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ABSTRACT 
 

Recent travel demand modeling mainly focuses on activity-based modeling. However the majority of 
such models are still quite static. Therefore, the current research aims at incorporating dynamic 
components, such as short-term adaptation and long-term learning, into these activity-based models. In 
particular, this paper attempts at simulating the learning process underlying the development of activity-
travel patterns. Furthermore, this study explores the impact of key events on generation of daily 
schedules. 

The learning algorithm implemented in this paper uses a reinforcement learning technique, for 
which the foundations were provided in previous research. The goal of the present study is to release the 
predefined activity-travel sequence assumption of this previous research and to allow the algorithm to 
determine the activity-travel sequence autonomously. To this end, the decision concerning transport mode 
needs to be revised as well, as this aspect was previously also set within the fixed schedule. In order to 
generate feasible activity-travel patterns, another alteration consists of incorporating time constraints, for 
example opening hours of shops. In addition, a key event, in this case “obtaining a driving license”, is 
introduced into the learning methodology by changing the available set of transport modes.  

The resulting patterns reveal more variation in the selected activities and respect the imposed time 
constraints. Moreover, the observed dissimilarities between activity-travel schedules before and after the 
key event prove to be significant based on a sequence alignment distance measure.  
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1 INTRODUCTION 
 
Traditionally travel demand modeling highly concentrated on trip-based modeling. However, more 
recently activity-based modeling is gaining importance. This type of modeling assumes that travel 
patterns are the result of the activity schemes that individuals and groups of individuals execute in their 
attempt to achieve certain goals. In this context an individual implicitly needs to decide on the following 
items: which activity to perform at which location, when to start this activity and for how long, which 
transport mode to use in order to get to the desired location, who will accompany the individual during 
the course of the activity, etc. Moreover, in this choice process the individual has to take into 
consideration a whole range of environmental constraints, for example coupling constrains, opening hours 
of shops and public authorities, possibility of congestion, availability of transport mode and available 
time windows in which the activity can take place. (1)(2)(3)(4)(5) 

Several models have been developed to model this choice process and to predict activity-travel 
patterns (see for instance (6)(7)(8)(9)). However, as activity-based models include a set of decision rules 
or utility approximations which are founded on a snapshot of mobility data, the outcome of such models 
is still quite static and consequently in terms of short terms dynamics in activity-travel patterns, these 
activity-based models have -at their current state of development- much less to offer. In addition to short 
term dynamics, issues such as uncertainty, learning and non-stationary environments are most of the time 
also not considered. (2)(10)(11) 

One of the exceptions to this general trend is the work by Timmermans and Arentze (9)(12)(13) 
and the Aurora model (14)(15), which focuses on the formulation of a comprehensive theory and model 
of activity rescheduling and re-programming decisions and complements this with uncertainty and various 
types of learning. In order to contribute to this line of research, this paper evaluates the use of a 
reinforcement learning paradigm that allows one to simulate activity-travel scheduling decisions, within 
day re-scheduling and long-term learning processes in high resolution of space and time. In this 
definition, short term adaptation, can be considered as within-day rescheduling due to the occurrence of 
unexpected events during the execution of the planned activity program of an individual. Some examples 
of such unexpected events are: an (unexpected) change in the duration of preceding activities, congestion 
or changes in the availability of transport modes. These unexpected events can cause changes in the 
different aspects of one or more following activities: the duration of an activity can be shortened or 
extended, the starting time of the activity can be altered, the activity can be performed at another location 
than originally planned, the activity can be omitted, a different transport mode can be chosen, etc. In 
addition, changes in these aspects can occur simultaneously. (2)(3)(10)(16) 

Long term learning on the other hand accounts for the impact of experiences of previous actions 
on activity-travel patterns. While conducting activities, individuals build up expectations and beliefs 
about the outcomes of their behavior (i.e. learn). New experiences will be looked at against this mental 
map of the environment and they will cause these expectations and beliefs to be updated. This study 
assumes that the occurrence of key events impacts the composition of these mental maps and thus causes 
changes in the activity-travel patterns. Key events contain rare events in one’s life cycle, such as a change 
in residential, work or study location, but also a change in household composition, car availability or 
household income. (2)(10)(17)(18) 

In this paper, the development of a new learning scheme that is based on principles of 
reinforcement learning was developed and tested by means of a case study in a limited empirical setting. 
From a conceptual point of view, the approach that has been undertaken in this paper is innovative due to 
the fact that long term learning (through the incorporation of key events) is integrated in the proposed 
technique. Additionally, an initial framework of the learning process underlying the composition of the 
mental map of the environment is drawn and the decision process of an individual related to activity-
travel decisions is simulated. Finally, the updating of these mental maps after the occurrence of a key 
event is also taken into account.  

