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ABSTRACT 
 
In this paper, daily traffic counts are explained and forecasted by different modeling 
philosophies, namely the ARIMAX and SARIMA(X) modeling approaches. Special emphasis is 
put on the investigation of the seasonality in the daily traffic data and on the identification and 
comparison of holiday effects at different site locations. To get prior insight in the cyclic patterns 
present in the daily traffic counts, spectral analysis provides the required framework to highlight 
periodicities in the data. Data originating from single inductive loop detectors, collected in 2003, 
2004 and 2005, are used for the analyses. Four traffic count locations are investigated in this 
study, an upstream and downstream traffic count location on a highway that is excessively used 
by commuters and an upstream and downstream traffic count location on a highway that is 
typified by leisure traffic. The different modeling techniques pointed out that weekly cycles 
appear to determine the variation in daily traffic counts. The comparison between seasonal 
effects and holiday effects at different site locations revealed that both the ARIMAX and 
SARIMAX modeling approach are valid frameworks for the identification and quantification of 
possible influencing effects. The technique yielded the insight that holiday effects play a 
noticeable role on highways that are excessively used by commuters, while holiday effects have 
a more ambiguous effect on highways typified for their leisure traffic. Modeling of daily traffic 
counts on secondary roads, and simultaneous modeling of both the underlying reasons of travel, 
and revealed traffic patterns, certainly are challenges for further research. 
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1 BACKGROUND 
 
Reliable predictions of travel behavior, traffic performance, and traffic safety are essential 
requirements for governments to lead an efficient policy. Policy tools like advanced traveler 
information systems (ATIS), advanced traffic management systems (ATMS) and control 
strategies such as ramp metering depend on the quality of forecasts of traffic volumes (1). 
Therefore, a deeper understanding in the events that affect the traffic performance will improve 
the quality of the predictions and consequently policy measures can be based upon more 
accurate data.  
 A good overview of the different techniques that exist to investigate the variability in 
daily traffic counts is provided by Han and Song (2) and Van Arem et al. (3). A first category 
that can be distinguished are time series models, which can be further divided into Box and 
Jenkins techniques, smoothing techniques, Kalman filtering theory and spectral analysis. Early 
applications of Box and Jenkins techniques in the field of traffic forecasting were implemented 
by Ahmed and Cook (4) and Nihan and Holmesland (5). More advanced techniques are more 
recently applied, including ARIMA(X) (Auto-Regressive Integrated Moving Average Models 
with Intervention X-variables (6)), Seasonal ARIMA models (7) and Kohenen enhanced 
ARIMA (KARIMA) models (8), and multivariate approaches such as the multivariate state 
space approach (9) and vector autoregressive and dynamic space time models (10). The first 
application of Kalman filtering theory within the field of traffic flow forecasting can be 
attributed to Okatuni and Stephanedes (11). Xie et al. (12) also used the Kalman filter to forecast 
traffic volumes, but now with discrete wavelet decomposition. 
 Neural network models are the second category of techniques that can be identified. 
Smith and Demetsky (13) were among the first that applied the technique in the domain of traffic 
flow forecasting. A performance evaluation of neural networks was made by Yun et al. (14). 
Time-delay neural networks (15), dynamic neural networks using a resource allocating network 
(16), and Bayesian combined neural networks (17) appear to be valuable neural network 
modeling examples. 
 Other techniques that are used for predicting traffic volumes include non-parametric 
models (18), cluster-based methods (19), principal component analysis (20), pattern recognition 
(21), fuzzy set theory (22) and  support vector machines (23). 
 Cools et al. (24) used ARIMA modeling and Box-Tiao modeling (two Box and Jenkins 
techniques) to show that events such as special holidays (e.g. Christmas Day, Easter Sunday) 
and school holidays (e.g. spring half-term) have a significant influence on daily traffic 
performance. The authors highlighted that the underlying reason is the fact that these events 
influence mobility in different ways. First, these events can affect the demand for activities and 
the supply of activity opportunities. Second, these events can have an influence on the 
distribution of passenger and goods trips to vehicles and transport services. Finally, these events 
can have an effect on the infrastructure (e.g. available parking facilities) and their associated 
management systems. 
 One of the limitations of the latter study was that the analysis was done on a very specific 
location. Moreover, seasonality was not explicitly taken into account. To open the pathway of 
generalizing the results, the analyses presented in this paper are performed on two diverse site 
locations, where both the upstream and downstream traffic counts are investigated. Furthermore, 
this paper explicitly focuses on seasonality and recurrences in daily traffic data.   
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 The main objectives of this study are the unraveling of the variability in daily traffic 
counts, the identification and comparison of holiday effects at different site locations, the 
prediction of future traffic volumes, and the validation of the suggested modeling framework. 
The cyclicality in the daily traffic data will be explored using spectral analysis. To quantify 
holiday effects and predict future traffic counts, autoregressive integrated moving average 
models with explanatory variables (ARIMAX) and seasonal autoregressive integrated moving 
average models with explanatory variables (SARIMAX) will be the main statistical model 
approaches envisaged. Note that the combination of a regression model with ARIMA or 
SARIMA errors raises the opportunity to build a model with desirable statistical properties, and 
thus to minimize the risk or erroneous model interpretation (25). 
 
