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Empirical Bayes 

 

Edward Ip 

Geert Molenberghs 

 

The empirical Bayes (EB) approach can be viewed from at least two perspectives: 

first, as a technical tool for borrowing information across individual cases for performing 

statistical inference; and second as a compromise between two statistical paradigm: 

Bayesian and frequentist. While the second topic is important for understanding EB’s 

role within the inferential paradigms, it is too vast to do full justice to in this article. We 

shall discuss EB’s advantages and limitations after introducing it. 

 In education, the EB approach is particularly useful for enhancing the quality of 

educational measurements (student proficiency, teacher performance, school 

achievement) when multiple statistical units (schools, teachers, students) are measured.  

Let us illustrate how the EB procedure allows information to be borrowed across 

individual units for improving the quality of educational measurement. Suppose a state is 

interested in using a new portfolio assessment method for evaluating student performance 

on language ability. The goal is to evaluate the feasibility of replacing the traditional test 

with the new method. One is also interested in obtaining an accurate estimate of each 

school’s performance so that they can design enhancement programs and allocate 

resources. The state administers the new assessment method to a sample of 100 students 

from each of 10 randomly selected schools. The minimum and maximum portfolio scores 

are 0 and 800, respectively. Table 1 displays the corresponding mean scores. 

 

<Insert Table 1 here> 

 

The question is: Are the mean scores good estimates for reporting school performance? 

Because of intra-school variability, a school’s score depends upon the sample drawn: if a 

school’s student population is heterogeneous, then the sample-to-sample variation may be 

large. Due to haphazard chance, a school may therefore appear not to be performing up to 

its true “potential;” the converse could also be true.  

 The primary idea behind EB is to use both local (sample mean score) and global 

(embedded in the distribution of the mean scores across schools) information to enhance 

the quality of the estimates. One can think of the 10 scores in Table 1 as a sample from 

the universe of the state’s schools. The performance distribution of the state’s schools can 

be used to inform the estimates for individual schools. It can be mathematically proven 

that, when both local and global data are used, the precision of the estimates for 

individual schools is better than when only local information is used, in terms of root 

mean square error.  

  

EB normal-normal model 

 

 The EB setup is easily illustrated when both the global and local models are 

normally distributed: The global model states that the true mean scores i , are sampled 

independently from a common underlying distribution, are not directly observed; and that 

they follow a normal distribution with mean   and variance 
2

 : 



 2 

     2~ ( , )i N    .,     (1) 

The above distribution is thethe so-called prior distribution. The local model allows for 

noise in measuring the score of the individual member and that the observed values of 

individual score iy  represent a realization of another normal distribution centered at i : 

 

    
2| ~ ( , )i i i yy N   .     (2) 

 

 

    <Insert Figure 1 near here> 

 

This hierarchy is depicted in Figure 1. The normal prior distribution, ( )g  (the normal 

distributiondefined in (1)) provides a model for global information, whereas the 

distribution ( )
i

f y (the normal distribution in (2)) contains local information about the 

individual unit. This structure is rather general and can be applied to a variety of 

situations. For example, in the school performance example the observed values are 

collected at the student level. Suppose that each school contains a sample of J students; 

that the score of the j
th

 student from the ith school is denoted by ijx , 

1, , , 1, ,i I j J  ; and that the student scores follow a distribution with mean 

i  and variance 2

x . Then the mean score of each school is given by 
1

(1/ )
J

i ij

j

y J x


  , 

and so: 
2

| ~ ( , )x
i i iy N

J


  .     (3) 

 

The structure in Figure 1 is of course not confined to normality. We shall see the some 

other examples later on.  

  

 The EB approach involves the following steps: 

(S1). Estimate the global structure, using the marginal distribution of the observed 

data. 

(S2). Estimate the value for each individual unit using global information from step 

S1, together with local information collected from each individual unit. This specific 

step of inference is through the posterior distribution of individual true (unobserved) 

measurement of each unit given the data. 

