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Abstract. We propose a technique for gloss and normal map acquisition of fine-
scale specular surface details, or mesostructure. Our maingoal is to provide an
efficient, easily applicable, but sufficiently accurate method to acquire mesostruc-
tures. We therefore employ a setup consisting of inexpensive and accessible com-
ponents, including a regular computer screen and a digital still camera. We ex-
tend the Gray code based normal map acquisition approach of Francken et al. [1]
which utilizes a similar setup. The quality of the original method is retained and
without requiring any extra input data we are able to extractper pixel glossiness
information. In the paper we show the theoretical background of the method as
well as results on real-world specular mesostructures.

1 Introduction

During the last few decades, computers have become increasingly important for per-
forming a wide variety of tasks. One of these tasks is generating images of virtual
scenes. Nowadays convincing rendering techniques are applied in many applications
such as computer games. Even photo-realistic images can be generated offline, for ex-
ample to be used in movies. Therefore fast and/or accurate rendering techniques have
been developed, approximating or accurately simulating the light transport within the
virtual world.

However, even if light interaction could be simulated in a physically correct manner,
scene data still has to be provided in the form of a 3D model. Ifthe input scene data
does not contain small-scale surface details such as scratches, imperfections, etc, the
scene will probably be judged as unrealistic. Hence, manually modeling the world in
such a level of detail can be a tedious task, suggesting automatic 3D scanning methods.

Throughout the years, many techniques have been proposed todigitize the world
around us. These techniques typically capture either the (a) light in the scene, (b) the
geometry, or (c) the reflectance properties, or any combination. In this paper we will
mainly focus on capturing the reflectance properties, although we extend a fine-scale
geometry acquisition system.

Even though several techniques already exist for scanning reflectance properties
as well as fine-scale geometry, users tend to stick to their manual approach. One of
the reasons for this is the complexity of currently available methods. Many approaches
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require special purpose setups containing exotic hardwarecomponents, time consuming
calibration procedures, difficult implementations and scanning procedures etc.

In this paper the goal is to make small-scale appearance acquisition available to the
public, bridging the gap between current research and practical usage. This is achieved
by presenting anefficient, easy to implementapproach, employing solelyoff-the-shelf
hardware componentsconsisting of a regular still camera and a computer screen that
functions as a planar illuminant.

2 Related Work

In this related work section we will distinguish between fine-scale geometry acquisition
and reflectance acquisition.

2.1 Fine-scale Geometry

Several techniques have been introduced specifically for recovering small-scale sur-
face details, in the form of relief (height) maps or normal maps, assuming various
types of materials [2–5]. The majority of these methods requires a specialized hard-
ware setup [6–10], have long acquisition/processing times[11, 12] or are not able to
scan specular surfaces [2, 3]. In our work we will use a slightly adapted version of the
Gray code based approach of Francken et al. [1], employing a screen-camera setup as
acquistion setup. Because of the use of a planar illuminant and Gray codes, fine-scale
specular surface geometry can accurately be measured usingonly up to 40 input images.

2.2 Reflectance

Acquiring spatially varying reflectance usually requires acomplicated hardware setup,
which measures the Bidirectional Reflectance DistributionFunction (BRDF) [13] at
each spatial location. This is a four dimensional function describing the surface’s re-
sponse given the exitant (light) and incident (observation) direction. Our method is
much simpler and cheaper. Even though we assume a simplified BRDF model, our
technique is able to reproduce the mesostructure’s appearance faithfully.

Numerous representations exist for storing either modeledor captured BRDFs [14–
17]. As storing individual data samples of densely sampled BRDFs is memory ineffi-
cient, often approximating models are fitted through the large data collection. This is
either achieved by fitting an analytical model [18–22], or projecting the data to poly-
nomial [23, 6], spherical harmonics [24–26] or wavelet bases [27, 28]. For the sake of
simplicity as well as compatibility with known tools, in ourwork we will employ a
simple analytical Phong model [29] where the glossiness is represented by a single
exponent parameter.