2 DATA 
 
The variability in daily traffic will be investigated by analyzing the impact of cyclic patterns, 
day-of-week effects and holidays on daily highway traffic counts. While traditional ‘short term’ 
traffic forecasting investigates predominantly 15 and 30-minute traffic flows, in this paper daily 
traffic flows are used to investigate cyclicality. The reason for this choice is to filter out possible 
shifts in traffic volume due to changes in time of day (caused by accidents, …). In this section, 
first, the dependent variable (daily traffic count) is further explored for all four traffic count 
locations. Then, the different explanatory variables, often called interventions in time series 
terminology, are described. 
 
 
 
2.1 Daily Traffic 
 
The aggregated daily traffic counts originate from minute data coming from single inductive 
loop detectors, collected in 2003, 2004 and 2005 by the Vlaams Verkeerscentrum (Flemish 
Traffic Control Center). Four traffic count locations are investigated in this study, displayed in 
Figure 1. The first two are located on the E314 Highway, a highway that is one of the 
entranceways of Brussels, and thus excessively used by commuters. The detectors in 
Gasthuisberg (Leuven, Belgium) are used to analyze the upstream traffic counts on this highway. 
The detectors in Herent (Leuven, Belgium) are used to analyze the downstream traffic counts. 
The second two traffic count locations are located on the E40 Highway, a highway that is one of 
the accesses to the Belgian seashore, and thus typified by leisure traffic. Both the upstream and 
downstream traffic counts are analyzed by data coming from detectors in Zandvoorde 
(Belgium). To refine the attractiveness of the Belgian seashore, it is noteworthy to mention that 
Belgium has a moderate maritime climate. 
 Minutely, the loop detectors generate four statistics: the number of cars driven by, the 
number of trucks driven by, the occupancy of the detector and the time-mean speed of all 
vehicles (26). Adding up the number of cars and trucks for all lanes in a specific direction, being 
two lanes for all four traffic count locations under study, yields a total traffic count for each 
minute. Although single loop detectors can distinguish between cars and trucks, it was decided 
to use the aggregate of both car and truck traffic to analyze the impact of holidays, as the 
distinction between cars and trucks is made by means of an algorithm which has an inferior 
performance during congested periods.  
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FIGURE 1  Geographical representation of the traffic count locations under study. 
 

Figure 2 visualizes the aggregated daily count data for the different traffic count 
locations. Note that the lower series of data on the upper plots indicates data for the weekend. A 
weekly cycle can hence be expected. This does not occur so distinctively for the second (leisure) 
location. A similar yearly pattern is visible for the upstream (plots on the left) and downstream 
traffic count locations (plots on the right), both for the E314 as for the E40 traffic count 
locations. On the E314 highway (upper plots) a drop in the number of passing vehicles at the 
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beginning and end of each year can be noticed, and during summer holidays, the intensity of 
daily traffic seems to be clearly lower on this highway than during the other months. A drop at 
the beginning and end of each year can also be noticed on the E40 highway (lower plots). 
However, this similarity between the two highways does not hold for the findings of the summer 
period; on the E40 highway an increase in traffic can be observed during the summer holidays. 
 

 
FIGURE 2  Time plots of daily up- and downstream traffic counts for two highways. 
 
2.2 Holiday Effect 
 
To assess the effect of holidays on traffic counts, it is necessary to identify which holidays occur 
in Belgium. The following holiday occasions were considered: Christmas vacation, spring half-
term, Easter vacation, Labor Day, Ascension Day, Whit Monday, vacation of the construction 
industry (three weeks, starting the second Monday of July), Our Blessed Lady Ascension, fall 
break (including All Saints’ Day and All Soul’s Day), and finally Remembrance Day. Note that 
the national holiday, occurring on July 21, is included in the vacation of the construction 
industry. To evaluate the effect of all these holidays, the adjacent weekends, were considered to 
be a holiday too. For holidays occurring on a Tuesday or on a Thursday, respectively the 
Monday and weekend before, and the Friday and weekend after, were also defined as a holiday, 
because often people have a day-off at those days, and thus have a leave of several days, which 
might be used to go on a long weekend or on a short holiday. To model the effect of the above 
described holidays a dummy variable was created; “normal” days were coded zero, and holidays 
were coded one. 
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2.3 Day Effects 
 
