure of a Stereo Algorithm

Every stereo algorithm has a different approach for finding the disparity map, but most
of them are divided into the same sub-problems with just another implementation. These
sub-problems are:

• Matching cost computation

• Cost aggregation

• Disparity computation / optimization

• Disparity refinement

They will be described more in detail later. Based on the implementations of some sub-
problems most of the stereo algorithms can be put into categories:

• Local algorithms (window-based) : the disparity computation at a given point only
depends on intensity values within a finite window.

• Global algorithms make explicit smoothness assumptions and then solve an optimization
problem.

• Iterative algorithms like hierarchical algorithms operate on an image pyramid, where
results from coarser levels are used to obtain a more local search at finer levels.

Matching Cost Computation

This is a pixel-based method which defines how much two pixels match by calculating their
difference. To do this, multiple methods exist.
Some examples :
Squared Intensity difference (SD) :

E = (P1 − P2)2 (2.11)

where E represents the error between the intensity of two pixels and P1 and P2 represent the
intensity of pixel i.
Absolute intensity differences (AD) :

E = |P1 − P2| (2.12)

2.2 Depth Estimation 13

Other examples could be for example binary matching costs, meaning that two are either a
match or no match.
These matching cost computations have the constraint that the two cameras have to produce
exact the same color for the same point. When this property is not met, a color calibration
like histogram equalization can be used in a prepossessing stage [42]. But some costs are
insensitive to these differences in camera gain or bias, for example gradient-based measures.
To compare two gradient vectors gL and gR the following computations are required:

• Average magnitude : m = |gL|+|gR|
2

• Magnitude of the difference : d = |gL − gR|

The evidence for a match is defined by Scharstrein [43] as

e = m− d (2.13)

These matching cost values are calculated over all pixels and all disparities from the initial
disparity space image C0(x, y, d). The previous matching cost calculations are given for two
input images, but it can easily be extended by summing up the cost for every image.

Aggregation of Cost

Local and window-based methods aggregate the matching cost by summing up or averaging
over a specific area in the DSI(x, y, d). This can be for example a box window or a Gaussian
convolution.
Sum of Absolute Differences (SAD) : defined over a window with resolution = [width, height]

SAD(x, y, d) =
∑ 1

2
(width−1)

i=− 1
2
(width−1)

∑ 1
2
(height−1)

j=− 1
2
(height−1)

[|RL(x + i, y + j)−RR(x + i + d, y + j)|+
|GL(x + i, y + j)−GR(x + i + d, y + j)|+
|BL(x + i, y + j)−BR(x + i + d, y + j)|]

(2.14)

Where R, G and B are the color components of the respective pixel, the index L stands
for the left image and R for the right image. The parameters width and height define the
window around the pixel and often are odd numbers.
Sum of Squared Differences (SSD) :

SSD(x, y, d) =
∑ 1

2
(width−1)

i=− 1
2
(width−1)

∑ 1
2
(height−1)

j=− 1
2
(height−1)

[(RL(x + i, y + j)−RR(x + i + d, y + j))2 +
(GL(x + i, y + j)−GR(x + i + d, y + j))2 +
(BL(x + i, y + j)−BR(x + i + d, y + j))2]

(2.15)

2.2 Depth Estimation 14

Disparity Computation and Optimization

Local methods : for every pixel the disparity is chosen with the best match without looking
at the other pixels.
Global methods : these methods are trying to minimize a global energy defined by E(d) =
Edata(d) + λEsmooth(d)

• Edata(d) is the measure how well the disparity function d agrees with the input image
pair. Edata(d) =

∑
(x,y) C(x, y, d(x, y)) where C is the initial or aggregated matching

cost DSI.

• Esmooth(d) encodes the smoothness assumptions made by the algorithm. This term is
often restricted to only measuring the differences between neighboring pixels’ disparity.
Esmooth(d) =

∑
(x,y)[ρ(d(x, y)− d(x + 1, y)) + ρ(d(x, y)− d(x, y + 1))]

Here is ρ some monotonically increasing function of disparity differences.
Once the global energy has been defined, it can be used to find a (local) minimum.

Refinement of Disparities

Depending on the further use of the disparity map, the result can be refined. For applications
such as robot navigation or people tracking, these may be perfectly adequate. But for example
when it is used for image-based rendering, such quantisation maps lead to very unappealing
view synthesis results. Therefore many algorithms apply a sub-pixel refinement stage. This
can be done for example by fitting curves.
Other methods like cross checking, meaning comparing left-to-right and right-to-left are used
to find mismatches, and applying a filter can also increase the quality of the result. A popular
filter herefore is the median filter.

2.2.4 Calculating the Disparity Map

The next algorithm was presented by Karsten Muhlmann et al [21]. His paper describes a
fast algorithm, but it also has reasonable quality. The technique can be used as a starting
point for implementing improved algorithms. If it is fully optimized it can even be used for
real time applications.

Input

The algorithm requires a pair of horizontal linear rectified images as input. This means that
a pixel and the matching pixel on the other image are on the same height (have the same
y value). Therefore no calibration is needed resulting in a significant speedup compared to
searching along epipolar lines of unrectified images. The representation of the disparity map
will be : {

x′ = x + d(x, y)
y′ = y

(2.16)

Another requirement is a couple of input parameters like the lower and upper bound value of
d(x, y). It is important that these values are chosen as tight as possible. This interval is called
the disparity search range. The last parameter is the size of the window used for calculating
the matching cost.

2.2 Depth Estimation 15

Figure 2.7: Volume defined by the dimensions of the input images width (w) and height (h)
and the disparity search map (dmax − dmin)

Matching cost

For every value d in the disparity range and for every pixel, the matching cost between I1(x, y)
and I2(x + d, y) must be calculated. In the paper this is done with the Sum of Absolute
Differences (equation 2.14) of a window around the pixel, because it is slightly faster then the
Sum of Squared Differences.
All the matching cost values are saved in a cuboid whose dimensions are given by the width
and height of the input images and the disparity search range (Figure 2.7).

Creating the Disparity Map

Once the cuboid has been filled with values the disparity map can be made. This by selecting
the best depth value for every pixel. Therefore can it be very easy by just looking in the
cuboid for every pixel which depth-value has the smallest difference value.
The calculated disparity map will have a lot of noise in it due to ”wrong” SAD values. This
can happen because the matching pixel is not found in the other image, for example by
occlusion. Another problem can be that the wrong corresponding pixel was found.
A standard way for dealing with noise is blurring the image, but this comes with a lot of
quality loss. A more often used technique for noise reduction of disparity maps is a median
filter. This filter will calculate for every pixel the median of a window around the pixel to
reduce the extreme values.

2.2.5 Depth Estimation from Unrectified Images

When images are not rectified, calibration data for the cameras is required. Instead of search-
ing for matching pixels along the x-axis, corresponding pixels can be found along the epipolare
lines. Once the matching points are found in images their three dimensional position can be
calculated. These epipolare lines are found by using the fundamental matrix of section 2.1.2,
which describes the relationship between a point on one image ans its possible projections on
the other image.
The calibration data often contains a projection matrix for every camera which describes the
relationship between a point in the scene and a point on the view plane. A point in the scene

2.2 Depth Estimation 16

can be multiplied with this projection matrix to obtain the image coordinates. This function
starts at a three dimensional space and ends in a two dimensional space and every point in
space will be projected on exactly one point on the view plane.
Another situation is when the coordinates on the image planes are known and the three di-
mensional coordinate is unknown. Therefore the inverse of this function is required. However
this inverse starts from a two dimensional space and ends in a three dimensional space so
there is no one to one mapping, but an infinite collection of solutions. All points on the line
starting in the centre of projection C of that camera and going through the selected point I
on the view plane are being projected on I. So the inverse of the projection should be a line
in the scene.
The projection matrix Pi of camera i describes the relation of a point in space X and his
coordinates on the camera Ii. These camera coordinates Ii can be obtained by:

Xi
′ = Pi.X

Ii,x =
Xi,x

′

Xi,z
′

Ii,y =
Xi,y

′

Xi,z
′

Starting from the two dimensional coordinates Ii transforming it back to Xi’ is :

Xi,x
′ = Ii,x.z

Xi,y
′ = Ii,y.z

Xi,z
′ = z

Where the z coordinate can have any value. Depending on this z value another point on the
line is calculated. This point can be found by :

X = Pi
−1Xi

′

Because a line is uniquely defined by two different points in space, this calculation must be
done with at least two different z values to obtain the desired line.
If the projection of a point is known on multiple images they can all be back projected and
the intersection of the lines is the point in the scene.
Here arises another problem, two lines in three dimensions generally do not intersect at a
point. Often they only cross each other and only intersect after projecting on a plane. There-
fore the shortest line segment, which is the shortest possible connection between the two lines,
is unique and often considered to be their intersection in three dimensions.
When knowing two points on a line, Q1 and Q2, a parametric equation for the line looks like
Qa = Q1+ ta(Q2−Q1). The same for the second line Qb = Q3 + tb(Q4−Q3). The solution of
the problem are the 2 points Qa and Qb of which the distance between them is the minimum
distance possible. The value ||Qb −Qa||2 must be minimum.

||Q1 −Q3 + ta(Q2 −Q1)− tb(Q4 −Q3)||2minimize (2.17)

An alternative approach [20] uses the property that the line QaQb will be perpendicular
to the two lines (figure 2.8) and so this condition can be written down as dot products:

2.2 Depth Estimation 17

Figure 2.8: Two lines Q1Q2 and Q3Q4 cross each other, the line QaQb is considered to be
the intersection of the two lines

(Qa −Qb) · (Q2 −Q1) = 0
(Qa −Qb) · (Q4 −Q3) = 0

(Q1 −Q3 + ta(Q2 −Q1)− tb(Q4 −Q3)) · (Q2 −Q1) = 0
(Q1 −Q3 + ta(Q2 −Q1)− tb(Q4 −Q3)) · (Q4 −Q3) = 0

.

.

.

The result after expanding these terms is

d1321 + tad2121 − tbd4321 = 0
d1343 + tad4321 − tbd4343 = 0

Where dmnop = (xm − xn)(xo − xp) + (ym − yn)(yo − yp) + (zm − zn)(zo − zp)
Resulting in :

ta =
(d1343d4321 − d1321d4343)
(d2121d4343 − d4321d4321)

(2.18)

tb =
(d1343 + tad4321)

d4343
(2.19)

2.3 Visual Hull 18

Figure 2.9: Volume intersection for object reconstruction [7]

2.3 Visual Hull

The problem discussed in this thesis is the interaction between objects or persons in the real
world and objects in a virtual world. This could be done by placing a copy of the real object
or person into the virtual world. To understand the 3D content of a scene is another problem
in computer vision, since it can allow computer driven equipment to perform tasks such as
navigation, manipulation and visual recognition. This is usually done by creating a visual
hull from the object.
Visual hull is a geometric entity created by shape-from-silhouette three dimensional recon-
struction techniques. A silhouette is a binary image containing all the pixels which are a
projection of the three dimensional object on the image plane. This silhouette is therefore
a perspective or orthogonal projection of the object (S). Creating a silhouette from images
can be very simple when working with a known background, where the foreground is easily
recognized. When working in an unknown or a dynamic scene it can be more difficult and
more expensive to separate foreground from background.
Object reconstruction can be performed using volume intersection. The volumes are cones
starting in the center of projection of the image (V) and going through the silhouette (figure
2.9). An example of such a cone is presented in figure 2.10. When the projection is orthogo-
nal, the volumes are cylinders instead of cones. But this constructed object is not necessary
the same as the real object. An example of a model which can not be reconstructed is shown
in figure 2.11. This is explained more in detail in section 2.3.1.
The next section contains a precise definition of the visual hull and his general properties [7].
Knowing this definition, it is possible to define the objects which can be reconstructed and
which are impossible. In section 2.3.2 some representations of the visual hull are given fol-
lowed by a couple of possible ways to calculate them in sections 2.3.4 and 2.3.5.
The visual hull is then concluded in section 2.3.6 with some practical usage.

2.3.1 Definition and Properties of the Visual Hull

Let us start with defining some symbols. As mentioned before, S is the three dimensional
model which has to be reconstructed and V is the viewpoint of the used camera. Another
definition needed for defining the visual hull is the viewing region (R) which is a part of the
three dimensional space that contains all allowed viewpoints, so V ∈ R.

2.3 Visual Hull 19

Figure 2.10: The left image is a silhouette of a temple, background pixels are colored white.
This image is then back projected into the world. Every point in space pro-
jected on this silhouette is part of the back projected cone.

Laurentini [7] defined the visual hull as:

The visual hull V H(S, R) of an object S relative to a viewing region R is a
region in three dimensional euclidean space such that, for each point P ∈ V H(S, R)
and each viewpoint V ∈ R, the half line starting at V and passing through P
contains at least a point of S.