Previous methods tend to focus mainly on improving BRDF quality, and less on
acquisition speed and practical usability for a large classof users. Often very specialized
setups or long and tedious procedures are required. As we focus on increasing the wide
applicabily rather than improving the quality of recent BRDF methods, an approximate
glossiness acquisition suffices for our purposes.
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(a) The digital still camera captures light
emitted by the screen and reflected off a
specular/glossy mesostructure.
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(b) A screen modeled as a rectangular win-
dow on virtual surrounding hemispherical
light source.

Fig. 1. Setup.

The most closely related approach was presented by Ghosh et al. [30]. They estimate
roughness as well as anisotropy from second order sphericalgradient illumination. In
their approach they make use of a specialized hardware setup. In our work we take an
alternative approach as we want to avoid non-trivial hardware setups. We achieve this
by using a screen-camera setup consisting of off-the-shelfand omnipresent hardware
components.

In our work, we start from an existing Gray code based mesostructure acquisition
system [1] and show that glossiness information can easily be extracted from the al-
ready available data necessary for shape reconstruction. The original method only has
to be slightly modified by replacing the polarization based specular-diffuse separation
with the use of pattern complements instead. No extra data isrequired, and besides
LCD screens, also non-polarization based illuminants suchas CRT screens can now be
employed.

3 Setup

The proposed setup consists of a digital still camera that serves as light sensor and a
computer screen that serves as planar illuminant (Fig. 1). Current digital still cameras
are relatively inexpensive and are able to accurately measure light reflections. LCD as
well as CRT computer screens are also inexpensive and omnipresent making it an ideal
controllable light source.

In order to turn a screen-camera setup into a mesostructure acquisition setup, a geo-
metric calibration step is required to relate 2D screen pixels to 3D location with respect
to the camera. As the screen is not directly visible to the camera, a spherical mirror is
employed for the geometrical calibration [31]. To find the internal camera parameters
and the mesostructure’s supporting plane, we use a standardcalibration toolbox which
makes use of a checkerboard pattern [32]. Radiometric calibration, which relates emit-
ted and captured light intensities, is not essential as we are using binary (Gray code)
illumination patterns.
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4 Acquiring Surface Normals and Gloss

Acquiring local surface orientation and glossiness is achieved by placing the target
object in front of a CRT or LCD monitor which acts as a light source, and recording the
corresponding images using a camera. As in the normal map acquisition technique [1],
we display stepwise refining vertical and horizontal Gray code patterns. We also display
each pattern’s complement in order to robustly separate diffuse from specular reflection.
The specular reflections then efficiently encode discrete spatial screen coordinates in a
bit-wise fashion. In a geometrically calibrated setup, this allows for estimating the ideal
reflection direction for each pixel. This enables us to estimate the surface normaln
by taking the halfway vector between the reflection vectorr and viewing vectorv, as
depicted in Fig. 1 (a). In this section, we will extend this system by performing an
additional glossiness analysis step.

4.1 Overview

In order to extract glossiness information from the recorded mesostructure taken under
Gray code illumination, we require some additional illumination patterns. More specifi-
cally, complements of the original Gray code patterns are introduced. Fortunately, these
render the use of polarization based separation redundant so the number of required
patterns does not increase. This is due to the fact that specular highlights are consid-
ered much stronger than diffuse reflections [33, 11] and hence a binary decision (white
or black reflection) can robustly be made by comparing the pixels illuminated by the
pattern and the pattern’s complement.

As indicated by the grey area in Fig. 2 (b), after a certain number of pattern refine-
ments, no extra information will be gained as the intensity differences between reflected
patterns and their complements will converge to zero. We analyze this convergence pro-
cess to obtain glossiness information. Without requiring additional input images, we are
now able to obtain a per pixel shininess coefficient as well asa surface normal.

The more pattern refinements that can be discerned, the more specular the material
will be, and vice versa. This is the case because glossy reflections blur the reflected
incoming light pattern. More precisely, the reflected pattern is convolved with a BRDF
kernel around the ideal reflection direction [34]. The number of refinements thus is
proportional to the shininess of the material. The size (or narrowness) and shape of the
kernel is defined by the specular lobe of the BRDF. For the sakeof simplicity as well as
compatibility with known tools, we assume a Phong reflectionmodel. This symmetric
lobe is then described by a single exponent valuen which is stored in the gloss map.