To elaborate on  (S1) and (S2), use notation of (1) and (2). First, consider the case in 

which 2

  and 
2

y  are both known, with then only   unknown and estimated in (S1). 

Because the marginal distributions of iy  are independently normally distributed with 

mean   and variance 
2 2

y  , the maximum-likelihood estimate for   is the sample 

mean: 
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1

1
ˆ

I

i

i

y y
I




   ,     (4) 

 

 (S2) involves estimating the true but unobserved mean score for each school. The typical 

EB estimate for a two-level model of this kind would be the posterior mean of the 

unknown true mean score given the observed data and the estimated global structure:  

    ˆ ( | , )EB

i i iE y   .     (5) 

From normal theory, the conditional distributions of i given iy  are independently 

normally distributed:    
2| ~ ( (1 ) ,(1 ) )i i i yy N B B y B     ,    (6) 

where      

2

2 2
.

y

y

B




 



 

Therefore, the EB estimate ˆEB

i  is given by  

     ˆ (1 )EB

i iBy B y    ,    (7) 

from “plugging in” the estimated parameter for the global structure—i.e., replacing   

with ˆ y  . The uncertainty associated with the EB estimate ˆEB

i  is based on the 

variance ( | , )i iV y  of the posterior distribution, with 95% confidence interval: 

 

   ˆ ˆ( 1.96 (1 ) , 1.96 (1 ) ).EB EB

i y i yB B           (8) 

Note that the EB approach, in contrast with general Bayesian approaches, always 

directly estimates the global structure from empirical data and then uses plug-in estimates 

of the global structure for estimating individual locality. The E in EB refers to this plug-

in principle. To further illustrate the plug-in principle, retain the normal-normal case with 

the parameter 2

  also unknown. The marginal maximum likelihood estimate for the pair 

2( , )   is given by 

 

1

1
ˆ

I

i

i

y y
I




   ,     (9a) 

 
2 2 2ˆ max( ,0)ys   ,     (9b) 

where 2 2

1

(1/ ) ( )
I

i

i

s I y y


   is the sample variance of the observed iy . Following the 

plug-in principle, the EB estimate ˆEB

i  for an individual school is now  

     ˆ ˆ ˆ(1 )EB

i iBy B y    ,     (10) 

where 
2 2 2ˆ ˆ/( ),y yB      in which 

2ˆ
  is plugged in from (9b). The confidence intervals 

take form (8), although now using B̂ rather than B . In general, the EB-based confidence 

interval would be too narrow because it does not account for the uncertainty associated 

with the estimation of B̂ . There are different correction methods, including jackknife and 
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bootstrap. The reading list includes articles that cover methods not requiring a fully 

Bayesian specification. We shall describe an alternative approach in the section on the 

EB application to the National Assessment of Educational Progress. 

 

Example  

 

The values in Table 1 were simulated from a two-level process with 500  , 20  , 

100x  , 10I  , and 100J  . If we assume  x  to be known, then the variance of the 

mean score 2 2100 /100 100y   . Thus, the estimates for 2( , )   are given by (9) and 

applied to Table 1, which results in ˆ 495.8  , ˆ 15.3  , and B̂ =0.3. Figure 2 

compares the EB estimates and the values of the mean scores, which are ML estimates 

based only on data from one specific school. 

  

<Insert Figure 2 about here> 

 

The EB estimate in (10) is a weighted linear combination of two sources of 

information: globally from y  and locally from iy . Effectively, the EB approach amounts 

to a shrinkage effect that pulls all the ML estimates toward the overall mean. The strength 

of the shrinkage depends on the relative heterogeneity of data at the global and local 

levels. If the true mean scores are relatively homogeneous (small 2

 , large 
2

y ), then the 

factor B should be close to 1, implying that the shrinkage effect would be large, and vice 

versa. The shrinkage factor B in this case is analogous to the intra-class correlation in 

classical test theory—the ratio of the between-student variation to the sum of the 

between-student variation and the between-school variation.  