In other words, a ray starting in V and intersecting with the V H(S, R) also means that the
ray passes through the silhouette of the image plane with viewpoint V . This is trivial because
the intersection point between the ray and the visual hull is projected on that intersection
point. Knowing this, it is possible to create a cone starting in V and going to every point
of the image plane silhouette. When S contains only one viewpoint, following the definition
this cone is the visual hull. When S is bigger then only one viewpoint, by definition the
intersection of all these cones must be calculated.
It is easy to understand now that S ⊆ V H(S) because every point on S is projected on every
silhouette and therefore part of V H(S).
Because of the definition the visual hull has the following properties :

• Property 1 : V H(S, R) is the maximal object silhouette equivalent to S

• Property 2 : V H(S, R) is the closest approximation of S that can be obtained using vol-
ume intersection techniques with viewpoint V ∈ R. This is true because by intersecting
only the points in space which are definitely not on S are eliminated.

• Property 3 : if R > R′ then V H(S, R) ≤ V H(S, R′). This because of the previous
property which defines that points only got eliminated, so when more viewpoints are
available more points can fall outside a silhouette.

This means that the visual hull is the best possible way to represent a three-dimensional
object from silhouette images.

2.3 Visual Hull 20

Figure 2.11: (1) The 3D object we want reconstruct (2) the silhouette-active and inactive
surfaces (3) the silhouettes will not change when this part of the model is
modified (4) visual hull of the first object [7]

But it is not always equal to the object because not every part is visible. For example look
at figure 2.11. The first object is the three dimensional object to be reconstructed using
silhouettes. The second figure shows the silhouette-active surface and the silhouette-inactive
surface. The silhouette-active surface sa(S, R) is the part of the boundary of the object S
that is also part of the boundary of the visual hull V H(S, R). The silhouette-inactive surface
can have any shape inside the volume V H(S, R) − S without changing any silhouette. The
third figure shows the volume which is unknown because it does not affect the silhouettes.
The visual hull, the closest approximation to the object, is eventually shown at the last figure.

2.3.2 Representation

Now the definition of the visual hull is given, it is still necessary to represent it in some kind
of data structure. It is standard for images to be represented as two-dimensional arrays of
pixels. But three dimensional models, however, are much more varied [9].
The most obvious technique is defining the model as a constructive solid geometry (CSG). In
CSG the desired shape is specified in terms of a tree of elementary solids that are combined
using simple set operations. The back projected cones or cylinders are the elementary solids
and the operation between them is the intersection. So if it is possible to find out if a point
is inside or outside each cone its easy to find out if that point is part of the visual hull or not.
But it also have disadvantages that is not easy to render.
Enumerated space representation is another popular modeling description. It represents ob-
jects as a set of discrete volume elements. These volume elements are called voxels and can
be compared as pixels in a two dimensional image. The word voxel is a combination of the
words volumetric and pixel. One way of doing this is to create a spacial occupancy map using
a number of voxels, for example cubes. For every voxel the CSG model can be used to define
if it is part of the visual hull or not.
An optimisation for this is called an octree structure. The scene is created as an initial voxel,
known as the universal cube. This universal cube is split into eight suboctants and each is
iteratively subdivided until some predefined limit is reached. The subdivision can stop when
the suboctant is completely inside or completely outside the visual hull or when a certain
depth is reached. One way of creating an octree is by calculating every cubic voxel and
combining eight neighbours with the same value to one. Ali Erol et al [8] described another
method to create an octree without first creating a cubic visual hull. These methods typically
have large memory requirements and are thereby restricted to low-resolution representations.

2.3 Visual Hull 21

The next technique is called a boundary representation and defines the boundaries as a series
of two-dimensional surfaces embedded within a three-dimensional space. A first-degree de-
scription might consist only of polygons. Higher-degree descriptions might describe a curved
surface patch. An example is the visual hull surface estimation algorithm of Phillip Milne
et al [10] which applies the marching cubes algorithm to all surface voxels of the visual hull.
This representation uses less memory than enumerated space representation and the result is
more smooth. Therefore it is more suitable for rendering.
The volumetric and boundary representation are presented in figure 2.12.

2.3.3 Background Subtraction

Before explaining how a visual hull can be created from silhouettes, it is important to know
how the silhouettes can be obtained. Therefore a method to separate the foreground from
the background is required.
For background subtraction, the algorithm needs to know what the background looks like.
When this background information is available, it can be removed from every frame by just
checking the difference between the current pixel and the background pixel. If this difference
is below a threshold it is assumed that this pixel is part of the background. This background
information can be obtained by making images of the scene before starting the game. To
take into account the noise of the background images, more pictures of the background can
be made and the average of them can be used as the background information.
This approach works fine, except when the background changes. These changes include mov-
ing objects in the back and different illuminations. Cheung [22] described a robust background
subtraction algorithm used for urban traffic video. It dynamically adjusts the known back-
ground each frame to keep it up to date.
The computed silhouette is not always accurate, because some pixels can be tagged wrong,
background pixels recognized as foreground or the other way around. These miscalculations
can be partly corrected by applying erosion and dilation to the silhouette [44].
When a lot of cameras are available, the background subtraction algorithm must be applied
to each input image, which can be very time consuming. Especially when erosion and dilation
is used. Another used technique to save time is working with an easy to separate background.
Therefore a green screen is often placed behind the person. The silhouette then only contains
the non-green pixels.

2.3.4 Calculating the Visual Hull

The calculation of the visual hull often depends on the representation used. In this section
two algorithms are given to calculate an enumerated space representation.

Cubic Voxel Visual Hull

Over the years a lot of algorithms are invented to create the visual hull from silhouettes.
One of the most simple of them is creating a cubic enumerated space representation. The
necessary requirements are that the foreground can be separated from the background for
every image and that the projection matrix is known for every camera.
Space will be divided into small cubes, the voxels, which contain a boolean defining if the
cube is part of the visual hull or not. If the voxel is part of the visual hull then the projection

2.3 Visual Hull 22

Figure 2.12: (a) 5 silhouettes from different views of the same dog (b) A volumetric represen-
tation of the dog at 3 different subdivision levels (c) boundary representation
at 3 different subdivision levels [7]

2.3 Visual Hull 23

Figure 2.13: (a) The border of the silhouette (b) The Euler distance from the pixel to the
border is stored in every pixel. The same can be done for the pixels outside
the silhouette [23]

of it should be inside every available silhouette. Because the projection matrices are known
it is straight forward doing this.
An example result is given in figure 2.12(b).

Octree Voxel Visual Hull

Starting from the cubic voxel representation it is possible to create an octree by just merging
together eight cubes with the same value. But by doing this it is still necessary to calculate
all the cubic voxels first. It should be more efficient to start from one voxel and divide it only
if necessary. Because, when it is known that a voxel is entirely inside the visual hull, all its
children are also entirely inside it. If the maximum depth of the octree is high, then a lot of
time is saved when the value of the voxel can be determined at a low depth. Therefore the
visual hull is calculated more in detail around the borders of the real object. Ali Erol [23]
described a fast octree algorithm which can create this octree real-time. This algorithm is
divided into two steps which are executed every time new images are available.
In the first step each silhouette is transformed into an image with the same resolution. The
value of every pixel in those images correspond to the distance of that pixel to the borders
of the silhouette as shown in figure 2.13. The higher the value the further it is inside the
silhouette. Negative values describe the distance to the border outside the silhouette.
In the second step, the value of a voxel can be estimated by projecting their eight corners on
those images and checking the value of the pixel on which the center of the cube is projected.
By comparing the distance value of the pixel with the distance from the centre to the corners,
an estimation can be made for the location of the cube to the visual hull. If the voxel can
be defined as completely inside or completely outside every silhouette it is not necessary do
divide them anymore, else the cube will be split into eight.

2.3 Visual Hull 24

2.3.5 Visual Hull for Rendering

The two algorithms presented before are appropriate for real time creation of a visual hull,
but they are not so useful for rendering. One way of rendering is to draw a cube at each
location of a true voxel, but the color will be the same for every triangle. Therefore it is
required to define the color of every voxel. Zhirkov [45] proposed a solution to color the
voxels of an octree to use for image based rendering. Unfortunately this method is good for
real time rendering, but not real-time creation.
A better algorithm for rendering a visual hull is presented by Yerex [24] and has some useful
advantages. First of all it runs in real time, which is one of the requirements. Also it is
executed entirely on the graphical processing unit (GPU). Therefore the CPU stays idle and
can be used for other things like collision detection.
The idea of the algorithm is to project the object onto some planes in the scene and then
render it with alpha blending. The input images also contain an alpha channel which defines
if the pixels are part of the foreground or background. Background pixels have an alpha value
of 0 and are thereby not drawn during rendering.
To explain this algorithm, it is necessary to understand how the visual hull is represented
before knowing how it can be created. And eventually when it is created, how it can be
colored. But first something more about background subtraction.

Background Subtraction

Like most visual hull algorithms the first step is some sort of background subtraction. The
binary mask obtained after this step will become the alpha channel of the images. The images
with their alpha values can be stored into a texture. This step can be done by the CPU or
by the GPU depending on the further use of the images. If the silhouette is also necessary
for further use like collision detection, it is better to calculate it on the CPU.

Scene Representation

In the next step the scene is created. It contains a serie of parallel surfaces on which the
different input images will be projected. This is shown in figure 2.14. The images are projected
on every slices with the use of the calibration data. When more planes are drawn close to
eachother the scene will look like a three dimensional model instead of a series of individual
planes. The downside is that when the scene contains more planes, it will take longer to
render. The number of planes therefore defines the relationship between the speed of the
algorithm and its result. This means that this algorithm, just like the other visual hull
algorithms, can adjust its level of detail to reach its desired framerate.

Creating the Visual Hull

The images and planes are passed to the GPU, where a fragment shader can do all the
calculations. Every fragment has multiple textures, one for every camera. If the fragment is
part of the visual hull it should be projected onto every silhouette and therefore have an alpha
value of 1 on every texture. If not, the fragment gets an alpha value of 0 and is therefore not
drawn. This step does exactly what the definition of the visual hull described and thereby
only visual hull fragments are rendered.

2.3 Visual Hull 25

Figure 2.14: The scene containing the real object is divided into n parallel planes at the
same distance of each other. The images recorded from the multiple cameras
are then projected onto these planes.

Coloring the Visual Hull

The last step is to define the color of each fragment. It is logic that the colors from the
textures are used. Therefore a weighted average of the input images is calculated. This
weight should be high for input cameras close to the virtual camera and lower to others. Li
et al [46] calculates these weights as:

Wk,P =
1

acos(dk · dv)
(2.20)

For every point P , the criterion to choose the weight is the angle deviation between the
viewing direction of the reference view dk and that of the target view dv. A smaller angle
gets higher weight. These terms are presented in figure 2.15.
The color of a point is then given by the formula:

CP =

[
N∑

k=1

Vk,P .WkP
.TP,k

]
/

N∑
k=1

Vk,P .Wk (2.21)

where Tk,P is the texture color from the k-th input image and Vk,P is the visibility function
for point P with regard to view k:

Vk,P =
{

1 if P is visible from view k
0 otherwise

(2.22)

2.3 Visual Hull 26

Figure 2.15: Camera 1 and 2 are the two reference views and the virtual camera the desired
view. For point P , d1 and d2 are viewing direction of the reference views while
dv is the viewing direction of the desired view.

2.3.6 Use of the Visual Hull

The visual hull can be used in different ways in computer games. First and most obvious, it
can be used for collision detection. This because a three dimensional model of the player is
available. This model can be checked for collision with the virtual objects in the game. As
explained before, the calculation is often restricted to a certain level of detail. By improving
this level of detail the framerate will drop down, but the accuracy will raise. Most computer
games are more concerned of keeping a high framerate, therefore a good balance between
speed and accuracy is required.
A problem which has not been discussed before is creating an output for the games. The
player has to be integrated in the game so he or she knows how to interact with virtual
objects. One way of doing this is by showing the images of one camera on the screen and
adding the game objects.
Another solution could be the other way around. First the game scene is created and the
player is placed in there. The visual hull is a three dimensional representation of the player
and can thereby be added to the virtual scene.

2.4 Object Tracking 27

2.4 Object Tracking

Object tracking is a computer vision technique for defining the location of an object and
tracking it. This is an important domain of computer vision because it enables several appli-
cations such as security and surveillance, people detection and recognition, medical therapy,...
It can also provide a natural way of interaction between a human and a computer [13]. By
locating an object or a person in the real world it is possible to place a corresponding object
of it in a virtual world where it can interact with other virtual objects.
Because this technique is being researched a lot in the last decades there are a lot of different
algorithms designed for this. These algorithms are based on statistics where the computer
makes a prediction of the objects location in the next image. A common approach for this is
the Kalman filter [11] or the extended Kalman filter, which is named after Rudolf E. Kalman
who invented it in 1960. This filter is used for efficient estimating the state of a dynamic
system from a series of incomplete and noisy measurements and is also very useful for general
purpose object tracking [17].
Later the particle filter was invented whick is also very useful for general purpose object
tracking. Over the years a lot of variants of the particle filter were introduced, for example
the condensation algorithm by Michael Isard and Andrew Blake [25]. In the next section
the the Kalman filter is shortly explained and an example is given how to use this technique
to track a person. Section 2.4.4 contains the general idea behind the particle filter and the
general particle filter. Section 2.4.5 describes the condensation algorithm derived from the
particle filter. Section 2.4.6 contains some examples of how these general techniques can be
used for object tracking.
Because object tracking does not need to start from a general-purpose technique, section 2.4.7
describes an algorithm for tracking hands and face of a person.
The tracked locations can directly be mapped into game or used for further calculations. Sec-
tion 2.4.8 describes such a further step where the calculated locations can be used to define
the pose of the player by using kinematics.

