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Abstract:  
This paper develops a framework for modelling the dynamic formation of location choice-
sets. The proposed framework integrates three key concepts, namely aspiration, activation and 
expected utility. Aspirations are defined at the level of attributes of choice alternatives and 
represent an individual’s beliefs about performance levels that potentially can be achieved. 
Activation levels are defined at the level of choice alternatives and represent the ease with 
which an alternative can be retrieved from memory and, hence, the degree of awareness of an 
alternative. Finally, expected utility represents an individual’s evaluation of a choice 
alternative based on his/her current beliefs about attributes of the alternative. In the proposed 
system, all these cognitions - aspirations, activations and beliefs – are conditional upon 
context variables and subject to cognitive and social learning. Based on principles of Bayesian 
learning, re-enforcement learning and social comparison theories, the framework specifies 
functions for experience-based learning, extended and integrated with social learning.   
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1 Introduction 
Transportation research has a long tradition in developing and applying choice models to 
predict transport mode, destination and route choice behaviour. Many models have been 
developed to predict single choice facets. Recently, more complex activity-based models that 
can deal with multiple facets of activity-travel patterns in a more integral fashion have been 
proposed (see Timmermans, et al., 2002 for an overview). 

Although the theoretical underpinnings of these activity-based models differ, they 
have in common the assumption that individuals will choose within their choice sets the 
alternative they prefer, sometimes subject to a set of constraints (Ben-Akiva and Boccara, 
1995; Pellegrini, et al., 1997, Cascetta and Papola, 2001). In most of these models, however, 
the construction and composition of individual choice-sets is not explicitly modelled. Choice-
sets are typically assumed given or derived on the basis of some arbitrary rule (Swait and 
Ben-Akiva, 1987; Thill and Horowitz, 1997; Swait, 2001). The delineation of choice-sets is 
particularly important in large-scale micro-simulation systems, which are receiving increasing 
attention in activity-based travel-demand modelling and integrated land-use – transportation 
systems. As expected, knowing the choice-set from which a location is selected significantly 
decreases the complexity and may improve the performance of these large-scale systems 
(Shocker, et al., 1991). In this context, the choice-set refers to the set of discrete locations 
known by the individual, which is a subset of the universal choice-set that consists of all 
alternatives available to the decision maker. Known means that the individual knows not only 
the physical location, but also the attributes that are potentially relevant for evaluation under 
specific contextual conditions in the activity-travel decision-making process. Note that this 
definition differs from commonly used terminology in marketing, where a distinction is made 
between awareness, evoked set, consideration-set and choice-set (Timmermans and Golledge, 
1990). We can refine our framework along these lines, but that is beyond the goal of the 
present paper. 

In this paper, we will develop a conceptual framework for the formation of dynamic 
location choice-sets. It lays the conceptual foundation for the longer-term dynamics of the 
FEATHERS models (Arentze, et al., 2006a; Janssens, et al., 2006), which is best viewed as 
an extension of Aurora (Joh, et al., 2005). We assume that individuals conduct activities to 
satisfy specific needs and try to organise their activities and travel in time and space in some 
satisfactory way, influenced by their cognition of the environment. If the environment is 
stationary, one might assume that as a result of repeated trials some Pareto optimum or steady 
state will be established: activity-travel patterns are stabilized and become habitual. However, 
in reality, the space-time environment is non-stationary and individuals’ needs may change as 
well, as a result of, for example, changes in socio-demographics. Furthermore, critical 
incidents may imply that individuals are triggered to change their behaviour. Under these 
circumstances, the actual performance of the transport and land-use system for an individual 
may decrease below some critical level – the aspiration level of the individual, leading 
him/her to search for alternatives such that the expectations regarding his/her activity-travel 
pattern can be achieved. In addition, an individual’s cognition of the environment may change 
as a result of new information from media, actual travel and social contacts, which may 
prompt him/her to adjust the aspiration level and actively explore new locations. Thus, 
choice-set formation is conditional upon the context and dynamic in the sense that choice-sets 
are updated each time an individual has executed an activity-travel schedule or when new 
information becomes available.  

These considerations lead to the following three core parts of the proposed conceptual 
framework of modelling the dynamic process: (1) an aspiration level associated with the 
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choice-set that in combination with evaluation results determines whether the individual will 
start exploring or persist in habitual behaviour, (2) an activation level of each location 
alternative that determines whether or not the alternative is included in the choice-set in the 
next time step and, (3) an expected (utility) function that allows an individual to evaluate each 
location alternative given current beliefs about the attributes of the location (including travel 
time). Each of these elements is dynamic.  