4.2 Theory

We will now formalize the concept proposed in the previous section. Therefore a model
will be built that describes the captured radianceL of an imaged surface point, observed
from a directionv, illuminated by a given light patternP . The equation is given by:

L(v) =

∫

Ω

P (ω) [Rd(ω, n) + Rs(r, ω, n)] dω (1)
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Fig. 2.Acquisition pipeline. (a) mesostructure, (b) intensity differences depending on the pattern
refinement level, (c) detected normal codes and Phong kernels.

The following assumptions are made before applying this equation for determining
the gloss level:

Specular + diffuse: The imaged surface is assumed to be a combination of a specular
componentRs(r, ω, n) and the diffuse componentRd(ω, n), whereω is the in-
coming light direction,n the surface normal andr the specular reflection vector
depending on the observation directionv.

Distant hemispherical illumination: The mesostructure is assumed to be a point in
front of the center of the screen, illuminated by a rectangular part of the hemisphere
Ω = [π

2 − σv,
π
2 + σv] × [π

2 − σh, π
2 + σh] (Fig.1 (b))

Inter-reflections and occlusions: Both inter-reflections as occlusions are ignored for
reasons of simplicity.

Under uniform illuminationu, wherePu(ω) = 1 for each incoming light direction
ω, the equation can be simplified.

Lu(v) =

∫

Ω

Rd(ω, n) dω +

∫

Ω

Rs(r, ω, n) dω (2)

= Ld + Ls(v) (3)

As we use Gray code patterns, we will define the patternsPi in terms of the pattern
refinement leveli. For each incoming light directionω ∈ Ω, the patternPi(ω) is either
0 or 1. The precise pattern definition for vertical patternsP v

i and horizontal patternsP h
i

are given in equation (4) and (5), where(θ, φ) ∈ Ω. Notice that the Gray code patterns
are basically modeled as a phase shifted (1

4 of the period) square wave in the vertical or
horizontal interval[π

2 −σ, π
2 +σ]. Each pattern refinement fromi to i+1 the frequency

of the wave doubles as
i(i+1)−2

ii−2
= 2.
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P v
i (ω) =

1

2
Ψ

(

2i−2(θ − π
2 + σv)

2σv
+

1

4

)

+
1

2
(4)

P h
i (ω) =

1

2
Ψ

(

2i−2(φ − π
2 + σh)

2σh
+

1

4

)

+
1

2
(5)

The integer functionΨ is defined as

Ψ(x) =

{

+1 if x − bxc ∈ [0, 0.5)
−1 if x − bxc ∈ [0.5, 1)

(6)

Also the complements of the patterns need to be defined. They are referred to as
P

c,v
i andP

c,h
i .

P
c,v
i (ω) = 1 − P v

i (ω) (7)

P
c,h
i (ω) = 1 − P h

i (ω) (8)

The captured radiance can now be modeled applying the previous definitions. The
remainder part of this section will focus on the use of horizontal Gray code patterns
only. However, an analogous derivation can be done for vertical patterns.

Li(v) =
1

2

[

Ld + Ls(v) +

∫

Ω

Ψ

(

2i−2(φ − π
2 + σh)

2σh
+

1

4

)

Rd(ω, n) dω

+

∫

Ω

Ψ

(

2i−2(φ − π
2 + σh)

2σh
+

1

4

)

Rs(r, ω, n) dω

]
(9)

If the frequency of the patterni is sufficiently large, the Lambertian term is approx-
imately zero, as shown by Lamond et al. [35]. The underlying reason for this is that
the Lambertian reflection can be seen as an applied low frequency convolution filter
blurring away the high frequency pattern. Hence the following form can be obtained:

Li(v) =
1

2

[

Ld + Ls(v) +

∫

Ω

Ψ

(

2i−2(φ − π
2 + σh)