2.4.1 Kalman Filter

Originally developed for use in spacecraft navigation, the Kalman filter turns out to be useful
for many applications. It is mainly used to estimate system states that can only be observed
indirectly or inaccurate by the system itself [15, 16].
The Kalman filter is a tool that can estimate the variables of a wide range of processes. In
mathematical terms we would say that a Kalman filter estimates the states of a linear system.
A linear system is a process that can be described by the following two equations:
State equation:

xk+1 = Axk + Buk + wk (2.23)

Output equation:
yk = Cxk + zk (2.24)

Where A, B and C are matrices, xk the state at time k, uk is the known input to the system,
yk the measured output and wk and zk are noise.
The state x is a vector containing all of the information about the present state of the system.
But this state cannot be measured directly. Instead y will be measured, which is a function of
x that is corrupted by the noise z. These measures can then be be used to obtain an estimate

2.4 Object Tracking 28

of x.
A good example to get a better idea of these terms is described by Simon [16]. Suppose that
we want to model a vehicle going in a straight line. The state then contains the position p
and the velocity v of the vehicle. The input u is the acceleration and the output y is the
measured position. The acceleration can be changed every T seconds. In this case the update
of the velocity is given by:

vk+1 = vk + Tuk (2.25)

when the acceleration is constant during the time T. But the velocity will be perturbed by
noise due to wind, put holes, etc. Therefore noise has to be taken into account.

vk+1 = vk + Tuk + ṽk (2.26)

where ṽk is the velocity noise. A similar equation can be derived for the position:

pk+1 = pk + Tvk +
1
2
T 2uk + p̃k (2.27)

with p̃k the position noise.
This can be put together into a linear system where the state x is:

xk =
[
pk

vk

]
(2.28)

and the linear system equations are:

xk+1 =
[
1 T
0 0

]
xk +

[
T 2/2

T

]
uk + wk (2.29)

yk =
[
1 0

]
xk + zk (2.30)

zk is the measurement noise due to such things as instrumental errors. To control the vehicle
an accurate estimate of the position and velocity is necessary. This is where the Kalman filter
comes in.

The Discrete Kalman Filter

The purpose of the Kalman filter is to use the available measurements y to estimate the state
of the system x. This estimate must satisfy two requirements:

• The average value of the state estimate must be equal to the average of the real state:
E[xk] = x̂k

• The state estimate must vary from the true one as little as possible: E[(xk − x̂k)(xk −
x̂k)T] = Pk

where E(·) refers to the expected value [15, 16].
For the Kalman filter to satisfy these, an assumption about the noise must be made. The
average value of w and z must be zero and there should be no correlation between the two.
The noise covariance matrices Sw and Sz are defined by:

Sw = E(wkw
T
k) (2.31)

Sz = E(zkz
T
k) (2.32)

The estimate can be divided into two:

2.4 Object Tracking 29

• x̂k
−: the a priori state estimate at step k given knowledge of the process prior to step

k.

• x̂k: the a posteriori state estimate at step k given measurement yk

The a priori and a posteriori estimate errors are then:

e−k = xk − x̂k
− (2.33)

ek = xk − x̂k (2.34)

and the a priori and a posteriori estimate error covariance:

P−
k = E[e−k c−T

k] (2.35)
Pk = E[eke

T
k] (2.36)

The goal of the Kalman filter is to find an equation that computes the a posteriori state
estimate x̂k as a linear combination of the a priori estimate x̂k

− and a weight difference
between an actual measurement yk and a measurement prediction Hx̂−k :

x̂ = x̂−k + K(yk −Hx̂−k) (2.37)

The difference yk − Hx̂−k is called the measurement innovation and reflects the discrepancy
between the predicted measurement Hx̂−k and the actual measurement yk. The n×m matrix
K is chosen to be the gain or blending factor that minimizes the a posteriori error covariance
(2.36). One popular form of K is given as:

Kk = P−
k HT (HP−

k HT + Sz)−1 (2.38)

=
P−

k HT

HP−
k HT + Sz

(2.39)

As seen in (2.39) when the measurement error covariance Sz approaches zero, the gain K
weights the innovation more heavily:

lim
Sz,k→0

Kk = H−1 (2.40)

On the other hand, as the a priori estimate error covariance P−
k approaches zero, the gain K

weights the innovation less heavily:

lim
P−k →0

Kk = 0 (2.41)

The Discrete Kalman Filter Algorithm

The Kalman filter estimates a process by using a form of feedback control: the filter estimates
the process state at some time and then obtains feedback in the form of (noisy) measurements.
Therefore the equations can be divided into two groups:

• The time update equations: these equations are responsible for projecting forward in
time the current state and error covariance estimates to obtain the a priori estimates
for the next step.

2.4 Object Tracking 30

• The measurement update equations: for incorporating a new measurement into a priori
estimate to obtain an improved a posteriori estimate.

The algorithm is thereby also divided into two steps: the prediction step using the time update
equations and the corrector step using the measurement update equations. This algorithm is
described in psuedocode below:

1. Initial step: initial estimate of x̂0 and P0

2. Predict step:

Project the state ahead: x̂−k = Ax̂k−1 + Buk−1

Project the error covariance ahead: P−
k = APk−1A

T + Sw

3. Correct step:

Computer the Kalman gain: Kk = P−
k HT (HP−

k HT + Sz)−1

Update estimate with measurement yk: x̂k = x̂−k + Kk(yk −Hx̂−k)

Update error covariance: Pk = (I −KkH)P−
k)

4. Increment k
goto predict step (2)

2.4.2 The Extended Kalman Filter

The Kalman filter can estimate states for linear systems, but a lot of real problems are
nonlinear. For solving these kind of problems there is the extended kalman filter. Instead of
(2.23) and (2.24) the system can be described as:

xk = f(xk−1, uk−1, wk−1) (2.42)
yk = h(xk, zk) (2.43)

Where f and h are some nonlinear functions.
The predict and correct step are given below without explaining the mathematical back-
ground. More information can be found in the articles of Welch and Ribeiro [15, 47].
Prediction step:

x̂−k = f(x̂k−1, uk−1, 0) (2.44)
P−

k = AkPk−1A
T
k + WkSw,k−1W

T
k (2.45)

Correct step:

Kk = P−
k HT

k (HkP
−
k HT

k + VkSz,kV
T
k)−1 (2.46)

x̂k = x̂−k + Kk(yk − h(x̂−k , 0)) (2.47)
Pk = (I −KkHk)P−

k (2.48)

where:

• A is the Jacobian matrix of partial derivative of f with respect to x

• W is the Jacobian matrix of partial derivative of f with respect to w

• H is the Jacobian matrix of partial derivative of h with respect to x

• V is the Jacobian matrix of partial derivative of h with respect to z

2.4 Object Tracking 31

2.4.3 Kalman Filter for Object Tracking

The Kalman filter knows many applications like removing noise from electromagnetic signals,
but it can be very useful in computer vision as well. The next algorithm, presented by Merven
et al [17], is an example of the extended Kalman filter and is used for person tracking in a three
dimensional space. This is possible when the cameras are static and calibration information
is available.
First a representation of the person is required. Here the tracked person is assumed to be a
three dimensional ellipsoid of known size and his/her feet must are on the ground plane. The
tracking process then runs as follows, each time a new image of the scene is received:

1. Segmentation: foreground must be separated from background.

2. Prediction in world view: the location of the tracked person is predicted based on the
previous estimate of his/her location.

3. Projection to image space: the three dimensional ellipsoid representing the person is
projected to an ellipse in image space.

4. Observations in image space: starting from the predicted location, a search for the best
elliptical-template-shaped image samples is performed.

5. Update: the Kalman gain can be computed using the best match from previous step
and the associated quality. This matrix can then be used to make a new estimate of
the persons location.

Segmentation

In the first step some kind of background subtraction is done to detect foreground regions
and there are a lot of different methods to do this. Section 2.3.3 already described some of
these methods which can be used here.
Since the tracker does not rely only on this segmentation, it is not crucial that this step is
real good. However a better segmentation improves the measurement.

Prediction in world-view

Because the person is assumed to be on the ground plane the location and velocity can be
defined with only two coordinates. Therefore the state x is defined as (px, py, vx, vy)T . For
every time step T , the system equations are:

xk+1 = AT xk + Twk (2.49)
yk = b(xk) + zk (2.50)

where

AT =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 (2.51)

2.4 Object Tracking 32

b is the ground-plane to image plane transformation function and wk and zk are noise se-
quences with zero mean.
The prediction step of the Kalman Filter algorithm is executed here so:

x̂−k = AT x̂k−1 (2.52)
P−

k = AT Pk−1A
T
T + TWk (2.53)

Projection to image space

The three dimensional ellipsoid is projected to an ellipse on every image plane.

Observations in image space

Starting from the predicted image location from last frame, a search for the best match be-
tween the person and the image is performed. Only using the foreground regios identified in
step 1 is not sufficient enough for robust tracking. To distinguish between the different fore-
ground objects the colour information in the ellipse can be used. This is done by comparing
the histogram of the ellipse pixels to the histogram of the person which is created in an initial
step and updated each time sequence.
To find the best histogram match, n random location samples are tested. They are chosen
from a normal distribution N(x̂−k , P−

k). The location with the best resemblance is chosen as ŷk.

Update

Eventually the correction step of the Kalman filter must be executed to receive an optimal
estimate of the persons location. Starting with the Kalman gain:

Kk = P−
k BT

k (BkP
−
k BT

k + Vk)−1 (2.54)

Since bk(x) is non-linear, Bk is calculated by locally linearising b at x = x̂−k . Finally the
location and uncertainty is calculated by:

x̂k = x̂−k + Kk(yk − bk(x̂−k)) (2.55)
Pk = P−

k −KkBkP
−
k−1 (2.56)

The result of this algorithm is shown in figure 2.16.

2.4.4 Particle Filter

The general target tracking problem

Target tracking can be characterized as the problem of estimating the state of a system as
a set of observations become available [12]. The state of time k is noted as Xk and the
observation Yk. With these parameters the following two densities can be defined :

• The transition priori : p(Xk|Xk−1). It is defined as a Markov process. At each time
(k) the system may or may not change from the state it was before. The change of
state is called transitions. A prior can be interpreted as a description of what is known
about the state in absence of some evidence. Once the evidence is taken into account
this conditional probability is called posterior probability [18].

2.4 Object Tracking 33

Figure 2.16: The result of tracking a person using the extended Kalman filter. An ellipsoid
is drawn on the location of the person [17].

• Observation density (likelihood) : p(Yk|Xk)

Where p(k|l) defines the chance that k occurs when l is met.
The aim is to estimate recursively in time the filtering density p(Xk|Y1:k) where Y1:k =
{Y1, Y2, ..., Yk}, which is in target tracking the density of the state of the object at time k
depending on all observations until time k. It is possible to estimate it from the filtering
density of time k − 1. This is done in two steps: the prediction step and the update step.
In the prediction step, the filtering density p(Xk−1|Y1:k−1) of the previous time is propagated
via the transition prior as follows :

p(Xk|Y1:k−1) =
∫

p(Xk|Xk−1)p(Xk−1|Y1:k−1)dXk−1 (2.57)

The update stage will use Bayes’ rule when new data are observed to achieve the current
filtering density :

p(Xk|Y1:k) =
p(Yk|Xk)p(Xk|Y1:k−1)

p(Yk|Y1:k−1)
(2.58)

The filtering density can then be used to compute the associated expectation for some integral
function fk(Xk)

Ep(·|Y1:k)(fk(Xk)) =
∫

fk(Xk)p(Xk|Y1:k)dXk (2.59)

This strategy provides an optimal solution. But this solution includes a very expensive, or
even impossible to compute high-dimensional integral. Therefore we rely on Monte Carlo
methods. Monte Carlo methods are stochastic techniques, meaning that they use random
numbers and probability statistics to investigate problems.
An example to understand the principle of Monte Carlo methods is shown in figure 2.17. The
square is divided into two by some function f(x) and we are interested in how much each part
is of the total square. The Monte Carlo simulation creates a set of N uniform random values
in the square and check if this point is inside the gray part of the square or not. The chance
that a uniform random is under the function f(x) is the same as that surface because the

2.4 Object Tracking 34

Figure 2.17: This square is divided into two and we want to find out how much of it is colored
gray. The right images shows some random chosen points on the square used
for Monte Carlo simulation

total surface of the square is equal to 1. The approximation for the gray part of the square
is given by : ∫ 1

0
f(x) ≈ 1

N

∑
D(x) (2.60)

where D(x) is 1 if x is inside the gray part and 0 else. More about Monte Carlo methods can
be found are described by Peter Shirley [48].