Next to the holiday effects, also day-of-week effects are envisaged in this study. Six dummy 
variables are created in order to model the day-of-week effect. Note that in general it is 
necessary to create 1k −  dummy variables to analyze the effect of a categorical variable with 
k classes (27). It was chosen to represent the first six days of the week (Monday until Saturday) 
by respectively one dummy each, equal to one for the day the dummy represents, and zero 
elsewhere. Representing the first six days by six dummies entails that the remaining day, the 
Sunday, is treated as a reference day, implying that for all traffic counts that were collected on a 
Sunday, the corresponding six dummies are coded zero.  
 
3 METHODOLOGY 
 
In this study, special emphasis is put on the investigation of cyclicality in the daily traffic data 
and on the identification and comparison of holiday effects at different site locations. To get 
prior insight in the cyclic patterns present in the daily traffic counts, spectral analysis provides 
the required framework to highlight periodicities in the data.  

For forecasting daily traffic counts, two modeling philosophies are explored. The basic 
principle of the first philosophy is the fact that consecutive traffic counts are correlated, and that 
therefore present and future values can be (partially) explained by past values. In this paper 
SARIMA-models are fitted as this type of models is extremely suitable in taking into account 
seasonality in the data.  

The second philosophy is the regression philosophy. The basic premise of this approach 
is the idea that the dependent variable, in this study the daily traffic counts, could be explained 
by other variables. Notwithstanding, the linear regression model only yields interpretable 
parameter estimates when different underlying assumptions are satisfied. Since correlation 
between error terms is present, two accommodations to the classical linear regression model, 
namely the ARIMAX-model, sometimes referred to as the Box-Tiao-model, and the SARIMAX-
model, are investigated. The latter models are capable of taking into account dependencies 
between error terms.  

The remainder of this section provides a brief recapitulation of underlying mathematical 
theory of the proposed time series models. For an introduction on time series techniques, the 
reader is referred to Shumway and Stoffer (28). In Yaffe and McGee (29), and Brocklebank and 
Dickey (30) a comprehensive overview of how to fit time series models using the statistical 
software SAS, is given. 
 
3.1 Spectral Analysis 
 
Spectral analysis is a statistical approach to detect regular cyclical patterns or periodicities. In 
spectral analysis the data are transformed with a fine Fourier transformation and decomposed 
into waves of different frequencies (31). The Fourier transform decomposition of the series tx  
is: 

 ( ) ( )0

1
cos sin

2

m

t k k k k
k

ax a w t b w t
=

= + +⎡ ⎤⎣ ⎦∑  
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where t is the time subscript, tx  are the data, n is the number of observations in the series, m is 
the number of frequencies in the Fourier decomposition ( 2

nm =  if n is even; 1
2

nm −=  if n is odd),  

0a  is the mean term ( 0 2a x= ), ka  are the cosine coefficients, kb  are the sine coefficients, and 

kw  are the Fourier frequencies ( 2 k
k nw π= ). 

 Functions of the Fourier coefficients ka  and kb  can be plotted against frequency or 
against wave length to form periodograms, estimates of a theoretical quantity called a spectrum. 
The amplitude periodograms, also referred to as the periodogram ordinates, can then be 
smoothed to form spectral density estimates. The weight function used for the smoothing 
process, W( ), is often called the spectral window. The following simple triangular weighting 
scheme will be used to produce a weighted moving average estimate for the spectral density of 
the series: 3 31 2 4 2 1

64 64 64 64 64 64 64, , , , , ,π π π π π π π . 
 
3.2 SARIMA Modeling 
 
SARIMA modeling is a time series technique that accommodates ARIMA modeling to take into 
account seasonality in the data. It is an approach that tries to predict current and future values of 
a variable by using a weighted average of its own past values. If the series tY  is modeled as a 
SARIMA (p,d,q) × (P,D,Q)s process, then the model is given by: 
 ( ) ( )( ) ( ) ( ) ( )1 1

Dds s s
t tB B B B Y B B eφ θΦ − − = Θ , 

where s is the length of the periodicity (seasonality); ( ) 2
1 21 ... p

pB B B Bφ φ φ φ= − − − −  is the non-
seasonal autoregressive (AR) operator of order p and 1 2, ,..., pφ φ φ  the corresponding non-seasonal 

AR parameters; ( ) 2
1 21 ...s s s Ps

PB B B BΦ = −Φ −Φ − −Φ  the seasonal AR operator of order P and 

1 2, ,..., PΦ Φ Φ  the equivalent seasonal AR parameters; ( ) 2
1 21 ... q

qB B B Bθ θ θ θ= − − − −  the non-
seasonal moving average (MA) operator of order q and 1 2, ,..., qθ θ θ  the associated non-seasonal 

