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Abstract

In this dissertation we propose several techniques for acquiring local surface ori-

entation and reflectance properties of small-scale surface details, or the surface

mesostructure. Our primary focus is on increasing the applicability by providing

an efficient, easy to implement and execute approach, employing solely off-the-shelf

hardware components.

Basically, our setup consists of a regular digital still camera and a computer

screen functioning as a planar illuminant. Light patterns are displayed on the screen,

illuminating the surface to be scanned, and reflections are captured by the camera.

The recorded images are then processed, yielding a digital representation of the relief

and reflectance of the scanned surface.

In order to correctly process the acquired input images, geometric information of

the position and orientation of the screen with respect to the camera has to be avail-

able. Therefore, we propose two different calibration methods employing a spherical

mirror in order to make the screen visible to the camera. The first approach is ef-

ficient in terms of the number of calibration images, whereas the second method is

more accurate and more efficient in terms of the number of manual sphere displace-

ments.

When the setup is calibrated, the material placed in front of the screen-camera

setup can be illuminated by specific light patterns. We propose the use of Gray code

patterns to efficiently scan the surface orientation as well as the reflectance of specular

materials. Gradient patterns are used to obtain relief information of both specular and

diffuse surfaces. We point out that Gray code patterns perform especially well for

highly specular materials, whereas gradient patterns are more suited for glossy and

diffuse surfaces.
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In practice, materials are often a combination of both a specular and a diffuse

reflection component. We propose the use of an LCD screen to handle such cases,

since specular and diffuse separation can robustly be achieved by cross polarization

of the linearly polarized light emitted by the LCD. Only a simple polarizing filter has

to be placed in front of the camera, blocking and unblocking specular reflections by

rotating the filter a 90 degrees. The separated components can then be processed by

the appropriate algorithm.

As both the geometric relief and the reflectance properties strongly influence a

surface’s appearance, we propose a method to also analyze the gloss level of the

specular reflection component in addition to the geometric relief. This is achieved by

a straightforward extension of the Gray code based normal acquisition method.

The presented results show that a simple and inexpensive computer screen and

digital camera can be transformed into a mesostructure acquisition system, yielding

high quality scans. We believe that our system has possible applications in several

areas, such as computer games, computer aided design and industrial inspection.



Contents

Acknowledgments i

Abstract iii

Contents v

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Overview of the Dissertation . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7

2.1 Reflectance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Bidirectional Texture Function . . . . . . . . . . . . . . . . 8

2.1.2 Polynomial Texture Maps . . . . . . . . . . . . . . . . . . 9

2.1.3 Regular Texture Maps . . . . . . . . . . . . . . . . . . . . 9

2.2 Relief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Height Based Relief . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Orientation Based Relief . . . . . . . . . . . . . . . . . . . 10

2.2.3 Converting Height from/to Orientation Based Relief . . . . 11

2.3 Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13



vi CONTENTS

I Setup 15

3 Hardware 17

3.1 Digital Still Camera as Light Sensor . . . . . . . . . . . . . . . . . 18

3.1.1 Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.2 Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Screen as Planar Illuminant . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Intensity/Color Response . . . . . . . . . . . . . . . . . . . 21

3.2.2 Angular Dependence . . . . . . . . . . . . . . . . . . . . . 23

3.2.3 Spatial and Temporal Dependence . . . . . . . . . . . . . . 23

3.3 Box Construction as Dark Room . . . . . . . . . . . . . . . . . . . 24

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Calibration 25

4.1 Setup Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Camera Parameters . . . . . . . . . . . . . . . . . . . . . . 26

4.1.2 Subject’s Supporting Plane Parameters . . . . . . . . . . . 29

4.1.3 Illuminant Parameters . . . . . . . . . . . . . . . . . . . . 30

4.2 Calibration with a Planar Mirror . . . . . . . . . . . . . . . . . . . 31

4.2.1 Mirror Detection . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.2 Calibration Pattern . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Calibration with a Spherical Mirror . . . . . . . . . . . . . . . . . . 32

4.3.1 Mirror Detection . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.2 Calibration from Corner Reflections . . . . . . . . . . . . . 35

4.3.3 Calibration from Edge Reflections . . . . . . . . . . . . . . 35

4.3.4 Calibration from Full Surface Reflections . . . . . . . . . . 39

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.1 Locating the Spherical Mirror . . . . . . . . . . . . . . . . 49

4.4.2 Locating the Screen . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

II Relief and Glossiness Acquisition 55

5 Relief Acquisition 57

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



CONTENTS vii

5.3 Separating Diffuse from Specular Reflections . . . . . . . . . . . . 61

5.4 Gray Code Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4.2 Recovering Normal Maps from Specularities . . . . . . . . 63

5.4.3 Efficient Acquisition . . . . . . . . . . . . . . . . . . . . . 64

5.4.4 Specularity Detection . . . . . . . . . . . . . . . . . . . . . 65

5.4.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Gradient Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5.1 LCD Screen as a Gradient Illuminant . . . . . . . . . . . . 71

5.5.2 Diffuse Reflection . . . . . . . . . . . . . . . . . . . . . . 72

5.5.3 Specular Reflection . . . . . . . . . . . . . . . . . . . . . . 76

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.7 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Glossiness Acquisition 87

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Acquiring Surface Gloss . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 94

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Conclusions 97

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.1.1 Setup Calibration . . . . . . . . . . . . . . . . . . . . . . . 98

7.1.2 Relief Acquisition . . . . . . . . . . . . . . . . . . . . . . 98

7.1.3 Glossiness Acquisition . . . . . . . . . . . . . . . . . . . . 99

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2.1 Setup Calibration . . . . . . . . . . . . . . . . . . . . . . . 99

7.2.2 Relief Acquisition . . . . . . . . . . . . . . . . . . . . . . 100

7.2.3 Glossiness Acquisition . . . . . . . . . . . . . . . . . . . . 100

A Scientific Contributions and Publications 103



viii CONTENTS

B Samenvatting (Dutch Summary) 107

Appendices 109

Bibliography 124



List of Figures

1.1 Digitizing the real-world. . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Mesostructure reflectance acquisition setups. . . . . . . . . . . . . . 9

2.2 Relief representations. . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Relief maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Image acquisition pipeline. . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Captured versus emitted intensities . . . . . . . . . . . . . . . . . . 21

3.3 Simulating grey intensities by temporally integrating black/white in-

tensities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Exaggerated screen response aberrations. . . . . . . . . . . . . . . 23

4.1 Pinhole camera geometry. . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Radial lens distortions. . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Setup calibration of screen and camera facing similar direction. . . . 31

4.4 Sphere localization. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Detecting barely visible corners. . . . . . . . . . . . . . . . . . . . 35

4.6 2D corner detection in alternate space. . . . . . . . . . . . . . . . . 36

4.7 Corner detection to line detection. . . . . . . . . . . . . . . . . . . 37

4.8 Calibration overview. . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.9 Gray code reflections for calibration. . . . . . . . . . . . . . . . . . 40

4.10 Gray code labeling. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.11 Gray codes vs. binary codes. . . . . . . . . . . . . . . . . . . . . . 42

4.12 Gray codes vs. binary codes: example. . . . . . . . . . . . . . . . . 43

4.13 Reflection mask. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.14 Detected screen positions. . . . . . . . . . . . . . . . . . . . . . . 46



x LIST OF FIGURES

4.15 Reduced sphere localization accuracy due to weak perspective. . . . 49

4.16 Locating the spherical mirror. . . . . . . . . . . . . . . . . . . . . . 50

4.17 Geometric error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.18 Error as function of number of patterns. . . . . . . . . . . . . . . . 52

5.1 Acquisition setup Gray codes. . . . . . . . . . . . . . . . . . . . . 60

5.2 Diffuse and specular separation. . . . . . . . . . . . . . . . . . . . 61

5.3 Mesostructure from specularity by Chen et al. . . . . . . . . . . . . 62

5.4 Angular normal sampling rate. . . . . . . . . . . . . . . . . . . . . 63

5.5 Gray code based encoding. . . . . . . . . . . . . . . . . . . . . . . 63

5.6 Confidence maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.7 Comparison specular and glossy. . . . . . . . . . . . . . . . . . . . 67

5.8 Precision issues glossy materials. . . . . . . . . . . . . . . . . . . . 67

5.9 Error specular and glossy reflections. . . . . . . . . . . . . . . . . . 68

5.10 Acquired maps using Gray codes. . . . . . . . . . . . . . . . . . . 69

5.11 Results: input, normals, rerenderings. . . . . . . . . . . . . . . . . 70

5.12 Setup gradients based acquisition. . . . . . . . . . . . . . . . . . . 72

5.13 Gradients to ratios. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.14 Spherical gradients projection. . . . . . . . . . . . . . . . . . . . . 74

5.15 Determining albedo and normal information. . . . . . . . . . . . . 76

5.16 Results: input, normals, rerenderings, relief, difficulties. . . . . . . . 77

5.17 Procedure overview. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.18 Glossy button with its normal map. . . . . . . . . . . . . . . . . . . 82

5.19 Error comparison gradients and Gray codes. . . . . . . . . . . . . . 83

5.20 Results: input, normal maps, rerenderings. . . . . . . . . . . . . . . 85

5.21 Future setup proposal. . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1 Glossiness acquisition setup. . . . . . . . . . . . . . . . . . . . . . 90

6.2 Relief and glossiness acquisition pipeline. . . . . . . . . . . . . . . 91

6.3 Relation between pattern refinement level i and the gloss level n. . . 94

6.4 Normal and glossiness map results. . . . . . . . . . . . . . . . . . . 96



List of Tables

3.1 Display comparison. . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Hamming distance. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Error for different sphere locations. . . . . . . . . . . . . . . . . . . 53

5.1 Number of required input images. . . . . . . . . . . . . . . . . . . 69

5.2 Comparison of mesostructure comparison reconstruction methods. . 81



xii LIST OF TABLES



Chapter 1

Introduction

Contents

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Overview of the Dissertation . . . . . . . . . . . . . . . . . . 5



2 Introduction

1.1 Problem Statement

During the last few decades, computers have become increasingly important for per-

forming a wide variety of tasks. One of these tasks consists of generating images of

virtual scenes. Nowadays, convincing rendering techniques are employed in many

applications, such as computer games. Even the production of photorealistic im-

ages has become common practice, for example during movie post-production. Fast

and/or accurate rendering techniques have been developed for this purpose, approxi-

mating or accurately simulating light transport within the virtual world.

However, even if light interaction is simulated in a physically correct manner,

scene data still has to be provided in the form of a 3D model. If the input scene data

does not contain small-scale surface details such as scratches, imperfections, etc, the

scene will be perceived as unrealistic. Manually modeling the world at such a level

of detail can be a tedious task, suggesting the use of automatic 3D scanning methods.

Throughout the years, many techniques have been proposed to digitize the world

around us. These techniques typically capture either (a) the light in the scene, (b)

the geometry, or (c) the reflectance properties, or any combination of these. In this

dissertation we will focus only on capturing the geometry and reflectance properties.

Although numerous geometry acquisition techniques exist, typically they are only

able to acquire global shape information rather than local small-scale relief properties

(figure 1.1). In practice, local surface deviations with respect to the global surface are

often still manually modeled by designers, instead of automatically measured using

real-world sample surfaces. The same holds for reflectance properties, which are

often manually created using graphics shaders.

Even though several techniques exist for scanning local surface details as well as

reflectance properties, users tend to stick to their manual approach. One of the rea-

sons for this is the complexity of the currently available methods. Many approaches

require special purpose setups, containing exotic hardware components, time con-

suming calibration procedures, difficult implementations and scanning procedures

etc.

In this dissertation, the goal is to make small-scale appearance acquisition avail-

able to the public, bridging the gap between current research and practical usage.
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(a) Real picture (b) Virtual rendering

Figure 1.1: A digitized version of a detailed real-world plastic sample sheet (a) is

used for image synthesis (b).

This is achieved by presenting an efficient, easy to implement and to execute ap-

proach, employing solely off-the-shelf hardware components consisting of a regular

still camera and a computer screen that functions as a planar illuminant.

1.2 Contributions

In this dissertation we present a number of contributions regarding relief and glossi-

ness acquisition using a digital still camera and a planar light source. Part of this

work has been presented [Francken 07a, Francken 07c, Francken 08a, Francken 08d,

Francken 08c, Francken 08b, Francken 09c, Francken 09a, Francken 09b] at various

conferences.

The main contributions of this work are:

Setup calibration: We present two different approaches to geometrically calibrate

the screen with respect to the camera using a spherical mirror.

Relief acquisition: A relief acquisition method for specular, glossy and diffuse sur-

faces is presented and evaluated. We propose the use of a computer screen

emitting Gray code and gradient patterns, illuminating a mesostructure surface,

in order to efficiently reconstruct fine-scale surface relief.
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Glossiness acquisition: Per pixel reflectance properties are measured by extending

the Gray code based relief acquisition method.

1.3 Applications

The acquisition of small-scale surface and/or reflectance properties has applications

within many different areas.

Entertainment: 3D computer games have become omnipresent during the last

decade. Due to the ever increasing hardware support for real-time realistic

rendering, techniques such as bump/normal and displacement mapping have

become common in 3D games engines, by the use of shaders. The work pre-

sented in this dissertation aims to provide these shaders with the required data.

Another large entertainment business making use of captured 3D models, is

the movie industry. In order to increase the perceived realism of movie scenes

by adding surface irregularities, the presented techniques can be employed to

capture this level of detail.

Cultural heritage: Digital models of historical artefacts provide a way to preserve

them without the risk of degradation. Detailed scans are desirable, as details

will dissapear fast, compared to their coarse structure. The proposed methods

can be used to scan such surface details.

Computer aided design / modeling: Often, in the early stages of production pro-

cesses, prototypes are created to evaluate the look or other features of the prod-

uct thus far. For instance, during the design phase of the shape and fine-scale

relief of a car’s dashboard, prototypes are created. In order to avoid long and

expensive processes to create individual real-world prototypes, digital proto-

typing has become popular. Several of the techniques proposed in this thesis

are useful to create digital libraries of fine-scale surface patterns, such as dash-

board plastics, to be used for computer aided design / modeling.

Quality control for manufacturing industry: Manufacturers often want to per-

form automated quality control of produced objects, e.g. checking a painted

car for reflection deviations due to orange skin artefacts, verifying the surface

roughness of milled metal objects, or controlling the sharpness of diamond
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edges. Such quality control examples can be accomplished using the investi-

gated approaches within this work.

Medical applications: 3D scanners are employed in this field in order to analyse

the functioning of particular body parts, to plan surgeries, or create appropri-

ate prostheses. Techniques proposed in this dissertation can efficiently create

detailed scans of skin, nails and eyes.