Such method can approximate the state with samples. Therefore a proposal density
π(Xk|Y1:k) is needed from which particles can be easily drawn and which is similar to the
posterior density. To facilitate sequential estimation of the system state, the proposal density
must satisfy the following equation :

π(Xk|Y1:k) = π(Xk|Xk−1, Y1:k)π(Xk−1|Y1:k−1) (2.61)

Now the weight function ω(Xk) = ωk can be introduced which can be computed recursively :

ωk = ωk−1
p(Yk|Xk)p(Xk|Xk−1)
π(Xk|Xk−1, Y1:k))

(2.62)

The posterior distribution can be represented by this weight function up to a proportionality
constant.
The estimation can be computed as :

Ep(·|Y1:k)(fk(Xk)) =
Eπ(·|Y1:k)(ωkfk(Xk))

Eπ(·|Y1:k)(ωk)
(2.63)

The open question now is which proposal distribution to choose. The optimal proposal
distribution (OPD) minimizes the variance of the weights (ωk), but its design is a non-trivial

2.4 Object Tracking 35

task. A much used proposal distribution is Gaussian :

π(X(i)
k |X(i)

k−1, Y1:k) = N(X̂(i)
k , P̂

(i)
k) i = 1, ..., N (2.64)

This distribution is defined for each discrete particle X
(i)
k . N(X̂(i)

k , P̂
(i)
k) denotes Gaussian

with mean X̂
(i)
k and covariance P̂

(i)
k .

The General Particle Filter

As explained in previous section the particle filter is a Monte Carlo simulation in which
the posterior density is approximated by a set of particles and their associated weights
{(X(i)

k−1, ω
(i)
k−1) i = 1, ..., N}. The new particles are achieved from the proposal distribu-

tion π(X(i)
k |X(i)

k−1, Y1:k) and their weights are computed according to the particle likelihoods.

If the weights are normalized, the posterior density can be represented by {(X(i)
k , ω

(i)
k) i =

1, ..., N}.
The standard particle filter can be divided into 4 steps which are described in pseudo code
below :

1. Initial step : create a set of particles from the initial prior p(X0)
create : {(X(i)

0 , ω
(i)
0), i = 1, ..., N}

set k = 1

2. Sampling Step : create the new samples and define their weight

a) For i = 1, ..., N
Sample X

(i)
k from the proposal distribution π(X(i)

k |X(i)
k−1, Y1:k) (for example Gaussian)

b) Calculate their new weights :

ω
(i)
k = ω

(i)
k−1

p(Yk|X
(i)
k)p(X

(i)
k |X(i)

k−1)

π(X
(i)
k |X(i)

k−1,Y1:k)
, i = 1, ..., N

c) Normalize the weights :

ω
(i)
k = ω

(i)
k∑N

j=1 ω
(j)
k

, i = 1, ..., N

3. Output step : outputs the set of particles {(X(i)
k , ω

(i)
k), i = 1, ..., N}

This set can be used to approximate the posterior distribution and the estimate as :
p(Xk|Y1:k) ≈

∑N
i=1 ω

(i)
k δ(Xk −X

(i)
k)

E
p(|̇Y1:k)

(fk(Xk)) ≈
∑N

i=1 ω
(i)
k

4. Selection step : resampling
Resample particles X

(i)
k with probability ω

(i)
k independent and identically distributed

random particles X
(j)
k approximately distributed according to p(Xk|Y1:k)

5. Increment k
goto sampling step (2)

2.4 Object Tracking 36

δ(x) is the Durac delta function which has the following properties :∫ +∞

−∞
f(x)δ(x) = f(0) (2.65)

This function is 1 where x is 0 and 0 elsewhere.

2.4.5 Condensation Algorithm

The condensation algorithm was presented by Michael Isard and Andrew Blake [25]. The
name is a substitution for CONdensional DENSity propagATION. As explained before it is
a variant of the particle filter, in which the proposal distribution is the transition prior :

π(X(i)
k |X(i)

k−1, Y1:k) = p(X(i)
k |X(i)

k−1) (2.66)

And the weights becomes :
ω

(i)
k = ω

(i)
k−1p(Yk|X

(i)
k) (2.67)

This algorithm can briefly be described as follows :

1. Initial step

2. Sampling Step : create the new samples and define their weight

a) For i = 1, ..., N
Sample X

(i)
k from the proposal distribution p(X(i)

k |X(i)
k−1)

b) Calculate their new weights :

ω
(i)
k = ω

(i)
k−1

p(Yk|X
(i)
k)p(X

(i)
k |X(i)

k−1)

π(X
(i)
k |X(i)

k−1,Y1:k)
, i = 1, ..., N

c) Normalize the weights :
ω

(i)
k = ω

(i)
k−1p(Yk|X

(i)
k), i = 1, ..., N

3. Output step

4. Selection step

5. Increment k
goto sampling step (2)

2.4.6 Particle Filter for Object Tracking

When we follow the definition of the condensation algorithm described by Isard Blake, tracking
an object in three dimensions using the condensation algorithm can be done in three steps
for each frame. These steps are called selection, prediction and measure.

• Select : in this stage the particles are created using the particles and their weight of the
last frame (as the selection or resampling stage described in 2.4.5)

• Predict : the particles are diffused using Gaussian random values (first stage of the
sampling step)

• Measure : calculating the weight of every particle and normalize them (second and third
stage of the sampling step)

2.4 Object Tracking 37

Figure 2.18: One step of the condensation algorithm (drift) in the selection step new parti-
cles are created using the weights of the last particles (diffuse) in the prediction
step the particles are diffused (measure) in the measure step the weights of the
new particles are calculated by observing the scene [25]

2.4 Object Tracking 38

Initialize

A particle has coordinates (x, y, z) and a weight π as parameters. In the beginning of the
algorithm, no particles are created yet. Therefore a set of N random particles are created
in the scene. The location is uniform random and the weight is just 1

N , so it is already
normalized.

Select

In the select step N new particles are created, each with the same location as a particle from
last frame. They are chosen according to the weight of the particle. If the weight of the particle
is higher, than it will be chosen more often. This is done by creating a cumulative array of
all the normalized weight values. A uniform random value between 0 and 1 is chosen and the
first particle with a cumulative weight higher then this value is chosen. A one dimensional
example is shown in figure 2.18 (drift). Particles with a higher weight are in this example
sometimes rechosen twice or three times while particles with a low weight are not chosen
again.

Predict

To predict the new location, the particles are diffused by a Gaussian model. A Gaussian
random will be added to the x, y and z coordinate with average 0 and standarddeviation σ.
Every particle has a unique location again and the density is higher around previous particles
with a higher weight. This step is also shown in figure 2.18 as the diffusion.

Measure

Every particle will be measured using the input frames. This step is the only step that should
be changed when tracking other kinds of objects because the measuring is done according
to a property of the object. A simple example for measuring a particle is using the color.
The particle can be projected onto every camera and the color at that pixel can be used as
measurement. The better the color responds to the object the higher the value.
Once all the particles contain a weight they can be normalized and a cumulative array of the
weights can be created which is used in the select step of next frames.

2.4.7 Tracking of Hands and Face

The next algorithm is not a general purpose algorithm like the Kalman filter or the particle
filter. This one is specialized for tracking the head and hands of a person using the skin color.
To create a player in a game it is not always necessary to calculate the entire pose of the
player. When he is trying to interact he commonly does this with his hands. The location of
the body is less important. The algorithm described below is based on an article written by
Perales et al [14] to track the hands and face of a person with calibrated cameras.
It is also divided into 3 stages :

• Skin-Color Pixel Detection

• Data Association

• 3D Position Estimation

2.4 Object Tracking 39

Figure 2.19: This ellipse defines the relationship between the combination Cb-Cr and the
skin color [49]

The first stage detects which pixel in each image are skin-color pixels. The result of this stage
is a set of blobs, which are groups of connected pixels with skin color. The second stage uses
this set of blobs to detect the hands and the face on each image. Once this is done, the third
stage can back project the found locations to calculate the three dimensional location of the
hands and face.

Skin-Color Pixel Detection

The algorithm described by Perales [14] needs as input the color of the person, for example
by clicking on some skin color on the recorded images. Once the color is known it can be used
for detecting similar pixels using a segmentation algorithm to create blobs of skin colored
pixels. This input is a list of n pixels of the persons skin.
After obtaining samples the pixels are transformed from the RGB-space to the HSL-space
to take the hue and the saturation values, which is the chroma information. This is done
because the difference between the pixels for the skin are smaller in HSL-space than in RGB-
space. Next a two dimensional Gaussian model is built with these input samples. The model
represents the probability that a pixel is skin colored. In order to detect the skin colored
pixels in the image the probability for every pixel is computed. When this probability is
higher than a predefined threshold, Tmax, the pixel is marked as true, else false.
In the last stage of the algorithm the list of positive pixels is expanded by recursively adding
those which are direct neighbours of true pixels and have a probability higher then Tmin.
The result of this algorithm is very good but has the disadvantage of needing sample input.
Another algorithm which does not need the skin color as input makes it easier for the player(s).
This algorithm was found in an article by Senior et al about face detection [49]. Terrilon [50]
found out by using statistics that the skin color can easily be detected in Y Cb Cr. The
relationship between the combination Cb-Cr and the skin color is shown in figure 2.19. Every
combination within the ellipse is marked as skin color, every outside as no skin.

2.4 Object Tracking 40

Data association

In this step the skin colored pixels will be used to locate the face and hands on a two
dimensional image.
The skin detection algorithm creates a set of blobs b = {b1, b2, ..., bn}. A blob is a set of
connected skin colored pixels, which can be used to estimate the location of the three limbs
H = {h1, h2, h3}, the face and the two hands of the person. An ellipse hi = (cx, cy, A, B) is
used to describe a limb. The parameters of this ellipse are (cx, cy), the center of the ellipse
and A and B the lengths of the semi axes. Because of this definition it is easy to find out if
the limbs contains a pixel or not. To calculate the distance from an ellipse to a pixel p the
following formula can be used :

D(p, h) =

√
(
(px − hcx)

hA
)2 + (

(py − hcy)
hB

)2 (2.68)

If this distance is smaller or equal to one, the pixel is inside the ellipse.
First, the existing blobs from last frame are associated with the calculated limbs according
to two rules :

• Rule 1: if the blob and the limb have a pixel in common, they are associated

• Rule 2: if a blob has no pixel in common with any blob, it will be associated with the
limb which is the closest

Hereby a limb can have multiple blobs associated with it. In this case only the blob with
the most common pixels is taken. Also the limbs center and axis have to be adjusted to the
blobs.
If a limb has no blob with a common pixel, it will be removed. Therefore it is possible to
have less than three limbs, in this case the largest blob which is not associated with any limb
is chosen to be the new limb.
The location of a limb is predicted for the next frame, so there is more chance of finding the
right blob in the next frame. The last replacement is used for this prediction.

C(t + 1) = C(t) + P (t) (2.69)
P (t) = C(t)− C(t− 1) (2.70)

This assumes that a part will maintain the same velocity on the image plane.

3D Position Estimation

The previous two steps calculate the location of face and hands on a two dimensional image.
When working with multiple input images it is possible to find the three dimensional locations.
The method for doing this depends on the kind of information available. When the depth
map or parts of it are available, it is easy to find the three dimensional location because the
distance of the pixel from the camera is given. In this case the location of hands and face
should only be calculated in one image.
In a more general case where no depth map is available, it is necessary to calculate the location
of the limbs in two or more images. The two dimensional locations of the limbs can be back
projected into space and the intersection of those lines give the three dimensional location as
already explained in section 2.2.5.

2.4 Object Tracking 41

Figure 2.20: Left, a simple skeleton defined by three links L1, L2 and L3 which are connected
by the joints q1 and q2. Right, a simplified skeleton to represent a human.

2.4.8 Kinematics

One of the possible further uses of object tracking is to estimate the 2D or 3D pose of the
player, who is modelled by a skeleton. A skeleton is a set of simple rigid objects, often called
links, connected by joints [20]. The joints are usually rotational, but may also be sliding.
Each rotary joint may allow rotation in 1, 2 or 3 orthogonal direction, which are its degrees
of freedom. Two simple skeletons are given in figure 2.20. The pose of the skeleton is defined
by all degrees of freedom of the joints.
Buades et al [51] proposed a method to estimate the entire pose using a particle filter for
each degree of freedom. This technique is called forward kinematics, which involves explicitly
setting the position and orientation of objects. The opposite techniques are called inverse
kinematics [19]. These provide direct control over the placement of an end effector object
at the end of a kinematic chain of joints, for example a hand of the player, calculating the
intermediate joint rotations which place the object at the desired location. For example,
Jaume et al [52] proposed a human pose estimation with inverse kinematics by only tracking
the location of the hands and the face of a person.
To solve the inverse kinematic problem a lot of algorithms have been designed, much of them

using the jacobian matrix J :

J =
∂f

∂q
(2.71)

This matrix expresses the relationship between joint velocities q̇ and the velocity of the end
effector ẋ:

ẋ = J(q)q̇ (2.72)

It is used to map changes in the joint parameters q to changes in the end effector position
and orientation x. The ith column of J represents the incremental change in the position and
orientation of the end effector resulting from an incremental change in the joint variable qi.
The changes in position and orientation can be measured for the end effector resulting in the
following equation to find the changes to the joint variables:

q̇ = J(q)−1ẋ (2.73)

2.4 Object Tracking 42

But the Jacobian matrix is not always invertible, because it is singular or rectangled. Then
the psuedoinverse of the Jacobian matrix can be calculated. But it is very expensive and
numerical instable around singular configurations.
Alternative algorithms like the Jacobian Transpose Method and Cyclic Coordinate Descent
are efficient enough, numerical stable and relatively simple [19]. The idea behind the first
algorithm is to add a force F on the end effector in the direction of the desired location. This
force in Cartesian space can then be transformed into an acceleration on the joint variables q̈
by using the transposed Jacobian. Because it is not necessary to acquire an accurate dynamic
simulation, it suffices to use this acceleration as an estimate for the joint displacements q̇:

q̇ = JT F (2.74)

This displacement is added to the joint variables, moving the end effector closer to the desired
location. This procedure repeats until the end effector reaches its goal position or another
stopping criterion is met.
The cyclic coordinate descent (CCD) is an iterative heuristic algorithm which varies one joint
variable at the time in an attempt to move the end effector closer to the desired location.
This is done by finding the joint variable q which minimizes the error measure. This error
measure is a combination of a position error, the distance between the current location and
the goal, and an orientation error. This minimize equation is solved for one joint at a time,
from the end of the tree to the root. After each step the end effector will be moved closer to
the desired location.