From a methodological point of view, the use of reinforcement learning in this paper relies on 
work which has been proposed by Janssens et al. (19) and which has also been adopted previously by 
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Charypar et al. (3), and by Arentze and Timmermans (16). These authors have claimed that the use of 
reinforcement learning is mainly advantageous to simulate a flexible response to unforeseen events in a 
very short period of time (16). However, also at this methodological level, the presented approach is 
innovative. While Charypar, et al. (3) and Janssens, et al. (19) mainly focus on time and location 
allocation, assuming a fixed sequence in which the activities occur, agents (humans) do not execute 
activities in a fixed, pre-scheduled order. This paper describes a framework which allows drawing up a 
flexible activity-travel schedule including temporal constraints. Secondly, when simulating the daily 
activity pattern of an agent, this study does not adopt reinforcement learning to predict one single choice 
facet, but it aims at integrating the different choice aspects simultaneously into the decision process. 
Thirdly, the present study attempts at simulating the effect of a key event on the generation of an activity-
travel schedule. 

The remainder of this paper has been organized as follows. Section 2 discusses the theoretical 
framework underlying the technique used in this research. Section 3 redefines the goals and contributions 
of the current research to the current state-of-the-art. In the empirical section, the generation of results and 
the validation of these outcomes have been introduced. The paper concludes by defining future research 
topics and recapitulating research findings. 

 
 

2 REINFORCEMENT LEARNING 
 

2.1 Learning by Interaction 
When learning a certain (new) behavior, the reinforcement technique generally assumes that an individual 
starts by exploring all possible actions. Subsequently, the individual is supposed to perceive the response 
of the environment while trying out one of these actions. Next, the individual will adapt future behavior 
according to this feedback. Reinforcement learning refers to this common way of learning. Kaelbing, et 
al. (20) define reinforcement learning as follows: “Reinforcement learning is the problem faced by an 
agent that must learn behavior through trial and error interactions in a dynamic environment.” 
(20)(21)(22) 

Furthermore, the consequences of actions change over time, may not be fully predictable, and 
depend on the current and future state of the environment. Reinforcement learning has the potential deal 
with this uncertainty through continuous observation of the environment continuously and through 
consideration of indirect and delayed effects of actions. Moreover, reinforcement learning also takes into 
account the fact that an individual uses his previously gathered experience to improve the decision 
making process. (16)(21)  

 
2.2 Basics 
In this section some basic concepts concerning reinforcement learning are introduced. For a more 
profound theoretical foundation one can turn to Janssens (22). (21)(24) 

 
2.2.1 Agent 
When employing the term agent, one denotes the decision making unit under consideration, often being 
an individual or household within the context of our research. 

 
2.2.2 State 
A system is composed of a finite set of states S, which are compounded of a number of dimensions. (22) 
Traditionally in this context of activity-travel behavior, each state s can be defined by following 
dimensions: the activity which is being performed, the location at which the activity occurs, the starting 
time and duration of the activity, the time frame and position in the activity schedule in which the activity 
is executed, the accompanying people during this activity, etc.  
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2.232 Action 
The action set A(s) for a certain state s refers to all possible decisions which can be made starting from 
that state. The action set may differ for each state and has to be finite and defined in advance. Moreover, 
for a given state s, the action a determines the next state s’. The action set may for instance be stay (i.e. 
perform the activity for one more time unit) or move (i.e. perform the next activity of the predefined, 
fixed sequence of activities). (3)(22) 

 
2.2.4 Rewards 
Finally, while making decisions an agent receives feedback, which can be either immediate or delayed, 
and direct or indirect. This feedback is called the reward R, which can be compared to the concept of 
utility in conventional choice models. A reward R is expressed as a function of the state s and the action a 
and can contain multiple dimensions. Furthermore, it should be emphasized that rewards are subject to 
alterations over time due to shifts in personal preferences and changing environments. (3)(16)(22)(23)  

 
2.2.5 Discounting factor 
As stated earlier, the reinforcement learning agent does not only take into account immediate rewards, it 
also incorporates the effect of delayed rewards. To serve this purpose, a discounting factor β<1 has been 
introduced. This measure assesses the weight of a future reward. For example, having a discounting factor 
β close to zero means that the agent tries to maximize immediate rewards only. However, a high β-value 
denotes that rewards in the future will have a large impact on decisions. (3)(22) 

 
2.2.6 Q-value 
The Q-value of an action a, given a state s, denotes the expected utility of an agent taking action a in state 
s. This value is calculated as follows: 
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where  
s is the current state, 
a is the performed action, 
s’ is the state defined by performing action a in state s, 
a’ are all possible actions of the action set A(s’) in state s’, 
Q(s,a) is the Q-value of action a in state s, 
Q(s’,a’) is the Q-value of an action a’ in state s’, 
R(s,a) is the reward of performing action a in state s, 
β is the discounting factor. 