In the following, we will first identify key drivers that trigger changes in choice 
behaviours and describe how they are integrated in the decision making process. To depict 
mechanisms that influence such changes, we continue with describing their functions for 
cognitive updating based on principles of re-enforcement and Bayesian learning. Then, we 
extend the system to incorporate social learning that involves social adaptation and 
information transfer. We complete with a conclusion and discussion for future research. 

 

2 The model 
The basic assumption is that an individual (simulated agent) acts based on behavioural 
principles and mechanisms. (S)He holds beliefs (knowledge) about the environment during a 
certain life course, has preferences and basic needs, leading to plans, agendas and schedules. 
(S)He carries out those plans, agendas and schedules in time and space. When a deviation 
exists between his/her expectation and aspiration an individual may start exploring his/her 
environment for new alternatives. Thus, (s)he learns about the environment and the 
consequences of his/her actions, in this case the choice of activity locations, and is able to 
adapt to changing circumstances and improve less effective behaviour. Based on experiences, 
an individual forms habits, reinforces memory traces, updates beliefs about attributes of 
locations and routes, discovers the conditions under which certain states of the environment 
are more likely than others, and in so doing makes sense of the world around him/her. 
Moreover, through social contacts individuals exchange information and adjust aspirations, 
which may trigger actions to explore new alternatives. Thus, for an individual, the 
composition of the location choice-set for a specific activity under certain conditions is 
dynamic. The alternatives within the choice-set will be expanded with newly discovered 
alternatives and reduced with old ones that are discarded or no longer retrievable from 
memory. 

Consequently, we assume that, there are three core drivers that trigger changes through 
out the dynamic process: an aspiration level that reflects expectations of what can be 
achieved, an activation level that represents the degree of awareness, and an expected utility 
that represents subjective evaluations of alternatives given current knowledge. In this section, 
we give a more detailed description of these drivers and indicate how they work together to 
result in the location choice, in the proposed conceptual model. 

 

2.1 Drivers 
An aspiration level is an individual’s goal for the outcome of the decision (Payne, et al., 1980; 
Patricia and Susan, 1998). In theory, aspirations could be defined either at the level of choice 
alternatives (a bundle of attributes) or individual attributes. We assume that it is more 
plausible to define aspiration at the level of attributes as it is on that level that an individual 
may determine goals that give direction to exploration processes (e.g., find alternative stores 
with a lower price level rather than find stores that have higher utility for my purposes). 
Defined for an attribute, an aspiration serves as a subjective reference point, which determines 
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what qualifies as a satisfactory outcome for that attribute. An aspiration level is individual 
and, in case of a dynamic attribute, context-specific and, in the context of this paper, 
associated with location attributes. The outcome of a comparison between aspiration and 
actual or expected outcome given current knowledge provides a measure of an individual’s 
satisfaction and willingness to explore new alternatives. A possible discrepancy between the 
expected outcomes derived from the alternatives within the current choice-set and the 
individual’s aspiration levels may trigger the individual to switch from habitual behaviour to a 
conscious choice mode. 

Generally, aspiration levels are context dependent. For example, satisfaction or 
tolerance about the crowdedness encountered at shopping locations may vary by day-of-the-
week and shopping location’s category type. Aspiration levels can relate to both (quasi)-static 
attributes and dynamic attributes (which may fluctuate as a function of the behaviour of all 
individuals in the system). Formally, we denote the set of current aspiration values 
as }{ kAA = , where ),( kkk ecA = , ),,( 21 jkkkk eeee K= , ke1  represents the aspiration value of 
the first attribute under the k-th condition, and ),,,( 21 lkkkk cccc K= defines the k-th 
condition as a set of states of the condition variables considered. 