3
Implementation

In this chapter the implementation of a couple of computer vision algorithms are explained.
These are divided into depth estimation in section 3.1, visual hull construction in section 3.2
and object tracking in section 3.3.

3.1 Depth Estimation

This section contains an implementation of the disparity calculation explained in section
2.2.4. The first subsection will start with explaining the general disparity calculation of the
algorithm which has good results, but is far from real time. Therefore some optimizations
are used to speed it up which are explained afterwards.

3.1.1 Disparity Calculation

The data set of Tsukuba University shown in figure 3.1 is commonly used for testing disparity
computation. These images are rectified and will be used to present this algorithm.
First the matching cost for every x and y coordinate and for every possible depth value d will
be computed. This is done with the sum of absolute differences. These calculations are then
stored into a three-dimensional array.
The disparity map can be created by taking the disparity value for every pixel where the
matching cost is the lowest. This straight-forward implementation gives a pretty good result
as seen in figure 3.2, but it is very slow. To calculate a disparity map from a pair of images
with resolution 320× 240, a disparity range of 40 and a window size of 7× 7 it takes 4703 ms
on a Intel Pentium Mobile 1.5 GHz. More detailed results are given in chapter 4.

3.1.2 Optimalizations

Exploiting some properties of this algorithm is a good way to increase the speed and make it
realtime. These speedups contain a better memory organisation and using a sliding window
to save calculations.

3.1 Depth Estimation 44

Figure 3.1: These rectified images are used to demonstrate the algorithm. The data set is
presentated by Tsukuba University

Figure 3.2: The result of the depth-estimation algorithm on figure 3.1

3.1 Depth Estimation 45

Figure 3.3: The red 5x5 window is the previous calculated window, the blue one is the next
window to be calculated. The light-blue squares are the pixels calculated twice.

Memory Organisation

A first important thing is the order of filling up the cuboid, so the order of for-loops to go
though every x, y and d value:

• d − x − y : this is the straightforward implementation, complete slices for constant d
are computed. Hereby it is necessary to read the 2 images for every d-slice. The lowest
SAD-value can only be defined when the whole cuboid is filled.

• y − d − x : more compact layout, since every y-slice is used only winy + 2 times and
can be discarded afterwards. This allows to implement a ring buffer in y, reducing the
memory consumption significantly. Hereby this approach is a bit faster than the first
one.

• y − x − d : this approach performs better than the last 2. Loading a cache line into a
pentium processor involves 32 bytes [53]. Using one value in the disparity space volume
brings 7 other values with it into the L1-cache. Because the 7 following values in the
d-direction will be needed, a lot of time is saved.

Summing up the windows

An inefficiency of this algorithm is calculating the same values over and over again. If the size
of the window is n by n, n2 pixel comparisons are needed to calculate the matching cost for
one pixel. But as seen on figure 3.3 (n − 2) × n of these comparisons are already calculated
for the previous pixels because of the overlap. To use this property, calculating the difference
between the SAD of the current window and the last one should be enough. This can be
done by adding the right column to the SAD value and substract the left column. So instead
of comparing n2 pixels we only compare n pixels. The sum of the columns is stored into a
queue for easy subtracting the left one.
This optimalisation increases the speed enormously and makes it possible for real-time appli-
cations. The calculation of the disparity map from a pair of images with resolution 320×240,
a disparity range of 40 and a window size of 7× 7 has been reduced from 4703 ms to 485 ms.
The complete list of times is shown in next chapter.

3.1 Depth Estimation 46

Figure 3.4: Minimum sorting network to calculate the median of nine elements [54]. If two
elements are connected it means we have to compare them and swap them if
the value on top is higher.

3.1.3 Noise reduction

As explained in section 2.2.4 noise reduction can be done with a median filter. This filter
calculates the median over a window for every pixel to reduce extreme values. The window
size for this filter is 3 × 3 and so the median of nine values has to be found. This can be
done with a sorted list, but it is too expensive. A faster method is making use of a minimum
sorting network to calculate the median of nine elements. Figure 3.4 shows this network in
a scheme. P0 until P8 are the nine input values. When going from left to right, every time
two values are connected they have to be compared. If a value with a lower index is higher
than a value of a higher index the values must be switched. P4 will eventually be the median
of all values.
The median filter gives a slightly better result which is shown in figure 3.5. In areas with
the same real disparity some noise will be reduced as shown at the face. The improvement is
better for low resolution disparity maps like 160× 120.
This disparity map can be used to display the three dimensional scene by rendering the pixels
at their depth value as shown in figure 3.6.

3.1 Depth Estimation 47

Figure 3.5: The top image is the disparity map without the median filter, the bottom dis-
parity map is calculated with the median filter. Difference is minimal, but some
of the extreme values can be reduced as shown in selected part.

3.1 Depth Estimation 48

Figure 3.6: The reference image together with the depthmap can be used to display a three
dimensional model of the scene

3.2 Visual Hull 49

3.2 Visual Hull

The next sections contains the implementation of three kinds of visual hulls. The first two
are visual hull data types calculated on the CPU for easy collision detection. These are cubic
voxel visual hull and octree visual hull. The last algorithm creates a visual hull on the GPU
and can be used for output. So there can be collision between a real person and the virtual
scene and it is possible to place a three dimensional model of the player in the scene.

3.2.1 Cubic Visual Hull

This first algorithm is very straight forward. The space containing the object, will be divided
n by m by k cubes. Each of them, also called voxels, represent a part of space. So for
every voxel a calculation is required to check if it intersects with the object. If the object
intersects, the voxel gets the value true, else false. The space is then transformed into a three
dimensional array of booleans. Collision detection is then possible because only the voxels
representing the other objects have to be checked for intersection to see if there is a collision.
The checking can be done with direct access so this is very fast.
The calculation of the values of each voxel is also easy. For every voxel its center can be
projected on every camera using the projection matrix of each camera. After projecting it
has to be checked whether it is inside or outside the foreground. And by definition of the
visual hull, all these projections should be inside all silhouettes to make part of the visual
hull. Therefore the value of the voxel is the intersection of the projected points.
Only the voxels with value true are part of the visual hull. The calculated visual hull can be
displayed by only drawing the true voxels as a cube. This visualisation is shown in figure 3.7.

3.2.2 Octree Visual Hull

An octree is another volumetric representation for visual hull. It uses less memory and is
sometimes faster to calculate. Above this it can be more detailed than the cubic representation
from the last section. This algorithm was defined by Erol et al [23]
The scene is initially one big voxel. It can then be divided into eight smaller voxels by dividing
the width, height and depth of the voxel into two. This dividing process can go on recursively
until a predefined depth is reached. It is not necessary do split all voxels every step. When
it is known that a voxel is entirely inside or outside the visual hull, it is also know that all its
children has the same property. Therefore only the voxels which are partly inside and partly
outside will be divided. This approach saves a lot of time and can be calculated more detailed
around the object.
The only thing that needs to be explained now is how to know if a voxel is inside, outside or
contains boundaries of the object. A preprocessing stage is necessary for this. In this stage
the silhouette is transformed into an integer image. Every pixel of this new image has the
value of the euler distance from this pixel to the edge of the objects silhouette. This means
that further inside the silhouette the pixel value gets higher. The pixels outside the silhouette
have a negative value representing the distance to the edge of the silhouette.
This can be done by first detecting the edges and giving those pixels value 0 and then putting
their neighbour pixels in a queue. Every pixel inside this queue, inside the silhouette and
that without a known distance value gets the value of its closest known neightbour plus the
distance to it. All his neightbours without a known distance are then put into the queue. The

3.2 Visual Hull 50

Figure 3.7: A cubic visual hull of a dataset from a temple [55]

same thing can be done for the pixels outside the silhouette. The result of this preprocessing
step on the temple dataset is given in figure 3.8.
After the preprocessing stage it is possible to check if a voxel is inside or outside the object.

This is done by projecting the center of the voxel on the images and looking at the distance
value at that location. If this distance value is larger than the distance between the projected
center of the voxel and a projected corner it means that the voxel is completely inside the
object. The same can be done to check if the voxel is completelty outside the silhouette.
This can be visualised with the same method as the cubic visual hull, but instead of drawing
cubes of the same size, the size will depend on the depth of the cube in the tree (figure 3.9).
Collision detection can now be done by traversing through the tree and only use the branches
that contain the same volume.

3.2 Visual Hull 51

Figure 3.8: The result after the preprocessing stage. Red pixels indicate how far inside the
silhouette while green pixels indicate how far outside the silhouette

3.2 Visual Hull 52

Figure 3.9: An octree visual hull of the same dataset with depth 5, 6, 7 and 8

3.2 Visual Hull 53

Figure 3.10: Simplified flow of data though GPU pipeline [29].

3.2.3 Sliced Visual Hull

The next algorithm will create an image hull of the object so it can be used to display a three
dimensional model of the player in the game. It contains a set of slices of the visual hull, but
so close together that it looks like a complete three dimensional model when rendering. This
algorithm was presented by Keith Yerex [24].
The graphical processing unit (GPU) is becoming more and more interesting for computer
graphics algorithms to speed them up. Therefore a brief introduction to the modern GPU is
necessary before going on. This is done in the next section followed by an implementation of
a sliced visual hull on the GPU.

GPU : Graphical Processing Unit

Today’s graphics architecture (fourth generation) can be used as a fully programmable hard-
ware. It is optimized to work with vertices and images. This creates new possibilities for
image processing because it can do some work instead of the CPU.
It is important to understand the concept of current GPU-architecture to develop and adapt
general purpose algorithms for implementation on GPU hardware. First of all, the GPU sup-
ports vector operations, Single Instruction - Multiple Data (SIMD). An other advantage is
that the architecture is divided into four stages and is pipe lined (figure 3.10). This pipeline
is used to calculate in parallel. Even low-cost graphical cards have 8 processor units working
completely independent in parallel. The four stages of the GPU are :

• Vertex processing: this stage gets as input a vertex with his parameters and generates
exactly one output vertex. For example it gets a three dimensional vertex as input.
The output can be the projected two dimensional vertex, for example multiplied by the
model view- and projectionmatrix.

• Rasterizer: this stage will group the vertexes into fragments, which are potential pixels
for a given viewing frustum projection.

• The fragment processor: gets as input a fragment, received from the rasterizer, and
outputs the color of the fragment. An example is given the color to a pixel by knowing
the texture and his texture coordinates.

• Fragment selector: will select which fragment will be chosen to be drawn at each pixel.
The best example is selecting the nearest fragment for every pixel, called depth testing.

3.2 Visual Hull 54

The enormous processing power of graphics cards opens new opportunities. This power can
be seen by the number of transistors. A pentium 4 processor has approximate 55 million tran-
sistors in comparison to approximate 125 million transistors of Nvidia Geforce FX graphics
cards. Also it is optimised for image processing. A lot of image problems have been solved on
the GPU with a high speedup factor compared with the CPU [56, 57]. Another big advantage
is that when you let the GPU calculate the solution or a part of the solution, the CPU is idle
and free to use. This way the CPU and the GPU can execute different algorithms or part of
algorithms in parallel.
Even though the GPU has four stages only two of them are programmable: the vertex and
fragment processor. A vertex program has as input one vertex and as output one vertex, it
can for example be used to transform the scene by applying an extra transformation to every
vertex. A fragment program has one input fragment and one output fragment and can be
used to specify the color for each fragment.
A language developed by NVidia can be used to program these processors. This language is
called Cg, which stands for ”C for graphics” [58]. This language removes the need to program
directly to the graphics hardware assembly language. It is based on C, this because of its
popularity, and therefore easier to use. But it is very specialized for graphical purposes, so not
everything is possible with it. It is a cross-platform language and can be used with OpenGL
or DirectX.
More information about the current graphical processing units and Cg can be found in the
Nvidia Cg manual.