Augmented and mixed reality: Augmenting the world by adding/mixing virtual

data with real data has recently become very popular. To provide a seamless

“mix”, realistic small-scale surface data has to be integrated.

1.4 Overview of the Dissertation

In this section a chapter by chapter content outline is given.

Chapter 1: Introduction This introductory chapter.

Chapter 2: Background Relevant background information about the acquisition

and representation of small-scale surface details is covered here.

Part I: Setup This part will focus on building and calibrating the proposed setup.

Chapter 3: Hardware In this chapter, the involved hardware components are

discussed. What are the advantages and drawbacks of using a screen as

planar illuminant and digital still camera as light sensor?

Chapter 4: Calibration This chapter demonstrates different methods to cal-

ibrate a screen-camera setup. It describes how the setup parameters are

defined, which mirror type that is suggested, and what the expected pre-

cision of the proposed methods will be.

Part II: Relief and Glossiness Acquisition The second part will focus on the actual

surface acquisition approaches using the hardware proposed in part I.

Chapter 5: Relief Acquisition This chapter provides different methods to ac-

quire local surface orientation, employing specific light patterns dis-

played on the screen, captured by the camera, and processed to a normal

map by the computer.
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Chapter 6: Glossiness Acquisition An extension of the previously presented

normal acquisition is described here, which measures additional local re-

flectance information.

Chapter 7: Conclusions The conclusions chapter contains a short summary of the

dissertation, and some interesting future directions will be pointed out.

A: Scientific Contributions and Publications: In appendix A, a list of contribu-

tions and publications is given.

B: Samenvatting (Dutch Summary) Appendix B contains a Dutch summary of this

thesis.
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8 Background

In this chapter, we will give an overview of small-scale surface representations as

well as acquisition.

In order to avoid that smooth global surfaces are subdivided into very small prim-

itives to obtain a high quality rendering, local surface detail is traditionally mapped

onto the global surfaces. This mapping establishes a 1-to-1 relationship between 2D

texture elements (texels) and the coarse 3D surface. We will discuss approaches that

model the reflectance (section 2.1) and the geometric relief (section 2.2) of the sur-

face texture. The acquisition is described in section 2.3.

2.1 Reflectance

The general way to model the reflectance, or the microstructure, of a surface is by

describing the relation between the incident and exitant light for all possible light

direction combinations, for all texels. This six-dimensional function is referred to

as the Bidirectional Texture Function [Dana 99], which can be seen as a spatially

varying BRDF with integrated light conditions:

BT Fr,g,b(θi,φi,θe,φe,u,v) (2.1)

The incoming light (θi,φi), exitant light (θe,φe), the spatial texture location (u,v)

and the wavelength (r, g, b) in general all influence the amount of light transport.

However, in practice many techniques reduce the number of parameters for rendering

efficiency, reducing the acquisition time, avoiding material dependent redundancy,

or preferred simplicity. In the remaining part of this section we will discuss some

popular mesostructure reflectance formats.

2.1.1 Bidirectional Texture Function

The bidirectional texture function is a very general, but high dimensional format.

Although many compression schemes have been introduced to reduce the amount of

data, the acquisition still requires a special hardware setup including moving parts

as each texel has to be illuminated and observed under all possible directions. In

figure 2.1(a) a proposed setup of Wang and Dana [Wang 06] is depicted. BTFs can

also be synthesized instead of captured, as described by Tong et al. [Tong 02].
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(a) Bidirectional Texture Function setup of

Wang and Dana [Wang 06]

(b) Polynomial Texture Map setup of Malzben-

der et al. [Malzbender 01].

Figure 2.1: Mesostructure reflectance acquisition setups.

2.1.2 Polynomial Texture Maps

A Polynomial Texture Map (PTM) is a 4D version of the BTF, where the exitant

directions are fixed:

PT Mr,g,b(θi,φi,u,v) (2.2)

Hence, no view dependent light changes like specular highlights can be captured.

Other effects such as self-shadowing and interreflections are nicely preserved. The

PTM is stored as a number of per texel coefficients of a biquadratic polynomial.

An example of acquisition setup is given in figure 2.1(b). Due to the fixed viewing

direction and the use of multiple light sources, no moving parts are involved.

2.1.3 Regular Texture Maps

In practice, mesostructure reflectance is often approximated using more simplified

models. Nowadays, most computer graphics applications make use of only a lim-

ited number of texture maps, containing information such as diffuse color, specular

color, glossiness and local surface deviations. These texture maps function as the

parameters of the reflection model (e.g. Phong [Blinn 77]). Since current graphics

hardware is designed to work in this fashion, very efficient rendering can easily be

achieved. Although no specific texture formats are strictly required due to the flexibil-
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ity of current shading languages, we will discuss some standard texture map formats

traditionally used in graphics applications.

If surface materials are modeled as a combination of a diffuse and specular com-

ponent, the necessary parameters can be stored in a diffuse, specular and gloss map.

The diffuse map contains the material’s diffuse albedo required for Lambertian reflec-

tions, the specular map defines the brightness of specular reflections, and the gloss

map contains the shininess or glossiness of the material. Intuitively, the intensity of a

specularity is defined by the specular map, where its size is defined in the gloss map.

As stated before, many other approaches are possible. Examples include models for

specific materials such as human skin [Tsumura 03] or wood [Marschner 05].

Traditionally, in order to obtain the required texture maps, a manual approach

is applied, sometimes based on photographs under uniform white illumination or

procedurally generated images [Perlin 85].

2.2 Relief

The appearance of an image surface point does not only depend on the material’s

reflectance properties, but also on the local surface orientation. Therefore it is ben-

eficial to store local surface perturbations with respect to the global surface as well.

Several commonly used representations exist, which we will categorize into two sep-

arate groups, the height based and orientation based relief representations.

2.2.1 Height Based Relief

Height based relief maps are functions h(u,v) assigning a height value to each texel

(u,v). They are used for rendering techniques such as bump mapping, displacement

mapping and parallax mapping. An example is given in figure 2.2, where the height

h(u,v) of an individual bump is plotted for illustrating the difference between the

different mesostructure representations.

2.2.2 Orientation Based Relief

This type of relief stores local surface orientation. The following concrete orientation

based representations are often used:
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v-gradient

normal

s

t

u-gradient

Figure 2.2: Zoomed view on a single surface bump. Local surface orientation for a

texel is indicated by the surface normal, u− and v-gradient and the slant s and tilt t.

Surface normals: for each texel a surface normal n(u,v) = (nx,ny,nz) is stored. It

allows for straightforward light reflection calculations.

Gradients: the discrete partial derivatives ∂h
∂u

and ∂h
∂v

are stored for each texel. This

representation is often used to convert the local orientation into a local height

value.

Slant-tilt: two angles s (slant) and t (tilt) define the orientation. This representation

is also mainly used for converting orientations into height values, or to define

surface orientation with respect to a viewer (red vertical vector in figure 2.2).

The main disadvantage of orientation based approaches is that light occlusions /

visibility cannot directly be handled.

2.2.3 Converting Height from/to Orientation Based Relief

The preferred relief format depends on the application. However, the acquired relief

format tends to strongly depend on the underlying acquisition technique used. Hence

a conversion between height and orientation based relief is needed. An example of a

scanned dashboard plastic stored as height and orientation based relief maps is given

in figure 2.3.
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(a) Normal map (b) u-gradient map (c) v-gradient map

(d) Slant map (e) Tilt map (f) Height map

Figure 2.3: Relief maps.

Converting height values into orientation values is a straightforward procedure.

By calculating the discrete partial derivatives ∂h
∂u

and ∂h
∂v

of the height function h(u,v)

local surface orientation is obtained. These u− and v−gradients can afterwards be

transformed into other formats, such as slant-tilt or normal values.

The transformation of orientation values into height values is more compli-

cated. The idea is that a surface has to be found, satisfying the condition that

at each coordinate (u,v) the derived orientation of the found height map has to

equal the given orientation. In practice this is a hard problem as there does not al-

ways exist a perfectly suitable surface due to discrete sampling, acquisition errors,

and quantization errors. These errors can yield to the non-integrability of the sur-

face normals, and thus approximations have to be made. Most practical methods

make assumptions, such as smoothness, and fit a surface by minimizing a prede-

fined error function on the reconstructed orientation deviations. Depending on the

used technique, different height maps might be obtained [Agrawal 05]. There ex-

ist a number of proposed techniques, which fall outside the scope of this disserta-

tion [Frankot 88, Nehab 05, Agrawal 05, Kovesi 05].
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2.3 Acquisition

In this section, the concept of vision based mesostructure acquisition will be intro-

duced. Concrete approaches will be discussed later in the thesis text.

The shared idea among vision based mesostructure acquisition techniques is that

a surface is illuminated by one or more light sources while a fixed camera captures

one or more images of the subject. The captured light reflections depend on how the

surface reacts on the incident light. More specifically, it depends on the reflectance

and relief of the surface. Hence, given one or more images under known illumina-

tion, and making some assumptions on the material properties, reflectance or relief

can be determined. For example, assuming point light sources at a large distance

from the object and a Lambertian reflectance model, Horn [Horn 75] and Wood-

ham [Woodham 80] were able to obtain local surface orientation taking a shape-from-

shading or photometric stereo approach.

As will be discussed later, many extensions and alternative approaches have been

introduced to allow for scanning different types of materials. However, since relief

details are only small-scale surface deviations, most techniques acquire local surface

orientation instead of directly measuring height maps. As current graphics applica-

tions mostly require height maps to be used for displacement mapping executed on

graphics hardware, orientation based formats often have to be converted into height

maps.
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In this chapter, we will present the employed hardware setup for relief and glossi-

ness acquisition. The principal hardware components involved are a digital still cam-

era functioning as a light sensor and a regular computer screen functioning as a planar

illuminant. As this setup will be used for optical measurements, we will concentrate

on their radiometric properties.

3.1 Digital Still Camera as Light Sensor

During the last decade, digital still cameras have become ubiquitous. Inexpensive off-

the-shelf single-lens reflex (SLR) cameras are already able to capture high resolution

images retaining a sufficient quality to be used as physical optical measurement de-

vices. However, a mathematical camera model (see chapter 4) and a relation between

the scene radiance and the corresponding pixel intensity have to be established.

The function relating radiance to brightness is called the camera response func-

tion. Often this function is nonlinear, while most photometric methods require a

linear response. In many imaging devices, this nonlinearity is intentional to mimic

the response of film, the human visual system, or even to create aesthetic effects.

Classical deviations result from white balancing, gamma correction and automatic

gain control. Fortunately, typical sensors, such as CCD or CMOS, respond linearly,

and cameras often allow the user to read this 12- or 16-bit raw sensor data. If this is

not the case, the nonlinear response function is usually measured and compensated

for. However, depending on the shape of the response curve, some of the n−bit color

resolution is lost in the process.

An overview of the image formation pipeline is given in figure 3.1. Notice that

two different types of transformations can be distinguished: effects due to camera

optics or electronics. We discuss them separately.

3.1.1 Optics

The effect of lens optics is well-established research area [Horn 86, Mitsunaga 99,

Wilburn 08]. The function relating image scene radiance L(t) and irradiance E(t) is

given by:

E(t) = L(t)
π

4

(

d

h

)2

cos4(φ) (3.1)
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Figure 3.1: Image acquisition pipeline.

where d is the aperture diameter, h the focal length, and φ is the angle subtended

by the principal ray from the imaging axis. When these constant parameters are

grouped into a single constant k = π
4

(

d
h

)

cos4(φ), this relation is clearly linear:

E(t) = kL(t) (3.2)

As image sensors are integrating devices, the total integrated irradiance for an

exposure from time t0 to time t1 is given by:

I =
∫ t1

t0

kL(t)dt (3.3)

3.1.2 Electronics

The nonlinear transform performed by the electronics is modeled as a single func-

tion f . There exist many different approaches to measure and model the nonlin-

ear radiometric response functions [Healey 94, Debevec 97, Mitsunaga 99, Tsin 01,

Grossberg 04, Wilburn 08]. The shared idea among most techniques is the recording

of a number of images under different exposure times.

For the results presented in this dissertation, the previous approaches are straight-

forwardly applied to assert that the response curve of our camera is linear. A com-

puter screen displaying a completely white image is recorded under different expo-

sure times and, except from a limited amount of sensor noise, a linear response was

measured.
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CRT LCD Plasma

Viewing angle A C A

Brightness C A A-C∗

Low black level A C B

Polarization n/a A n/a

Contrast ratio A C A-C∗

High resolution B A B

Manoeuvrability C A A

Table 3.1: Comparison of CRT, LCD and plasma display technologies. A stands for

excellent, B for good and C for fair performance. A-C∗ means the performance varies

because of the Average Picture Level.

3.2 Screen as Planar Illuminant

The continuously increasing quality and decreasing prices of display technology

make the use of easily and precisely controllable planar illuminants widely avail-

able in the form of regular computer screens. Even though this is a rectangular planar

light source, only approximating a hemispherical one, the benefits outweigh the dis-

advantages.

Alternatively, a projector illuminating the front (or back) of a diffuser, can replace

a computer screen [Schechner 03]. This type of setup allows for creating large and

even curved screens, at a reasonably low cost. However, we have opted to employ

regular displays as, for several parts in the dissertation, linearly polarized light has to

be emitted. This cannot be straightfowardly achieved with a single projector and a

regular diffuser.

Nowadays there are three common types of display technologies: CRT, LCD and

plasma. An overview of their relevant properties is summarized in table 3.1. Notice

that LCD screens emit linearly polarized light by default because of the underlying

technology, which will be exploited in our applications.

When no polarized light is required, a CRT screen will be employed. The plasma

display technology does not offer any exclusive advantages and the luminance of in-

dividual pixels cannot be straightforwardly controlled as they depend on the Average

Picture Level (APL).
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Figure 3.2: Captured versus emitted intensities measured with Canon EOS 400D

camera. Left: a nonlinear response by directly capturing displayed linearly increasing

grey intensities. Right: temporal black/white integration approach. Except from a

small amount of sensor noise, the response is clearly linear.

The quality of displayed images on a computer screen strongly depends on a

number of factors. The relevant factors will now briefly be discussed.

3.2.1 Intensity/Color Response

Screen settings, such as contrast, brightness and gamma, have a major influence on

the displayed image intensity (figure 3.2 (left)). As a result, the emitted screen pixel

radiance L(t) at time t cannot straightforwardly be controlled. This suggests the

necessity for a radiometric calibration step [Lamond 09]. Instead, we propose an al-

ternative approach avoiding any response dependent calibration, using concepts bor-

rowed from camera response curve measurement [Wilburn 08].