Table 1A shows an arbitrary example of (quasi)-static attributes while Table 1B gives 
an example with dynamic attributes. The first two columns show activity and location type 
combinations as condition variables, and the rest columns show attribute variable outcomes, 
which in this case are the aspiration levels of each attributes under concern. Table 1A assumes 
that several (Quasi)-static attributes, including for which goods stores are present, price level, 
and parking space, may have a role in determining whether an outcome is satisfactory or not. 
In this table, there are three types of shopping locations. The table represents the following 
notions. A big shopping centre is expected to have all types of goods present at a medium 
price level and offers sufficient parking space. A medium sized shopping centre is expected to 
have daily goods and semi-daily goods present at a medium price level and again provides 
sufficient parking space. Finally, a small shopping centre is not expected to provide durable 
goods and ample parking space, but it is anticipated to have a low price level. Table 1B 
represents aspirations regarding a dynamic attribute, namely crowdedness, assuming that day-
of-the-week and time-of-the-day are condition variables that may have an influence in 
defining what is considered a satisfactory outcome for a shopping centre. As the example 
shows, large crowds in the weekend during peak hours will not jeopardise a satisfactory 
outcome for a big shopping centre and small crowds will be fine for non-peak hours; while on 
workdays, not more than medium crowdedness is acceptable for peak hours and no crowds is 
considered attainable for non-peak hours. In sum, the table allows one to determine the 
aspiration level for crowdedness for any given situation defined in terms of the activity type, 
location type, day-of-the-week and time-of-the-day. 

Moreover, it is easy to imagine that individuals within similar social demographic 
class or belonging to the same social network may have similar aspiration levels since they 
communicate to each other and may adapt their aspirations based on social comparison (as 
explained later). 

Besides the references that will be used to judge a situation and define what counts as 
a satisfactory outcome, individuals also have the ability to memorize situations and outcomes 
(i.e., events). People memorize events at least partly context dependent, that is, certain 
contextual conditions automatically activate particular memory traces that lead to particular 
levels of awareness. For example, consider an individual who occasionally drops by a 
supermarket to buy daily goods on the way home from work, and this particular supermarket 
is one out of three supermarkets that (s)he knows. By known, we mean that (s)he could 
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retrieve it from his/her memory. In this case, the origin location (work or home) and time-of-
the-day at the moment of shopping are contextual conditions on which the awareness of the 
supermarket for buying daily goods will depend at the moment a location choice is 
determined. Activation level of a location alternative is the indicator of the strength of such a 
memory trace, and hence reflects the ease with which it can be retrieved from memory. As 
such, an activation level is associated with each alternative in the current choice-set for each 
specific contextual condition, for example, defined in terms of type of activity (i.e. purpose of 
the trip), the previous activity location (i.e. origin location of the trip), day-of-the-week and 
time-of-the-day.  

By repeatedly performing certain behaviour under same situational conditions, 
individuals develop habits. By forming and following habits, individuals can reduce mental 
effort involved in constantly evaluating choice alternatives and making choices. By saving 
cognitive resources for the operation, habits help individuals conserve mental resources and 
time, and free them for other tasks. Habits have been described as learned and scripted 
behaviours and are capable of being automatically activated by the situational conditions that 
normally precede the behaviour. As such, the activation level of a location represents the 
degree of an individual’s habit of choosing that location under certain contextual conditions. 
In our framework, habitual behaviour involves that individuals consistently select from a 
choice-set the alternative with the highest activation level under the given condition at the 
moment a choice is to be made. In turn, we define the choice set in a given choice situation as 
the locations that are retrievable from memory in that situation (i.e., condition). Formally, let 
q be the number of relevant condition variables, )( m

t
i zW  be the activation level of an 

alternative i  under condition m, where ),,( 21 qmmmm zzzz K=  represents the states of the q 
condition variables under condition m, ω be a minimum activation level for memory retrieval 
ability. Then, the choice-set is defined as })({)( ω≥=Φ m

t
iim

t zWLz . Note that, as implied by 
this equation, the definition of a choice-set may vary between situations.  

Table 2 shows an arbitrary example of an activation level pattern for shopping 
locations. The left-hand side shows contextual conditions, and the right-hand side shows the 
outcome, which in this case is the activation level of each location. The table assumes that 
day-of-week, origin location, and time-of-day are condition variables that may have an 
impact. In this example, there are three shopping locations. The table structure is based on the 
following notions. Shopping centre 1 and 2 are located close to home, and shopping centre 3 
is located close to work. An individual most often goes shopping on Saturday during peak 
hours from home to shopping centre 1, while sometimes on Wednesday (s)he also visits 
shopping centre 3 after work during non-peak hours. Once in a while, (s)he visits shopping 
centre 2 from home on Saturday during non-peak hours. In sum, the table allows one to 
determine the activation level for any given location, if current conditions on variables 
including day-of-the-week, origin location, and time-of-the-day are known. 