GPU Visual Hull

The idea of this algorithm is exactly the same as the definition given in the introduction of
the visual hull. The visual hull can be obtained by back projecting every silhouette into the
scene and intersects the responding cones.
The algorithm presented by Keith Yerex [24] does this by drawing a series of parallel squares
in the scene and projecting the three camera images on it. The textures are all in RGBA-
format and the pixels that are in the silhouette are drawn with alpha value = 1, others with
alpha value = 0. Projecting the image of one camera on all of those slices with alpha-blending
creates a result as shown in figure 3.11.
For more then one camera placing multiple textures on the same slice is necessary. The GPU
can then calculate the intersection of the textures.

To implement this OpenGL and Cg are used. The OpenGL extensions glMultiTexCo-
ord2fARB gives the possibility to connect multiple textures with every slice. By projecting
the corners of every slice onto the cameras the texture coordinates of the image can be found.
Next, the slices are drawn with alpha blending enabled.
The last stage is done on the gpu by a fragment-program written in Cg. Only fragments
which are part of the visual hull have an alpha value equal to one for every texture. If not,
its projection is not inside every silhouette and therefore the alpha value of his color must be
set to zero so it becomes invisible.
To define the color of fragments inside the visual hull, the program uses the location of the
fragment and the refence cameras. These locations can then be used to calculate the weight
for every camera. The color of the fragment is eventually calculated as a weighted sum of the
colors of the textures and the weight of the cameras. The algorithm has been executed on two
kinds of graphical cards. The first card is a Mobile ATI radeon 9700, the other is a GeForce

3.2 Visual Hull 55

Figure 3.11: The projection of one camera on every slice

7300 GT. The first card created the visual hull in 110 ms with 40 slices. The GeForce card
got a framerate of 25 fps (40 ms per frame) when using 80 slices (figure 3.12).
After trying different views, one of the conclusions of this algorithm is that it works better
if the cameras are all at the same side of the object and the angle between them is not too
large, approximate 30 degrees works just fine.

3.2 Visual Hull 56

Figure 3.12: An example of the sliced visual hull on the temple and dino data set

3.3 Object Tracking 57

Figure 3.13: The condensation algorithm executed to track a red ball in the scene [27].

3.3 Object Tracking

3.3.1 Condensation Algorithm

The first algorithm for object tracking used in this thesis is the condensation algorithm. It is
used to track the location of an object based on its color. The object used here is a red ping
pong ball. Just like the algorithm described by Isard and Blake [25] this implementation is
divided into three steps for every new input. These are the selection, prediction and update
step and will be explained next. First an initiation step is done to start from.

Initiation Step

A particle contains a three dimensional location, a weight and a cumulative weight and can
thereby be stored as 5 floating points. The cumulative weight is the sum of his weight and the
weights of all other particles before him in the list. At the start of this algorithm n particles
are created at random locations in the scene. The weight is the same for every particle.
The number of particles created here can affect the speed of the tracking mechanism. When
the number is high, more particles must be created so the framerate will drop. On the other
side, when n is chosen very low, less particles are created so the framerate will raise. Less
particles makes the accuracy lower.
These particles are stored in a vector because a vector offers direct access and is easier to
adjust its size.

Selection Step

In this step, new particles are created based on the location and weight of the current particles.
The number of particles created does not have to be exactly n. In this implementation, the

3.3 Object Tracking 58

number of particles is adjusted to the current framerate. So one of the input parameters is
the desired framerate. When the calculation time for each frame is lower then this desired
time, n can be raised by 5%. The same when the calculation time is too high, the amount of
particles can be lowered by 5%.
Not only the new particles are created here, but their location as well. This is done based
on the weights of the current particles. For each of them a random value is created between
0 and the highest cumulative value. Then by binary search the first particle is found in the
current vector. The location of the new particle is set to the value of the found particle.
When the weight of a particle is high, the probability is higher to choose his location again.
Therefore the locations of particles with high weights are chosen more often and locations
with weight 0 are not chosen again.

Prediction Step

The difference between the location in the last frame and the current frame is estimated here.
The probability for the new location is a Gaussian model with the current location of the
particle as origin and some standard deviation σ. This deviation is chosen based on the size
of he scene and the time between frames. When the framerate is high, the object can not
move too far between the frames and therefore the σ can be chosen lower.
This prediction step can be implemented by adding Gaussian random values with average 0
and standard deviation σ to the x, y and z coordinates of the particles. After this step the
particles have a unique location again.

Update Step

In the last step, the weights and cumulative weights of the particles are calculated. Bar-
rera [26] described a method to calculate these weights based on the color of the pixels on
where the particle is projected on.
First the location is projected onto the input images. Then in a window of 5 by 5 around the
projected point, the pixels with a similar color to the color of the object are counted. Barrera
does this in the RGB color space, but because of the variable illumination in the scene Y Cb
Cr is used.
Once this is done for all input images, the counted values will be multiplied with each other
and assigned as the weight for the particle. This has one disadvantage when the object is not
visible from all cameras because of occlusions. On the camera where the object is not visible
the pixel count is 0, resulting into a 0 weight for the particle, even though the particle has
the right location. Therefore the minimum count must always be 1.
The location of the particle with the highest value is chosen to be the current location of the
real object. A screenshot of the result is shown in figure 3.13.

3.3.2 Tracking of Hands and Face

The next algorithm is not used to track general objects but is specialized for the face and
hands of a person. It is based on the algorithm of Perales et al [14], but some steps have a
different implementation. For each frame three steps are executed to obtain the locations.

• Skin-Color Pixel Detection: the skin color is used as reference for detecting the hands
and face. In this stage the skin colored pixels are detected to use in the next stage.

3.3 Object Tracking 59

• Data Association: the location of the limbs in image space are calculated based on the
skin-colored pixels and the location from last frame.

• Three Dimensional Position Estimation: when the locations are found on the multiple
images, the three dimensional locations can be estimated.

Skin-Color Pixel Detection

The algorithm here to detect skin color is a combination of two different ones described in
section 2.4.7. The first is described by Perales et al [14] and requires samples of the players
skin color. The second method was described by Senior et al [49] and gives a slightly worse
result, but requires no input.
First, the pixels are converted to YCbCr to receive the chroma values:

Cb = −0.1687R− 0.3313G + 0.5B + 128 (3.1)
Cr = 0.5R− 0.4187G− 0.0813B + 128 (3.2)

Senior described the relationship between Cb, Cr and skin color based on statistical mea-
surements. This connection is defined as an ellipse and is shown in figure 2.19. The found
skin colored pixels can then be expanded by adding their direct neighbours with a small color
difference.
The segments with the most skin colored pixels in the first n frames are used as input for the
second algorithm. A Gaussian model is built with this input to define the skin. This means
that the average and standard deviation for the Cb and Cr components is calculated. The
probability of a color being a skin color is then given by:

pColor = pCb × pCr (3.3)

pCb =
1

(Cbσ ∗
√

2π)e−
(Cb−Ĉb)2

2Cbσ

(3.4)

pCr =
1

(Crσ ∗
√

2π)e−
(Cr−Ĉr)2

2Crσ

(3.5)

where Ĉb and Ĉr is the average Cb and Cr of the input samples and Cbσ and Crσ their
standard deviation. These probabilities can be calculated for every Cb-Cr combination in a
preprocessing step and put into an 256× 256 matrix, which is shown in figure 3.14.
Every pixel with a probability higher then Tmax and their neighbours with a probability
higher then Tmin is tagged as skin colored. Good values for these thresholds are Tmin = 0.05
and Tmax = 0.15.
Figure 3.15 shows the result of this algorithm in image C. As seen, it is better than the
parameterless algorithm of Senior et al [49] (image B), but slightly worse than the parameter
required method of Perales et al [14]. The reason to choose an algorithm with medium result
is that it does not require to know the color of the players skin in advance which is more user
friendly.

Data Association

This step starts by finding all blobs. A blob is a group of connected skin colored pixels. These
are used to find or update the location of the three limbs, two hands and the face. Such a

3.3 Object Tracking 60

Figure 3.14: A part of the face is used as skin samples to create a Gaussian probability for
skin color which is shown in the right image. The probability for every Cb-Cr
combination is described. The higher the red value the higher the probability.

3.3 Object Tracking 61

Figure 3.15: Result A shows the algorithm of Perales et al [14], B is the result of Senior et
al [49]. The combination of both is shown in C.

3.3 Object Tracking 62

Figure 3.16: Face and hands detection algorithm

limb is defined as an ellipse with four degrees of freedom, the centre and the semi axis. In the
first frame there are no limbs found yet, so the three blobs with the most skin colored pixels
are used to create them.
In the following frames the current limbs are going to be updated using the new input. This
is done as follows:

• Each limb is updated using its last translation, making the assumption that it is moving
with a constant speed.

• The intersection between a limb and all the blobs are calculated and the limb is moved
to the blob with the most pixels in common.

• If a limb has no pixel in common with a blob, it will be deleted.

• When there are less then three limbs, new ones are created using the largest blobs which
are not associated with a limb yet.

3D Position Estimation

The previous steps are executed on two images and the location of each limb is found on the
image planes. The three dimensional location is found by back projecting these positions and
calculating the shortest line segment between the back projected lines.
Figure 3.16 shows the result of this algorithm on one image plane.

3.3 Object Tracking 63

Figure 3.17: A skeleton to represent a human player, assuming that he stays at the same
location.

3.3.3 Inverse Kinematics

After tracking the hands and face of the player, his pose can be estimated by using inverse
kinematics [52]. An important assumption made here is that the player stays at the same
place. The skeleton used to represent the human is shown in figure 3.17. The inverse kine-
matics algorithm is the Jacobian transpose method.
In this implementation it is only important that the location of the end effector gets to the

desired location and therefore the orientation of the end effector is not used. Given a vector of
joint variables q, the end effector frame is specified by a position P (q). The Jacobian column
entry for the ith joint variable is then:

Ji =

∂Px

∂Py

∂Pz

 (3.6)

Every joint has a global transformation matrix Mi, which transforms the local joint frame to
the world frame. The rotation axis of the joint is one of the principle axes ui in the local joint
frame. The axis in world coordinate frame can be found by:

axisi = Miui (3.7)

Then the the Jacobian entry can be written as

Ji = [(p− ji)× axisi]T (3.8)

where p denotes the position of the end effector and ji the position of joint i in world coor-
dinates [19].
The force F added to the end effector is the vector from its position xc to the desired location
xd:

F = xd − xc (3.9)

The changes of the joint variables are eventually calculated as

q̇ = JT F (3.10)

This update is performed in a loop until the distance between the end effector and the desired
location is below a threshold. To avoid infinite loops and expensive calculations, a maximum
number of updates is defined. This control loop is visualized in figure 3.18.

3.3 Object Tracking 64

Figure 3.18: Interactive control loop model for Jacobian transpose methode [19].

Figure 3.19: After locating the hands and the face of the player the pose is estimated using
the Jacobian transpose method.

4
Results

This chapter contains some of the results of the algorithms explained in chapter 3. The
advantages and disadvantages of each algorithm are explained based on the results in different
situations. These situations can be the setup of the cameras, the number of cameras, their
resolution, ... Therefore no unique system for interactive computer games can exists. This
chapter is thereby divided into different situations, each describing the algorithms with their
benefits.

4.1 Camera Setup

A first important decision the developer has to make is the setup of his cameras. The cameras
can be put close together or far from each other. A camera setup with the centre of projection
close to each other is called a small baseline setup and when the distance between the centres
is high the setup is called wide baseline. These two are shown in figure 4.1.
Most of the algorithms make an assumption about this setup and therefore do not work good
with the other possibility. For example the group of stereo vision depth estimation algorithms
of section 2.2. There a small baseline setup is assumed. The principle is to find for every
pixel in the first image a corresponding pixel in the second image that looks the same. This is
off course only possible when the cameras are close together. With a wide baseline setup the
cameras will record the scene from a total different angle so the chance that the corresponding
pixels look the same is very slim.
Another example is the family of shape-from-silhouette algorithms. The silhouettes are back
projected into space and the intersection is calculated. When the cameras are close to each
other the back projected cones will be similar and therefore the intersection will be too large.
Visual hull construction works better with a wide baseline camera setup. An example is
shown at figure 4.2.
The choice of the camera setup does not directly depend on the used algorithms, but can have
other reasons as well. Working with a small baseline camera setup has the advantage that a
construction can be created where the two cameras are attached to. The orientation between

4.2 Resolution of the Images 66

Figure 4.1: The left figure is a sketch of a small baseline camera setup while the right is a
wide baseline camera setup.

Figure 4.2: The visual hull is more tight when the cameras are further from each other then
for a small baseline setup.

the cameras remains and therefore also the calibration parameters. This can make it more
attractive for commercial purposes, because the cameras can be calibrated before delivering.
If the game is based on a wide baseline setup the player needs to calibrate the cameras before
he can start playing.