If a sensor with a linear response is exposed to the radiance L(t) of a pixel during

a period t0 to t1, the integrated irradiance I is:

I =
∫ t1

t0

kL(t)dt (3.4)

Although L(t) is not precisely known in our case, it is possible to minimize or

maximize its output by displaying either a black or white pixel color, respectively

Lblack or Lwhite. This yields the following equations:



22 Hardware

0

Lwhite

0

=E

tt

L L

Lwhite

t0 t1 t0 t1t
a

black level

Lgrey

Lblack Lblack

E

Figure 3.3: Simulating grey intensities Lgrey by temporally integrating black/white

intensities Lblack and Lwhite.

Iblack =
∫ t1

t0

kLblack(t)dt (3.5)

Iwhite =
∫ t1

t0

kLwhite(t)dt (3.6)

As we work with long sensor exposure times (t1 − t0) compared to the

screen’s refresh rate, Lblack and Lwhite can reasonably assumed to be constant over

time [Wilburn 08]. The goal is now to create a linearly controllable pixel radiance Iα,

with α ∈ [0,1]. This is obtained by exposing the image partly with Lblack and partly

with Lwhite. The image irradiance is then:

Iα =
∫ tα

t0

kLwhite(t)dt +
∫ t1

tα

kLblack(t)dt (3.7)

= αIwhite +(1−α)Iblack (3.8)

This idea is illustrated in figure 3.3. Notice that when the so-called black level

Lblack is not sufficiently dark for certain applications, a dark image can be recorded

and later be subtracted from the recorded images. Concrete measurements that illus-

trate the linearity of our approach with respect to the naive approach, are depicted in

figure 3.2.
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(c)(b)(a)

Figure 3.4: Exaggerated screen response “aberrations”. The figures show (a) angular,

(b) spatial and (c) temporal aberrations. (a, b) are LCD displays, where (c) is a CRT.

3.2.2 Angular Dependence

Certain displays (mainly LCDs) suffer from a drop in brightness when a pixel is

observed from a “large” angle with respect to the screen’s surface normal (see fig-

ure 3.4 (a)). As this effect is generally considered to be spatially uniform, the angular

response can be measured by recording an individual pixel under different angles. In

our work we deal with the angular dependence by (a) employing a screen which only

slightly exhibits this problem, and (b) placing the subject at a sufficient distance from

the screen. Of course this is only required in cases where the method is sensitive to

this dependence.

3.2.3 Spatial and Temporal Dependence

Although spatial (figure 3.4 (b)) and temporal (figure 3.4 (c)) dependent brightness

variations are negligible for a majority of applications, it is worth mentioning that

pixels might have different responses at other screen pixel locations or at a different

moment in time. The former effect is due to small aberrations in the backlight , the

latter because of the difference in latency between the redrawing moment of different

pixels. Problems due to this latency are only present in cases of very short expo-

sure times (less than a second). As the exposure time in our application consists of

multiple seconds, we do not experience any such problems.
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3.3 Box Construction as Dark Room

When employing a screen-camera setup for optical measurements, it is desirable that

the illumination is fully controllable. In order to remove uncontrollable stray light,

we simply use a box covered with a matte, black and thus light absorbing cloth.

Furthermore, high albedo or highly specular materials inside the box are avoided

where possible, in order to prevent contamination of the measurements by having

disturbing interreflections [Goesele 00].

3.4 Conclusions

There are a number of factors we need to take into account when employing computer

screens as light sources. In practice however, most of them can either be calibrated

for or they can simply be avoided. Fortunately, the majority of these disadvantageous

factors will probably decrease by the continuously improving technology, as these

negative properties are also not desirable for regular usage. Current SLR cameras

can be employed straightforwardly, as long as the raw sensor data can be accessed.
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In this chapter, we will discuss different approaches to geometrically calibrate a

setup consisting of a camera, a planar illuminant and an approximately planar sub-

ject. Since a computer screen is employed as planar illuminant, this means that for

every screen pixel location we want to know the 3D location in Euclidean space (e.g.

expressed in millimeters or inches) with respect to the camera. The same holds for

each subject’s location visible by the camera.

4.1 Setup Parameters

The geometric properties of the setup can be described by a number of parameters.

The collection of these parameters will be explained in this section.

4.1.1 Camera Parameters

A traditional digital camera can be seen as a device projecting 3D points onto a 2D

image plane. Mathematically, this is described by a single matrix transform com-

bined with a lens distortion function. In this work, we will only focus on pinhole

camera models, excluding affine camera models and other less common models such

as pushbroom cameras.

Projection Matrix

When assuming there is no lens distortion, the relation between a 3D point X and its

corresponding 2D projected pixel x is defined by a projective transform P as follows:

x = PX . This projection matrix P contains the camera related parameters K, the

position C, and orientation R of the camera coordinate frame. More specifically,

P = KR[I|−C], where I is a 3×3 identity matrix. The matrix K contains the so-called

internal or intrinsic camera parameters, whereas R[I| −C] contains the external or

extrinsic parameters. The intrinsic matrix K describes sensor and lens dependent

image formation properties, as will be explained later.

Since we work with a single camera in our setup, we are free to let the camera

center define the origin of the Euclidean coordinate system, and to let the optical axis

define the Z-axis, as shown in figure 4.1. Therefore, in our case P can be simplified

to P = K[I|0], where 0 is a 3×1 matrix containing zeroes. Consequently, only the

internal camera parameters K will matter in our case.
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Figure 4.1: Pinhole camera geometry.

The K-matrix is constructed as follows:

K =







αx s x0

0 αy y0

0 0 1







where the parameters are defined as:

• αx,αy represent the focal plane distance divided by the physical width (respec-

tively height) of the pixels on the sensor. Note that the value for αx and αy

might be different, since the sensor might consist of non-square pixels.

• x0 and y0 define the principal point in terms of pixel dimensions. This is the

point on the image plane which is at the base of the perpendicular from the

center of the lens.

• s is the skew parameter, describing the skewness of pixels. Usually this value

will be equal to 0, as pixels are rectangular.

Distortion Model

In practice, lenses often suffer from a number distortions including radial distortions,

chromatic aberrations, vignetting etc. For the camera and lenses we use, only radial
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(a) no distortion (b) barrel distortion (c) pincushion distortion

Figure 4.2: Image of a red rectangle under different three types of radial lens distor-

tions.

lens distortions are a real issue for our purposes. Fortunately, this form of aberrations

can easily be compensated for.

Although there exist lenses exhibiting more complex radial distortion patterns,

typically a lens with a certain focal length can be categorized in either one of the

following groups (see figure 4.2):

No distortion: high quality lenses often exhibit no or a negligible amount of radial

distortion (figure 4.2 (a)).

Barrel distortion: this type of radial distortion is typically present when using wide

angle lenses (figure 4.2 (b)).

Pincushion distortion: this mostly appears when employing large focal length

lenses (figure 4.2 (c)).

Radial distortions can be regarded as displacements applied to the theoretical

pixel locations. These displacements depend on the distance r with respect to the

principle point and can be modeled by a distortion function L(r). The relation is

then:

(

xd

yd

)

= L(r)

(

x

y

)

where:

• (xd,yd) is the actual image position after radial distortion, relative with respect

to the distortion center which is assumed to coincide with the principal point.
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• (x,y) is the theoretical undistorted projected pixel, also relative to the distortion

center.

• r is the radial distance
√

x2 + y2 from the distortion center.

• L(r) represents the distortion factor and is function of the distance r.

The function L(r) is defined for positive values r as the following Taylor expan-

sion:

L(r) = 1+κ1r +κ2r2 +κ3r3 + . . .

In practice, a limited set (two or three) of parameters κ1,κ2,κ3, . . . suffices to

describe the distortion required for undoing this unwanted lens effects .

Obtaining Camera Parameters

Obtaining camera parameters is a well-understood field and outside the scope of this

dissertation, we will refer the interested reader to the work of Hartley and Zisser-

man [Hartley 04].

In our work, we make use of traditional calibration tools which employ a checker-

board calibration pattern. Both the internal camera parameters and a distortion func-

tion are constructed from a limited number of images of this pattern under different

angles and positions [Bouguet 06].

4.1.2 Subject’s Supporting Plane Parameters

As our sample will always be globally planar, we will approximate its coarse geom-

etry by its supporting plane. The supporting plane is defined by the parameters π as

follows:

πT X = 0

X is a 1×4 homogeneous 3D point lying on the plane π, where π is a also

1×4 vector. Similar to the previous section, these plane parameters can be found

using common calibration tools making use of a checkerboard pattern placed at the

position of the subject [Hartley 04, Bouguet 06].
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4.1.3 Illuminant Parameters

When all camera and subject related parameters are defined, only the illuminant’s

parameters are not covered yet. In this dissertation we will use two different styles of

defining the position of the illuminant with respect to the camera, because both are

used in literature.

The first, and straightforward, method is simply specifying the four 3D corner

points of the screens Xul
screen, Xur

screen, Xbl
screen and Xbr

screen. A 3D screen point is then

found after bilinear interpolation of the four screen corners.

The second approach of storing this position is by a similarity transform M. Given

a screen pixel u, the corresponding 3D point X is found as follows: X = Mu.

If the screen is directly visible to the camera, the calibration process is straight-

forward: displaying a checkerboard pattern on the screen, standard calibration tools

can be used to locate the screen plane [Hartley 04, Bouguet 06]. This procedure is

very similar to the one presented in section 4.1.2.

In our case, the camera and screen are facing a similar directon (figure 4.3).

A mirroring surface is required in order to render the screen visible to the cam-

era [Tarini 05, Bonfort 06, Funk 07, Nitschke 09]. In this work, we will only focus

on this case, presenting two novel approaches. Since this is a more involving task, it

will be explained more carefully in sections 4.2 and 4.3.

Introducing a mirror turns our setup into a so-called catadioptric system. Cata-

dioptric systems are combinations of reflective (cataoptric) and refractive (dioptric)

objects, or as in this dissertation, a mirror and lens combination which will be used

to geometrically calibrate the screen and camera. Depending on the type (plane/-

sphere/hyperbolic/. . . ) and placement (central/off principal axis) of the mirror and the

lens, a single or multi-viewpoint catadioptric camera is created [Baker 99, Geyer 01].

Notice that in the case of a multi-viewpoint system, it is possible to reconstruct 3D

geometry from a single image because of the viewpoints created by the mirror reflec-

tions [Kuthirummal 06, Lanman 06]. In the following sections only two major mirror

types will be discussed, being a planar and a spherical one. The former produces a

single viewpoint system, whereas the latter produces a multi-viewpoint system.
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Figure 4.3: Setup calibration of a computer screen and camera facing a similar direc-

tion. Intersecting the reflection rays of the red feature yields the 3D position of the

screen corner.

4.2 Calibration with a Planar Mirror

In this section, two different planar mirror calibration methods are explained. The

fundamental difference between these approaches is in the detection of the plane

equation of the mirror.

4.2.1 Mirror Detection

Funk and Yang [Funk 07] determine the screen’s position and orientation with respect

to the camera using a planar surface mirror. In order to determine the location of the

mirror, a calibration pattern is attached to the mirror. The camera proceeds to capture

this calibration pattern, in addition to the reflected image of an additional calibration

pattern emitted by the screen. The screen coordinates can then be determined by

mirroring back the reflected screen pattern over the planar mirror.

Bonfort et al. [Bonfort 06] present an alternative approach using a planar mirror,

but instead of using a calibration pattern to identify the mirroring plane, they employ

a mirroring hard disk platter with known interior and exterior radii. The projections

of these circular boundaries yield two ellipses, which provide sufficient constraints

to identify the mirroring plane.
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4.2.2 Calibration Pattern

The type of calibration pattern used is rather irrelevant, as long as it correctly spec-

ifies a sufficient number of illuminant locations. Funk and Yang [Funk 07] employ

checkerboard patterns, allowing for using traditional calibration tools. Bonfort et

al. [Bonfort 06] make use of coded illumination patterns instead yielding a higher

number of labeled locations but requiring a more specialized calibration method.

4.3 Calibration with a Spherical Mirror

In this dissertation we present two novel calibration methods employing a spherical

mirror instead of a planar one. First the procedure will be described, then the results

will be discussed and compared.

Our proposed algorithms consist of two major stages: (a) locating the position

of the spherical mirror, using only the camera image of the sphere and the radius,

and (b) computing the 3D location of the screen surface. The first stage is applied to

two or more images with different sphere locations and these results are passed on

together to the second stage.

4.3.1 Mirror Detection

In order to estimate the Euclidean world coordinates of the spherical mirror, we first

need to locate its image in camera coordinates. More precisely, the image contour is

sufficient for our purposes. This, combined with the intrinsic camera parameters is

sufficient to locate the spherical mirror.

Contour Detection

The contour of a projected sphere on the image plane of a camera will be an ellipse.

Hence, given a set of 2D edge pixels {xi}, an ellipse has to be fitted. This set of pixels

can either be sparse when a manual selection is applied, or dense when an automatic

background subtraction procedure is performed. This background subtraction is then

followed by a set of morphological operations (erosion, dilation and subtraction) that

provide us with the actual contour, eliminating any unwanted pixel noise and bridging

minor lapses.
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Given the resulting pixel set {xi}, we want to locate the ellipse that provides the

best fit through these data points. The equation of a general conic in homogeneous

coordinates is xTCx = 0, where C is of the form

C =







a b/2 d/2

b/2 c e/2

d/2 e/2 f






(4.1)

However, as the ellipse contour is the result of a sphere projected onto the image

plane, this poses an additional constraint on our conic equation: b = 0. As standard

ellipse detection algorithms do not take this into account, we choose to apply a tai-

lored RANSAC-based [Fischler 81] approach, in which we can instantiate the model

from a four point sample. We rewrite our conic equation as

[

(xi
1)

2 (xi
2)

2 xi
1 xi

2 1

]

c = 0 (4.2)

where c = (a,c,d,e, f )T is the conic C represented as a 5-vector. After the proper data

normalization [Hartley 97], the data points are stacked in a 4× 5 matrix. The conic

for the associated model can then be determined as the null space of this system, by

means of Singular Value Decomposition (SVD). During the RANSAC search, conics

that do not represent ellipses with a low eccentricity are automatically rejected. After

the search has completed, a final least-squares solution from the stacked matrix of all

inliers of the found model is computed.

Sphere Detection

After the sphere contour in the camera image is located, we need to determine its

location in our reference coordinate system [I|0].

The back-projection of a conic C results in a degenerate quadric [Hartley 04], the

right circular cone Q with apex (0,0,0,1)T .

Q = PTCP (4.3)

= (K[I|0])TC(K[I|0]) (4.4)

In order to reduce the problem to a manageable form, we align the cone with

the Z-axis of the coordinate system, the viewing direction of the camera. Unlike the
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Figure 4.4: Sphere localization (reduced form). A sphere with a known radius is

fitted into a right circular cone. The cone is defined by the camera position and the

contour of the projected spherical mirror.

approach of Shiu and Ahmad [Shiu 89], our change of coordinate system is achieved

by only a simple rotation R.