 The EB estimate satisfies many desirable properties within the decision-theoretic 

framework. The square loss function is often used to quantify the risk for choosing one 

decision (estimator) over another. If the true value of the target parameter is  , estimated 

by ̂ , then the squared loss function is 2ˆ ˆ( , ) ( )L      . In the normal-normal setting, if 

our interest is in the value of i for each individual unit, it can be proven that under 

squared loss the EB estimator is superior to any other estimator, including those that are 

based on the observed data iy  alone. When the prior distribution for   is known, then the 

EB estimator is ideal for any symmetric loss function. When the global structure is not 

known or the setup is more general, various versions of EB estimators have been 

proposed. Many authors have searched for optimality under various scenarios (Stein, 

Robbins, Maritz, Morris, Efron, Louis, among others). 

The structure in Figure 1 can be further generalized in several directions. We will 

now give examples with different parametric choices for local and global levels.  

 

EB gamma-Poisson model 

 

Consider data collected over spelling errors made by school children. In a dictation test, 

school children are given a fixed number of J words. The number of errors that the i
th

 

child made can be modeled as a Poisson process with rate parameter i , assumed to vary 
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across individual children (Van Duijn and Bockenholt, 1995). It is mathematical 

convenient to assume that the i follow a gamma distribution, that is,. tThe global 

structure for spelling error rate parameters can be specified through the following two-

parameter prior distribution:  

 

   
1

( | , ) ,
( )

i

i
Gamma i

e
p

  
  





   , , 0,i      (11) 

 

in which  and   are, respectively, the shape and rate (inverse scale) parameters, and 

 is the gamma function. If   is a positive integer, then 

( ) ( 1)! ( 1)( 2) 3 2 1           . Conditional on i , the total number of spelling 

errors for child i is given by the Poisson count model: 

     ( | ) ,
!

i iy

i
i i i

i

e
P Y y

y

 
      (12) 

where 0,1,2,iy  . The marginal distribution for iY  then is a negative binomial 

distribution: 

( ) 1 1
( ) ( ) .

1 ( ) ! ( 1) i

i
i i y

i

y
P Y y

y

 

  






 

 
    (13) 

The standard method for estimating ( , )   is maximum likelihood, with the likelihood 

function assembled from contributions (13). It is convenient to reparameterize by the 

mean of the gamma distribution /   . The MLE of   is 
1

(1/ )
I

i

i

y I y


  , but there is 

no closed-form solution for  . One can also use the method of moments for the global 

structure, i.e., matching the moments of the marginal distributions with empirical 

moments and then solving for the required parameters. This produces (Maritz, 1969): 
ˆ ,y         (14a) 

2
2

2
ˆ , if s ,

( )

y
y

s y
  


    (14b) 

where 2 2

1

1
( ) .

I

i

i

s y y
I 

   If 2s y , then the estimated prior distribution is taken to be 

degenerate at y  . 

 The EB estimate for i  is the posterior mean, with plug-in parameters given by 

(14). The posterior distribution for the gamma-Poisson model is also a gamma 

distribution with  shape and rate parameters ( )iy   and (1 ) . Because this posterior 

gamma distribution has mean ( ) /(1 )iy   , the EB estimate follows as: 

ˆ ˆ ˆ ˆ ˆˆ (1 ) (1 )EB

i i iB B y By B y       ,   (15) 

where ˆ ˆˆ /(1 )B    . The confidence interval for ˆEB

i is based on the posterior variance  
2( | , , ) ( )(1 )i i iV y y       .     (16) 

Again, a plug-in estimate for ˆˆ( , )   is used . 
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EB beta-binomial model 

 

The beta-binomial model has been used in the study of criterion-referenced testing for 

various purposes such as the determination of test length (Novick and Lewis, 1974) and 

cutoff scores (Huynh, 1977). A criterion-referenced test consists of a sample of n items 

drawn from a domain of items, developed from a framework of learning objectives. The 

number correct for the i
th

 student is used to infer the student’s proficiency, assumed 

unobservable. Denote the proficiency of the i
th

 student by i . Then, (1) states that i  , 

1, ,i I , varies across students, following a beta distribution, and (2) states that, given 

proficiency i , the number of correctly answered questions iy  follows a binomial 

distribution with parameters ( , )in  , where n is the total number of questions on the test. 