MA parameters; ( ) 2
1 21 ...s s s Qs

QB B B BΘ = −Θ −Θ − −Θ  the seasonal MA operator of order Q 

and 1 2, ,..., QΘ Θ Θ  the corresponding seasonal MA parameters; ( )1 dB−  the non-seasonal 
differencing operator of order d to produce non-seasonal stationarity of the d-th differenced data 
(usually d = 0, 1, or 2);  and finally ( )1

DsB−  the seasonal differencing operator of order D to 
produce seasonal stationarity of the D-th differenced data (usually D = 0, 1, or 2).  In the above 
model equation iB  is used as a backshift operator on tY , and is defined as ( )i

t t iB Y Y −= . 
Note that a SARIMA-model is only valid, when the series satisfies the requirement of 

weak stationarity. This requirement is fulfilled when the mean value function is constant and 
does not depend on time, and when the variance around the mean remains constant over time 
(28). A transformation, like taking the logarithm or the square root of the series, often proves to 
be a good remedial measure to achieve constancy of the series’s variance (27). To achieve 
stationarity in terms of the mean, it sometimes is required to difference the original series. 
Successive changes in the series are then modeled instead of the original series. Therefore in its 
most general form, as represented above, the SARIMA model includes a seasonal and non-
seasonal differencing operator. 



Cools, Moons and Wets  9 

 
3.3 ARIMAX and SARIMAX Modeling 
 
In contrast with purely modeling a series tY  as a combination of its past values, the regression 
approach tries to explain the series tY  with other covariates. Attention is needed when the 
classical linear regression approach is applied to time series, as the assumption of independence 
of the error terms is often violated because of autocorrelation (the error terms being correlated 
among themselves). The transgression of this assumption increases the risk for erroneous model 
interpretation, because the true variance of the parameter estimates may be seriously 
underestimated (27). 

ARIMAX and SARIMAX models provide the required modeling frameworks to rectify 
the problem of autocorrelation by describing the errors terms of the linear regression model by 
respectively an ARIMA(p,d,q) and SARIMA(p,d,q)×(P,D,Q)s process. Formally the ARIMAX 
and SARIMAX models can be represented by the following equations: 

 
( )
( )

2

1 2

0 1 1, 2 2, , 2

1 2

1 ...
...

1 ...

q

q

t t t k k t tp

p

B B B
Y X X X

B B B

θ θ θ
β β β β ε

φ φ φ

− − − −
= + + + + +

− − − −
, 

( )( )
( )( )

2 2

1 2 1 2

0 1 1, 2 2, , 2 2

1 2 1 2

1 ... 1 ...
...

1 ... 1 ...

q s s Qs

q Q

t t t k k t tp s s Ps

p P

B B B B B B
Y X X X

B B B B B B

θ θ θ
β β β β ε

φ φ φ

− − − − − Θ −Θ − − Θ
= + + + + +

− − − − −Φ −Φ − −Φ
, 

the first being the formal representation of the ARIMAX model, the latter of the SARIMAX 
model, where tY  is the t-th observation of the dependent variable, 1, 2, ,, ,...,t t k tX X X  the 
corresponding observations of the explanatory variables, 0 1 2, , ,..., kβ β β β  the parameters of the 
regression part, and where 1 2, ,..., pφ φ φ , 1 2, ,..., PΦ Φ Φ , 1 2, ,..., qθ θ θ  and 1 2, ,..., QΘ Θ Θ  are the 
weights for the non-seasonal and seasonal autoregressive terms and moving average terms. The 
remaining error terms tε  are assumed to be white noise. Note that for clarity of the formulae the 
differencing operators were left out of the equations. 
 The parameters of the ARIMAX and SARIMAX models are estimated using Maximum 
Likelihood. Studies, comparing least squares methods with maximum likelihood methods for 
this family of models, show that maximum likelihood estimation gives more accurate results 
(30). The likelihood function is maximized via nonlinear least squares using Marquardt’s 
method (32). When differencing of the error terms is required to obtain stationarity, all 
dependent and independent variables should be differenced (25). 
 
3.4 Model Evaluation 
 
In order to compare the different types of models that are considered, and to make comparisons 
between the models for upstream and downstream traffic intensity on the one hand, and between 
the models for different highways on the other hand, objective criteria are needed to determine 
the models’ performance (33). To determine the appropriateness of the models and to 
substantiate the validity of the proposed modeling framework, the following criteria were 
considered: the Akaike Information Criterion (AIC), the Mean Square Error (MSE) and the 
Mean Absolute Percentage Error (MAPE). Only the latter criterion can be applied for comparing 
models of different traffic count locations. By constructing the models on a training data set 
containing the first 75% of the observations, the remaining 25% of the observations make up a 
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validation or test data set. This test data set can then be used to assess the forecasting 
performance of the models, by calculating the MSE and MAPE for the predictions for this test 
data. The choice of these percentages is arbitrary, but common practice in validation studies (see 
e.g. Wets et al. (34)).  