(3)(16)(22) 
 

2.3 Q-Learning Algorithm 
The above basics have only described the outcome of the algorithm after learning (so-called steady-state). 
In order to reach this steady-state, the agent has to run through the actual learning process. As this 
algorithm is founded on the Q-value, which has been defined earlier, it is also called the Q-learning 
algorithm. The process can be written as follows: 

1. Initialize the Q-values. 
2. Select a random state s which has at least one possible action to select from. 
3. Select one of the possible actions. This action will get the agent to the next state s’. 
4. Update the Q-value of the state-action pair (s,a) according to following update rule: 

⎥⎦
⎤
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⎡ ++−=+ )','(max.),(),().1(),(

'
1 asQasRasQasQ

a
ttt βαα  

where  



Vanhulsel, Janssens and Wets 

 

6

),( asQt is the Q-value calculated and memorized during a former visit of this state-action 
pair (s,a), 

),(1 asQt+ is the Q-value to be updated in the current time step, 
)','(max.),(

'
asQasR

a
tβ+ is the Q-value linked to the current state-action pair (s,a), 

α denotes the learning rate, which is a parameter of the algorithm. This learning rate will 
decrease as time increases. This signifies that, at the start of the learning algorithm, the 
updated Q-value will solely reflect the Q-value directly related to the current time step, 
whereas after a while, the updated Q-value will also incorporate previous experiences due to 
the larger weight of the former Q-value in the update rule. 

5. Let s = s’ and continue with step 3 if the new state has at least one possible action. If it has 
none, go to step 2. 

(3)(22) 
 

2.4 Explore vs. Exploit 
In the context of Q-learning two concepts tend to pop up frequently: explore and exploit. Exploit signifies 
choosing the action that is known to yield the highest reward. By doing so, the agent aims at reaching the 
state that is next to the currently best solution. This approach is also called, the greedy. Explore denotes 
the random selection of a possible action. The goal of exploring is arriving at a state that might not be 
visited otherwise. Besides, the consequences of such random action may produce a higher reward than 
that of the most optimal action so far. (3)(16)(21) 

As such, in each state agents have to trade off exploring choice opportunities and exploiting 
current knowledge. This behavior is represented in a parameter called the exploration rate, which denotes 
the probability of choosing a random action. Frequently, the exploration rate will be set rather high at the 
beginning of the learning process, and will decrease in the course of the learning process: while the 
system will initially favor exploration, it will stress exploitation afterwards. However, as the agent 
operates in a dynamic, ever changing environment, it is necessary to explore once in a while in order to 
discover new opportunities. Furthermore, it should be noted that the value of the exploration rate depends 
on to which extent the individual is risk averse and thus on the individual’s tendency to explore. (2)(22) 

 
 

3 CONTRIBUTIONS TO THE CURRENT STATE-OF-THE-ART 
 
3.1 Goals  
As mentioned in the introduction the purpose of this study is to further elaborate existing Q-learning 
algorithms in the area activity-travel behavior. The basis of the learning algorithm was given by Janssens 
(22) and takes into account fifteen activity classes: in home work or study, out of home work or study, 
bring or get persons or goods, daily shopping, non-daily or window shopping, service activities, medical 
visits, eating, sleeping, out of home leisure, out of home non-leisure, in home leisure and in home non-
leisure activities, and other activities. These activity classes are incorporated in the reward tables 
underlying the model. The data making up these reward tables are derived frequency data based on 
activity-travel diaries. 

The main goal of this study is to abandon the predefined activity-travel sequence and to generate 
a flexible activity-travel schedule, taking temporal constraints into consideration. Furthermore as opposed 
to previous researches (3)(16)(19)(22), which aimed at simulating the decision process of one single 
choice facet, and in order to reproduce the development of an activity-travel pattern more realistically, 
this study concentrates on predicting simultaneously several dimensions regarding activity-travel 
schedules.  

After implementing these improvements, the present study aspires at capturing the consequences 
of a key event on the activity-travel pattern. More specifically, the intended key event compromises the 
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fact of an individual obtaining his driving license. This key event is simulated, given the knowledge that 
solely the availability of transport modes will alter and assuming all other input variables equal. The 
details of these modifications and the results of the simulations are discussed subsequently. 

 
3.2 Implementation 

 
3.2.1 Basic Algorithm 
This section will describe the development of the learning model which is taken into consideration in this 
paper. As stated above, the initial program is based on the algorithm developed by Janssens (22) and 
contains only two possible actions: stay (the current activity will be executed for one more time unit) or 
move to the next state (for which all dimensions are predefined in the fixed activity sequence). 

The main loop of this program, which constitutes the core of the learning process, looks as 
follows: 

 
For i = 0 to I do 

o Determine a random state s (i.e. decide on activity, starting time, duration, location) 
o For j = 0 to J do 

 Determine whether to explore or to exploit 
 If explore: 

• Determine a random action a (i.e. stay or move) 
• In case of “MOVE”: determine a random location at which to perform 

the next activity 
 If exploit: 

• Determine the best possible action a based on current “knowledge” of 
the system (i.e. stay or move) 

• In the case of “MOVE”: determine the best location at which to perform 
the next activity 

 Determine the next state s’ (i.e. calculate activity, starting time, duration, 
location) 

 Calculate the reward R(s,a) of this action 
 Calculate the Q-value Q(s,a) of this action 
 Update the table containing the Q-values 

where 
I = the number of iterations within the leaning process 
J = the number of successive actions within each iteration 

 
As one can notice, this learning process contains most components discussed in the second 

section of this paper. The most notable element covers the incorporation of the trade-off between 
exploration and exploitation: each learning iteration starts by determining whether to explore the possible 
action space or to exploit current knowledge. In this algorithm, exploring is equivalent to deciding 
randomly either to stay or to move. Exploiting, on the other hand, signifies selecting both the action (stay 
or move) and corresponding location (in case of “move”) that yields the currently best Q-value, given the 
current state s. 