4.2 Resolution of the Images

The resolution of input images definitely has an impact on the framerate. An image of
320× 240 contains four times less data then an image of 640× 480. This means that it takes
longer to load this image into the main memory. But the time to load the images is the same
for all algorithms and are thereby not counted into the results. The calculation time of the
used algorithm can also depend on the resolution.
An example is calculating a disparity map. The disparity must be calculated for every pixel
and so a smaller resolution will lead to a higher framerate. This is shown in table 4.1. In the
forth column the calculation time is given for the disparity calculation without optimisations,

4.2 Resolution of the Images 67

Resolution Windowsize Depthrange Normal Optimal Quality
384x288 7 40 6438 ms 735 ms good
384x288 5 40 3000 ms 625 ms good
320x240 7 40 4703 ms 485 ms good
320x240 5 40 2078 ms 422 ms normal
320x240 3 40 643 ms 328 ms much noise
160x120 7 40 984 ms 109 ms normal
160x120 5 40 456 ms 94 ms bad
160x120 3 40 140 ms 78 ms very bad
384x288 7 30 4937 ms 547 ms good
384x288 5 30 2250 ms 469 ms good
320x240 7 30 3437 ms 375 ms good
320x240 5 30 1594 ms 297 ms normal
320x240 3 30 469 ms 250 ms much noise
160x120 7 30 765 ms 78 ms normal
160x120 5 30 390 ms 78 ms bad
160x120 3 30 109 ms 47 ms very bad
320x240 9 30 5281 ms 422 ms very good
320x240 11 30 8016 ms 578 ms good
320x240 13 30 11297 ms 562 ms good
320x240 15 30 14969 ms 765 ms blurry
320x240 21 30 29375 ms 1656 ms too blurry

Table 4.1: Calculation Time of the depth maps : (a) Resolution of the input images (b)
Window size to calculate the SAD value (c) Depth range is the depth disparity
range (d) Time to calculate the depth map without optimizations (e) Calculation
time with optimizations (f) Quality of the depth map (how useful it can be).
Calculated on a Pentium Mobile 1.5 GHz

the fifth column takes those improvements into account. As expected, by looking at the
difference between 320× 240 and 160× 120, when the number of pixels is four times less, the
calculation is also approximately four times less. The window size and depth range have a
great impact on the calculation time as well, but their value can also be chosen according to
the resolution. The disparity range is smaller in low resolution images then in high resolutions.
If the maximum disparity of an 320× 240 image is 40, then it is definitely not higher then 20
if the image was 160× 120.
Off course, it not not necessary to calculate the depth map for the entire image. After
background subtraction a lot of pixels can be eliminated, increasing the speed.
Not all of the algorithms described before that calculate a visual hull are that much dependent

on the image resolution. Table 4.2 gives an overview of the calculation for a cubic voxel and
octree visual hull. The first algorithm depends only on the amount of voxels the scene is
divided in. This is shown in the results as depth. The width, height and depth are divided
into 2depth, so the number of voxels is 23×depth. Because of the accuracy of the timer, the
times for a lower detail than depth 5 are not shown in the table, but they are still very usefull
for games.

4.3 Number of Cameras 68

Res depth preproces octree cubes #voxels #cubes
640x480 5 343 ms 343 ms 16 ms 118 157
640x480 6 344 ms 364 ms 174 ms 1252 1943
640x480 7 343 ms 531 ms 1240 ms 7927 15086
640x480 8 345 ms 1720 ms 10138 ms 29026 120749
640x480 9 343 ms 34140 ms 80719 ms 52337 too large
320x240 5 78 ms 78 ms 16 ms 84
320x240 6 78 ms 109 ms 174 ms 967
320x240 7 78 ms 266 ms 1268 ms 5793
320x240 8 78 ms 14222 ms 1112 ms 12078

Table 4.2: Time results for calculating a visual hull, calculated on a Pentium Mobile 1.5
GHz, 4 input images are used (a) resolution of input images (b) level of detail
of the visual hull (c) time for the preprocessing stage of the octree (d) time to
calculate the octree (e) time to calculate the cubic voxel representation (f) number
of voxels the octree has (g) number of cubes the cubic voxel representation has

Res # cameras depth preproces octree cubic
640x480 4 5 343 ms 343 ms 16 ms
640x480 4 6 344 ms 364 ms 79 ms
640x480 4 7 343 ms 531 ms 620 ms
640x480 2 5 157 ms 157 ms 15 ms
640x480 2 6 156 ms 187 ms 87 ms
640x480 2 7 156 ms 328 ms 682 ms
320x240 2 5 40 ms 40 ms 16 ms
320x240 2 6 40 ms 72 ms 170 ms
320x240 2 7 40 ms 196 ms 1245 ms

Table 4.3: Time results for calculating a visual hull (a) resolution of input images (b) number
of input images (c) depth of the octree (d) time for the preprocessing stage of
the octree (e) time to calculate the octree (f) time to calculate the cubic voxel
visual hull

4.3 Number of Cameras

To obtain three dimensional information at least two cameras are required. For most of the
algorithms in this work, two cameras suffice the need but it is extendable for more input.
This can especially be demonstrated for the visual hull where more viewpoints mean a better
estimate of the real object. Unfortunately using more cameras often means a lower framerate.
A list of times is shown in table 4.3.
Another advantage of using more then two images is handling occlusions. Sometimes a point

is not visible on one or more cameras bacause the player or another object is blocking the
sight. In this situation the projection of the point is unknown. But to calculate the exact
location of a point in space at least two projections of it are required. So if a point is invisible
in one camera and visible in two others, the exact location can still be found. Figure 4.3
shows an example of the condenstion algorithm with three cameras and one camera is partly

4.4 Desired Framerate 69

Figure 4.3: The projection of the red ball is invisible on this camera, but because it is visible
at two other cameras the location can still be calculated [27].

taped. Even though the object is invisible from this camera, the location can be found with
the other two cameras.

4.4 Desired Framerate

As described before in the thesis, all of the algorithms have parameters defining the accuracy
of the outcome. The more accurate something is calculated, the more time it requires. For
example the visual hull where it takes more time to create a detailed three dimensional model
of the player compared to a low detailed visual hull. This parameter is ofcourse the number
of cubic voxels or the depth of the octree. For games it is often more important to have a
high framerate then to have a high accuracy, because it has to be interactive. Therefore these
parameters can be chosen according to a desired framerate.
The visual hull for output created on the gpu has the number of slices as level of detail. The
more slices, the more the gpu has to calculate and the lower the framerate can get.
The level of detail parameter of the depth estimation algorithm is mainly the input resolution.
When the image contains four times less pixels, the calculation time will be approximatly four
times less. Another parameter that can be adjusted is for example the windowsize for the
pixel match cost.
The calculation time of a particle system depends on the number of particles used. Using
more particles result in a higher calculation time for each frame. This is shown in table 4.4.
The algorithm for tracking hands and face has just like the depth estimation one level of

detail parameter, the image resolution. This because the first step to find skin colored pixels
requires to do a calculation for every pixel. A trackingtime of 50 ms is reached for images of
320× 240.

4.5 Type of Game

The end discussion of the algorithms to use for the interactive videogames is offcourse the
type of game. It would be useless to calculate a visual hull if you are only interested in the
distance of the player to the camera. This section contains some final results of games using

4.5 Type of Game 70

cameras particles tracking time correctness
2 1300 10 ms 25%
2 2400 20 ms 95%
2 3400 30 ms 98%
2 6000 50 ms 99%
2 7200 66 ms 99%
3 1000 10 ms 18%
3 1900 20 ms 98%
3 2900 30 ms 99%
3 4500 50 ms 99%
3 6000 66 ms 99%

Table 4.4: Time results for calculating a particle filter to track a pingpong ball (a) number
of input images (b) number of particles (c) calculation time per frame (d) in how
many frames has the algorithm found the right location

the previous algorithms. Each game makes use of a different algorithm or uses it different.
Each game also has a different output to give an overview of some representation methods.

4.5.1 Drawing Game

The first game is the most simple one. It is a drawing game that makes use of depth infor-
mation. First a motion detection is executed on a reference image. Each motion pixel is then
tested with the depth map. If the motion is in front of a certain threshold, it will be recorded,
else rejected.
The player is now standing somewhere in the room behind the threshold distance, so his
motion will not be recorded. When he put his arm in front of him, his hand is in front of the
threshold distance. The location of his hand is then recorded and drawn on the screen.
The output of this game is just the reference image on which the recorded pixels are drawn
red. A screenshot is shown in figure 4.4.

4.5.2 Frogger

The next game makes use of depth information as well. It is a version of an old game named
Frogger. First a background subtraction is executed to find the silhouette of the player. In
a following step the silhouette is used to find the centre of mass, meaning the middle of the
silhouette. This is done by calculating the average x and y values of all silhouette pixels. The
z value is found by using the depth value of the centre of mass on the refence image. This
means that only the depth information of one point is required and not the entire depthmap
which results in an increase of speed.
This is a two dimensional game in which the player has to try to cross the street without
getting hit by a car. The player can move to the left or right and up and down to avoid the
cars. This game is shown on figure 4.5.

4.5 Type of Game 71

Figure 4.4: A 3D drawing game which records motion and use the depthmap to define
the location of the motion in space. When the player moves further than a
predefined distance from the camera, the motion is ignored. When he puts his
hand in front of him, the motion is closer to the camera and the pixels are
colored red. The red dots on the leftside of the image are created because of
noise.

4.5 Type of Game 72

Figure 4.5: The game frogger where the location of the avatar in the game is defined by the
location of the player.

4.5 Type of Game 73

4.5.3 Mapping Player to a Game Engine

The next result shows one of the usage of a visual hull. Herefore three input cameras were
used to calculate a low detailed visual hull. This model can also be used to calculate the
centre of mass. This calculated three dimensional point can then be used to move around an
avatar in the game, but can also be used to define some animation of it. For example based on
the height of the centre of mass the game can presume that the player is jumping or crowling.
This is illustrated in figure 4.6 where the location of the player is mapped to a game. The
game engine used here is irrlicht [28]. The exact purpose of this game is still undefined, but
a possible goal could be to avoid getting hit by other objects in the game. Calculation time
per frame is 70 ms.

4.5.4 Collision Detection Game

In the next game the visual hull of the player is used for collision detection with the virtual
objects. The player is placed into a three dimensional world in together with virtual objects.
To show the player a billboard or a three dimensional model can be used depending on the
location or orientation of the camera. In the game shown in figure 4.7 a billboard is used.
Objects are added to the game using ode [59] as physics engine. Shadows are added because
it gives a better feedback of three dimensional information to the player [60].
The purpose of this game is to avoid getting hit by an object. Another goal could be to move
the object from one place in the room to another. The calculation time for each frame is 76
ms.

4.5.5 Spiral

Spiral is an old game where the player has a metal disc which is placed around a metal pipe.
The pipe creates a path which the placer must follow with the disc with touching it. The
following game is a digital version of it. A particle filter is used to track a known object
which the player is holding. It contains three colored pingpong balls and by tracking the
three locations the position and orientation of the disc can be found. These calculations are
mapped to a digital version of spiral. The result is shown in figure 4.8. Tracking time per
frame is 80 ms.

4.5.6 Roboshoot

The last game is called Roboshoot and also makes use of an object tracking algorithm. The
algorithm of section 3.3.2 is used to track the face and the hands of a player. In a next
step, these calculated locations are used to estimate the pose of the player using invers kine-
matics. The invers kinematics algorithm used for this game is called the jacobian transpose
method [19].
The pose of the player is rendered as some kind of robot as shown in figure 4.9. The arm
is replaced by a canon that fires a cannonball each frame. The direction in which this ball
is fired is defined by the vector from the elbow to the hand. The purpose of this game is to
hit objects in the scene using your arms as a fireweapon. For input images of 320× 240, the
calculation time for each frame is 47 ms. When the images have a resolution of 640 × 480
the time per frame is 167 ms. Depth estimation is done with a Bumblebee 2 camera of Point
Grey Research [61].

4.5 Type of Game 74

Figure 4.6: The centre of mass of the player is used to place and animate the avatar in a
game. This game is made with the game engine irrlicht [28]

4.5 Type of Game 75

Figure 4.7: The player is placed into a virtual room where he can interact with the virtual
objects.

4.5 Type of Game 76

Figure 4.8: The location and orientation of the object in the players hand is tracked and
mapped to the game named spiral. The purpose is to follow a path without
touching the metal pipe [27].

4.5 Type of Game 77

Figure 4.9: The location of the face and the hands of the player is used to control a skele-
ton with invers kinematics. In the lowerimage the arms of the robot are used
as cannons firing a cannonball each frame with the purpose to hit all yellow
balloons.