The following three definitions determine the three criteria that are considered. The 
Akaike Information Criterion (AIC) is defined as -2 × log likelihood + 2 × number of parameters 
in the model. The Mean Square Error (MSE) equals the Sum of all Squared Errors (SSE) divided 
by its degrees of freedom, which are calculated by subtracting the number of parameters in the 
model from the number of observations. The Mean Absolute Percentage Error (MAPE) is 
defined as the average of the absolute values of the proportion of error at a given point of time. 
Models with lower values for these criteria are considered to be the more appropriate ones (35). 

To evaluate the predictive strength of the proposed models, and more precisely to test 
whether the differences in MAPE for the different models are significant, the following 
statistical testing procedures are used: the Friedman test and the Wilcoxon signed-rank test (18). 
The predictions  (test data) of the different forecasting methods are ranked, and based on these 
ranked predictions the nonparametric repeated measures tests are performed. The Friedman test 
evaluates the null hypothesis that three or more related samples are from the same population, 
and thus is used to assess whether the MAPEs for the different approaches are equal or not. The 
Wilcoxon signed-rank test evaluates the null hypothesis that two related samples have the same 
distribution. This test is adopted to test whether pairwise differences in MAPE are significant or 
not.  

 
4 RESULTS 
 
In this Section, the results are presented, the parameter estimates of the models are interpreted, 
and the different models are compared with each other. First, the periodicities in the data are 
highlighted. Then, the results of the three model approaches are provided, and their 
performances are carefully assessed. Finally, the models for upstream traffic count data and 
downstream traffic count data are compared for the two highways, and then differences in 
variability between the two highways are discussed.  
 
4.1 Spectral Analysis 
 
Prior insight in the cyclic patterns present in the daily traffic counts can be obtained by looking 
at the results of the spectral analysis presented in Figure 3. This figure displays the spectral 
density estimates against the periods. From this figure is it clear that for three of the four traffic 
count locations the spectral density reaches a local maximum in period 3.5 and a global 
maximum in period 7. This global maximum can be interpreted as a weekly recurring pattern in 
the traffic data. For the remaining traffic count location (E40, Downstream) only a local 
maximum in period 7 is attained. Note that the other maxima (in periods 2.33 and 3.5) also 
contribute in explaining weekly cyclicality, as repetition of these patterns also yields a weekly 
pattern. In addition to the weekly periodicity, differences between the two highways can be 
highlighted: the weekly structure accounts for almost all variability on the E413 highway 
(typified by commuting traffic), while weekly patterns only partially explains the variability on 
the E40 highway (characterized by leisure traffic). 
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FIGURE 3  Spectral analysis of daily up- and downstream traffic counts for two highways. 
 
4.2 SARIMA Modeling 
 
For all four traffic count locations it was required to develop the corresponding SARIMA 
models on differenced data in order to obtain stationarity. A thorough investigation of the 
autocorrelation function and the partial autocorrelation function of the residuals was required, to 
evaluate which Autoregressive (AR) and moving average (MA) factors were required for the 
model building process. The following SARIMA models were obtained using the AIC as 
selection criterion: 
 
 E314, Upstream (Gasthuisberg):  SARIMA (1,1,1) × (1,0,1)7 
 E314, Downstream (Herent): SARIMA (2,0,1) × (0,1,1)7 
 E40, Upstream (Zandvoorde): SARIMA (1,1,1) × (1,1,2)7  
 E40, Downstream (Zandvoorde): SARIMA (0,1,2) × (1,1,1)7 

 
The estimates for these final obtained SARIMA models for the four traffic count 

locations can be formally represented by the following equations:  

 E314, Upstream (Gasthuisberg): ( )
( )( )
( )( )

7

7

1 0.812 1 0.999
1

1 0.349 1t t

B B
B Y

B B
ε

− −
− =

− −
 

 E314, Downstream (Herent): ( ) ( )( )
( )

7
7

2

1 0.775 1 0.994
1

1 1.256 0.304t t

B B
B Y

B B
ε

− −
− =

− +
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 E40, Upstream (Zandvoorde): ( )( ) ( )( )
( )( )

7 14
7

7

1 0.926 1 1.593 0.598
1 1

1 0.485 1 0.700t t

B B B
B B Y

B B
ε

− − +
− − =

− −
 

 E40, Downstream (Zandvoorde): ( )( ) ( )( )
( )