The attractiveness of a location is in general influenced by values of its attributes. 
Depending on the targeted need underlying the activity, the attributes that should be evaluated 
may be different. For example in case of shopping, the variety of stores is important for 
entertainment and purchase purposes, while a social need requires some familiarity with the 
location. Furthermore, the intention of resting attracts attention to spatial layout, while 
economic considerations emphasize quality and price. Thus, the impact of location may be 
diverse, that is, the combination of location and activity needs determines the utility of a 
location.  
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Moreover, some of the attributes are (quasi)-static, while others are dynamic. The 
(quasi)-static attributes reflect characteristics of the location that are in short term constant, 
for example the size category, price level, parking space, and presence of stores for certain 
goods in a shopping centre. We assume that an individual will learn all the (quasi)-static 
attributes of a location simply through observing them after implementing an activity at that 
location. This knowledge will keep constant, and only change when the physical conditions 
are changed externally, for example, after a renovation of the shopping centre. Table 3A gives 
an arbitrary example of a current state of knowledge of an individual regarding (quasi)-static 
attributes matrix of shopping locations.   

Dynamic attributes, such as crowdedness and travel time, are subjective and uncertain, 
and may be dependent on contextual variables. We assume that for each dynamic attribute, Xj, 
the individual uses some classification, denoted as Xj = {xj1, xj2, …, xjN}, where xj1-xjN 
represent possible states of Xj, and specifies his/her beliefs regarding location i based on 
his/her current knowledge as a probability distribution across Xj  denoted as Pi(Xj), which 
sums up to 1. The degree of uncertainty is given by the degree of uniformity of Pi(Xj). The 
more evenly the probabilities are spread across possible states, the larger the uncertainty is, 
and vice versa. For example, consider again the crowdedness of a shopping location. This is a 
dynamic attribute of a location and therefore may involve uncertain knowledge. An individual 
could choose four states for crowdedness as {no, little, medium, very}, and specifies his/her 
beliefs regarding each shopping location i as a probability distribution across these four states. 

In addition, the individual may discover that probabilities of states are conditional 
upon certain contextual variables. For example, the individual may discover that probabilities 
of crowdedness of a shopping location depend on day-of-the-week and time-of-the-day (e.g. 
peak hours and non-peak hours). Learning that some variables have an impact on outcome-
states means extending unconditional probabilities )( j

t XP  to obtain conditional 

probabilities )( CXP j
t , where C stands for one or more variables. Table 3B shows an 

arbitrary example of knowledge about the dynamic attribute of crowdedness for a shopping 
location. 

A utility function allows the individual to evaluate each location alternative given 
his/her current beliefs about the attributes of the location (including travel time) and his/her 
preferences. Using probabilities of the types )( CXP j

t  to describe the knowledge of the 
individual, the expected utility equation can be expressed as below: 

)()( k
dynamic
i

static
ik

t
i cEUEUcEU +=       (1) 
static
i iEU Xβ=         (2)  

∑ ∑=
j n kjn

t
ijjnjk

dynamic
i cxPxcEU )()( β      (3) 

Where t
iEU  is the expected utility of location i  at time t , iXβ  is the expected partial utility 

of location i for static attributes and preference, and )( kjn
t

ijjnj cxPxβ  is the expected partial 

utility of location i  under possible states jnx  with probabilities )( kjn
t

ij cxP  and preference jβ  
regarding dynamic attribute j . ),,,( 21 lkkkk cccc K=  represents the values of relevant 
condition variables under the k-th condition. Thus, expected utility takes into account current 
beliefs regarding state probabilities as well as an individual’s preferences. Of course, static 
attributes could also be dealt with by these equations, namely as the special case where the 
believed state has a probability of 1. 
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2.2 Making a choice  
In the assumed choice making process, individuals go through a mental process to arrive at a 
choice. They start with implementing their habitual behaviour that requires least mental effort, 
and carry on with conscious choice that asks for more effort only if the habitual choice is not 
satisfactory, until they find a choice that is satisfactory. As the aspiration levels are the 
standards for determining whether an outcome is acceptable, they will try to find the 
alternative that meets the requirements within a tolerance threshold. Figure 1 schematically 
shows the main steps of the decision making process by which the model arrives at a location 
choice. 

The tolerance threshold is a predefined and individual specific parameter that reflects a 
characteristic of the individual. A large tolerance threshold indicates the individual strongly 
dislikes the mental effort involved to make better actions and is sooner happy with the current 
situation. Vice versa, a small threshold implies that on the one hand the individual is stricter 
in what is found acceptable, and on the other hand the individual may have a higher 
propensity to explore. In general, the larger an individual’s threshold is, the higher the 
probability will be that the individual is satisfied with the expected performance of the current 
choice-set. Being satisfied with the current situation means less desire to take a risk, invest 
effort, and change behaviour, and consequently, also that it is less likely to explore and 
possibly make better choices in the future. 