5
Conclusions

In this work, six different interactive multi-camera videogames are presented. These are
videogames where two or more calibrated cameras are used as interaction device. To achieve
this, depth estimation, visual hull construction and object tracking techniques were used
to obtain three dimensional information from these cameras. Depth estimation and object
tracking were used to calculate the location of the player or specific objects in the scene.
The purpose of these locations were to place the avatar in the game at the same location as
the player in reality or to estimate the players pose. Visual hull construction on the other
hand provides a three dimensional model of the player allowing collision detection between
the player and the virtual objects.
Because these games have to be interactive they require a high framerate. Therefore the
algorithms are more focussed on speed than accuracy. The visual hull for example is only an
estimated model of the player and because of the speed it is calculated with low detail. Still
it has shown to be very useful to provide a realistic collision detection and response. The
skeleton to represent the player is also just an estimation because only the locations of the
face and the hands are known, other bodyparts are estimated. But just like the visual hull,
this estimate is good enough to provide a realistic representation of the human player.
The advantage over games based on only one input camera is of course the extra depth in-
formation that can be obtained. It can make the game look more realistic, like the collision
detection game of section 4.5.4, where objects bounce realisticly on a three dimensional model.
When one camera is used, only two dimensional collision detection is possible. A comparison
with some games of Sony Playstation Eyetoy [4] is shown in figure 5.2. The extra depth
information also results in a more extended collection of possible games. Most of the games
in this work can probably not be created with only one camera.
In these kind of games the player has no physical contact with the gaming device. This can
result in some unrealistic situations like a player walking through a wall because there is no
wall in reality. Figure 5.1 illustrates such an unintuitive scenario. But on the other hand,
these games seems very intuitive. By stepping to the left, the avatar will move to the left
as well. Hereby it is possible for both young children as well as adults to play these games
without the requirement of knowing all the buttons on the joystick. The player can also

79

Figure 5.1: The player is pushing on top of the box. In real life he can not push any further
because the boxes are placed on the floor. In the game, the player does not
receive these physical feedback and can therefore put his hand inside the box.

control more degrees of freedom. An example is roboshoot where the two arms and the body
can be manipulated by the player at once.
After creating these games we can conclude that the computer vision area provides an answer
to create interactive games based on two or more input cameras. In the last couple of decenia,
much research has been done in the area of computer vision, resulting in a large collection of
techniques and algorithms. Even though computer games often were not the initial purpose
of these techniques, it is shown that some of them can be very useful in this context. In
this work some of them were described and later on illustrated in simple games. Of course
there are a lot of different alternative real time algorithms invented which can also be used to
serve the same goal. The algorithms in this work were chosen based on its speed and result.
Depending on the used algorithms and the required framerate, more sophisticated games can
be be developped.

80

Figure 5.2: On the left games of Sony Playstation Eyetoy where the information of objects
are only defined in two dimensions. On the right a couple of simular multi
camera video games using three dimensional information [4]. The goal of the
top games is to hit the objects which are located in two dimensional (left) or
three dimensional space (right). The games on the second row show the result
of motion detection. The bottom games show a collision response in the two
dimensional and three dimensionl space.

6
Future Work

This work presents a complete system for multi-camera interactive videogames containing
possible computer vision algorithms and interactive games. These algorithms are efficient
and accurate enough to control interactive videogames. But looking into the future, some
expansions can be made. These computer vision problems could be solved differently by using
for example different hardware or a different approach.
For example, to obtain more efficient and accurate results, the graphical processing unit can
be exploited. It is capable of processing a large amount of similar data and it seems to be
very useful in the area of computer vision. Depth estimation is one of the techniques which
is often implemented on graphics hardware and it has been proven to be very accurate and
fast [29, 30]. Collision detection is another example of a technique that can be solved using
the GPU [31, 32].
But instead of just optimizing current techniques, they can sometimes also be solved with
different methods as well. De Decker et al [33] described another new technique for collision
detection and collision response without the construction of a visual hull first. It is executed
in imagespace and could be a nice supplement to this work.
Other possibilities to expand this work is to increase the degrees of freedom of the games.
For example the human pose estimation of section 3.3.3 assumes that the player remains at
the same location during the game limiting his degrees of freedom. An extension to this
technique is to allow him to walk around in the scene. This could for example be done by
combining some methods like first detecting the location of the player using a visual hull and
then estimating the pose with object tracking and inverse kinematics.
Another assumption made in these games is that only one player is present in the scene,
which can be expanded to a multiplayer game in two different ways. The first is to allow
multiple players to be in the same scene meaning that they have to be tracked individually.
Here arises the problem to separate the players because they are filmed in the same room
with the same cameras. Another way to expand this to a multiplayer game is to track players
in different rooms and communicate through the network. So the network aspect has to be
investigated. The communication between the computers introduces an extra delay, therefore
it is important to send only important data. An example of such a multiplayer game can be

82

an extension of the collision game in section 4.5.4 where the players have to put as many as
possible objects into the goal of the other player. This can be done by letting objects bounce
on the persons.

Bibliography

[1] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, New York, NY, USA, 2003.

[2] J. Ohta W.T. Freeman, K. Tanaka and K. Kyuma. Computer vision for computer games.
http://www.merl.com/projects/cvcg/, 1996.

[3] S. Balcisoy and D. Thalmann. Interaction between real and virtual humans in augmented
reality. In CA ’97: Proceedings of the Computer Animation, page 31, Washington, DC,
USA, 1997. IEEE Computer Society.

[4] http://www.eyetoy.com. Eyetoy - sony.

[5] W. T. Freeman, D. B. Anderson, P. A. Beardsley, C. N. Dodge, M. Roth, C. D. Weissman,
W. S. Yerazunis, H. Kage, K. Kyuma, Y. Miyake, and K. Tanaka. Computer vision for
interactive computer graphics. IEEE Computer Graphics and Applications, 18(3):42–53,
/1998.

[6] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. Int. J. Comput. Vision, 47(1-3):7–42, 2002.

[7] A. Laurentini. The visual hull concept for silhouette-based image understanding. IEEE
Trans. Pattern Anal. Mach. Intell., 16(2):150–162, 1994.

[8] A. Erol, G. Bebis, R. D. Boyle, and M. Nicolescu. Visual hull construction using adaptive
sampling. Proceedings of the IEEE Workshop on Applications of Computer Vision, 2005.

[9] L. McMillan. An Image-Based Approach to Three-Dimensional Computer Graphics. PhD
thesis, University of North Carolina, Apr 1997.

[10] Fred Nicolls ans Gerhard de Jager Phillip Milne. Visual hull surface estimation.
PRASA2004, pages 13–18, 2004.

[11] R. Kalman. A new approach to linear filtering and prediction problems. Transactions of
the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

[12] P. Li, T. Zhang, and A. Pece. Visual contour tracking based on particle filters. Image
Vision Comput., 21(1):111–123, 2003.

[13] Mitsubishi Electric Research Laboratories. http://www.merl.com/projects/objecttracking/.

[14] F. J. Perales J. Baudes and J. Varona. Real time segmentation and tracking of face and
hands in vr applications. Articulated mation and Deformable Objects, pages 259–268,
2004.

BIBLIOGRAPHY 84

[15] G. Welch and G. Bishop. An introduction to the kalman filter. Technical report, Chapel
Hill, NC, USA, 1995.

[16] D. Simon. Kalman filtering. Embedded Systems Programming, 14:72–79, 2001.

[17] F. Nicolls B. Merven and G. de Jager. Multi-camera person tracking using an extended
kalman filter. -, 2003.

[18] T. A. Williams D. R. Anderson, D. J. Sweeney. Statestiek voor economie en bedrijfskunde.
Academic Service, Schoonhoven, 1998.

[19] C. Welman. Inverse kinematics and geometric constraints for articulated figure manipu-
lation. Master’s thesis, B.Sc. Simon Fraser University, 1989.

[20] R. Parent. Computer animation: algorithms and techniques. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2001.

[21] K. Muhlmann, D. Maier, J. Hesser, and R. Munner. Calculating dense disparity maps
from color stereo images, an efficient implementation. Int. J. Comput. Vision, 47(1-
3):79–88, 2002.

[22] S. S. Cheung and C. Kamath. Robust techniques for background subtraction in urban
traffic video. Video Communications and Image Processing, 2004.

[23] A. Erol, G. Bebis, R. D. Boyle, and M. Nicolescu. Visual hull construction using adap-
tive sampling. In WACV-MOTION ’05: Proceedings of the Seventh IEEE Workshops
on Application of Computer Vision (WACV/MOTION’05) - Volume 1, pages 234–241,
Washington, DC, USA, 2005. IEEE Computer Society.

[24] K. Yerex. Real-time visual hulls. CMPUT 605 Project Report, 2004.

[25] M. Isard and A. Blake. Condensation – conditional density propagation for visual track-
ing. International Journal of Computer Vision, 29(1):5–28, 1998.

[26] V. Matellan P. Barrera, J.M. Canas. Multicamera 3d tracking using particle filter. Pro-
ceedings of Int. Conf. on Multimedia, Image processing and Computer Vision (IADAT-
MICV2005), pages 193,197, 2005.

[27] T. Cuypers. Tracken van een eenvoudig object met meerdere gecalibreerde cameras.
Bachelor thesis, University Hasselt, 2006.

[28] Irrlicht. http://irrlicht.sourceforge.net/.

[29] J. Woetzel and R. Koch. Real-time multi-stereo depth estimation on gpu with approx-
imative discontinuity. 1st European Conference on Visual Media Production (CVMP
2004), London, United Kingdom, March 2004.

[30] R. Yang and M. Pollefeys. Multi-resolution real-time stereo on commodity graphics
hardware, 2003.

[31] M. Malmsten and S. Klasen. Practical Collision Detection on the GPU. PhD thesis,
Department of Computer Science, Lund Institute of Technology, Sweden, 2005.

BIBLIOGRAPHY 85

[32] M. C. Lin N. K. Govindaraju, S. Redon and D. Manocha. Cullide: Interactive collision
detection between complex models in large environments using graphics hardware. ACM
SIGGRAPH/Eurographics Graphics Hardware, 2003.

[33] B. De Decker, T. Mertens, and P. Bekaert. Interactive collision detection for free-
viewpoint video. GRAPP 2007: Proceedings of the Second International Conference
on Computer Graphics Theory and Applications, 2007.

[34] W. T. Freeman. http://www.siggraph.org/ publications/newslet-
ter/v33n4/contributions/freeman.html.

[35] M. E. Latoschik. A gesture processing framework for multimodal interaction in virtual
reality. In AFRIGRAPH ’01: Proceedings of the 1st international conference on Com-
puter graphics, virtual reality and visualisation, pages 95–100, New York, NY, USA, 2001.
ACM Press.

[36] http://merl.com/projects/cvcg. Computer vision for computer games.

[37] A. Azarbayejani T. Jebara and A. Pentland. 3d structure from 2d motion. 3D And
Stereoscopic Visual Communication, 1999.

[38] R. Szeliski and P. Golland. Stereo matching with transparency and matting. Int. J.
Comput. Vision, 32(1):45–61, 1999.

[39] S. M. Seitz and C. R. Dyer. Photorealistic scene reconstruction by voxel coloring. Int.
J. Comput. Vision, 35(2):151–173, 1999.

[40] S. Baker, R. Szeliski, and P. Anandan. A layered approach to stereo reconstruction.
In CVPR ’98: Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, page 434, Washington, DC, USA, 1998. IEEE Computer
Society.

[41] P. Fua and Y. Leclerc. Object-centered surface reconstruction: combining multi-image
stereo shading. In Image Understanding Workshop, pages 1097–1120, 1993.

[42] I. J. Cox, S. Roy, and S. L. Hingorani. Dynamic histogram warping of image pairs for
constant image brightness. In ICIP, pages 2366–2369, 1995.

[43] D. Scharstein. Matching images by comparing their gradient fields. In ICPR94, pages
A:572–575, 1994.

[44] R. C. Gonzalez and Richard E. Woods. Digital Image Processing. Prentice-Hall, Inc,
2002.

[45] A. Zhirkov. Binary volumetric octree representation for image based rendering, 2001.

[46] M. Magnor M. Li and H. Seidel. Hardwareaccelerated visual hull reconstruction and
rendering, 2003.

[47] M. Ribeiro. Kalman and extended kalman filters: Concept, derivation and properties.
Mobile Robotics Lab, 2004.

BIBLIOGRAPHY 86

[48] P. Shirley and R. K. Morley. Realistic Ray Tracing. A. K. Peters, Ltd., Natick, MA,
USA, 2003.

[49] A. Senior, R. Hsu, M. Abdel Mottaleb, and A. K. Jain. Face detection in color images.
IEEE Trans. Pattern Anal. Mach. Intell., 24(5):696–706, 2002.

[50] J. Terrillon and S. Akamatsu. Comparative performance of different chrominance spaces
for color segmentation and detection of human faces in complex scene images, 2000.

[51] J. M. Buades Rubio, F. J. Perales López, M. G. Hidalgo, and X. Varona. Upper body
tracking for interactive applications. AMDO, 2006.

[52] A. Jaume, J. Varona, M. Gonzalez, R. Mas, and F. J. Perales. Automatic human body
modeling for vision-based moion capture. WSCG, 2006.

[53] intel. http://download.intel.com/design/processor/datashts/31327802.pdf, 2006.

[54] N. Devillard. http://www.eso.org/projects/dfs/papers/jitter99/node27.html.

[55] S. Seitz, J. Diebel, D. Scharstein, B. Curless, and R. Szeliski.
http://vision.middlebury.edu/mview/data.html.

[56] Knut-Andreas Lie. http://www.math.sintef.no/gpu/conslaws.html.

[57] S. Yazheng. Performance comparison of cpu and gpu silhouette extraction in a shadow
volume algorithm, 2006, 2006.

[58] NVidia. http://developer.nvidia.com/page/cg main.html.

[59] ODE Open Dynamics Engine. http://www.ode.org/.

[60] Paul Baker. http://www.paulsprojects.net/tutorials/smt/smt.html.

[61] http://www.ptgrey.com/products/bumblebee2/bumblebee2 xb3 datasheet.pdf. Point
grey research.