2 7
7

7

1 0.457 0.324 1 0.978
1 1

1 0.077t t

B B B
B B Y

B
ε

− − −
− − =

−
 

The above described models all contain seasonal and non-seasonal moving average 
factors, and addition seasonal and/or non-seasonal autoregressive factors are included if 
required. Notice that if these models would be worked out completely, also other autoregressive 
and moving factors play a role. Investigation of the SARIMA models draws immediate attention 
to the seasonality in the data: a seven-day cyclicality seems to predetermine daily traffic counts. 
This can be seen from the fact that a seasonal difference operator (taking the 7th order difference) 
is included in three of the four models and that the seasonal autoregressive and moving average 
(SARMA) factors for the first model (E314, Upstream) are very close or equal to one. Moreover, 
other SARMA factors play an important role, indicating that traffic counts can be explained by 
weekly cyclic patterns.  
 
4.3 ARIMAX and SARIMAX Modeling 
 
Like for the SARIMA modeling approach also for the ARIMAX and SARIMAX modeling 
approaches it was necessary to develop a model on differenced data to achieve (weak) 
stationarity; and the intercept was dropped from the equations to attain realistic interpretations. 
Recall that when differencing is applied, the intercept is interpreted as a deterministic trend, and 
this interpretation is not always realistic (36). The final error terms obtained in the four models 
were accepted to be ‘white noise’ according to the Ljung-Box Q*-statistics (37). Parameter 
estimates for the ARIMAX and SARIMAX models are shown in Table 1. The standard errors 
(S.E.), and values of the significance tests are provided as well. The estimates of the (S)ARIMA 
parameters are not shown, as they serve as a remedial measure for autocorrelation, and because 
focus lies on the interpretation of the regression part of the models. No day-of-week effects were 
included in the SARIMAX models, as seasonal differencing of the day-of-week variables would 
yield variables having a zero variance, and thus the model estimation would become infeasible. 
For the traffic count site location counting upstream traffic on the E314 highway (Gasthuisberg), 
it would have been feasible to include day-of-week effects, as no seasonal difference operator 
was used in this model. Nonetheless, when day-of-week effects were included, the seasonal AR 
and MA parameters were not significant and the model unfolded into the ARIMAX model.  

From Table 1 one can see that the day-of-week effects are significant for all four traffic 
count locations: all six individual day-of-week dummy variables were significant on three of the 
four locations, while on the remaining traffic count location (E40 Downstream) half of the day-
of-week dummy variables turned out to be significant. Note that the spectral analysis also 
pinpointed this contrast between the latter location and the rest. This could be partially explained 
by the fact that in general on Sundays the lowest traffic counts are observed compared to other 
days, while on this particular site location, on Sundays the intensity rates peak due to traffic 
generated from people returning home from their leisure trip at the seashore area. Furthermore, 
the analysis revealed that the holiday effects are only significant for the traffic count locations on 
the E314 highway. For the traffic counts locations on the E40 highway the holiday effects were 
not significant. Therefore, for these leisure locations the parameter estimates for both the 
ARIMAX model including holiday effects and the ARIMAX model without holiday effects are 
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presented in Table 1. For the SARIMAX models only the models including the holiday effects 
are displayed, as the models without holiday effects are obviously the SARIMA models 
described in the previous section. 
 
TABLE 1  Parameter Estimates for the ARIMAX and SARIMAX Models 
Parameter Estimate S.E. t-value p-value    Estimate S.E. t-value p-value 
 E314 Upstream (Gasthuisberg) E314 Downstream (Herent) 

Model ARIMAX (1,1,1)    ARIMAX (1,1,1) 
Holiday -4197 295 -14.2 <0.001 -3863 351 -11.0 <0.001 
Monday 9203 256 36.0 <0.001 9011 308 29.3 <0.001 
Tuesday 10832 293 37.0 <0.001 10548 362 29.2 <0.001 
Wednesday 11522 303 38.1 <0.001 11022 378 29.2 <0.001 
Thursday 11311 301 37.6 <0.001 10863 376 28.9 <0.001 
Friday 11983 291 41.2 <0.001 11028 359 30.7 <0.001 
Saturday 1390 252 5.5 <0.001 1428 303 4.7 <0.001 

Model SARIMAX (1,1,1) × (1,0,1)7    SARIMAX (2,0,1) × (0,1,1)7 
Holiday -4219 290 -14.6 <0.001 -3839 351 -10.9 <0.001 
Parameter Estimate S.E. t-value p-value    Estimate S.E. t-value p-value 
 E40 Upstream (Zandvoorde) E40 Upstream (Zandvoorde) 