As implied by the definition of action level, the alternative that has the highest 
activation level in the choice-set is the one that is most easily retrieved from memory and 
requires the smallest amount of mental effort for an individual.  In order to determine the level 
of satisfaction with the habitual choice, the location with the highest activation level is 
compared to aspiration levels. We assume that if dissatisfaction (i.e, the difference between 
aspiration and expected level) regarding at least one attribute exceeds the tolerance threshold, 
an individual will switch to another mode of behaviour and start searching consciously for 
better alternatives. On the other hand, if this threshold is not exceeded, we assume that no 
active search will take place and that the individual will exhibit habitual behaviour that leads 
to executing the choice that has the highest activation level.  

We make a distinction between exploitation and exploration as alternative non-
habitual modes of choice making. We assume that when acting in a conscious mode, an 
individual will first be engaged in exploitation and search within his/her current choice-set 
(i.e. retrieve alternatives from his/her memory that have a lower awareness) for a better 
alternative under current conditions. With exploitation, the individual calculates the expected 
utilities (equation 3) of all the alternatives within the choice-set given current knowledge of 
the environment and the given conditions, and compares the attributes of the one that has the 
highest expected utility with aspiration levels. When for none of the attributes dissatisfaction 
exceeds the threshold, we assume that no active exploration of new alternatives will happen 
and the individual will choose the location that has the highest expected utility. If for at least 
one attribute there is a mismatch that exceeds the tolerance threshold, the individual will start 
to explore new alternatives that might solve the mismatch. We call this exploration. Thus, 
search is not random, but rather directed. The attribute causing dissatisfaction will guide the 
individual in what to search for.  

Exploration is a process by which new alternatives can enter the choice-set. The 
probability of a location to be discovered is modelled as a function of attractiveness of the 
location regarding the attributes that are not satisfied by the alternatives within the current 



 8

choice-set. Because individuals are uncertain in this situation due to limited information, we 
propose to use the Boltzmann model (see Sutton and Barto 1998) to calculate discover 
probabilities across the universal choice set of locations and simulate outcomes of search 
processes: 

exp( / )( )
exp( / )

t
t i
i t

ii

VP L
V
τ
τ

=
∑

       (4)   

where Vi
t is a utility measure of location i and τ is a parameter determining the degree of 

uncertainty in the selection of new locations. The larger the value of the τ parameter is the 
more evenly probabilities are distributed across alternatives and, hence, the higher the 
uncertainty is, and vice versa. The parameter can be interpreted as the general (lack of) quality 
of information sources available to the individual, such as social network, public and local 
media and own observations during travel. Vi

t is a utility calculated based on true levels of 
attributes of locations. Note that the utility depends on the objective of the search: by 
including only those attributes that are dissatisfactory in the current best choice, Vi

t reflects 
the focus of the search. Furthermore, a disutility of travel distance is included in the function 
for Vi

t for two reasons: (1) the longer the travel distance is, the less likely information about 
the location is available and, (2) the longer the travel distance is, the less likely the location 
will be considered by the individual because of the higher generalized travel costs. 

Having defined the discover probability distribution across locations across the 
universal choice set, Monte Carlo simulation will be used to select a new location that will be 
tried and may be added to the choice-set. Once tried, the new location receives an activation 
level reflecting memory trace strength and is subject to the same updating and learning 
process as other alternatives in the choice-set, as will be explained later. 

In addition, a mental effort counter is included to prevent an individual from getting 
trapped in continuous and endless exploration. We assume that the individual will keep a 
record of how many consecutive times (s)he already tried exploring a new location under the 
same contextual conditions. Every time a choice is made through exploration, it will add 1 
unit of mental effort. A habitual choice or an exploitation choice will break the chain of 
incrementing the score and restore it back to 0. We assume that when the mental effort 
involved in search for a better alternative is built up and exceeds a predefined threshold, 
instead of continuing exploring, the individual will avoid further frustration by lowering the 
aspiration level (realising that the current aspiration level is not realistic). Therefore, in the 
choice process, before engaging in exploration, the system will check whether the 
accumulated mental effort exceeds this threshold. If this threshold is not exceeded, the 
individual will continue exploring. When it is exceeded, the individual will replace the current 
aspiration levels with the attributes levels of the alternative that currently has the highest 
expected utility, to assure a relatively optimal outcome and maintain high aspiration levels for 
future choices. As a consequence of choosing it, the activation level of this alternative will be 
increased. 

