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Abstract. We propose a technique for gloss and normal map acquisitifines
scale specular surface details, or mesostructure. Our guaihis to provide an
efficient, easily applicable, but sufficiently accurate nogkto acquire mesostruc-
tures. We therefore employ a setup consisting of inexpereid accessible com-
ponents, including a regular computer screen and a digitatamera. We ex-
tend the Gray code based normal map acquisition approactantken et al. [1]
which utilizes a similar setup. The quality of the origina¢tinod is retained and
without requiring any extra input data we are able to extpactpixel glossiness
information. In the paper we show the theoretical backgdooithe method as
well as results on real-world specular mesostructures.

1 Introduction

During the last few decades, computers have become inogdasmportant for per-
forming a wide variety of tasks. One of these tasks is geimgratmages of virtual
scenes. Nowadays convincing rendering techniques aréedgdpl many applications
such as computer games. Even photo-realistic images caanseajed offline, for ex-
ample to be used in movies. Therefore fast and/or accuratiermg techniques have
been developed, approximating or accurately simulatiedight transport within the
virtual world.

However, even if light interaction could be simulated in ggibally correct manner,
scene data still has to be provided in the form of a 3D modehdfinput scene data
does not contain small-scale surface details such as kemtiomperfections, etc, the
scene will probably be judged as unrealistic. Hence, m&nhuabddeling the world in
such a level of detail can be a tedious task, suggesting atiwB8D scanning methods.

Throughout the years, many techniques have been proposiditiae the world
around us. These techniques typically capture either thigga in the scene, (b) the
geometry, or (c) the reflectance properties, or any comioinaln this paper we will
mainly focus on capturing the reflectance properties, aljhove extend a fine-scale
geometry acquisition system.

Even though several techniques already exist for scanmifigctance properties
as well as fine-scale geometry, users tend to stick to thefruadaapproach. One of
the reasons for this is the complexity of currently avaiatilethods. Many approaches
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require special purpose setups containing exotic hardegangonents, time consuming
calibration procedures, difficult implementations andsigag procedures etc.

In this paper the goal is to make small-scale appearancesiiguavailable to the
public, bridging the gap between current research andipghctsage. This is achieved
by presenting aefficient easy to implemerdapproach, employing solelyff-the-shelf
hardware componentsonsisting of a regular still camera and a computer screan th
functions as a planar illuminant.

2 Related Work

In this related work section we will distinguish between fswle geometry acquisition
and reflectance acquisition.

2.1 Fine-scale Geometry

Several techniques have been introduced specifically fmvering small-scale sur-
face details, in the form of relief (height) maps or normalpsiaassuming various
types of materials [2-5]. The majority of these methods iregua specialized hard-
ware setup [6—10], have long acquisition/processing tifiés12] or are not able to
scan specular surfaces [2, 3]. In our work we will use a diighdapted version of the
Gray code based approach of Francken et al. [1], employirmgeses-camera setup as
acquistion setup. Because of the use of a planar illuminaeiGray codes, fine-scale
specular surface geometry can accurately be measuredargingp to 40 inputimages.

2.2 Reflectance

Acquiring spatially varying reflectance usually requiresoanplicated hardware setup,
which measures the Bidirectional Reflectance Distribufiomction (BRDF) [13] at
each spatial location. This is a four dimensional functiesatibing the surface’s re-
sponse given the exitant (light) and incident (observatdirection. Our method is
much simpler and cheaper. Even though we assume a simplift@FBmodel, our
technique is able to reproduce the mesostructure’s appeafaithfully.

Numerous representations exist for storing either modaiedptured BRDFs [14—
17]. As storing individual data samples of densely samplB®DBs is memory ineffi-
cient, often approximating models are fitted through thgdatata collection. This is
either achieved by fitting an analytical model [18—-22], avjpcting the data to poly-
nomial [23, 6], spherical harmonics [24—26] or wavelet Isd27, 28]. For the sake of
simplicity as well as compatibility with known tools, in omwork we will employ a
simple analytical Phong model [29] where the glossinesgfsasented by a single
exponent parameter.