Model ARIMAX (1,1,2) with holiday effect    ARIMAX (3,1,1) with holiday effect 
Holiday -196 164 -1.2 0.234 95 143 0.7 0.504 
Monday 933 126 7.4 <0.001 -193 112 -1.7 0.086 
Tuesday 1121 158 7.1 <0.001 -398 135 -3.0 0.003 
Wednesday 1370 164 8.3 <0.001 -473 131 -3.6 <0.001 
Thursday 1651 163 10.1 <0.001 -222 131 -1.7 0.089 
Friday 3119 156 20.0 <0.001 -107 134 -0.8 0.424 
Saturday 738 124 6.0 <0.001 -2122 110 -19.3 <0.001 

Model ARIMAX (1,1,2) no holiday effect    ARIMAX (3,1,1) no holiday effect 
Monday 963 124 7.8 <0.001 -207 110 -1.9 0.059 
Tuesday 1155 155 7.5 <0.001 -416 133 -3.1 0.002 
Wednesday 1406 162 8.7 <0.001 -491 129 -3.8 <0.001 
Thursday 1680 162 10.4 <0.001 -237 129 -1.8 0.066 
Friday 3147 154 20.4 <0.001 -121 132 -0.9 0.362 
Saturday 737 124 6.0 <0.001 -2122 110 -19.3 <0.001 

Model SARIMAX (1,1,1) × (1,1,2)7    SARIMAX (0,1,2) × (1,1,1)7 
Holiday -178 161 -1.1 0.269 50 135 0.4 0.711 
 
4.4 Model Comparison 
 
When the performance of the different modeling philosophies is assessed, it is clear from  
Table 2 that all three model approaches perform reasonably well in explaining the variability of 
daily traffic counts: the three criteria that are based on the training data (AIC, MSE and MAPE) 
favor different modeling approaches suggesting that the three model approaches tested are valid 
approaches for investigating daily traffic counts. Concerning forecasting of daily traffic counts 
the ARIMAX models outperformed the SARIMA and SARIMAX models on three locations 
based on the two criteria that are based on the test data (MSE and MAPE) and for the fourth 
location (E314 Downstream) only small differences in performance are observed. This suggest 
that when the focus is put on forecasting, the use of the ARIMAX model approach should be 
preferred. 
 Besides, forecasting on the E314 yields more reliable results than on the E40 highway: 
MAPEs of 7.12% and 8.24% are observed for respectively upstream and downstream traffic for 
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the E314 highway, while on the E40 highway only percentages of 10.07% and 9.16% were 
attained for the best models. This finding matches perfectly with the results from the spectral 
analysis, namely that the weekly structure accounts for almost all variability on the E314 
highway (typified by commuting traffic), while weekly patterns only partially explains the 
variability on the E40 highway (characterized by leisure traffic). The superior forecasting on the 
E314 highway is also evidenced by Figure 4: the predictions of the daily traffic counts on the 
E314 highway (upper plots) are much closers to the actual values, than the ones on the E40 
highway (lower plots). 
 When the statistical testing procedures are used to assess the predictive value of the 
models, the Friedman tests all indicate that significant differences in MAPE exist. For three of 
the four locations the corresponding p-values are below 0.01. For the models for downstream 
traffic on the E40 highway, the differences are only borderline significant (p-value equals 
0.046). Note that for this location the MAPEs based on the test data set are indeed much closer 
to each other, when compared to the other locations. When the differences are tested in pairwise 
comparison, accounting for multiple testing, significance differences can be found between most 
of the MAPEs, except for the models predicting downstream traffic on the E40 highway. 

The sundry techniques all highlighted a weekly cyclic behavior on all four locations. Yet, 
holiday effects turned out to have only a significant impact on the upstream and downstream 
traffic of the E314 highway. For the traffic count locations on the E40 highway no significant 
holiday effects were retrieved. Nevertheless, further elaboration on this insignificance of the 
holiday-effect is worthwhile, since the daily travel time expenditure on commuting is clearly 
lower on holidays than on regular days (38). Thus, one can conclude that for the E40 traffic 
count locations, the decrease in the number of vehicles due to fewer commuting traffic on 
holidays is compensated by an increase in the number of vehicles due to leisure traffic, which is 
shown by the non-significant effect of holidays on the sum of all traffic, as considered here. The 
simultaneous analysis of travel goals and traveling itself (traffic counts) seems therefore an 
interesting avenue for further research. 
 