As a consequence of the above mechanisms, an individual arrives at a selection of a 
single alternative location each time an activity is to be carried out. Depending on aspiration 
levels, this alternative could be the one that has the highest activation level (habitual choice), 
the one that has the highest expected utility (conscious exploitation choice), or the one that 
was newly discovered (conscious exploration choice).  
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3 Experience-based learning 
Central to our dynamic process is the notion that choices are contingent upon the outcome of 
previous choices. By repeatedly making decisions, an individual acquires knowledge (learns) 
about the environment and thereby forms expectations about attributes of the environment. It 
should be noted that adaptation and learning processes involve two operations. One concerns 
updating an individual’s perception of the environment. Through repeated experience, 
individuals will update their expectation of attributes of locations (and routes), which are 
considered relevant for making choices, and discover conditions having an influence on 
outcomes. The other operation concerns the formation of habits to avoid the needless 
repetition of effortful memory retrieval and evaluation tasks. In this section, we will consider 
these two processes in turn, starting with habit formation. 

 

3.1 Updating activation levels 
A mechanism similar to reinforcement learning will be used for updating activation levels to 
simulate memory process. In line with evidence in cognitive psychology (Anderson, 1983), 
the basic assumptions are that an alternative that has higher utility stays longer in memory, 
and that memory is reinforced when an alternative is chosen and memory decays if it is not 
chosen. Every time a location is chosen, the activation level of that location will be 
incremented to simulate the strengthening of a memory trace. The reinforcement rate is an 
increasing function of the experienced utility of the chosen location which in turn is a function 
of the location’s attributes (as before). Limited memory retention capacity is simulated in the 
system by a parameter that determines rate of decay over time. If one alternative has not been 
chosen for some time, its activation level will decrease. When its activation level drops below 
some predefined threshold, it will be removed from the current choice-set to reflect the 
limited human ability of memory retrieval. 

Formally, the strength of a memory trace of a particular activity location i in the 
choice-set is modelled as follows: 

⎩
⎨
⎧ =+

=+

otherwisezW
IifzUzW

zW
m

t
i

t
im

t
im
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i

m
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    (5)  

where )( m
t

i zW  is the strength of the memory trace (awareness) of location i at time t under a 
configuration of conditions mz  and 1t

iI = , if the location was chosen at time t , and 0t
iI = , 

otherwise, 0 1γ≤ ≤  is a parameter representing a recency weight, which is relevant only 
when the location is chosen; and 0 1λ≤ ≤  is a parameter representing the retention rate. 

)( m
t
i zU  is the experienced utility attributed to location i  that is calculated based on 

experienced states of the attributes of location i , including both (quasi)-static and dynamic 
variables. The calculation (based on a utility function similar to the one represented by 
equation (1)), uses observed states of the dynamic attributes, such as crowdedness and travel 
time.  

Thus, at each time step the strength is reinforced or decays depending on whether the 
location has been chosen in the last time step. The coefficients γ and λ determine the size of 
reinforcement and memory retention respectively and are parameters of the system. 

Based on the current value of memory strength, the system determines whether or not 
the item is included in the choice-set in the next time step based on the simple rule stating that 
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it is included if it exceeds a threshold level and is not included, otherwise. This rule can be 
written in the following general form: 

})({)( ω≥=Φ m
t

iim
t zWLz        (6) 

 

3.2 Updating beliefs 
We assume that individuals make personal observations and update their beliefs of their 
environment based on these observations in order to be able to make better predictions about 
what can be expected in the next time step. Each time a location is chosen when an activity is 
implemented, the individual updates beliefs )( CXP j

t , where C is the condition or, if 
multiple condition variables are involved, the condition configuration experienced. Learning 
implies two processes: parameter learning and structural learning. The first process involves 
incrementally updating the conditional belief distributions across the possible states for each 
observed attribute of the location after experiencing the actual states. The second process is 
aimed at discovering the conditions that have an influence on the likelihood of states of the 
system. Thus, the second process determines the form of the conditional probabilities that are 
kept up to date through the first process. This is done by periodically reconsidering splitting 
or merging condition states based on condition variables to update a tree structure that better 
predicts states based on observed outcomes. In the field of Bayesian Networks, the two 
processes are generally known as parameter and structural learning respectively.  