 
3.2.2 Releasing the Predefined Sequence 
The main goal of this study consists of eliminating the fixed sequence of activities which is specified in 
advance. It is thus necessary to enable the algorithm to determine the activity schedule entirely 
autonomously. To reach this aim it is necessary to extend the action space A(s) in every state s. Opposed 
to previous models, the action set A(s) will no longer consist of the actions stay or move, but each action 
will correspond to one of the fifteen possible activities. For instance, choosing action 0 stands for 
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performing activity 0 or “in home work or study”, or selecting action 1 signifies executing activity 1 or 
“bring or get persons or goods”. 

Moreover, because travel was incorporated in the fixed activity pattern of previous models, the 
travel mode used to travel from one activity location to the next was also fixed beforehand. In order to get 
rid of the predefined structure, the travel component thus needs to be detached as well. In addition, the 
transport mode is supposed to be interrelated with activity location. For example, to reach a location 
within 1 km from home people will often prefer to use a slow transport mode, such as walking or going 
by bike. To get to a location at 100 km from home, people will presumably choose to go by car or public 
transportation. Bearing this in mind and given the fact that various authors seem to disagree about 
whether location choice or choice of transport mode needs to be selected first, these two choice facets are 
combined into one single decision. Consequently an agent will decide on these two aspect 
simultaneously. (1)(25)(26)(27)  

 
3.2.3 Incorporating Constraints 
Another major change in the algorithm compromises the implementation of temporal constraints, such as 
the incorporation of opening hours of shops and leisure locations, and the definition of time windows for 
working, social activities, home activities and the like. These constraints are built into the application in 
order to limit the available choice set A(s) in each state s. Indeed, a problem which is now likely to occur 
because the sequence is no longer predefined in advance is that the algorithm may generate unrealistic 
activity-patterns. For instance, the activity “Daily shopping” is unlikely to occur since regular shops are 
probably shut at 3 am. Therefore, the action set may for instance only consists of the activity “Sleeping” 
for this time window. Other examples are: for 9 am the action set may only consists of the activities “in 
home work or study” and “out of home work or study” given that the agent has to execute the compulsory 
activity “work or study” between 9 am and noon and between 1 pm and 5 pm. However, after 5 pm the 
agent is allowed to perform all activities except for the activity “Sleeping”. For the time being, the action 
set is supposed to depend solely on the time of the day. Other dimensions have not yet been taken into 
account while determining the limited action space.  

Having introduced these modifications, the main iteration of the learning process can be written 
as follows: 

 
For i = 0 to I do 

o Determine a random state s (i.e. decide on activity, starting time, duration, location) 
o For j = 0 to J do 

 Determine the possible action set A(s) 
 Determine whether to explore or to exploit 
 If explore: 

• Determine a random action a 
• Determine the activity belonging to action a 
• Determine a random location at which to perform this activity and 

determine which transport mode to reach this location (i.c. only one 
decision) 

 If exploit: 
• Determine the best possible action a (based on current “knowledge” of 

the system 
• Determine the activity belonging to action a 
• Determine the best location at which to perform this activity and 

determine which transport mode to reach this location (i.c. only one 
decision) 

 Determine the next state s’ (i.e. calculate activity, starting time, duration, 
location) 
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 Calculate the reward R(s,a) of this action 
 Calculate the Q-value Q(s,a) of this action 
 Update the table containing the Q-values 

 
where 

I = the number of iterations within the leaning process 
J = the number of successive actions within each iteration 

 
The careful reader will notice the following differences. Firstly, the agent needs to determine the 

possible action set A(s). After all, when this action set consist of only one activity, the agent is not able to 
choose between the different actions and is thus obliged to perform this activity. In the next step and 
similar to the original model, the agent decides on whether to explore or exploit. In both cases, the agent 
has to select an action (activity) from the action space A(s) determined beforehand. Subsequently, the 
agent makes the dual choice of at which location to perform the selected activity and which transport 
mode to use to travel to this activity location. It should be mentioned that - at present - each location can 
only be reached by only one transport mode. However, these choice combinations will certainly be 
extended in the near future. The final calculations of the original learning process remain the same. 

 
3.2.4 Introduction of Key Events 
The final advancement of the current study includes the possibility of simulating the occurrence of a key 
event. More specifically, the present program allows generating different activity-travel patterns before 
and after a certain point in time. The key event introduced here grasps the occasion in which an individual 
obtains his driving license. In this study, this key event is believed to change the set of available transport 
modes, causing locations, which could previously only be reached by car (as passenger) or by public 
transportation, to be paired to the transport mode “car (as driver)”. For example, suppose a certain 
location is situated at 100 km away from the home location and, in addition, this location cannot be 
reached within an acceptable time window using public transportation. Given the fact that the individual 
does not possess a driving license, the only way to get to this location is asking someone else to take him 
(car as passenger). After obtaining his driving license, the individual will be able to make it to this 
location independently by car (car as driver). 