TABLE 2  Criteria for Model Comparisons 
 Training data Test data 
 AIC MSE MAPE MSE MAPE 
E314 Gasthuisberg (Upstream)      
SARIMA (1,1,1) × (1,0,1)7 15275.0 6,654,557 5.37% 17,877,684 8.85% 
ARIMA(X) (1,1,1) *15074.8 *5,451,893 *4.90% *10,380,923 *7.12% 
SARIMA(X) (1,1,1) × (1,0,1)7 15116.6 5,515,467 5.06% 18,557,140 10.18% 
E314 Herent (Downstream)      
SARIMA (2,0,1) × (0,1,1)7 15387.0 8,905,383 6.05% 16,779,060 9.13% 
ARIMA(X) (1,1,1) 15383.8 *7,939,285 *5.82% 14,453,314 8.46% 
SARIMA(X) (2,0,1) × (0,1,1)7 *15295.4 7,994,919 5.84% *13,501,012 *8.24% 
E40 Zandvoorde (Upstream)      
SARIMA (1,1,1) × (1,1,2)7 *13883.0 1,440,592 6.67% 3,883,197 11.92% 
ARIMA(X) (1,1,2) with holiday 13978.7 *1,433,216 *6.59% *3,246,433 10.11% 
ARIMA(X) (1,1,2) no holiday 13978.2 1,433,935 6.60% 3,296,933 *10.07% 
SARIMA(X) (1,1,1) × (1,1,2)7 13883.8 1,440,650 6.67% 3,948,399 12.14% 
E40 Zandvoorde (Downstream)      
SARIMA (0,1,2) × (1,1,1)7 *13661.1 1,101,579 6.06% 3,025,826 9.67% 
ARIMA(X) (3,1,1) with holiday 13775.2 1,090,283 5.91% 3,052,143 9.24% 
ARIMA(X) (3,1,1) no holiday 13753.7 *1,089,540 *5.89% *3,003,765 *9.16% 
SARIMA(X) (0,1,2) × (1,1,1)7 13662.9 1,102,956 6.07% 3,017,484 9.59% 
* best model for a specific traffic count location according to the evaluation criterion 
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The comparison of upstream and downstream traffic count locations yields quite diverse 
results for the locations on the E314 highway and the locations on the E40 highway (Table 1). 
For the first highway, upstream and downstream traffic seem to yield very comparable findings; 
significant lower traffic counts during the weekend and during holidays and maximum levels of 
traffic intensity on Wednesdays and Fridays. Controversially, the upstream and downstream 
traffic locations of the E40 result in quite divergent outcomes; upstream traffic seems to top on 
Fridays and is least intense on Sundays, while downstream traffic reaches the maximum on 
Sundays. This discrepancy between upstream and downstream can be (partially) explained by 
the fact that people make a weekend trip to the seashore, starting their leisure trip on Friday 
evening, and making their trip back home on Sunday. 
  

 
FIGURE 4  Daily traffic counts and their predicted values and confidence bounds. 
 
5 CONCLUSIONS AND FURTHER RESEARCH 
 
In this study, three modeling approaches, namely SARIMA, ARIMAX and SARIMAX were 
considered to predict daily traffic counts. These different modeling techniques, as well as the 
spectral analysis, pointed out the significance of the day-of-week effects: weekly cycles seem to 
determine the variation of daily traffic flows. The comparison of day-of-week effects or seasonal 
effects and holiday effects at different site locations revealed that all three modeling approaches 
perform reasonably well in explaining the variability of daily traffic counts, favoring the 
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ARIMAX model, when the focus is on forecasting daily traffic counts. Results revealed that the 
ARIMAX and SARIMAX modeling approaches are valid frameworks for identification and 
quantification of possible influencing effects. Nonetheless, the explicit incorporation of day-of-
week effects in ARIMAX yields additional insight for policy decision makers. The technique 
yielded the insight that holiday effects play a noticeable role on highways that are excessively 
used by commuters, while holiday effects have a more ambiguous effect on highways typified 
for their leisure traffic.  
 The results discussed in this paper generalize the findings of Cools et al. (24) so that 
policy makers can fine-tune current policy measures based on these results. Thus, the 
performance of policy tools like advanced traveler information systems (ATIS) and advanced 
traffic management systems (ATMS) can be improved. An example are online calendars 
pinpointing the days with high expected traffic volumes. Travelers can use the information 
provided reschedule and/or adapt their planned travel trips. A second example is to focus policy 
actions such as carpooling initiatives on the most traffic intense days. For the upstream traffic for 
the E40 highway for instance, focus should be put on stimulating alternatives for the Friday-
traffic. The examples illustrates that the findings of this study contribute in achieving an 
important goal, namely the policy keystone ‘more acceptable and reliable travel times’. 

Further generalization of the results is possible, when even more traffic patterns of other 
parts of the road network are analyzed. Modeling of daily traffic counts on secondary roads, and 
simultaneous modeling of different traffic counts locations is certainly an important pathway for 
further research. A key challenge will be the simultaneous modeling of both the underlying 
reasons of travel, and revealed traffic patterns. 
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