We will adopt the approach proposed by Arentze and Timmermans (2003). In their 
approach, a method of parameter learning is used that is derived from Bayesian principles. 
Moreover, for structural learning, the proposed approach assumes a process of incrementally 
splitting and merging conditions based on events experienced in the past and stored in 
memory using some split criterion. In specific, the problem can be defined as a well-known 
problem considered by decision tree induction methods, namely as the problem of finding the 
most efficient way of splitting a set of known observations on predictor variables into 
partitions kc  that are as homogeneous as possible in terms of a response variable. For 
example in case of estimating the crowdedness of a location, the state of crowdedness is the 
response variable and time-of-the-day and day-of-the week serve as predictor variables. Then, 
the problem is to split the sample of observations on the condition variables such that 
observations within partitions are as homogeneous as possible in terms of crowdedness. 
Different criteria for finding the best splits, such as Chi-square or expected information gain 
can be used for this problem. Condition variables that are not significant in the current time 
step may become so at some next moment in time when more observations have been stored. 
Therefore, splitting and merging operations are periodically reconsidered. For more detail, 
readers are referred to Arentze and Timmermans (2003). The result of a structural learning 
step, generally, is that subsequent parameter learning is based on a new belief structure. The 
new conditional probabilities can be derived from the event base in a straight-forward way. 

 

4 Social learning 
Individuals are not isolated from each other, but participate in social networks. Participation 
in social networks may lead to adaptation of aspirations and diffusion of knowledge, which in 
turn may trigger changes in activity-travel choice behaviour. Modelling the dynamic 
formation of social contacts between individuals based on social links is beyond the scope of 
this paper (for a possible model of these processes, see Arentze and Timmermans, 2006b). In 
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this section, we consider social links as given and focus on the impacts of social interactions 
on individuals’ aspiration levels and knowledge about activity locations. 

  

4.1 Social comparison 
According to social comparison theory, people often obtain information about their 
performance by comparing themselves to others (Festinger, 1954). Social comparison theory 
posits that people are generally motivated to evaluate their opinions and abilities and that one 
way to satisfy this need for self-evaluation is to compare themselves to others. Information 
gathered from these social comparisons can then be used to provide insights into one’s 
capacities and limitations, which may motivate them to achieve higher goals since people are 
motivated to maintain or increase positive self-evaluation.  

Following this theory, we assume that when two individuals P1 and P2 meet, 
individual P1 will evaluate and update his/her aspiration levels based on the best performances 
of individual P2, if P2 belongs to the reference group of P1. More specifically, for each 
contextual condition of which individual P1 has defined aspiration levels, P1 will ask P2’s best 
performance. Individual P2 will provide as feedback the attribute information of the 
alternative that has the highest expected utility within his/her choice-set under the 
corresponding conditions, since this alternative reflects his/her highest possible achievement 
given his/her current knowledge.  

After receiving the information from individual P2, individual P1 first makes a 
decision on whether or not (s)he will change his/her aspiration levels. For this, P1 compares 
the expected utility that is calculated using attributes values from individual P2’s answer and 
his/her own preferences with the expected utility that is derived from his/her current 
aspiration levels. We assume that only if a positive discrepancy between the two expected 
utilities exist (i.e., 2 1( ) ( )U P U P> ) which exceeds a tolerance threshold of P1, then P1 is 
willing to update his/her aspiration levels; we say the individual is in an updating mode. If the 
discrepancy is not positive or the threshold is not exceeded, we assume that no adjustment 
will take place implying that P1 will leave his/her aspiration levels unchanged. We assume 
that when in an updating mode, P1 will upgrade the aspiration levels on those attributes on 
which the alternative conveyed by P2 has the better value. Note that, updating aspiration 
levels may lead to a switch from a habitual to a conscious choice mode, which in turn may 
lead to exploration of new alternatives and, hence, adaptation of the person’s choice-set. 

  

4.2 Knowledge transfer 
Besides social comparison, when two individuals P1 and P2 meet, P1 will also update his/her 
knowledge by integrating the new information provided by P2. In the system, P2 presents a list 
of all the locations (s)he knows to P1. After receiving the list from P2, P1 checks the list with 
his/her knowledge to find out if the list of P2 includes alternatives that are new to him/her. 
Each location alternative that is unknown to P1 activates P2 to provide further information 
about the attributes levels of the location. Then, P1 checks whether there are constraints (e.g. 
opening times, travel time) that limit the use of the new alternative, and add the new known 
alternative to condition-dependent choice-sets, if any, for which the new alternative is 
appropriate. When added to a choice-set, the new alternative is specified according to the 
attribute information conveyed by P2 and the activation level is initialized. Once added, the 
new location is subject to the same selecting, updating and learning processes as other 
alternatives within the choice-set.  
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In sum, social contacts provoke social learning that not only provides stimuli for 
adjusting aspiration levels, but may also trigger changes in terms of adding new locations to 
existing choice-sets.   