Within this study, the above effect is presumed to happen under ceteris paribus assumption: the 
effect is therefore assumed to be the only consequence of this key event, no other alterations concerning 
activity or travel dimensions are supposed. The goal is thus to check whether the algorithm responds to 
such changes through the generation of a different activity-travel schedule. The actual impact of a key 
event on the daily activity-travel pattern may be recorded in the near future for instance by means of a 
revealed preference experiment. 

 
4 EMPIRICAL SECTION  
 
4.1. Results 
After having implemented and tested above described alterations, a first run of this program produces the 
following activity-travel scheme. 
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TABLE 1 Activity Pattern of Run 1 Before the Occurrence of the Key Event 
Activity  Starttime Finishing 

time 
LocationID Transport mode to 

next location 
Sleeping 3:00 7:00 82 Bike 
Bring or get persons or goods 7:00 7:15 93 Bike 
Daily shopping 8:00 8:30 36 Bike 
In home work or study 9:15 11:45 82 Public transportation 
Out of home work or study 12:45 14:30 29 Bike 
In home work or study 15:30 17:00 82 Bike 
Eating or drinking 17:00 17:30 33  
Non-daily or window shopping 17:30 18:00 33  
Eating or drinking 18:00 18:30 33 Bike 
In home leisure 19:00 19:45 82  
In home non-leisure 19:45 21:00 82  
In home leisure 21:00 22:30 82  
In home non-leisure 22:30 23:00 82  
In home leisure 23:00 23:15 82 Car as passenger 
Other 1:00 1:15 22 Bike 
Sleeping 3:00 7:00 82  

 
Some explanation is required while interpreting table 1. The major difference compared to the 

founding model, is the increased amount of variation which seems to appear in above activity-travel 
pattern. This variation is the main result of allowing the algorithm to select the activity sequence 
autonomously. Future research will compare such activity-travel schedules to real-data activity-travel 
patterns in order to determine whether this algorithm produces more realistic schemes than the founding 
model. 

Apart from that, one can see that the activities “Sleeping”, “In home work or study”, “In home 
leisure”, “In home non-leisure” all take place at the home location of this agent: location 82. The home 
location is linked to the transport mode “Bike”, regardless of the transport modes employed to reach 
previous locations. This observation states the most unfavorable consequence of coupling of the decisions 
concerning activity location and transport mode: the algorithm is not able to incorporate efficient use of 
transport modes, including trip chaining, into the activity-travel pattern. To solve this issue, future 
researches will separate the choice aspects location and transport mode. 

Furthermore, in order to determine the starting time of the next activity, the agent calculates 
travel times between two locations while drawing up the optimal daily schedule. Apart from that, one can 
see that the agent complies with the postulated constraints. For example, the compulsory activity “work or 
study” mainly happens between 9 am and noon and 1 pm and 5 pm, and “sleeping” occurs before 7 am. 
Moreover looking at the activities “Daily shopping” and “Non-daily or window shopping”, it can be 
confirmed that the agent also respects the opening hours of shops (between 7 am and 6 pm for “Daily 
shopping” and 9 am and 6 pm for “Non-daily or window shopping”). 

The second run of the program, incorporates the changes due to the occurrence of the key event 
“obtaining a driving license”, results in the following activity pattern. 
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TABLE 2 Activity Pattern of Run 2 After the Occurrence of the Key Event 
Activity  Starttime Finishing 

time 
LocationID Transport mode to 

next location 
Sleeping 3:00 7:00 82 Car as driver 
Daily shopping 7:00 7:30 2  
Bring or get persons of goods 7:30 8:00 2 Car as driver 
Out of home work or study 8:15 12:00 29 Car as driver 
Bring or get persons of goods 12:15 12:45 5 Car as driver 
Medical visits 13:00 13:15 0 Car as driver 
Out of home work or study 13:30 16:00 29 Car as driver 
In home work or study 16:15 17:15 82 Bike 
Eating or drinking 17:30 20:45 41 Bike 
Out of home non-leisure 21:00 22:00 33 Car as driver 
Other 22:15 22:45 58 Car as driver 
In home leisure 23:00 0:00 82 Car as driver 
Sleeping 0:00 7:00 82   

 
Comparing these two patterns, one will notice that some differences exist. For example, the 

location of the activity “Daily shopping” has changed from location 36 to location 2, which is further 
away from home compared to location 36, but which can be reached faster by car (as driver) than location 
36 by bike. In addition the duration of some activities, such as “Bring or get persons or goods”, has 
altered, or new activities turn out to be profitable, e.g. “Medical visits”. Another change which attracts 
attention is the sequence in which the activities occur: the activities “Daily shopping” and “Bring or get 
persons or goods” executed in the morning switched places in the sequence. 