Q′ = RT QR (4.5)

After the transformations mentioned above, the obtained matrix Q′ is of the fol-

lowing form:

Q′ =











1 0 0 0

0 1 0 0

0 0 −s2 0

0 0 0 0











(4.6)

The projection angle of the cone center is now given by arctan(s2) (figure 4.4).

The distance z from the sphere center to the apex of the cone can now be determined,

assuming the physical sphere radius ρ is known.

z =
ρ

scos(arctans2)
(4.7)

= ρ

√
1+ s2

s
(4.8)

Once the distance z is determined, we are able to locate the position of the sphere

center c in our reference coordinate frame.

c = z
K−1 [x y 1]T
∥

∥

∥
K−1 [x y 1]T

∥

∥

∥

(4.9)
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Figure 4.5: (left) Detection of barely visible corners; (top right) Corners do not lie

on detected edges (white) due to a specular highlight; (bottom right) Nearly indistin-

guishable corner.

where [x y 1]T is the center of the detected contour, and we reduce the viewing direc-

tion vector to its unit length.

4.3.2 Calibration from Corner Reflections

Locating the spherical mirror in a frame allows for the computation of the corre-

sponding reflection vectors for each of the pixels within the sphere contour. After

the image locations of the four screen corners are detected, a set of reflection vectors

intersect in their three-dimensional coordinates. Combining two (or more) sets of

such vectors associated with different mirror positions, an accurate estimate of these

screen corners can be calculated. This method is presented by Tarini et al. [Tarini 05].

However, accurately locating the screen corners in camera coordinate space is not

a trivial task. Due to the nonlinearity of the four reflected screen edges and possible

distortions in the contour detection due to specular highlights, commonly used corner

detectors such as the Harris detector [Harris 88] are unable to properly locate the

required screen corners. Even manual corner labeling can be difficult, depending on

the relative positioning of the hardware in the setup (figure 4.5). Therefore, we will

present alternative approaches that take into account the screen edges and the interior

pixels.

4.3.3 Calibration from Edge Reflections

In order to facilitate corner detection, the contour pixels are transformed to a better

suited coordinate space (figure 4.6).
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Figure 4.6: Visualization of the 2D corner detection in alternate space.

2D Screen Corner Estimation

Letting the screen emit a constant luminance value in a single color channel allows

for the detection of its corresponding pixels in the sphere contour (figure 4.5). We

perform a set of morphological operations to extract the edge of the screen, similar

to our approach for the sphere detection. Then we will convert the curved edges into

straight ones by working in an alternate coordinate space.

Alternate Coordinate Space In camera coordinate space, we label a set of three

pixels {pi
cam}. These pixels are chosen from the four - or when two of these points

collide, three - intersections of the screen contour with its bounding box: {(x,y) | x =

minx ∨ y = miny ∨ x = maxx ∨ y = maxy}. While clockwise traversing the contour,

we label the selected points respectively as p1
cam, p0

cam, and p2
cam. As the position

and radius of the spherical mirror (c,ρ) are known, we compute the corresponding

intersections {P i
s} of this sphere with the back-projected lines from {pi

cam}. Because

the sphere normals in these points are also known, we can compute the resulting

reflection directions {~Ri}. Finally, we locate the points {P i
pl}:

P i
pl = P i

s + k ~Ri (4.10)

where k is a positive constant.
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Figure 4.7: By projecting the reflections of the screen contour on an appropriately

parameterized plane, we reduce the problem of corner detection in camera space to

line detection and intersection in an alternate space.

We will now use the plane through these three points as the basis of our alternate

coordinate space. For each screen edge pixel, the intersection of the corresponding

reflection rays with the computed plane is determined. If a reflection ray is parame-

terized as X i
s + t ~Ri, with X i

s a point on the sphere and ~Ri the associated reflection

direction, the following equation provides us with a new parametrization.







t

u

v






=
[

−~Ri (P 1
pl −P 0

pl) (P 2
pl −P 0

pl)
]−1
[

X i
s −P 0

pl

]

(4.11)

Line Detection As can be seen in figures 4.6 and 4.7, this new parametrization has

reduced the problem of locating the screen corners to line detection and the choice of

appropriate intersection points. The four screen edges are detected using RANSAC

and a final optimization step. We then compute the six intersection points, and auto-

matically choose the four non-collinear points from this set.

Original Coordinate Space In order to map the coordinates of the screen corners

back to camera space, we first need to compute the 3D coordinates of the corners

(u,v) on the parameterized plane:

Xpl = P 0
pl +u(P 1

pl −P 0
pl)+ v(P 2

pl −P 0
pl) (4.12)

Given a point Xpl , camera center O and spherical mirror (c,ρ), the point Xs =

ρ(N −O) + C on the mirror that reflects the ray through Xpl into the camera is
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uniquely defined by the reflection equation.

Xpl −Xs

‖Xpl −Xs‖
·N =

O−Xs

‖O−Xs‖
·N (4.13)

The unknown parameter in the equation above is the reflection normal N . If we

parameterize this vector as a normalized weighted sum of the vectors Xpl −C and

O−C,

N(t) =
t

Xpl−C

‖Xpl−C‖ +(1− t) O−C

‖O−C‖
∥

∥

∥
t

Xpl−C

‖Xpl−C‖ +(1− t) O−C

‖O−C‖

∥

∥

∥

(4.14)

the three-dimensional normal N is defined by a single scalar t ∈ [0,1]. We estimate

the correct value of t by iteratively minimizing the energy function

E(t) =

∥

∥

∥

∥

∥

[

Xpl −Xs(t)

‖Xpl −Xs(t)‖
− O−Xs(t)

‖O−Xs(t)‖

]T

N(t)

∥

∥

∥

∥

∥

(4.15)

We initiate the process with a value of t = 1
2
. This initiation is already a reasonably

good estimation, as it the approximation is correct up to the neglected sphere’s radius.

Using this initial value, the algorithm quickly converges to a global minimum.

The camera pixel coordinates xc of the wanted screen corners are now given by

the equation

xc = [K|0]Xs (4.16)

An example of the accuracy of these reprojected corners is illustrated in fig-

ure 4.5.

3D Screen Corner Estimation

As the screen corners are now located for each frame in camera coordinates, we can

combine all sets of reflection rays associated with each individual corner into a least-

squares problem. Next, we will describe the solution for the set of reflection rays

associated with a single corner, looking for their common intersection point.

Single Corner Estimation The reflection ray associated with frame i can be pa-

rameterized as li : X i
s + t ~Ri. The distance d(X, li) from a point X to a line li is
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Figure 4.8: An overview of our calibration pipeline, using images from a real-world

data set.

defined as follows:

d(X, li) =
‖~Ri × (X i

s −X)‖
‖~Ri‖

(4.17)

=

∥

∥

∥

∥

∥

(

[~Ri]×

‖~Ri‖

)

x−
(

[~Ri]×

‖~Ri‖
X i

s

)∥

∥

∥

∥

∥

(4.18)

If we formulate the problem of finding the common intersection point of all lines

li as finding the point X that minimizes the distance d(X, li) for all i, then we reduce

the problem to a least-squares minimization of the form ‖AX −b‖. Problems of this

form can be solved by using the normal equations (AT A)x = AT b. If AT A is invertible,

the solution to such a problem is X = (AT A)−1AT b.

Global Pixel Localization Once the position of the individual screen corners is

computed, every pixel (u,v)|u,v ∈ [0,1] located on the screen surface can be mapped

onto their three-dimensional Euclidean coordinates X by bilinear interpolation.

X =

[

1−u

u

]T [

Xul
screen Xur

screen

Xbl
screen Xbr

screen

][

1− v

v

]

(4.19)

An overview of the entire procedure is depicted in figure 4.8.

4.3.4 Calibration from Full Surface Reflections

In this approach, we will also employ the localized spherical mirror to render the

screen visible to the camera. However, instead of only taking into account the re-

flected screen corners and edges, we will let every single screen pixel contribute to
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Figure 4.9: The camera records Gray code patterns reflected off a spherical mirror.

This procedure is executed for two different sphere locations.

the estimated solution by encoding their positions. This reduces the required number

of manual sphere placements. The setup is depicted in figure 4.9

The processing pipeline consists of three separate modules. First, for each set

of images associated with a single sphere position, we estimate the 3D location of

the spherical mirror as described in section 4.2.1. Second, we establish the bijective

function between the camera pixels and the corresponding screen pixels. Finally, we

estimate the optimal 3D screen location by minimizing the geometric error between

the reprojected 2D screen pixels and the computed reflected ray intersections. The

last two modules will be discussed in more detail in this section.

Screen Pixel Labeling

We start explaining how Gray codes can provide us with a unique labeling for the

screen pixels, as well as how it facilitates our ability to distinguish between screen

reflections among different pixels.
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Figure 4.10: Gray codes uniquely identify matching camera pixels (top row) and

screen pixels (bottom row). The patterns are refined step by step, narrowing down

the possible regions illuminating the camera pixel. At the finest pattern level, the only

remaining possibility will be the reflected pixel.

Gray codes As we want to reconstruct the screen’s position with respect to the

camera, the reflected screen pixels have to be matched to their reflections on the

sphere. In order to uniquely identify each individual reflected pixel, we encode its 2D

position on the screen using Gray code illumination patterns. This type of patterns has

been used before to match surface locations for stereo [Sato 87, Scharstein 03] and

allows for robustly and efficiently encoding ten thousands of screen positions with

only tens of images. An example of Gray code illumination is given in figure 4.10.

In order to simplify the explanation of the functioning of Gray code patterns, we

initially assume we deal with the more intuitive, but less robust, binary codes. The

basic idea is to assign a unique increasing number to each pixel from left to right,

and top to bottom. For instance, for a screen resolution of 1024×768 pixels, labels

range from 0 (left) to 1023 (right), and 0 (top) to 767 (bottom). For now, let us focus

only on the left to right encoding as the top to bottom encoding works analogously.

When each unique label’s binary representation is sequentially displayed as n black

(0) and white (1) pixels, n binary patterns such as depicted in figure 4.11(b) will be

generated.

For detecting the reflected codes, we need to establish for each reflected screen

pixel, and each pattern, if it reflects either a white (1) or black (0) screen region. In

order to increase the robustness of this decision, we also employ their complementary

illumination patterns. The brightest pixel then gets a 1 assigned, the other a 0. The

composed bit-code now only needs to be converted back from binary to decimal

representation and the reflected screen position is found.



42 Calibration

0 0 . . .1 001 . . .

0  1  0  1  0  1  0  11  0  0  1  1  0  0  1

0  0  1  1  0  0  1  11  1  0  0  0  0  1  1

0  0  0  0  1  1  1  10  0  0  0  1  1  1  1

(a) Gray codes (b) Binary codes

certain

uncertain

Legend:

Code:
Certainty:

Code:
Certainty:

Figure 4.11: Gray code patterns (left) versus binary patterns (right). In case of Gray

code patterns, a reflection can point toward a pattern edge for only a single pattern

refinement level as the black/white edges will be moved each level. This is not the

case for binary patterns. Once a reflection points toward a binary pattern edge, it will

fall on an edge for every subsequent pattern yielding an uncertain code detection.

Clearly, n-bit codes can represent 2n different labels. Hence, only log2(n) patterns

are needed to encode n different labels/locations. More specifically, for a m×n res-

olution screen, 2(log2(m)+ log2(n)) patterns are necessary when complement pat-

terns are included.

In practice however, we use Gray codes instead of binary codes. As can be seen

in figure 4.11, these patterns are very similar except from a small transformation. In

a perfect situation, where a reflection points clearly to either a black or white region,

Gray codes and binary code patterns perform equally well. However, in practice,

when small detection errors occur because of camera noise, reflecting an edge of a

pattern etc, Gray codes perform better [Boyer 87, Salvi 04]. There are two important

benefits for using Gray code patterns:

• A reflection can only point to a pattern edge at a single refinement level. This

is not the case for binary patterns. Once a reflection points toward a binary

pattern edge, it will fall on an edge for every subsequent pattern yielding an

uncertain code detection. This is illustrated both theoretically (figure 4.11) and

practically (figure 4.12).
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Figure 4.12: Practical example of Gray code patterns (left) versus binary patterns

(right). Overall, the resolved reflected screen positions are equal, except from the

errors on the pattern edges when binary patterns are used.

• The Hamming distance between two subsequent codes (or the number of code

positions for which the corresponding symbols are different) is always one.

This can be seen by comparing the code of two subsequent numbers from ta-

ble 4.1. For example, take 7 and 8 in binary representation, which is 0111 and

1000 respectively. In Gray code representation, their codes are 0100 and 1100.

Hence the Hamming distance for the binary code is 4, as all 4 bits have to be

flipped to make the codes equal, while the distance is only 1 for the Gray codes.

When using Gray codes, the detected codes can be transformed in the more di-

rectly applicable binary representation. This conversion is nothing more than the

application of a number of bitwise operations and can therefore efficiently be han-

dled.

Reflection Mask Using the Gray code patterns, we will get a code for every single

camera pixel. Of course, only the reflections of the screen have to be extracted for use

in the next step of our algorithm. A naive method to accomplish this would consist of

illuminating the sphere with a complete black and a complete white pattern, subtract

the first captured image from the second one, and threshold the result. This way

reflections of alternative constant light sources would be filtered out. However, this

is not optimal as there may still be bright interreflections.

In our method we present a more sophisticated masking technique that selects

only sufficiently specular screen reflections. It is inspired by our glossiness acqui-

sition method, which will employ Gray codes in a similar setup (see chapter 6). In
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Decimal Gray codes Binary codes

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

2 0 0 1 1 0 0 1 0

3 0 0 1 0 0 0 1 1

4 0 1 1 0 0 1 0 0

5 0 1 1 1 0 1 0 1

6 0 1 0 1 0 1 1 0

7 0 1 0 0 0 1 1 1

8 1 1 0 0 1 0 0 0

9 1 1 0 1 1 0 0 1

10 1 1 1 1 1 0 1 0

11 1 1 1 0 1 0 1 1

12 1 0 1 0 1 1 0 0

13 1 0 1 1 1 1 0 1

14 1 0 0 1 1 1 1 0

15 1 0 0 0 1 1 1 1

Table 4.1: Comparison of the structure of decimal, Gray and binary codes. Notice the

one Hamming distance between subsequent Gray codes, and the often larger distance

for standard binary codes.

order to limit our mask to screen reflections only, we will observe the intensity dif-

ferences between their complements for each pattern refinement level. As has been

shown in the work of Ramamoorthi et al. [Ramamoorthi 01], reflections can be seen

as a convolution of the incoming light pattern and the BRDF kernel of the material.