The beta-binomial model can be expressed by the following two equations: 

 

  
1 1(1 )

( | , ) , 0 1
Beta( , )

i i
Beta i ip

  
   

 

 
   ,   (17) 

where 
( ) ( )

Beta( , )
( )

 
 

 

 





 is the beta function; and  

   ( | ) (1 ) ,i iy I y

i i i i i

i

n
P Y y

y
    

   
 

    (18) 

0,1, ,iy n .  

 

The marginal distribution of iy  is the so-called beta-binomial density: 

( ) ( )1
( ) .

Beta( , ) ( )

i i
i i

i

n y I y
P Y y

y I

 

   

 



    
   

  
 (19) 

 

To estimate the global-structure parameters, we resort to the method of moments, 

because ML does not generally lead to a closed form. Much as in the case of gamma-

Poisson, we benefit from a reparameterization from ( , )   to ( , )  , where 

/( ),     and     . The parameter   is the mean of the beta distribution, 

whereas the parameter   suggests an effective sample size for the prior distribution, 

decreasing with variance. If V denotes the variance of the beta distribution, then 

(1 ) /( 1)V      . Note that if a binary variable Y  has mean  , then with a sample 

size n the standard error for the ML estimate for   is  (1 ) /V n   . Hence, 

1  plays the role of sample size. The moment estimates for ( , )  are: 

    1ˆ

I

i

i

y

nI
 


, and     (20a) 

2

2

ˆ ˆ(1 )ˆ ,
ˆ ˆ(1 )

s

s
I

 


 

 





     (20b) 

Comment [s1]: Rephrase. (1) is a 
normal distribution. So it cannot state that 
theta_i have beta distribution. 
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where 2 2

1

1
ˆ( )

I
i

i

y
s

I n




  . 

The posterior distribution | , ,iy    is also a beta distribution with ,   replaced 

by iy   and in y   , respectively. Therefore, the mean of the posterior distribution 

is /( )iy n     , and after plugging in the estimates from above the EB estimate for 

individual  i  takes a revealing formis estimated as: 

 

ˆ ˆ ˆˆ (1 )EB i
i

y
B B

n
    ,     (21) 

 

where ˆ ˆˆ /( )B n   . The shrinkage factor B̂  is a function of the relative strength of the 

sample sizes from global and local sources, with the global source providing an effective 

sample size ̂ . When sample sizes vary across units, so does shrinkage. The confidence 

interval for ˆEB

i  in is based on the estimated posterior variance:  

2

ˆ ˆ ˆˆ ˆ( )( )ˆˆ( | , , )
ˆ ˆ( ) ( 1)

i i
i i

y n y
V y

n n

  
  

 

   


  
.    (22) 

 

Generalization and extensions 

 

These  EB instances of the EB method are special cases in which the prior and 

conditional distributions form conjugate pairs, leading to mathematically tractible 

marginal distributions. Furthermore, these are examples of the parametric EB approach. 

We will examine Figure 1 for extension of the approach. Starting from the top, the prior 

density ( )g  that provides the global information assumes a specific parametric form 

with hyperparameter  . In the normal-normal case, ( )g   is the normal distribution, 

with  assumed known in the first and   in the second case. The conditional 

distribution for iy , is often assumed to follow a separate parametric function ( | )f y  . 

Typically, EB-based inferences target the unobserved individual i , to which end there 

are the following steps:  

(1) Form the marginal distribution of the observed data  

 

   ( ) ( ) ( | ) ,p g f d    y y      (23) 

where 1( ) ( ) ( )Ig g g      , and 1 1( | ) ( | ) ( | )I If f y f y   y .  