 
4.2 Validation 
For the sake of quantifying the difference of the two runs, the distance between the resulting activity 
schemes can be calculated using the DANA-tool (Dissimilarity ANalysis of Activity-travel patterns) 
developed by C.H. Joh, T.A. Arentze and H.J.P. Timmermans (28). The distance between two activity 
patterns reflects the similarity of these activity patterns: the lower the distance measure, the more the 
sequences are alike. (29) The distance measure, which will be applied in the current study, is based on a 
method called SAM (Sequence Alignment Methods) determined in Joh, et al. (28). The distance measure 
produced by SAM indicates how much effort was needed to transform one sequence into the other one. 
The higher the SAM-score, the more maneuvers (inserting, deleting or reordering of activities) were 
performed in order to equalize the patterns and thus the less similar the sequences are. 

Furthermore, to confirm whether the distance between the two initial runs cannot only be 
assigned to random variation, these runs are repeated 100 times. Subsequently all of the resulting 200 
activity-travel schedules are mutually compared using the SAM-distance measures.  

The outcomes of these calculations are assigned to one of two classes. Class 0 consists of the 
cases for which the comparison is made between activity patterns of the same group: every activity 
scheme of the first batch (before the key event) is compared to every other activity scheme of this batch. 
As such, every activity pattern of the second batch (after the occurrence of the key event) is put aside 
every activity pattern of the second batch. Class 0 contains 9.900 observations (2*(100*99/2)). Class 1 
compromises all cases reflecting the comparisons between activity patterns of different groups: for every 
activity scheme of the first batch the distance to every activity scheme of the second batch is calculated. 
This class contains 10.000 cases (100*100). 

An overview of the basic statistics is included on page 13. The average SAM-distance between 
two activity patterns of the same batch equals 66, while the average SAM-distance between two activity 
patterns of different batches runs up to 100.  
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Based on these numbers, one could now deduce that the activity-travel schedules generated by the 
two runs are divergent, as the average distance between schemes of the two different runs exceeds the 
average distance between patterns within one run. However, these basic statistics do not reveal the 
suggested conclusion just like that. After all, the key question is: do these activity patterns significantly 
differ? Or reformulating this problem the question remains: do the distances in class 0 significantly differ 
from the distances in class 1? In this case, a t-test is applied to verify whether the differences between 
populations (i.c. class 0 and class 1) are meaningful or whether these dissimilarities can be attributed to 
randomness of the data. Employing a t-test forces formulating a null hypothesis and alternative hypothesis 
of the problem: 

 
100 : µµ =H  

100 : µµ ≠H  
 
where  

0µ is the mean of distance in class 0, 

1µ is the mean of distance in class 1. 
 
However, before answering the key question, some additional checks need to be performed. 

Firstly, the assumption of normality of the data is met, based on the central limit theorem as both groups 
in the sample contain more than 50 cases. Secondly Levene’s test for equal variances has to be executed. 
As shown below it is not possible to assume equal variances. At last a t-test for equality of means is 
carried out, which unveils that the null hypothesis of equal means between the two classes can be 
rejected. The initial impression that the activity pattern before the key event differs from the activity 
scheme after the key event, is hereby confirmed. 

 



Vanhulsel, Janssens and Wets 

 

13

TABLE 3 Some Basic Statistics 
 
T-Test 
 Group Statistics 
 

  Class_2 N Mean Std. Deviation 
Std. Error 

Mean 
Distance_DPSAM 0 9900 65,9248 18,61836 ,18712
  1 10000 100,1830 16,05278 ,16053

 
 Independent Samples Test 
 

Levene's Test for 
Equality of Variances t-test for Equality of Means 

95% Confidence 
Interval of the 

Difference 

  F Sig. t df Sig. (2-tailed) 
Mean 

Difference 
Std. Error 
Difference Lower Upper 

Equal variances 
assumed 247,923 ,000 -139,057 19898 ,000 -34,25815 ,24636 -34,74104 -33,77526 

Distance_DPSAM 

Equal variances 
not assumed   -138,954 19418,562 ,000 -34,25815 ,24654 -34,74140 -33,77491 

: 
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4 FUTURE RESEARCH  
 

The reward table of above described algorithm solely takes into account the current state s of the 
system and the action a taken. These reward tables can be substituted by reward functions or utility 
functions which include more parameters when determining the utility of an action. As such, apart 
from the starting time and the duration of the activity, the activity location, the position of the activity 
within the activity schedule and the activity history are also incorporated in these utility functions. (30) 
Moreover, such utility functions allow generating activity patterns based on socio-demographical data. 

In addition, it can be useful to improve the learning algorithm through the substitution of the 
deterministic action set by a probabilistic one, signifying that - given a certain state - certain actions 
will be selected more likely than other (feasible) actions within the (limited) action set. This 
improvement will partly replace the constraints currently implemented in the algorithm. 

As illustrated in this research, the impact of a key event on the activity-travel pattern can be 
reproduced. The effect of such events can be extended by introducing simultaneously changes to the 
reward table, the available action set in each state, the available transport modes, the available 
locations for each activity or the travel time tables for each transport mode and each location pair. This 
way also the effect of modifications in the environment, for example altering opening hours of shops 
of public authorities, or a change in availability or travel times of public transportation, can be 
simulated. Additionally, to serve the purpose of short-term, within-day rescheduling, the effect of 
unexpected events occurring during the execution of the daily activity schedule can be simulated as 
well. 