Previous methods tend to focus mainly on improving BRDF ityyadnd less on
acquisition speed and practical usability for a large obdisssers. Often very specialized
setups or long and tedious procedures are required. As ws fatincreasing the wide
applicabily rather than improving the quality of recent BRMethods, an approximate
glossiness acquisition suffices for our purposes.
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(a) The digital still camera captures light (b) A screen modeled as a rectangular win-
emitted by the screen and reflected off a dow on virtual surrounding hemispherical
specular/glossy mesostructure. light source.

Fig. 1. Setup.

The most closely related approach was presented by Ghokf3t]JaThey estimate
roughness as well as anisotropy from second order spheriadient illumination. In
their approach they make use of a specialized hardware.datopr work we take an
alternative approach as we want to avoid non-trivial hardvegtups. We achieve this
by using a screen-camera setup consisting of off-the-gmelfomnipresent hardware
components.

In our work, we start from an existing Gray code based mescistre acquisition
system [1] and show that glossiness information can easilgxtracted from the al-
ready available data necessary for shape reconstructienofiginal method only has
to be slightly modified by replacing the polarization baspdcsilar-diffuse separation
with the use of pattern complements instead. No extra datagigired, and besides
LCD screens, also non-polarization based illuminants sscBRT screens can now be
employed.

3 Setup

The proposed setup consists of a digital still camera thaeseas light sensor and a
computer screen that serves as planar illuminant (Fig. djre@t digital still cameras
are relatively inexpensive and are able to accurately nmedigint reflections. LCD as
well as CRT computer screens are also inexpensive and oeseiptmaking it an ideal
controllable light source.

In order to turn a screen-camera setup into a mesostruatguasition setup, a geo-
metric calibration step is required to relate 2D screenlpit@3D location with respect
to the camera. As the screen is not directly visible to thearagma spherical mirror is
employed for the geometrical calibration [31]. To find theemmal camera parameters
and the mesostructure’s supporting plane, we use a staandlindation toolbox which
makes use of a checkerboard pattern [32]. Radiometricradiim, which relates emit-
ted and captured light intensities, is not essential as weausing binary (Gray code)
illumination patterns.
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4 Acquiring Surface Normals and Gloss

Acquiring local surface orientation and glossiness is e by placing the target
objectin front of a CRT or LCD monitor which acts as a light szmej and recording the
corresponding images using a camera. As in the normal mapsitdon technique [1],
we display stepwise refining vertical and horizontal Gragecpatterns. We also display
each pattern’s complementin order to robustly separdiesgifrom specular reflection.
The specular reflections then efficiently encode discredéiascreen coordinates in a
bit-wise fashion. In a geometrically calibrated setups tillows for estimating the ideal
reflection direction for each pixel. This enables us to estarthe surface normai
by taking the halfway vector between the reflection veetand viewing vectow, as
depicted in Fig. 1 (a). In this section, we will extend thistgm by performing an
additional glossiness analysis step.

4.1 Overview

In order to extract glossiness information from the recdnaesostructure taken under
Gray code illumination, we require some additional illuation patterns. More specifi-
cally, complements of the original Gray code patterns aredluced. Fortunately, these
render the use of polarization based separation redundahiesnumber of required
patterns does not increase. This is due to the fact that Epdaghlights are consid-
ered much stronger than diffuse reflections [33, 11] and dertmnary decision (white
or black reflection) can robustly be made by comparing thelpitluminated by the
pattern and the pattern’s complement.

As indicated by the grey area in Fig. 2 (b), after a certain lpeinof pattern refine-
ments, no extra information will be gained as the intensffigcences between reflected
patterns and their complements will converge to zero. \Wé/aaghis convergence pro-
cess to obtain glossiness information. Without requiridditonal input images, we are
now able to obtain a per pixel shininess coefficient as wedl aigrface normal.