Because of this property, the stripe pattern will be blurred away when a certain pat-

tern refinement level has been reached, as the BRDF kernel will be larger than the

pattern stripes . Thus, the reflection of a pattern and its complement tend to converge

at a certain pattern refinement level, which means that their intensity differences will

converge to zero. This is the key idea behind the masking algorithm, which will be

combined with the information from the mask already obtained from the background

subtraction step.

First, we determine the per pixel intensity differences by subtracting the com-

plement pattern from the original one. This is followed by determining the pattern
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Figure 4.13: The mask indicates whether or not a pixel is a screen reflection. Left: in-

put image. Middle: generated mask. Right: plot of the intensity differences between

scene reflections under normal and complement illumination patterns.

refinement level at which all the absolute values of the intensity differences stay bel-

low a certain threshold. Intuitively, we now have a number indicating the size of the

BRDF kernel, where a low number indicates a large kernel (diffuse reflections) and

a high number indicates a narrow kernel (specular reflection). Simply thresholding

this “glossiness” number gives a robust estimate of the useful screen reflections.

The previous procedure is illustrated in figure 4.13. Our method performs well

in the presence of alternative constant light sources, high albedo diffusers, and under

all viewing angles with respect to the LCD screen. Our method cannot deal with

specular interreflections, so we avoid other shiny objects beside the spherical mirror

in our setup.

In figure 4.14 we show a combination of the obtained reflection mask and de-

tected screen positions of the (extended) data set depicted in figure 4.10.

3D Reconstruction

In the final phase of our algorithm, our goal is to estimate the optimal 3D screen

location with respect to the camera. For the remainder of this section, we will assume

the position of the sphere to be known.

Reflected Ray Intersections In the previous phases, we have established a bijective

function between each screen pixel X and its observed camera pixel for each set of

images associated with sphere position i. If we use the camera’s internal parameters

to backproject this camera pixel, we can locate its intersection point Pi on sphere
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(a) (b)

(c) (d)

Figure 4.14: Detected screen positions for different pattern refinement levels, blended

with the obtained reflection mask. Decoded horizontal 2D screen positions are ex-

pressed relative to the screen dimensions. Number of vertical light patterns used: (a)

two, (b) four, (c) six and (d) eight.



4.3 Calibration with a Spherical Mirror 47

i. Once this point is known, we can compute the associated reflected ray li : Pi +

t ~Ri, where ~Ri stands for the reflection direction. Combining the information from

all reflected rays associated with a single Gray code / screen pixel, we estimate the

3D position for each individual screen pixel X , minimizing the combined point-line

distance d(X, li), defined and solved as proposed in section 4.3.3.

Plane Estimation Once we have a point cloud of estimated 3D screen pixel loca-

tions, the next step is to enforce the constraint that all pixels are part of the same

planar illuminant. As such, we need to estimate the 3D plane π = (a,b,c,d)T which

minimizes the point-plane distance d(π,X) = (π ·X)/|π|. We initiate our es-

timation with a RANSAC search for a good initial parameter guess, followed by

Levenberg-Marquardt minimization with distance measure d(π,X).

Grid Estimation Once we have a rough estimate of the plane on which the screen

should be located, the next step consists of finding the exact 3D coordinates for

each screen pixel. In this final step of the 3D reconstruction, we use the final

constraint for our estimation problem: the pixels are part of a rigid grid structure.

As such, there exists a 2D-to-3D similarity transformation M, which maps each 2D

screen pixel location u as close as possible to its 3D counterpart X . Assuming

we can estimate this optimal M for each given plane π, this gives rise to a second

Levenberg-Marquardt plane estimation routine, minimizing the point-point distance

d(Mu,X).

Similarity Transformation M In order to guarantee good numerical stability for

the estimation of M, we have to perform numerical pre-conditioning on both point

sets [Hartley 97]. As we want to apply the same normalization procedure on both {u}
and {X}, we compute the similarity transformation in a 2D reference frame. For this

purpose, we first transfer the 3D plane π to the XY -plane using transformation T3D.

T3D =

[

R3 −R3X̄

0
T 1

]

(4.20)

In this equation, X̄ is the mean vector of the 3D point cloud, and R3 rotates plane

normal Nπ to plane normal NXY . Note that the transformation moves the mean X̄

to the origin, facilitating subsequent normalization procedures. This transformation
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is followed by a projection onto XY -plane coordinates.

PXY =







1 0 0 0

0 1 0 0

0 0 0 1






(4.21)

Finally, after this transformation, we rescale the resulting point set {x′′} to map the

average distance ‖x′′‖ to
√

2.

S3D =







√
2/‖x′′‖ 0 0

0
√

2/‖x′′‖ 0

0 0 1






(4.22)

In a similar fashion, we need to normalize the 2D screen pixel set. First we need

to convert the screen resolution (eg. 1280 × 1024 pixels) into a physical resolution

(eg. 474 × 297 mm).

Sres =







wphys/wres 0 0

0 hphys/hres 0

0 0 1






(4.23)

After this aspect ratio correction, we relocate the new point set’s mean u′ to the origin.

T2D =







1 0 −u′
x

0 1 −u′
y

0 0 1






(4.24)

As finally, we normalize the 2D {u′′} coordinates, in a similar fashion to the normal-

ization we performed on the 3D {x′′} coordinates.

S2D =







√
2/‖u′′‖ 0 0

0
√

2/‖u′′‖ 0

0 0 1






(4.25)

After we have transformed both {X} and {u} to a common reference frame, we

can employ standard techniques to estimate the 2D-to-2D similarity transformation

H that minimizes the geometric error d(Hu′′′,x′′′). After this minimization, we can

concatenate all matrices to find our final 2D-to-3D similarity transformation.

M = (S3DPXY T3D)−1HS2DT2DSres (4.26)

As such, all the obtained calibration information is compressed in a single matrix

M, allowing for the direct transformation of 2D screen pixels into 3D locations by a

simple matrix multiplication: X = Mu.
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?

Figure 4.15: Illustration of a weak perspective projection due to a large camera-

sphere distance. The sphere location is robustly detected if the sphere is close to the

camera (left) whilst the precision decreases as the camera-sphere distance increases

(right).

4.4 Results

Every phase of the presented calibration pipeline will be subjected to a short er-

ror analysis, based on synthetic data rendered using the POV-Ray [POV-Ray 09] ray

tracer and / or real input images. These synthetic data sets are provided with exact

camera, screen and sphere positions, making it possible to calculate the geometric

error between the measurements and the exact data.

4.4.1 Locating the Spherical Mirror

During our first set of experiments, we used a data set of 25 synthetic images, dis-

playing a 50 millimeter sphere at varying positions. In all cases, our observations

agreed with the predicted error values of the sphere: an increase in sphere depth lead

to a similar increase in error. This is to be expected, as an increasing camera and

sphere distance weakens the perspective nature of the projection by the camera. A

graphical representation of this problem is given in figure 4.15.

In addition we checked a data set of real-world images to verify the robustness of

the ellipse detection algorithm used in this phase. An example of such a detection is

shown in figure 4.16.
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Figure 4.16: Locating the spherical mirror: robust ellipse detection.

4.4.2 Locating the Screen

Edges

During the second set of experiments, we used four data sets of 10 synthetic im-

ages, using the scale defined in the previous experiments (by the 50mm sphere).

Figure 4.17 shows the geometric error of our estimated world coordinates versus the

number of frames used to calculate this estimate. The geometric error is defined as

the sum of the distances between the ground truth and reconstructed corners. Several

things are apparent from the displayed results:

• It is recommended to use more than the minimum of two frames to perform the

calibration in order to avoid unnecessary errors.

• After a certain number of images are inserted into the pipeline (in our example

8 or 9), the quality of our estimate seems to converge. After this point has

been reached, adding new images does not seem to improve the quality of our

results.

• As can be seen by the error plot of data set 2, it is possible to achieve good

results using very few images. This implies that an intelligent choice of sphere

positions (e.g. close to the camera, respecting a minimum distance w.r.t. each

other) may facilitate convergence.
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Figure 4.17: Geometric error plot. The sum of the distances between the ground

truth and reconstructed corners is plotted as function of the number of frames used

for calibration. Four random subsets of samples were used.

Full Surface

Initially, we will determine the relation between the number of pattern refinements

and the error of the produced calibration. Afterwards, we will analyze the influence

of the sphere location on the quality of the results. Results from both real-world and

virtual data sets are provided, and are compared to the previous method.

In order to determine the correctness of the estimated screen positions, we per-

form a ground truth evaluation. The accuracy of the produced solution is measured

by the sum of squared distances between the estimated screen corners and their cor-

responding ground truth values.

Pattern Refinements The accuracy of our method is largely dependent on the num-

ber of estimated ray-ray intersections. As the number of pattern refinements is di-

rectly related to the number of possible intersection points, an increase in pattern

refinements will result in a higher accuracy. This is illustrated in figure 4.18, where

we have plotted the error in function of the pattern refinement level. At a certain

point in the function, the extra refinements will no longer yield any improvements.

On the contrary, the results can even start to deteriorate as the least significant bits

of the detected code are no longer distinguishable and are thus “randomly” assigned,

lowering the chance to find exactly this code in other images.
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Figure 4.18: Error in function of the maximum applied pattern refinement level.

Sphere Placement The quality of our results not only depends on the chosen pat-

tern refinement level, but also on the number of sphere displacements as well as the

positioning of the sphere. From our experiments, we have concluded that only two

sphere locations are required, as this case produces the lowest error values. In con-

trast to previous methods, the error does not decrease and converge when adding

extra, less optimal, sphere locations. As can be seen in table 4.2, where we compare

the error values of two sphere locations in terms of their distance to the camera, the

sphere locations closest to the camera produce the best results. Additionally, in order

to maximize the accuracy of the sphere location detection algorithm, we place the

center of the sphere on the principal axis of the camera. Finally, a minimum distance

between two different locations is preserved, avoiding degenerate configurations.

Side-by-side Error Comparison

A side-by-side comparison between the proposed methods is also performed. As it

turns out, the full surface method’s error is approximately 7 to 8 times lower com-

pared to the edge method, and we only require 2 different sphere locations instead of

6 or 7. However, the reduced number of manual sphere displacements is at the cost

of requiring almost 5 times as many input images as the previous methods.

Since no ground truth is available for our real-world setup, we have measured

the vertical and horizontal edges of the LCD screen. In order to verify the accuracy

of our method for real-world data, our error metric consist of a simple comparison

of the measured screen edge lengths and the distances between the estimated screen
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Far .901

.856 .986 .860

.704 .704 .826

.729 .622

.374 .487 .557

.435 .397 .470 .495 .551

.317 .346 .404 .434 .469 .545 .668

.306 .320 .342 .384 .502 .503 .484 .549

.245 .246 .278 .306 .374 .369 .434 .467 .555 .494

.189 .232 .301 .278 .372 .429 .461

↑ .156 .170 .179 .223 .240 .255 .304 .321 .340 .370 .427

.107 .123 .138 .162 .178 .194 .216 .241 .274 .274 .360 .366

Near .075 .085 .099 .111 .130 .138 .163 .178 .202 .217 .224 .264 .341 .279

Near → Far

Table 4.2: Error for different combinations of 2 out of 14 sphere locations. The

spheres all lie on the principal axis on evenly spaced distances from the camera.

Spheres near the camera yield the lowest error. Missing values are due to a low

number of Gray code correspondences between both image sets, resulting in an in-

sufficient number of estimated 3D screen pixels.

corners. For a screen of 474× 297 (measured in millimeters), we compute dimen-

sions of 478.7 × 300.4, suggesting an accuracy up to a few millimeters. The edge

method produces dimensions of 449.8 × 286.7, suggesting an accuracy up to a few

centimeters.

4.5 Conclusions

We have presented two novel automatic methods for screen-camera calibration, based

on the use of a single moving spherical mirror. A ground truth evaluation has shown

that both algorithms can be performed within practical error bounds. The edge

method requires a low number of input images but a considerable amount of sphere

movements. The full surface method requires a higher number of input images, but

only a single sphere displacement (or two different sphere locations). The overall er-

ror is lower for the latter technique, because of the increased number of data samples.

As cameras are often focussed on the scene in front of the setup, and not on the

reflected screen, we currently need to refocus the camera. This is not desirable since

we then alter the internal camera parameters implying a recalibration. Therefore, we

are now looking for alternative pattern sequences which are more insensitive to blur

due to an out of focus camera.
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In the near future, we will also compare the use of Gray code patterns to other

codification methods in order to limit the number of required recordings. Specifically,

we expect the use of gradient patterns [Ma 07] can reduce the number of input images

from 30-35 to less than 10, reducing the calibration time even more.
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5.1 Introduction

There exist a wide variety of methods for scanning 3D geometry. Most of these meth-

ods focus on acquiring the global shape of an object, but ignore small-scale details

such as texture or skin. However, if we want to convincingly reproduce real-world ob-

jects, this so-called mesostructure level cannot be ignored. In this chapter we present

techniques for scanning mesostructures, using inexpensive off-the-shelf hardware.

Each technique will be most suited for a specific level of glossiness, ranging from

purely diffuse to highly specular materials.

Our methods produce a normal map of the scanned surface. Normals can be

transformed into the original 3D shape of the surface [Frankot 88], or they can be

combined with the output of a global shape acquisition method [Nehab 05]. In com-

puter graphics, normals can be added as texture maps to enrich 3D models with relief,

and rendered directly using graphics hardware.

Currently, high quality methods for accurately acquiring normal maps exist, but

these methods often require a delicate and/or expensive setup [Wang 06, Ma 07,

Johnson 09]. Alternatively, there are also easy to use methods demanding no special-

ized hardware, but these typically yield low(er) quality scans [Rushmeier 97] or they

are time-consuming procedures when high quality is needed [Chen 06, Holroyd 08].

Hence, there is still need for a method that is simple and fast, yet yields high quality

results. The word simple in this context means not only easily executable but also

easily implementable. This is due to the fact that no special hardware is involved and

presented algorithms can easily be transformed into practical program code.

5.2 Related Work

A large body of work deals with recovering shape of real-world objects. We dis-

tinguish two trends in computer vision literature. First, stereo matching algorithms

recover depth maps using triangulation, by observing a scene from two (or more)

views [Scharstein 02]. Second, photometric stereo [Woodham 80] computes surface

normals from a sequence of illumination directions, while observing the scene from

a single viewpoint. Our technique can be classified in the latter category.

Geometry acquisition methods usually assume that the observed materials are

perfectly diffuse. However, techniques have been developed that focus on more
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“difficult” materials, in particular specular materials. The effect of weak specular

reflection can be filtered out in order to apply techniques that assume a diffuse ma-

terial. This can be realized with cross-polarization [Wolff 89a, Wolff 89b, Nayar 97,

Umeyama 04, Ma 07, Chen 07], color transformations [Schlüns 93, Mallick 05] or

controlled illumination [Lamond 09]. More general photometric stereo techniques

can deal with arbitrary BRDFs [Zickler 02, Goldman 05, Hertzmann 05, Wu 05].