Finally, the result of such micro-simulations, differentiated according to socio-demographical 
profiles, will be compared to real-data activity patterns extracted from activity-travel diaries, using the 
distance measure applied in this recent study. When this can be established, methodologies like the 
one advanced in this paper have the potential to be used as the founding learning algorithm for micro-
simulation in dynamic activity-based transportation models. 

 
 

5 CONCLUSIONS 
 

This paper proposes an extended framework of learning activity-travel schedules based on 
reinforcement learning. The basis of the program was already developed by Janssens (22). The most 
important modification to this program consists of enabling the algorithm to determine the activity-
travel sequence autonomously, for the basis program was founded on a fixed, predefined order of 
activities. In addition to this, the transport mode used to travel from one location to the next, needed to 
be detached from this fixed sequence as well. Therefore this component is paired to the choice aspect 
location. Consequently, in order to generate feasible activity-travel patterns the algorithm applied in 
this research includes time constraints. Examples of such constraints are: opening hours of shops and 
limiting the set of possible activities for a certain point in time. As the results show, the produced 
activity-travel sequences contain more variation. 

In addition to these changes, the algorithm allows simulating the impact of a key event on the 
development of an activity-travel schedule. The key event taken into consideration in this research is 
“obtaining one’s driving license”. This event is assumed to alter only the availability of transport 
modes. When comparing the generated activity-travel sequences before and after the occurrence of 
this key event, one can detect differences between these two sequences. Aiming at estimating these 
dissimilarities numerically, the distance between these sequences is calculated using a SAM-measure. 
For reasons of validation, the two runs are repeated 100 times. Subsequently, the distances between 
each sequence of every run are determined. Approaching these distances statistically, one can 
conclude that the algorithm is able to simulate the effect of the key event by generating different 
activity-travel patterns based on the alterations in the input (i.c. available transport modes). 

 
 



Vanhulsel, Janssens and Wets 

 

15

REFERENCES 
 

(1) Arentze, T.A. and H.J.P. Timmermans. A Learning-Based Transportation Oriented Simulation 
System. Transportation Research Part B: Methodological, Vol. 38, No. 7, 2004, pp.613-633. 

 
(2) Arentze, T. and H. Timmermans. Modeling Learning and Adaptation in Transportation 

Contexts. Transportmetrica, Vol. 1, No. 1 - Special issue: Some Recent Advances in 
Transportation Studies, 2005, pp.13-22. 

 
(3) Charypar, D., P. Graf and K. Nagel. Q-Learning for Flexible Learning of Daily Activity Plans. 

Proceedings of the 4th Swiss Transport Research Conference (STRC), Monte Verità, Ascona, 
Czechoslovakia, 2004. 

 
(4) Charypar, D. and K. Nagel. Generating Complete All-Day Activity Plans with Genetic 

Algorithms. Transportation, Vol. 32, No. 4, 2005, pp. 269-397. 
 
(5) Ettema, D. and H. Timmermans. Activity-Based Approaches to Travel Analysis. Elsevier 

Science Ltd, Oxford, UK, 1997, 1st edition. 
 
(6) Vovsha, P., M. Bradley and J.L. Bowman. Activity-Based Travel Forecasting in the United 

States: Progress since 1995 and Prospects for the Future. Proceedings of the Conference on 
Progress in Activity-Based Models, Maastricht, The Netherlands, 2004. 

 
(7) Bhat, C.R., J.Y. Guo, S. Srinivasan and A. Sivakumar. A Comprehensive Micro-Simulator for 

Daily Activity-Travel Patterns. Proceedings of the Conference on Progress in Activity-Based 
Models, Maastricht, The Netherlands, 2004. 

 
(8) Pendyala, R.M., R. Kitamura, A. Kikuchi, T. Yamamoto and S. Fujji. FAMOS: Florida Activity 

Mobility Simulator. Proceedings of the 84th Annual Meeting of the Transportation Research 
Board, Washington D.C., 2005. 

 
(9) Arentze, T.A. and H.J.P . Timmermans. Albatross 2: A Learning-Based Transportation Oriented 

Simulation System. European Institute of Retailing and Services Studies. Eindhoven, The 
Netherlands, 2005. 

 
(10) Timmermans, H., T. Arentze, M. Dijst, E. Dugundji C.-H., Joh, L. Kapoen, S. Krijgsman, K. 

Maat and J. Veldhuisen. Amadeus: A Framework for Developing a Dynamic Multi-Agent, 
Multi-Period Activity-Based Micro-Simulation Model of Travel Demand. Paper presented at the 
81st Annual Meeting of the Transportation Research Board, Washington DC, 2002. 

 
(11) Arentze, T.A., H.J.P. Timmermans, D. Janssens and G. Wets. Modeling Short-Term Dynamics 

in Activity-Travel Patterns: from Aurora to Feathers. Paper presented at the Innovations in 
Travel Modeling conference, Austin, Texas, 2006.  

 
(12) Arentze, T.A. and H.J.P. Timmermans. A Theoretical Framework for Modeling Activity-Travel 

Scheduling Decisions in Non-Stationary Environments under Conditions of Uncertainty and 
Learning. In: Proceedings International Conference on Activity-Based Analysis, Maastricht, 
The Netherlands, 2004. 