 

5 Conclusion and discussion 
This paper has outlined the conceptual framework that will be used to model the 

dynamic process of individuals’ activity location choice in a micro-simulation system. The 
framework considered dynamic formation of the choice-set. It integrates cognitive learning 
and social leaning. In the proposed approach, cognitive leaning focuses on updating beliefs 
about a non-stationary environment that will impact the expected utility of alternatives and 
habit formation, while social learning emphasizes on deriving and updating aspirations that 
may trigger re-evaluating currently known alternatives (exploitation) or search for new 
alternatives (exploration). As such, it provides a modelling approach for distinguishing 
habitual choice, exploitation choice and exploration choice.  

The framework presented in this paper provides a first step towards a fully operational 
model of dynamic formation of location choice-sets. In principle, the framework can be 
extended to a more complex system as we further explore in more detail how and to what 
extend social interactions influence people’s behaviour that could be incorporated in defining 
and updating aspiration levels, as well as how people compose their expected outcome and 
make satisfaction evaluation. Before that, we plan to first implement the current model and 
conduct an illustrative case study showing how this model can be integrated in an agent-based 
micro-simulation to model dynamic decision making under uncertainty. We intend to report 
on such implementations and results of some theoretical analyses of dynamic formation of 
location choice sets as revealed in simulations in the near future.  
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Appendices 
Table 1A Aspiration level for (quasi)-state attributes of shopping locations 

Table 1B Aspiration level for dynamic attributes of shopping locations 

Table 2 Activation level of shopping locations 

Table 3A (Quasi)-state attributes of shopping locations 

Table 3B Dynamic attributes of a shopping location 

Figure 1 The choice making model
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Table 1A  Aspiration level for (quasi)-static attributes of shopping locations 

Activity  Location 
category 

Store for daily 
goods present 

Store for semi-
durable goods 

present 

Store for durable 
goods present 

Price 
level 

Parking 
space  

Shopping  Big 1 1 1 Medium 1 
Shopping  Medium 1 1 0 Medium 1 
Shopping  Small  1 1 0 Low 0 

 

Table 1B  Aspiration level for dynamic attributes of shopping locations  
Contextual condition Activity Location category  Time of day  Day of week Crowdedness 

Shopping  Big Peak hour Weekend  Very  
Shopping Big Non-peak hour Weekend  Little 
Shopping Big Peak hour  Workday Medium  
Shopping Big Non-peak hour Workday  No 
Shopping Medium Peak hour Weekend  Medium 
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Table 2  Activation level of shopping locations 
Contextual condition Outcome 

Activity  Day-of-week Origin location Time-of-day Location Activation level 
 * 

* 
* 

    

Shopping  Wednesday Work Non-peak Shopping centre 1 10 
    Shopping centre 2 10 
    Shopping centre 3 80 
 * 

* 
* 

    

Shopping  Saturday Home Peak Shopping centre 1 100 
    Shopping centre 2 20 
    Shopping centre 3 10 

Shopping  Saturday Home Non-peak Shopping centre 1 30 
    Shopping centre 2 60 
    Shopping centre 3 10 
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Table 3A (Quasi)-Static attributes of shopping locations 
Location 

ID 
Location 
category 

Store for daily 
goods present 

Store for semi-
durable goods 

present 

Store for durable 
goods present 

Price 
level 

Parking 
space  

1 Big 1 1 1 high 1 
2 Medium 1 1 0 low 1 
3 Medium 0 1 1 middle 0 
4 Small 1 1 0 high 1 
5 Small 1 0 0 low 0 

 

Table 3B  Dynamic attributes of a shopping location  
Contextual condition Crowdedness (Percentage) Location ID Time of day  Day of week No Little Medium Very 

1 Peak hour Weekend  10 10 30 50 
 Non-peak hour Weekend  20 20 30 30 
 Peak hour Workday 30 30 20 20 
 Non-peak hour Workday  50 30 20 0 
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Figure 1 The choice making model 
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