Highly specular surfaces are particularly challenging, so specialized techniques

have been developed [Ikeuchi 81]. These techniques usually focus on recovering

global shape [Sanderson 88, Nayar 90, Halstead 96, Zheng 00, Tarini 05, Bonfort 06,

Mallick 05, Miyazaki 07, Adato 07, Kutulakos 08]. Some of these techniques ana-

lyze reflections of computer-generated patterns [Tarini 05, Bonfort 06], but require

that the surface is a perfect mirror. Local surface orientation can also be analyzed

from specular highlights [Sanderson 88, Healey 88, Chen 06, Holroyd 08], and this

does not necessarily require that the surface is an ideal reflector. As specular high-

lights are barely affected by subsurface light transport, this makes them an excellent

cue to recover transparent, translucent and low albedo surfaces. In this dissertation

we propose three techniques, where each technique performs optimally for either

Lambertian, glossy or highly specular surfaces.

Techniques have also been introduced specifically for recovering small-scale sur-

face details, in the form of relief (height) maps or normal maps, assuming var-

ious types of materials. Rushmeier et al. [Rushmeier 97] acquired normal maps

from Lambertian surfaces using photometric stereo [Woodham 80]. Hernandez et

al. [Hernández 07] apply a multispectral photometric stereo approach for scan-

ning detailed shape bends and wrinkles of deforming, homogeneous, surfaces. Yu

and Chang [Yu 05] obtained relief maps by analyzing cast shadows. Chung and

Jia [Chung 08] acquire surface normals of glossy surfaces by employing cast shad-

ows as an additional cue to optimally recover BRDF parameters. Malzbender et

al. [Malzbender 01] presented an alternative technique to obtain polynomial texture

maps (PTMs) of non-specular surfaces, which can be converted to normal maps. The

method employs a specialized setup which captures about 50 images under different

illumination. Another interesting scanning method is presented by Han and Per-

lin [Han 03] and uses a kaleidoscope to generate views from multiple directions to

obtain a bidirectional texture function (BTF). BTFs can directly be transformed into

a relief representation [Neubeck 05]. Paterson et al. [Paterson 05] use a digital still

camera and a mounted flash to scan partly specular and diffuse mesostructures by
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Figure 5.1: Our setup consists of a digital reflex camera, LCD screen and mesostruc-

ture.

interpreting the reflected flash light. Morris and Kutulakos [Morris 07] reconstructed

exterior surfaces of inhomogeneous transparent scenes by capturing a large set of im-

ages from one or more viewpoints while moving a proximal light source. Wang and

Dana [Wang 06] obtain relief textures from specularities using a specialized hardware

setup consisting of a camera, a parabolic mirror, a beam splitter and an illumination

source with corresponding lens. A more practical technique is proposed by Chen et

al. [Chen 06], which utilizes a manually moved light source and a fixed video camera.

Unfortunately, many input images are needed when high angular resolution normal

maps are required. A faster method is proposed by Ma et al. [Ma 07], where they use

an extended gradient light source requiring only 4 to 8 captured images at the cost

of having a more delicate and expensive setup. Their method utilizes a construction

containing a spherical array of polarized light sources. Although traditional specular

surface acquisition methods approximate the centroid of the reflection direction by

taking the brightest reflection point, Holroyd et al. [Holroyd 08] do not make this as-

sumption. Unfortunately, their method requires a considerable amount of recordings.

In the recent work of Johnson and Adelson [Johnson 09], “difficult” materials are

avoided by pressing the object surface against a painted transparent elastomer. This

creates a temporary imprint of the surface, but with known BRDF.

In our work we propose a system suited for highly specular, glossy, and purely

diffuse surfaces. These methods require only a very limited number of images and

make use of inexpensive and off-the-shelf hardware components including a digital

still camera and a computer screen.
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Figure 5.2: Diffuse and specular (left) separated into diffuse only (middle) and spec-

ular only (right) by the use of cross polarization.

Currently computer screens are more and more often employed as a controlled

planar illuminant, for example for the purpose of environment matting [Zongker 99].

Recently screen-camera setups have also been introduced as a device for normal

map acquisition [Tarini 05, Clark 06, Funk 07, Morris 07, Nehab 08]. Our work falls

within this category, with a primary focus on acquisition efficiency.

5.3 Separating Diffuse from Specular Reflections

We scan mesostructures based on available specular or diffuse reflection information.

However, typical materials are not purely specular or diffuse, but rather a combination

of specular and diffuse components [Umeyama 04]. Therefore, we want to be able to

separate diffuse from specular reflections, which is accomplished by exploiting light

polarization.

The idea behind this is that the polarization direction of specularly reflected po-

larized light remains approximately unaltered, whereas the diffuse reflection random-

izes this direction. Hence, by recording an object illuminated by the vertically po-

larized light of the LCD screen, after aligning the filter in front of the camera with

the polarization, half of the diffuse component together with the specular reflections

are captured. Rotating the filter 90 degrees to a perpendicular direction results in

the capture of only the other half of the diffuse light, this time without the specu-

lar component. By subtracting the latter from the former, the specular reflections

are easy to isolate (figure 5.2). More information on this topic can be found in the

literature [Wolff 89a, Wolff 89b, Nayar 97, Umeyama 04, Iizuka 02].
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Figure 5.3: Overview mesostructure from specularity method. Image courtesy of

Chen et al. [Chen 06]. Left to right: (1) surface illuminated by moving point light

source. (2) Recorded image. (3) Detected specularities. (4) Recovered surface nor-

mal.

5.4 Gray Code Patterns

In this section, we detail our method for scanning predominantly specular surfaces

from specularly reflected Gray code patterns.

5.4.1 Motivation

Inferring normals from specularities is fairly straightforward. An overview of Chen et

al.’s [Chen 06] method to achieve this, is given in figure 5.3. First, the specular

mesostructure is illuminated by a moving, bright, white, distant point light source,

while being observed by the camera. Then, for each frame, the specular highlights

are detected by applying a thresholding step. For each detected highlight, the surface

normal ~N is reconstructed by computing the halfway vector between the viewing

vector ~V and the light vector~L.

The accuracy of the solution will improve as more light directions are taken into

account. We refer to the amount of different light directions as the angular sampling

rate. Figure 5.4 shows the importance of having a high angular sampling rate. Many

samples are needed to recover subtle surface details. When using a low sampling

rate, certain normals will be missed (which show up as quantization artifacts).

We attain a high angular sampling rate by using more than one light at a time (fig-

ure 5.5). As will be explained in section 5.4.3, our technique samples n different light
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(a) 4 dirs, 3 images (b) 16 dirs, 5 images (c) 64 dirs, 7 images (d) 4096 dirs, 13 images

Figure 5.4: Normal map reconstruction quality depends on the number of sampled

light source directions, or angular sampling rate.

Figure 5.5: Top: floodlit image and Gray code patterns; bottom: corresponding im-

ages. Each location on the monitor (red square) is directly reflected (red circle). By

decoding the Gray code patterns, we can recover the illumination direction, and con-

sequently, the surface normal.

source directions, with O(log2 n) images. In contrast, Chen et al.’s mesostructure-

from-specularity technique requires n images for n directions [Chen 06]. In order

to reach a sufficiently high sampling rate, Chen et al. sample continuously using a

video camera. However, video often suffers from poor image quality. Because our

method requires a relatively low number of images, it becomes practical to employ

a digital still camera. Therefore, the quality of the results improves significantly, as

still cameras have better optics and larger sensors, and can handle longer exposure

times.

5.4.2 Recovering Normal Maps from Specularities

Our goal is to find a normal map based on specularities [Wang 06, Chen 06, Ma 07].

To this end, we assume that the surface is an ideal reflector. If we know that illu-

mination arrives from direction ~L and is reflected in direction ~V , the normal must

be:

~N =
1

‖~L+~V‖
(~L+~V ), (5.1)



64 Relief Acquisition

Subsequently, for each specularity in the image, we use equation 5.1 to infer the

corresponding normal, as done by Chen et al. [Chen 06]. Therefore we reasonably

assume the mesostructure to be approximately planar and furthermore require a geo-

metrically calibrated screen-camera-mesostructure setup (see chapter 4).

Equation 5.1 is only an approximation because a surface is never perfectly flat

(at the microscopic level). Consequently, light is usually scattered in a small cone

around the ideal reflection direction, and highlights become less clearly defined. For

instance, glossy materials like plastic exhibit such behavior. We will discuss how this

affects our results in section 5.4.5. For the sake of simplicity, we also ignore specular

interreflection.

5.4.3 Efficient Acquisition

A high angular sampling rate is required in order to recover all possible nor-

mal orientations (see figure 5.4), which we obtain by sampling more than one

light direction per image. We therefore require an array of light sources, where

every source can be switched on/off individually. This array could be a com-

puter monitor [Zongker 99, Tarini 05, Clark 06, Bonfort 06, Funk 07, Nehab 08], a

(hemi)spherical rig fitted with lights [Sanderson 88, Malzbender 01, Ma 07], or even

an unstructured set of controllable lights . In our implementation, we employ an LCD

monitor (figure 5.1), which provides us with a high-resolution, regularly-spaced grid

of light sources.

Under the assumption of ideal reflection described in the previous section, we

know that a specularity can only be caused by exactly one light direction, which in

turn corresponds to a location on the LCD monitor. If this location is known, we can

simply compute the local normal using equation 5.1. A naive solution would be to

iterate through all lights, enabling them one at a time, and observing which pixels

contain highlights [Chen 06]. Unfortunately, this becomes impractical for thousands

of light sources.

Instead, we identify monitor locations using Gray code patterns as described in

chapter 4. The only difference is that the codes are now detected using cross po-

larization instead of complement patterns, as many mesostructure surfaces will also

have a diffuse component that has to be removed. For an m×n resolution encoding,
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2(log2(m)+ log2(n)+1) patterns are required, log2(m)+ log2(n)+1 for the combi-

nation of a specular and diffuse component, and log2(m)+ log2(n)+1 for the diffuse

only component. Notice that an additional floodlit pattern (. . .+ 1) is employed to

enable each light source at least once. Notice also that we can reduce the number

of recordings by a factor of 2 by not recording the diffuse only images in case the

material to be scanned is perfectly specular.

5.4.4 Specularity Detection

If the surface has a negligible albedo and is homogeneous, specularities can easily

be detected using global thresholding [Umeyama 04, Chen 06]. However, these as-

sumptions do not hold in practice.

Heterogeneous objects reflect light depending on the spatial location, which

makes it hard to determine a global threshold that can be applied to all pixels. We

therefore normalize a pixel’s intensity w.r.t. the maximal intensity value at that pixel’s

location. This maximum can be found by emitting an additional floodlit pattern (all

lights enabled). After normalization, we can simply apply global thresholding like

before. See figure 5.11 for examples of heterogeneous surfaces (“graphics card” and

“wallet”).

Even with normalization, specularity detection can be very sensitive to the chosen

threshold, in particular for high albedo materials such as human skin (figure 5.10).

We therefore isolate the specular component in the input images using cross polar-

ization as described in section 5.3.

5.4.5 Limitations

There are two factors that might have a negative influence on the reconstruction re-

sults, namely occlusion and glossiness. This section describes how they affect our re-

sults. Note that these issues also occur with previous mesostructure-from-specularity

methods [Wang 06, Chen 06, Ma 07].

Occlusion

Self-shadowing occurs in deep grooves and pits, which produces meaningless infor-

mation. However, we can easily detect these regions using a floodlit pattern (fig-
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(a) Confidence map (green: high conf, red: low conf).

(b) Original normal map.

(c) Normal map with filled gaps.

Figure 5.6: Uncertain regions are filled in by interpolating normals from the nearest

valid neighbors.

ure 5.5). We assign a confidence value to each pixel, chosen proportional to a pixel’s

intensity, and fill low confidence areas by interpolating normals from the nearest valid

neighbors (figure 5.6).

Glossiness

Our method becomes less accurate for glossier (or rougher) materials. This is visually

demonstrated in figure 5.7 and verified on a ground truth comparison in figure 5.9.

For the latter figure, we generated images of a mesostructure using a photorealistic

renderer (PBRT, [Pharr 04]) under our Gray coded illumination patterns. We em-

ployed a physically-based reflectance model [Torrance 67], which allows for control-

ling the glossiness. It should be noted that the error increases for more gloss. In-

cluding interpolated normals of less confident pixels tends to add an overall increase

to the numerical error. Fortunately, the interpolation also tends to produce smooth

results, and thus does not introduce visually distracting artifacts.
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Figure 5.7: Comparison between results from a specular and glossy surface. The left

image shows the result of capturing a glossy plastic surface. In the right image, the

same surface was acquired after having applied a fine layer of oil in order to increase

specularity. If the surface is more specular, finer normal variations are detected,

whereas the glossy version looks more quantized.

1                         1                        0                         0

N

1                         1                        0                         ?

VL

Figure 5.8: Illustration of precision issues associated with glossy materials. A specu-

lar BRDF directly picks up the Gray code patterns, whereas glossy BRDFs blurs the

patterns. For fine patterns, this convolution makes specularity detection ambiguous,

which means that no more information can be gained after a certain refinement level.

The reason why glossier materials result in less accurate normal maps is illus-

trated in figure 5.8. It shows how Gray codes are interpreted for a very specular

material (narrow specular lobe) and for a more glossy object (broader lobe). As

the Gray code patterns become more refined, it becomes harder to distinguish be-

tween the black and white parts of the pattern, which limits the attainable angular

sampling rate. We therefore stop refinement when the sum of absolute differences

(SAD) between consecutive refinements drops below a threshold. Even if a material

is glossy, we can still infer a reasonable normal map, albeit with less angular detail

(figure 5.7,figure 5.9).
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Figure 5.9: Error analysis for glossy materials on a synthetic example. The average

angular error of our reconstruction is plotted in function of the glossiness. The solid

curve shows the error measured on confident pixels only. The dashed curve shows

the error when taking into account all pixels, including interpolated ones.

5.4.6 Results

Our results were generated with a regular 1280× 1024 LCD screen, a digital SLR

camera (Canon EOS 400D with default EF-S 18-55mm, f/3.5-5.6 kit lens) and a lin-

ear polarizing filter. The camera, screen and mesostructure are calibrated with respect

to each other. The screen and camera are facing a similar direction, and hence are geo-

metrically calibrated using a (spherical) mirror to make the screen visible to the cam-

era as described in chapter 4. The mesostructure is attached to a supporting surface

with position and orientation determined using a calibration pattern [Bouguet 06].