2σh
+

1

4

)

Rs(r, ω, n) dω

]

(10)

When the pattern frequency is high compared to the size of thespecular lobe, the
same holds for the specular term, meaning that it also converges to zero. Hence, the
wider the specular lobe, the faster this term converges to zero. As the same reasoning
applies for the pattern complementP c

i , the difference between the radiance of a scene
illuminated byPi andP c

i converges to zero after a certain pattern refinement leveli:

|Li(v) − Lc
i (v)| =

1

2
|Ld + Ls(v) − Lc

d − Lc
s(v)| = 0 (11)

Concretely, the smallest pattern numberi has to found, such that forall the sub-
sequent patternsj ≥ i the intensity differences

∣

∣Lj(v) − Lc
j(v)

∣

∣ drop below a given
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Fig. 3. Relation between pattern refinement leveli and the gloss leveln.

threshold (Fig. 2 (b)). Wheni is found, it is converted into a corresponding Phong ker-
nelK(ω) = cosn(ω) (Fig. 2 (c)). Therefore we propose a simple heuristic which takes

into account the following constraint: The surface area
∫ π/2

0
K(ω)dω under the kernel

K has to halve if the assignedi increases one level. We have emperically established
that this relation can be well-approximated by a simple exponential function:

n = 4(i−1) (12)

This relation is illustrated in Fig. 3. Note we assign non value wheni = 0 as the
material is then meant to be perfectly diffuse.

Notice that this kernel fitting is approximate because of thelimited number of input
images we require and the reflection model we employ. However, as we focus more on
the efficiency and easy applicability than on pure accuracy,it yields sufficiently precise
results, as can be seen in the next section.

5 Results and Discussion

We have created a proof of concept implementation of the described procedure. The
setup we employed consists of a 19 inch LCD monitor and a CanonEOS 400D camera.
Experiments were done on different specular materials including plastics, leather, met-
als, glass and polished marble. For all our results 40 input images were recorded, 10 for
each direction plus their complements.

Results on real-world examples are illustrated in Fig. 4. Column (a) shows the ac-
quired normal maps stored in the red, green and blue color channel. Column (b) con-
tains the gloss maps. The gloss values range from black to white. Black values indicate
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(a) (b) (c)

Fig. 4. Results. (a) normal maps obtained from detected codes, (b) gloss maps containing Phong
exponents, (c) renderings.

diffuse reflections, white values represent highly specular reflections, and intermediate
grey values represent glossy reflections. The results show for example that different
metal coatings yield different gloss values (top row), the glass of the watch is more
specular than the plastics (middle row), and scratches on the wallet’s hasp make it lo-
cally less specular (bottow row). However, also notice in this image that self-shadowed
regions in the pores and grooves of the leather are mistakenly classified as non-specular
since the occlusion assumptions did not hold. Column (c) shows virtual renderings of
the scanned surfaces under point light illumination, taking into account the displayed
normal and gloss maps as well as regular texture maps.

Besides inherent problems of the relief acquisition, such as light occlusions, the
main limitation is the small number of available per pixel samples due to efficient binary
encoding. Onlyp possible gloss levels can be distinguished using our technique, where
p is the number of patterns used (in our case 10). In addition, as the kernel width is
directly dependent on the exponentially decreasing pattern’s stripe width, only a few
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possible kernels can be assigned to diffuse materials. A more kernel size distribution
may be desirable in this case.

6 Conclusions

In this paper we showed how a straightforward extension of a Gray code based normal
scanning can provide us with a very simple BRDF approximation in the form of a single
Phong exponent. However, taking into account these approximate gloss maps in addi-
tion to traditional texture and normal maps tends to considerably improve rerenderings
of heterogenous materials.

7 Future Work

Improvements are possible regarding the convolution kernel approximations. Currently
we are looking into recovering more general BRDFs by adding extra and more optimal
patterns to allow for a more precise kernel fitting. Furthermore we believe this work
can function as basis for an integrated normal map acquisition system, where the type
of pattern/method depends on which mesostructure regions are processed.
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