 
(13) Arentze, T.A. and H.J.P. Timmermans. A Cognitive Agent-Based Simulation Framework for 

Dynamic Activity-Travel Scheduling Decisions. In: Proceedings Knowledge, Planning and 
Integrated Spatial Analysis, LISTA, 2005. 

 



Vanhulsel, Janssens and Wets 

 

16

(14) Joh, C.-H., T.A. Arentze and H.J.P. Timmermans. Understanding Activity Scheduling and 
Rescheduling Behavior: Theory and Numerical Simulation. In B. Boots, et al. (eds.), Modeling 
Geographical Systems. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003, pp. 
73-95. 

 
(15) Joh, C.-H., T.A. Arentze and H.J.P. Timmermans. Activity-Travel Rescheduling Decisions: 

Empirical Estimation of the Aurora Model. Transportation Research Record, Vol. 1898, 2004, 
pp. 10-18. 

 
(16) Arentze, T.A. and H.J.P. Timmermans. Modeling Learning and Adaptation Processes in 

Activity-Travel Choice. Transportation, Vol. 30, No. 1, 2003, pp.37-62. 
 
(17) van der Waerden, P. and H. Timmermans. Key Events and Critical Incidents Influencing 

Transport Mode Choice Switching Behavior: An Exploratory Study. Proceedings of the 82nd 
Annual Research Board Meeting, Washington DC, 2003. 

 
(18) van der Waerden, P., H. Timmermans and A. Borgers. The Influence of Key Events and Critical 

Incidents on Transport Mode Choice Switching Behavior: a Descriptive Analysis. Proceedings 
of the 10th International Conference on Travel Behavior Research, Lucerne, Swiss, 2003. 

 
(19) Janssens, D., Y. Lan, G. Wets and G. Chen. Optimizing activity-travel sequences by means of 

reinforcement learning. BIVEC-GIBET Transport Research Day, Diepenbeek, Belgium, 2005, 
pp. 259-277. Also in: Allocating Time and Location Information to Activity-Travel Patterns 
through Reinforcement Learning, Proceedings of the International Association for Travel 
Behaviour Research, Kyoto, Japan, 2006, to appear.  

 
(20) Kaelbing, L.P., M.L. Littman and A.W. Moore. Reinforcement Learning: A Survey. Journal of 

Artificial Intelligence Research, Vol. 4, 1996, pp. 237-285. 
 
(21) Sutton, R.S. and A.G. Barto. Reinforcement Learning: An Introduction. The MIT Press, HTML-

version:http://www.cs.ualberta.ca/~sutton/book/ebook/the-book.html,Cambridge,Massachusetts, 
USA/London, England, 1998. 

 
(22) Janssens, D. Calibrating Unsupervised Machine Learning Algorithms for the Prediciton of 

Activity-Travel Patterns. Doctoral dissertation, Hasselt University, Faculty of Applied 
Economics, Belgium, 2005. 

 
(23) Watkins, C.J.C.H. Learning from delayed rewards. Ph.D. Thesis, King's College, Cambridge, 

1989. 
 
(24) Watkins, C. and P. Dayan. Technical note: Q-learning. Machine Learning, 8, 1992, pp. 279-292. 
 
(25) Bowman, J.L. and M.E. Ben-Akiva. Activity-Based Disaggregate Travel Demand Model 

System with Activity Schedules. Transportation Research Part A: Policy and Practice, Vol. 35, 
No. 1, 2000, pp. 1-28 

 
(26) Dong, X., M.E. Ben-Akiva, J.L. Bowman and J.L. Walker. Moving from Trip-Based to 

Activity-Based Measures of Accessibility. Transportation Research Part A: Policy and 
Practice, Vol. 40, No. 2 , 2006, pp. 163-180. 

 
(27) Algers, S., J. Eliasson and L.-G. Mattsson. Activity-Based Model Development to Support 

Transport Planning in the Stockholm Region. Presented at the 5th Workshop of the TLE 
Network, Nynäshamn, 2001. 

 



Vanhulsel, Janssens and Wets 

 

17

(28) Joh, C.-H. T.A. Arentze & H.J.P. Timmermans. Pattern Recognition in Complex Activity-
Travel Patterns: A Comparison of Euclidean Distance, Signal Processing Theoretical, and 
Multidimensional Sequence Alignment Methods”, Presented at the 80th Annual Meeting of the 
Transportation Research Board, Washington D.C., USA, 2001. 

 
(29) Hay, B., G. Wets and K. Vanhoof. Clustering Navigation Patterns on a Website Using a 

Sequence Alignment Method. Intelligent Techniques for Web Personalization: 17th 
International Joint Conference on Artificial Intelligence, Seattle, WA, USA, 2001, pp. 1-6. 

 
(30) van Bladel, K., T. Bellemans, G. Wets, T. Arentze and H. Timmermans. Fitting S-Shaped 

Activity Utility Functions Based on Stated Preference Data. Proceedings of the 11th 
International Conference on Travel Behavior Research, Kyoto, Japan, 2006. 