(2) Using (23), estimate the hyperparameter  using, for example, maximum likelihood; 

leading to ̂ .  

(3) Form the posterior distribution ( | , )i ip y   using Bayes’ theorem, and plug ̂  into the 

posterior: 

( | ) ( )
( | , )

( | ) ( )

i i i

i i

i i i i

p y g
p y

p y g d





 
 

  



.    (24) 
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(4) Form the EB estimate using step (3): ˆ ˆ( | , )EB

i i iE y   . (5) Form confidence 

intervals of ˆEB

i , using  variance function ˆ( | , )i iV y  .  

Several observations can be made. First, if the distributions ( )g   and ( | )f y  do 

not form a conjugate pair, the solutions for ̂  and ˆEB

i  may require numerical procedures, 

as will their corresponding precision measures. The expectation-maximization (EM) 

algorithm (Demspter, Laird, and Rubin 1977) is often used for estimating the 

hyperparameters. Second, from a Bayesian perspective the empirical Bayes approach has 

stopped short of accommodating uncertainty associated with hyperparameter estimation. 

We shall discuss this issue within our next example. Third, the parametric EB approach 

regarding ( )g   and ( | )f y  can be extended by approached ( )g   nonparametrically 

instead. The pioneering work of Robbins (1955) established a theoretical foundation. In 

educational measurement, however, a more common extension is by incorporating 

regression models into either the prior ( )g  , the conditional ( | )f y  , or both. This will 

be exemplified in the next section. 

 

EB analysis for the National Assessment of Education Progress 

 

This example is chosen for two reasons. First, NAEP is a highly visible educational 

assessment tool in the United States, and reports are of great public interest because they 

are often cited to support specific educational and political agendas. Second and more 

technical, the statistical models used (Beaton and Johnson 1992) exhibit rich features, 

useful for illustrating both the power and limitations of the EB approach (cf. Scott and Ip 

2002).  

The NAEP survey measures the academic performance of U.S. students cross-

sectionally and over time. Mandated by the U.S. Congress and funded by the federal 

government, NAEP reports academic achievements and identifies differences in 

performance between student population subgroups categorized by demographic and 

other contextual variables (e.g., time spent watching television). Unlike individual 

achievement tests (e.g. Scholastic Aptitude Test, SAT), NAEP reports on overall 

performance of subgroups or aggregates of students. While NAEP calculates individual 

proficiency scores and associated student sampling weights using draws from students’ 

estimated ability distributions, it does not report individual student performance, this 

being prohibited by law. The NAEP approach for analyzing student data consists of two 

interlinked statistical models. The first captures local information about a student’s 

academic performance based on his/her responses to cognitive items on a given subject 

matter. The second model creates a global structure, allowing sharing of information 

across students and schools. Denote by 1( , , )i i iS   the subscale proficiency level 

vector for student i, by ix  a vector of contextual and background variables, and by ijy  the 

response to the j
th

 item (correct = 1, incorrect = 0). For reading assessment, there are three 

subscales ( 3S  ):  reading for literary experience, for information, and to perform a task. 

The global model states that: 

~ MVN( , )T

i i  x ,    (25) 
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where   groups regression coefficients and  is a variance-covariance matrix. Such a 

specification allows the different subscales to be correlated. The local model for 

individual students is based on the item-response model (IRT, Lord 1980). For 

dichotomous items, the following three-parameter logistic IRT model given below is used 

for scaling student responses: 

( ) ( )

( )

(1 )
( | ) ( 1| ) ,

1 exp( 1.7 ( ))

j

ij is j ij is j j

j is j j

c
f y P Y c

a b
 




   

  
 (26) 

where ( )is j is the proficiency for subscale s to which item j belongs, 1, , ij J and 

, ,j j ja b c  are the item discrimination, difficulty, and guessing parameters, respectively. 

Factor 1.7 in (26) is a historical artifact relating the logit and probit links. To focus on the 

EB structure, we make the following simplifications:  all items are considered 

dichotomous; their item parameters are a priori determined through a standard IRT-based 

calibration procedure and will be treated as known; and the student sampling weights are 

uniform.  