Assuming the surface is in perfect focus, and depending on the mesostructure’s

placement, we have a spatial resolution of approximately 40 normal pixels per mil-

limeter. The largest number of patterns we used in our setup is 15 (one floodlit, 7

horizontal, 7 vertical). The angular resolution then is approximately 1.12 normals

per degree. The recoverable normal angles range from -22.5 to 22.5 degrees w.r.t.

the supporting surface’s normal. Using a larger screen, or multiple screens, can im-

prove this range. Even though the normal range might seem limited, it suffices for

the mesostructures we scanned. We always obtained a visually plausible reconstruc-

tion. Moreover, reflected light from grazing angles is often blocked anyway due to

self-occlusions.
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(a) Photo. (b) Diffuse. (c) Specular. (d) Confidence.

(e) Normal. (f) Depth. (g) (h)

Figure 5.10: Acquired maps from oiled human palm skin (massage oil). (a) photo,

(b) diffuse map, (c) specular map, (d) confidence map (green: high confidence, red:

low confidence), (e) normal map, (f) depth map and (g,h) renderings.

material #directions #images polarization

graphics card 256 18 yes

metal coaster 1024 11 no

wallet 1024 11 no

rough glass 16384 30 yes

Table 5.1: Number of images used in figure 5.11, as function of the number of sam-

pled light directions. Polarization is used for high albedo surfaces, which doubles

number of images (accounted for in #images-column).

Figure 5.10 shows the different maps that we obtain from an acquired surface.

In the first place, our method returns a normal map (with confidence), which can

be turned into a depth map [Frankot 88]. As a byproduct of the polarization-based

separation discussed in section 5.4.4, we also infer a diffuse and specular map, which

were computed from the floodlit illumination pattern. These maps can easily be

used as textures in graphics applications, and rendered in real-time using graphics

hardware. In figure 5.11 we show different normal maps and renderings, for a variety

of materials: metal (“coaster”, “wallet”, “graphics card”), plastic (“graphics card”),
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Figure 5.11: Results. Left: input images, middle: normal maps, right: renderings.
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semi-transparent (“rough glass”), organic (“leather”) and heterogeneous (“graphics

card”, “wallet”) materials. For each of the recovered surfaces, the angular sampling

rate and number of acquired images, are given in table 5.1.

5.5 Gradient Patterns

The next two methods also produce normal maps of scanned surfaces, using an LCD

screen as illuminant and a digital camera to capture the reflections (figure 5.12). How-

ever gradient patterns are used instead of Gray code patterns. Because of the structure

of the patterns, gradients can be employed to infer normals from specular as well as

diffuse reflections. First we will focus on diffuse materials, and later specular mate-

rials will be investigated.

5.5.1 LCD Screen as a Gradient Illuminant

Before we can start acquiring data, we are required to know the exact location of

the setup’s three essential elements (display, camera, and object) as well as to have

accurate control over the amount of light emitted by our illuminant. Techniques to

achieve this are given in chapter 4.

The primary component we need is a set of patterns from which we can derive

the scanned surface normal maps. Once the necessary parameters describing the

setup configuration are found, the set of gradient patterns can be defined as they

strongly depend on the object’s placement with respect to the display. For the sake

of simplicity, we assume the object center lies on the perpendicular axis through the

screen center.

We employ four different patterns (figure 5.13(a-d)): three patterns represent gra-

dients in the three dimensions, and one fully lit pattern is used to compensate for the

inability to emit ’negative’ light intensities. We can think of these patterns as win-

dows to globes around the scanned object, covered with a linear gradient pattern in

one of the three dimensions (figure 5.14). This is achieved by projective mapping of

the gradient spheres onto the window plane (which is centered around the y-axis),

producing the gradients shown in figure 5.14 (a). However, should we make use

of the gradients in this form, we would not be making use of the complete intensity

spectrum available on our LCD screen. Therefore we transform the patterns in a more
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Object

LCD ScreenCamera

Polarizer

Figure 5.12: Our setup, consisting of an LCD screen and a camera with a linear

polarizer filter. The scanned object is located on a planar pattern.

appropriate form, depicted in figure 5.14 (b). So after applying this intensity trans-

formations, using the symbols shown in figure 5.14, we can describe our patterns by

the following equations:

Px(~ω) =
1

2

(

ωx

sin(σw)
+1

)

(5.2)

Py(~ω) =
ωy − cos(σw)cos(σh)

1− cos(σw)cos(σh)
(5.3)

Pz(~ω) =
1

2

(

ωz

sin(σh)
+1

)

(5.4)

Pc(~ω) = 1 (5.5)

where~ω = (ωx,ωy,ωz) represents the normalized incident illumination direction,

and (2σw,2σh) is the window’s width and height expressed in radians.

5.5.2 Diffuse Reflection

In this section we will apply the previously defined four gradient patterns to obtain

local surface orientation of diffuse surfaces. Therefore we assume diffuse only images

are captured from the illuminated scene. In addition, we assume the size of the object

is small compared to the object-display distance so we can approximate the object by

a point, simplifying calculations.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.13: (a-d) The four illumination patterns Pi emitted by our LCD. (e-h) An

object illuminated by these patterns. (i-k) Ratio images of (e-g) divided by the uni-

formly lit image (h). (l) Surface normal map estimate derived from (i-k) using rgb

values to indicate surface normal coordinates.
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Figure 5.14: Spherical projection. (a) screen as a naive window to the virtual spher-

ical area light source (top view). (b) scaled illumination patterns for better intensity

distribution (top view). (c) schematic representation of the setup (perspective view).

The diffuse/Lambertian BRDF over incident illumination ~ω and normal ~n is de-

fined by the equation R(~ω,~n) = ρdF(~ω,~n), where F(~ω,~n) is the foreshortening factor

max(~ω ·~n,0) and ρd is the diffuse albedo. The observed reflectance Li(~v) from a view

direction~v under illumination pattern Pi is defined by the following equation:

Li(~v) =
∫

Ω
Pi(~ω)R(~ω,~n)d~ω (5.6)

where Ω is the set of all possible incident illumination vectors defined by the

window (2σw,2σh). Considering our constant illumination pattern, equation (5.6)

simplifies to:

Lc(~v) =
∫

Ω
R(~ω,~n)d~ω (5.7)

The observed reflectance of the gradient patterns can thus be defined in terms of

observed illumination using the constant pattern:

Lx(~v) = ρd

2sin(σw)

∫

Ω ωxF(~ω,~n)d~ω + Lc(~v)
2

Lz(~v) = ρd

2sin(σh)

∫

Ω ωzF(~ω,~n)d~ω + Lc(~v)
2

Ly(~v) = Iy +
(

cos(σw)cos(σh)
cos(σw)cos(σh)−1

)

Lc(~v) (5.8)

where Iy represents the corresponding integral derived from equation (5.3). In

order to properly expand the integral expressions Ii, we transform the incident illumi-
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nation vectors~ω to their spherical coordinates (θ,φ)∈ [π
2
−σw, π

2
+σw]× [π

2
−σh,

π
2
+

σh]. The integral expressions Ii can now be expanded to:

Ix = sin(σh)(cos(σh)
2+2)(2σw−sin(2σw))

6sin(σw) ρdnx

Iy = sin(σh)(cos(σh)
2+2)(2σw+sin(2σw))

3−3cos(σw)cos(σh)
ρdny

Iz = 3sin(σh)
2σw

2
ρdnz (5.9)

Combining equations (5.8) and (5.9), we can recover the surface normal ~n =

(nx,ny,nz) up to an unknown scale factor (the inverse diffuse albedo 1
ρd

), which can

be removed by normalization:

ρdnx = cx

(

Lx(~v)−
1

2
Lc(~v)

)

ρdny = cy

(

Ly(~v)−
cos(σw)cos(σh)

cos(σw)cos(σh)−1
Lc(~v)

)

ρdnz = cz

(

Lz(~v)−
1

2
Lc(~v)

)

(5.10)

The constants cx, cy and cz are only dependent on the known calibration param-

eters σw and σh, so they need to be computed only once. A schematic overview of

the normal and albedo map recovering procedure is depicted in figure 5.15. For each

pixel, the desired information is determined by simply linearly combining the input

images. As a result, our method requires very few operations, making it very easy to

implement.

Discussion

We have created an experimental setup to verify the results on several real-world

examples. The setup consists of a 19 inch LCD screen, a digital reflex camera (Canon

EOS 400D), and a linear polarizer filter. Their relative positioning is depicted in

figure 5.12. In figure 5.16 we show examples of captured images of Lambertian

surfaces, the associated normal maps and novel synthesized views under different

lighting circumstances and viewpoints.

When dealing with diffuse or slightly specular objects, our technique produces

convincing results. However, there are two cases where our technique encounters
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Figure 5.15: The albedo ρd and normal information n is determined by linearly com-

bining the input images. The factors c and d are known setup parameters.

difficulties. The first case occurs when we are dealing with highly specular materials

with a low albedo. When this occurs, there simply is not enough reflected diffuse

light to compute an accurate normal, which results in noisy normals. This case is

illustrated by figure 5.16(l) (the owl’s eyes). The second case occurs when we are

dealing with objects with a high amount of interreflections or self-shadowing. In our

equations, we assume that all intensities emitted by our planar illuminant are received

at every point of the scanned surface, and that all received intensities are from this

source only. Interreflections or self-shadowing effects invalidate these assumptions,

resulting in an erroneous region of the produced normal map. An instance of self-

shadowing is illustrated by figure 5.16(n) (the bear’s feet).

5.5.3 Specular Reflection

In this section we will explain how gradient illumination patterns displayed on an

LCD screen allow us to extract surface normal information of specular materials.

Again, we therefore assume light polarization is exploited to separate diffuse from

specular reflection, as only specular information is required by the method. Finally,

we will describe the relevant implementation concepts.

Normal From Specularity

As explained in section 5.4.2, a surface normal can easily be reconstructed given

a detected specularity together with the corresponding light source, camera, and

mesostructure position. This technique is well-known [Chen 06, Sanderson 88]

and extensions have been proposed to improve its efficiency using controllable ex-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l) (m) (n)

Figure 5.16: (a-i) Three examples of captured Lambertian images, their associated

normal map, and the associated relighted and rotated surface. (j) Depth map. (k-n)

Two examples of instances where our method can experience difficulties.
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tended light sources [Ma 07]. Our technique is most similar to the method of Ma

et al. [Ma 07], but requires only a simple and cheap setup instead. Additionally, we

require less image captures.

Reflection Direction from Gradients

In this section we will explain how we efficiently detect the specular reflection direc-

tion for each pixel. The main idea is that a vertical and horizontal gradient pattern

are displayed on the screen, and that we find out to which pixel (region) the reflection

vector points to “pick” that intensity. We will derive the resulting formulas from this

modification to the work of Ma et al. [Ma 07], making the technique applicable to a

screen-camera setup.

In order to find for each pixel the reflection direction to extract a normal map,

the object to be captured is illuminated by the three patterns Pi with i ∈ {x,z,c}. The

reflected amount of light Li in the viewing direction~v is given by:

Li(~v) =
∫

Ω
Pi(~ω)S(~r,~ω)F(~ω,~n)d~ω (5.11)

where~r = 2(~r ·~v)~n−~v. S represents the specular symmetric lobe, and F(~ω,~n) =

max(~ω ·~n,0) is the foreshortening factor. Notice that we assume that there is no

interreflection, nor self-shadowing and that the recording is executed in a dark room

without any stray light.

First we will execute a coordinate transform T to align ~r with ~z = [0,0,1] to

facilitate further derivations. The transform T is computed by rotating the integration

domain Ω to Ω′. The corresponding matrix is defined as T = [~s,~t,~r]t where~s,~t and~r

are orthogonal vectors with respect to each other.

The functions S and F are rotationally invariant because they only depend on the

angles between the argument vectors. This yields S(~r,~ω) = S(~r′,~ω′) and F(~ω,~n) =

F(~ω′,~n′) where the added apostrophes refer to the rotated versions of the vectors in

the original integration domain. The pattern Pi is not invariant to rotation, so T has to

be taken into account as follows: P(~ω) = P(T−1~ω′) = P(T t~ω′). As such, the equation

is now written as:

Li(~v) =
∫

Ω′
Pi(T

t~ω′)S(~z,~ω′)F(~ω′,~n′)d~ω′ (5.12)
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For the remainder of this section we will assume a narrow specular lobe S. There-

fore F(~ω′,~n′) can reasonably be assumed constant (cF ) in the small solid angle of S.

This assumption breaks down in the case of grazing angles, but this is not a problem

in practice because of the structure of our setup.

Further simplifications will depend on the illumination pattern Pi that is used.

We derive Lx for the x-gradient, which is analogous to that of Lz. After filling in Px,

isolating some constants and splitting the integral, we obtain:

Lx(~v) =
cF

2sin(σw)

∫

Ω′
(ω

′
ssx +ω

′
ttx +ω

′
rrx)S(~z,~ω′)d~ω′

+
cF

2

∫

Ω′
S(~z,~ω′)d~ω′ (5.13)

Again by taking into account the narrowness of S, we can state that (ω
′
ssx +

ω
′
ttx)S(~z,~ω′) ≈ 0. This can easily be seen from the fact that ~ω has almost to be

aligned to have some response, meaning that rx is almost equal to 1 and so sx and

tx are negligible. Analogously the simplified integral
∫

Ω′ ω
′
rS(~z,~ω′)d~ω′ can be ap-

proximated by
∫

Ω′ S(~z,~ω′)d~ω′. After applying these steps to both the horizontal and

vertical patterns we obtain the following straightforward equations:

Lx(~v) =
Lc(~v)

2

(

rx

sin(σw)
+1

)

(5.14)

Lz(~v) =
Lc(~v)

2

(

rz

sin(σh)
+1

)

(5.15)

Notice that Lc is the image taken under constant (or flood lit) illumination:

Lc(~v) =
∫

Ω
Pc(~ω)S(~r,~ω)F(~ω,~n)d~ω′ (5.16)

= cF

∫

Ω′
S(~z,~ω′)d~ω′ (5.17)

This factor is necessary because of the structure of the patterns due to the impos-

sibility of emitting negative light.