The more pattern refinements that can be discerned, the pecalar the material
will be, and vice versa. This is the case because glossy tiefischblur the reflected
incoming light pattern. More precisely, the reflected patte convolved with a BRDF
kernel around the ideal reflection direction [34]. The numbierefinements thus is
proportional to the shininess of the material. The size érowness) and shape of the
kernel is defined by the specular lobe of the BRDF. For the si&inplicity as well as
compatibility with known tools, we assume a Phong reflectimdel. This symmetric
lobe is then described by a single exponent valwehich is stored in the gloss map.

4.2 Theory

We will now formalize the concept proposed in the previoudisa. Therefore a model
will be built that describes the captured radiahosf an imaged surface point, observed
from a directionw, illuminated by a given light patterR. The equation is given by:

L(v) = /QP(w) [Ri(w,n) + Rs(r,w,n)] dw (1)
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Fig. 2. Acquisition pipeline. (a) mesostructure, (b) intensitffetiences depending on the pattern
refinement level, (c) detected normal codes and Phong lsernel

The following assumptions are made before applying thisggn for determining
the gloss level:

Specular + diffuse: The imaged surface is assumed to be a combination of a specula
componentk,(r,w,n) and the diffuse componeit,;(w, n), wherew is the in-
coming light directiony the surface normal and the specular reflection vector
depending on the observation direction

Distant hemispherical illumination: The mesostructure is assumed to be a point in
front of the center of the screen, illuminated by a rectaagpéirt of the hemisphere
2 =[5 —0u,5 +0u] x[§ —on, 5+ 0on] (Fig.1 (b))

Inter-reflections and occlusions: Both inter-reflections as occlusions are ignored for
reasons of simplicity.

Under uniform illumination., whereP, (w) = 1 for each incoming light direction
w, the equation can be simplified.

Lu(v):/ Ry(w,n) dw+/ Rs(r,w,n) dw (2)
o) 2
— Lat Ly(v) ©)

As we use Gray code patterns, we will define the pattétrie terms of the pattern
refinement level. For each incoming light directian € (2, the patterrP; (w) is either
0 or 1. The precise pattern definition for vertical pattePisand horizontal patterng
are given in equation (4) and (5), whek ¢) € £2. Notice that the Gray code patterns
are basically modeled as a phase shift?df(the period) square wave in the vertical or
horizontal interva(F — o, & + o]. Each pattern refinement froitto 7 + 1 the frequency

S(i+1)—2

of the wave doubles alsg.l%—)2 =2.
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1 /2720 -Z+0,) 1 1
PP (w) = =W 2 - - 4
(W) =3 ( 20 +4>+2 “)

1 22(p—Z +op) 1 1

h _ = 2 - -
P (w) = 2@( Sor + 4> +3 (5)

The integer functior? is defined as

_J+1 ifz—|z] €]0,0.5)
v(w) = {—1 if x — |z] €0.5,1) (©)
Also the complements of the patterns need to be defined. Tieese&erred to as
P andeh.

P (w) =1— P?(w) (7)

PiMw) =1— P! (w) (8)

The captured radiance can now be modeled applying the predefinitions. The
remainder part of this section will focus on the use of hartabGray code patterns
only. However, an analogous derivation can be done foreadniatterns.

W<2i2(¢_%+ah) 1

L;(v) :% [Ld + Ls(v) +/ + Z) Ri(w,n) dw

Q 20
S (P03 +a) 1Y, ) ©
—i—/Q ( o +Z) s(r,w,n) w}

If the frequency of the patterins sufficiently large, the Lambertian term is approx-
imately zero, as shown by Lamond et al. [35]. The underlyeason for this is that
the Lambertian reflection can be seen as an applied low freyugonvolution filter
blurring away the high frequency pattern. Hence the follayfiorm can be obtained:

i—2 s
Li(v) = 1 [Ld—i—LS(v) +/ v (2 (@3 +on) + 1) Rs(r,w,n) dw} (10)
2 o 207, 4
When the pattern frequency is high compared to the size ofpleeular lobe, the
same holds for the specular term, meaning that it also cgegeo zero. Hence, the
wider the specular lobe, the faster this term convergesnn. 26 the same reasoning
applies for the pattern complemefi, the difference between the radiance of a scene
illuminated byP; andPF converges to zero after a certain pattern refinement fevel