 The EB approach is based on (25) and (26) and hyperparameter   contains  and 

 . Function ( | )i if y   is now multivariate because iy  is the vector of the binary 

responses isJ   for sudent i at the items of subscale s. Assuming local (conditional) 

independence, i.e., that the item responses for each subscale are independent given 

proficiency level is ,  then 1( | ) ( | ) ( | )
isi is i is iJ isf y f y f y     . Further assuming that 

the responses between subscales are independent, the overall response function therefore 

is the product over all subscales. Because of multiple test forms, the number of items 

answered per subscale is student-dependent. The likelihood is based on these observed 

only. This approach is valid assuming that the “missing” responses are missing at random 

(Little and Rubin 1987).  

 

        <Insert Figure 3 about here> 

 

 The parameters   and   are estimated by marginal maximum likelihood, the 

core of which is an EM algorithm (Mislevy, Johnson, and Muraki 1992). A standard EB 

approach would use the plug-in estimate for the regression coefficients   on students’ 

background variables and  , and for the variance-covariance matrix for the subscales, to 

produce the expected value of student subscale proficiency is given the observed 

responses and the plug-in estimates.  

 Bayesian shrinkage for is tends to pull the estimate of proficiency purely based 

on an individual’s responses toward the mean of the student’s subgroup, defined by the 

levels of ix . Beaton and Johnson (1990) and Mislevy (1991) found asymptotic bias in 

statistics involving background variables that are not conditioned on, the magnitude of 

which relates to the extent to which responses may account for the unobserved 

proficiency is and the degree to which the unconditioned background variables are 

explained by their counterparts in the model. Thus, the EB estimate with conditioning 

variables tends to mitigate potential bias, estimated to be approximatelyby about 10% 

across many NAEP analyses using the unconditional model (Mislevy 1991). 

Comment [s2]: NAEP has polytomous 
items---so you cannot just consider then to 
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 Figure 3 depicts the effect of Bayesian shrinkage. Here, we apply standard IRT 

procedures to the 1996 Long Term Trend Reading Data, based on responses to 22 items 

on a single scale for N = 918 students and assuming that the prior distribution is standard 

normal. The S-shaped curve shows that the absolute values of the EB estimates are 

smaller than their ML counterparts and that the shrinkage effect is larger for values that 

are farther away from the overall mean (zero).  

 

<Insert Figure 4 near here> 

 

 While the EB estimate using the conditioning variables limits bias and generally 

outperforms ML, the measures for uncertainty associated with it (e.g., standard error), are 

underestimated, especially when based on the assumption that the plug-in estimates 

contain no measurement errors. There are many correction procedures, at individual and 

at population levels. NAEP adopted a methodology, called plausible value, based on 

multiple imputation (Rubin, 1987). The plausible-value method is implemented through 

several steps (Johnson, Mislevy and Thomas 1996):  

(P1) Draw a value of ( , )   from a normal approximation to the posterior ( , | ,p )  y x , 

denoted by (1) (1)( , ) 
1
;  

(P2) Based on this, compute the mean and variance-covariance matrix for the posterior 

distribution of the proficiencies vector (1) (1)( | , ,ip )  y x, ;  

(P3) Draw a value for (1)

i  using a multivariate normal approximation of 

(1) (1)( | , ,ip )  y x, , with mean and variance-covariance calculated from (P2);  

(P4) Repeat steps (P1) through (P3) M times.  

In NAEP, M=5. The total sampling variance for the proficiency estimate, or of 

any statistic based on the posterior ( | , ,ip )  y x, , is given by the sum of the average 

sampling variance over the M sets of plausible values (m)

i , 1, ,m M , and the variance 

among the M estimates. The former, the so called within-imputation variance, is meant to 

be an approximation to the posterior variance ( | , , )iV   y x, . The latter, the between-

imputation variance is designed as a correction for the uncertainty due to not directly 

observing the is and is: 
2( )

1

( )

1

mM
is is

m

G
M

 







 ,      (27) 

where is is the mean of ( )m

is . The final estimate of the variance of ˆEB

  is:  

1ˆ ˆ( ) ( | , , ) (1 ) .EB

i iV V M G      y x,   (28) 

Hence, this approach aims at conducting proper inference for student proficiency 

at both the individual and population levels by enhancing the EB approach so that it 

approximates a fully Bayesian approach. It is argued that the fully Bayesian approach 

takes into account the various sources of uncertainty, including those derived from using 

a plug-in estimate for ( , )  .  

                                                 
1
 The operational NAEP procedure keeps  fixed and draws only for  .  

Formatted: Indent: First line:  1,27
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 For illustration, we analyze the 1998 eighth-grade national reading assessment (N 

= 11,051) and Table 2 provides the mean and the within- and between-imputation 

variances; M = 100. For more details and ramifications see Scott and Ip (2002). Here, the 

between- and within-imputation variances are comparable, implying that the second 

source of variability increases the standard error by about a factor 2 1.4 , relative to 

EB. 

 

     <Insert Table 2 near here> 

 

Other educational applications and summary 

 

The EB approach relies on a two-level formulation of how data across statistical units 

arise, and offers a rigorous theoretical framework for using global information gleaned 

across individual units for informing local estimates, which are only based on responses 

from a specific individual. In contrast to a fully Bayesian approach, EB emphasizes 

estimating prior distributions from the data. From a modeling perspective, the EB 

approach is amenable for (non)linear multi-level modeling, especially when inference 

targets unobservables such as proficiencies or teaching skills.  

The range of EB applications is wide. Braun (2006) applied the approach to 

analyze important performance predictors on the Graduate Record Examination (GRE) 

across various college departments. He used a normal-normal model in which the 

student’s first-year grade point average is treated as the response y, the student’s GRE 

scores as predictors, and regression coefficients as unobservables of interest. The global 

structure is a regression model incorporating department-level covariates. Meta-analysis 

(see the article on that topic in this volume) for educational studies also make use of EB; 

information is combined across studies, and the effect size of a specific classroom 

intervention from study i can be conceptualized as an unobserved variable i . 

Information is borrowed across studies through the specification of a global data-

generating structure ( )g   (Hedges 1987; Raudenbush and Bryk 1985).  

For evaluating teacher and school effectiveness, EB was applied to value-added 

models—a collection of models that attempts to delineate, from a return-on-investment 

perspective, the effectiveness of school systems and personnel based on the complex 

interactions among student characteristics, school effects, community characteristics, 

school district policies, etc. Information is borrowed from teacher assessment results for 

inferences on a school system or employee, and regression models are incorporated at 

global and local levels to control for interaction effects. McCaffrey et al. (2004)  review 

valued-added models and related EB methodologies. Multi-level growth-curve modeling 

for assessing educational-intervention effects (Plewis 2000; Pituch 2001) is another 

versatile application area. Typically, a growth curve from an individual student contains 

only few data points, but strength can be borrowed across students to stabilize individual 

growth curve estimates. This conventionally results in individual curves shrunken toward 

a smoother, population-based growth version. Another classic EB example is in the study 

of school effects through hierarchical linear modeling (Raudenbush 1986). The author 

sets up a multi-level hierarchical model with covariates at individual and school levels.  

 The EB approach capitalizes on using information from higher-level statistical 

units  to enhance estimates at individual level, without subjective input on prior 

Comment [s3]: This terminology is a bit 
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distributions. From a Bayesian perspective, the EB approach is regarded as an 

approximation to a fully Bayesian approach. The general notion of borrowing 

information across statistical units is powerful and extends readily to many innovative 

applications. A recent example is in simultaneous multiple hypothesis testing (Efron, 

2004). Unsurprisingly, EB has been regarded as one of the most important advances in 

the field of statistics since World War II (Efron, 2007). 

 

 

 

 

 