[Li(w) — L) = 3 |+ La(w) — L — L(w)| = 0 an

Concretely, the smallest pattern numbéras to found, such that fall the sub-
sequent patterng > ¢ the intensity difference{sLj (v) — L§(v)| drop below a given
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Fig. 3. Relation between pattern refinement leivahd the gloss levet.

threshold (Fig. 2 (b)). Whehis found, it is converted into a corresponding Phong ker-
nel K (w) = cos™(w) (Fig. 2 (c)). Therefore we propose a simple heuristic whidtes

into account the following constraint: The surface aféff K (w)dw under the kernel
K has to halve if the assignédncreases one level. We have emperically established
that this relation can be well-approximated by a simple egmtial function:

n =401 (12)

This relation is illustrated in Fig. 3. Note we assignmealue when; = 0 as the
material is then meant to be perfectly diffuse.

Notice that this kernel fitting is approximate because ofithéed number of input
images we require and the reflection model we employ. Howeagare focus more on
the efficiency and easy applicability than on pure accuiitigields sufficiently precise
results, as can be seen in the next section.

5 Results and Discussion

We have created a proof of concept implementation of theritest procedure. The
setup we employed consists of a 19 inch LCD monitor and a CE@® 400D camera.
Experiments were done on different specular materialsidicg plastics, leather, met-
als, glass and polished marble. For all our results 40 inpages were recorded, 10 for
each direction plus their complements.

Results on real-world examples are illustrated in Fig. 4u@m (a) shows the ac-
quired normal maps stored in the red, green and blue colomehaColumn (b) con-
tains the gloss maps. The gloss values range from black tie vBiack values indicate
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(@ (b) (©)

Fig. 4. Results. (a) normal maps obtained from detected codes|d$8 ghaps containing Phong
exponents, (c) renderings.

diffuse reflections, white values represent highly speadfkections, and intermediate
grey values represent glossy reflections. The results sbowxample that different
metal coatings yield different gloss values (top row), thesg of the watch is more
specular than the plastics (middle row), and scratches®mw#ilet's hasp make it lo-
cally less specular (bottow row). However, also notice ia ilmage that self-shadowed
regions in the pores and grooves of the leather are mistak&dsified as non-specular
since the occlusion assumptions did not hold. Column (cjvshartual renderings of
the scanned surfaces under point light illumination, tgkimto account the displayed
normal and gloss maps as well as regular texture maps.

Besides inherent problems of the relief acquisition, sughight occlusions, the
main limitation is the small number of available per pixetgdes due to efficient binary
encoding. Only possible gloss levels can be distinguished using our tgdenivhere
p is the number of patterns used (in our case 10). In additiptha kernel width is
directly dependent on the exponentially decreasing peststripe width, only a few
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possible kernels can be assigned to diffuse materials. Aerk@mel size distribution
may be desirable in this case.

6 Conclusions

In this paper we showed how a straightforward extension ofeey Gode based normal
scanning can provide us with a very simple BRDF approxinmétighe form of a single
Phong exponent. However, taking into account these appiatei gloss maps in addi-
tion to traditional texture and normal maps tends to comaialg improve rerenderings
of heterogenous materials.

7 Future Work

Improvements are possible regarding the convolution kexpigroximations. Currently
we are looking into recovering more general BRDFs by addkigeand more optimal
patterns to allow for a more precise kernel fitting. Furth@renwe believe this work
can function as basis for an integrated normal map acquisitystem, where the type
of pattern/method depends on which mesostructure regrensracessed.
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