As all the required parameters for equation (5.14) and (5.15) are given except

from rx and rz, and knowing that r is a normalized vector, the reflection direction r is

found.
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Implementation

In practice the proposed procedure allows for a straightforward and efficient imple-

mentation. For generating our results we have created a proof of concept implemen-

tation in Matlab as well as an optimized C++ version. The important concepts of the

method are summarized in a five-step process:

1. Record object illuminated by Px, Py and Pc under blocking (Lb
x , Lb

z and Lb
c) and

non-blocking (Lnb
x , Lnb

z and Lnb
c ) polarizing filter orientations

2. Determine specular images Lx, Lz and Lc:

Lx = Lnb
x −Lb

x (5.18)

Lz = Lnb
z −Lb

z (5.19)

Lc = Lnb
c −Lb

c (5.20)

3. Determine ratio images Rx = Lx

Lc
and Rz = Lz

Lc

4. For each pixel, find~r:

rx = sin(σw)(2Rx −1) (5.21)

rz = sin(σh)(2Rz −1) (5.22)

ry =
√

1− r2
x − r2

z (5.23)

5. For each pixel, calculate the normal~n (halfway vector between viewing direc-

tion~v and reflection direction~r)

~n =
~r +~v

||~r +~v|| (5.24)

The overview shows the simplicity of the method, where only six input pho-

tographs and a few simple image operations suffice to obtain a normal map. Notice

that in practice for “pure” specular materials, even three image recordings could suf-

fice because then the diffuse images will be black. A graphical overview of our

algorithm is depicted in figure 5.17.
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Figure 5.17: Procedure overview. From left to right, a piece of orange skin is illu-

minated by patterns Pi under both blocking and non-blocking polarization directions,

yielding recordings Lb
i and Lnb

i . Then the specular images Li = Lnb
i −Lb

i are computed

allowing for calculating the ratio images Rx and Rz. These are finally converted into

the normal map n.

technique # image captures cheap/simple

[Holroyd 08] > 200 yes

[Morris 07] > 200 yes

[Wang 06] > 200 no

[Chen 06] 35−200 yes

[Malzbender 01] 50 no

[Francken 08c] 10−30 yes

[Paterson 05] 8−15 yes

[Ma 07] 4−8 no

Our approach 3−6 yes

[Johnson 09] 1 no

Table 5.2: Comparison of mesostructure reconstruction methods. For each method

is given how many input images that are approximately required, and if the scanning

procedure can be executed easily/efficiently employing a simple setup.
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Figure 5.18: A picture of a glossy plastic button and its corresponding normal map.

Results

In this section our presented method will be evaluated on real as well as synthetically

generated data sets. The real data is captured using a Canon EOS 400D camera, a

low-cost linear polarizing filter and a standard 19 inch LCD screen. For the eval-

uation on real data, we compared our results with the Gray code technique. The

generated photorealistic synthetic data is rendered using the physically based ren-

derer PBRT [Pharr 04]. We apply the Cook-Torrance reflectance model with differ-

ent parameter settings. Miscellaneous scans of different real-world mesostructures

are depicted in figure 5.20.

Efficiency First we will evaluate the efficiency of our method by comparing to rel-

evant previous work. We will focus on the number of image acquisitions necessary

to scan a moderate mesostructure. An overview is given in table 5.2. Clearly our

method has a high performance when considering the number of required input im-

ages, while maintaining a pleasing quality, as will be shown later. This due to the

fact that the acquisition time of our technique is independent of the number of light

sources we want to sample (N). We only need O(1) inputs compared to O(logN),

which is a considerable speedup for a large number of inputs. If for example 15000

samples are desired, we still need only 6 input images, where the Gray code approach

needs about 30.

Glossiness Theoretically our technique works only for perfect reflectors (see sec-

tion 5.5.3). However, in practice it seems to behave well for glossier materials as

well. An example of a normal map scan of a glossy plastic button is given in figure

5.18.
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Figure 5.19: Error comparison for glossy materials on synthetic examples under gra-

dient and Gray coded illumination patterns. The average angular error of the normals

is plotted in function of the glossiness. The dashed curve shows the error of our

gradient method, where the solid curve shows the error of Gray coded patterns.

In order to analyse the loss of quality as function of the increasing glossiness (or

roughness), we have provided a ground truth evaluation on photorealistic synthetic

data. In addition, a comparative evaluation is made for the use of Gray coded pat-

terns. Figure 5.19 shows a plot of the average angular normal error with respect to the

ground truth, for both the gradient and Gray coded illumination. This figure clearly

shows that, except from extremely specular materials, overall the gradient patterns

outperform the Gray coded ones. This can be explained from the fact that broader

specular lobes cause a more extensive pattern convolution, which more or less keeps

approximating the wanted center of the specular lobe (which is the reflection direc-

tion). This is not the case for Gray code patterns, where the convolution renders the

patterns at a certain refinement level totally useless.

In conclusion we note that, where in our approach the normal maps will become

blurrier for glossier materials, in the Gray code approach they will become noisier,

which is typically worse. Noise in a normal map may cause visually distracting

artefacts when the normal map is used for relighting or for generating a depth map.

A blurrier normal map just over-smooths the surface, which is less disrupting.
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Sensitivity to Noise The main drawback of the use of gradient patterns instead of

black/white binary patterns is that they are more sensitive to sensor noise. However,

the rather limited amount of input images allows for longer exposure times, avoiding

deviating normals due to noise. Still, it remains a more sensitive process.

Occlusion Self-shadowing, or light that cannot reach the surface because it is oc-

cluded by the surface itself, causes dark regions where we cannot gather any infor-

mation from. However, this is a general disadvantage of all shape from reflection

methods, and not especially of this method. The only thing we do about it is build

up a confidence map based on the per pixel darkness of the fully lit image (Lc). This

tells us how useful every pixel is. We take this into account when cleaning up normal

maps (bridge minor lapses, remove noise etc.).

5.6 Conclusions

We have presented efficient acquisition methods for scanning mesostructure surfaces

in the form of a normal map, only making use of off-the-shelf hardware components,

namely a digital camera, an LCD screen and a linear polarizing filter. Whilst cur-

rent methods often require specialized hardware setups or need a high number of

input images, ours only needs a low-cost setup, while retaining a similar quality. De-

pending on the light patterns employed, 3 to 6 or 11 to 30 input images suffice for

acquiring a high quality normal map of specular, glossy or diffuse surfaces. Separa-

tion between diffuse and specular/glossy reflections is achieved by cross-polarization

of the emitted linearly polarized light by the LCD display.

Each presented method is suited for scanning a different class of materials. As

pointed out by our ground truth evaluation on photorealistically rendered imagery,

Gray codes perform well for highly specular surfaces, whereas gradients are suited

for more glossy surfaces. An additional advantage of gradient patterns is the ability

to obtain surface normals from Lambertian reflections. The results are convincing, as

shown on our real-world examples.

All three presented methods can easily be implemented and efficiently be ex-

ecuted. This is because only basic image processing operations are involved, all

working on a per pixel basis, allowing for straightforward parallellization.
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Figure 5.20: Results. Left: input images, Middle: normal maps, Right: renderings.
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Figure 5.21: Future setup. Multiple screens can increase the range of scannable

normals.

5.7 Future Work

Our current setup limits the range of normals that can be acquired. A larger monitor,

or multiple monitors (figure 5.21), would alleviate this problem. Another possibility

would be to illuminate the mesostructure from different angles by using a turntable,

and then to register and fuse the results.

It would be interesting to develop an hybrid method that incorporates highly spec-

ular, glossy as well as diffuse components for computing a normal map of heteroge-

neous materials. The distinct methods yield distinct normal maps for the same object,

but how can they be merged into a single, and more correct, normal map?
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In the previous chapter we have discussed how local surface orientation, or the

mesostructure level, can be obtained using a planar illuminant and a camera. How-

ever, for rendering purposes, an estimate of the per pixel reflectance, or the mi-

crostructure level, is often desirable for heterogenous surfaces. In this chapter, we

propose an extension of the Gray code normal acquisition approach, in order to allow

for extracting approximate glossiness information from the available input images.

6.1 Introduction

Acquiring spatially varying reflectance usually requires a complicated hard-

ware setup, which measures the Bidirectional Reflectance Distribution Function

(BRDF) [Nicodemus 77] at each spatial location. This is a four dimensional func-

tion describing the surface’s response given the exitant (light) and incident (observa-

tion) direction. Our method is much simpler and cheaper. Even though we assume

a simplified BRDF model, our technique is able to reproduce the mesostructure’s

appearance faithfully.

Our primary goal is to provide an efficient, easily applicable, and sufficiently

accurate method to acquire glossiness information. We build on the Gray code relief

acquisition method, which acquires normal maps by analyzing the reflection of Gray

code patterns. These patterns are successively refined in this process to uniquely label

screen positions. The key idea in this chapter is that this refinement also allows us to

measure the shininess for each spatial location, resulting in a gloss map.

6.2 Related Work

Numerous representations exist for storing either modeled or captured

BRDFs [He 91, Ashikhmin 00, Ashikmin 00, He 92]. As storing individual

data samples of densely sampled BRDFs is memory inefficient, often approximating

models are fitted through the large data collection. This is either achieved by fitting an

analytical model [Ward 92, Lafortune 97, Lensch 01, Gardner 03, Ngan 05], or pro-

jecting the data to polynomials [Koenderink 96, Malzbender 01], spherical harmon-

ics [Westin 92, Ramamoorthi 02, Basri 03] or wavelet bases [Lalonde 97, Ng 03].

For the sake of simplicity as well as compatibility with known tools, in our work

we will employ a simple analytical Phong model [Blinn 77] where the glossiness is

represented by a single exponent parameter.
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Previous methods tend to focus mainly on improving the quality of the measured

BRDF, and less on acquisition speed and practical usability for a large class of users.

Often, very specialized setups or long and tedious procedures are required. As we

focus on increasing the wide applicability, rather than improving the quality of recent

BRDF methods, an approximate glossiness acquisition suffices for our purposes.

The most closely related approach was presented by Gosh et al. [Ghosh 09]. They

estimate roughness as well as anisotropy from second order spherical gradient illu-

mination. Their approach makes use of a specialized hardware setup. In our work

we take an alternative approach, as we want to avoid non-trivial hardware require-

ments. We achieve this by using a screen-camera setup consisting of off-the-shelf

and omnipresent hardware components.

In our work, we start from our Gray code based mesostructure acquisition sys-

tem and show that glossiness information can easily be extracted from the already

available data necessary for shape reconstruction. The original method only has to

be slightly modified by replacing the polarization based specular-diffuse separation

with the use of pattern complements instead. No extra data is required, and besides

LCD screens, also non-polarization based illuminants such as CRT screens can now

be employed.

6.3 Acquiring Surface Gloss

Acquiring local surface orientation and glossiness is achieved by placing the target

object in front of a CRT or LCD monitor which acts as a light source, and record-

ing the corresponding images using a camera. As in our normal map acquisition

technique, we display stepwise refining vertical and horizontal Gray code patterns.

We also display each pattern’s complement in order to robustly separate diffuse from

specular reflection. The specular reflections then efficiently encode discrete spatial

screen coordinates in a bit-wise fashion. In a geometrically calibrated setup, this al-

lows for estimating the ideal reflection direction for each pixel. This enables us to

estimate the surface normal ~n by taking the halfway vector between the reflection

vector~r and viewing vector ~v, as depicted in figure 6.1 (a). In this section, we will

extend this system by performing an additional glossiness analysis step.
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Figure 6.1: Glossiness acquisition setup.

6.3.1 Overview

In order to extract glossiness information from the recorded mesostructure taken un-

der Gray code illumination, we require some additional illumination patterns. More

specifically, complements of the original Gray code patterns are introduced. Fortu-

nately, these render the use of polarization based separation redundant so the number

of required patterns does not increase. This is due to the fact that specular highlights

are considered much stronger than diffuse reflections [Umeyama 04, Chen 06] and

hence a binary decision (white or black reflection) can robustly be made by compar-

ing the pixels illuminated by the pattern and the pattern’s complement.

As indicated by the grey area in figure 6.2 (b), after a certain number of pattern

refinements, no extra information will be gained as the intensity differences between

reflected patterns and their complements will converge to zero. We analyze this con-

vergence process to obtain glossiness information. Without requiring additional input

images, we are now able to obtain a per pixel shininess coefficient as well as a surface

normal.

The more pattern refinements that can be discerned, the more specular the ma-

terial will be, and vice versa. This is the case because glossy reflections blur the

reflected incoming light pattern. More precisely, the reflected pattern is convolved

with a BRDF kernel around the ideal reflection direction [Ramamoorthi 01]. The

number of refinements thus is proportional to the shininess of the material. The size
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Figure 6.2: Acquisition pipeline. (a) mesostructure, (b) intensity differences as func-

tion of pattern refinement level, (c) detected normal codes and Phong kernels.

(or narrowness) and shape of the kernel is defined by the specular lobe of the BRDF.

For the sake of simplicity as well as compatibility with known tools, we assume a

Phong reflection model. This symmetric lobe is then described by a single exponent

value n which is stored in the gloss map.

6.3.2 Theory

We will now formalize the concept proposed in the previous section. Therefore a

model will be build that describes the captured radiance L of an imaged surface point,

observed from a direction ~v, illuminated by a given light pattern P. The equation is

given by:

L(~v) =
∫

Ω
P(~ω) [Rd(~ω,~n)+Rs(~r,~ω,~n)] d~ω (6.1)

The following assumptions are made before applying this equation for determin-

ing the gloss level:

Specular + diffuse: The imaged surface is assumed to be a combination of a specu-

lar component Rs(~r,~ω,~n) and the diffuse component Rd(~ω,~n), where ~ω is the

incoming light direction, ~n the surface normal and ~r the specular reflection

vector depending on the observation direction~v.
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Distant hemispherical illumination: The mesostructure is assumed to be a point

in front of the center of the screen, illuminated by a rectangular part of the

hemisphere Ω = [π
2
−σv,

π
2
+σv]× [π

2
−σh,

π
2
+σh] (figure 6.1 (b))

Interreflections and occlusions: Both interreflections as occlusions are ignored for

reasons of simplicity.

Under uniform illumination, where Pu(~ω) = 1 for each incoming light direction

ω, the equation can be simplified.

Lu(~v) =
∫

Ω
Rd(~ω,~n)d~ω+

∫

Ω
Rs(~r,~ω,~n)d~ω (6.2)

= Ld +Ls(~v) (6.3)

As we use Gray code patterns, we will define the patterns Pi in terms of the pattern

refinement level i. For each incoming light direction~ω∈Ω, the pattern Pi(~ω) is either

0 or 1. The precise pattern definition for vertical patterns Pv
i and horizontal patterns

Ph
i are given in equation (6.4) and (6.5), where (θ,φ) ∈ Ω. Notice that the Gray code

patterns are basically modeled as a phase shifted ( 1
4

of the period) square wave in the

vertical or horizontal interval [π
2
−σ, π

2
+ σ]. Each pattern refinement from i to i + 1

the frequency of the wave doubles as
i(i+1)−2

ii−2
= 2.

Pv
i (~ω) =

1

2
Ψ

(

2i−2(θ− π
2
+σv)

2σv

+
1

4

)

+
1

2
(6.4)

Ph
i (~ω) =

1

2
Ψ

(

2i−2(φ− π
2
+σh)

2σh

+
1

4

)

+
1

2
(6.5)

The integer function Ψ is defined as

Ψ(x) =

{

+1 if x−bxc ∈ [0,0.5)

−1 if x−bxc ∈ [0.5,1)
(6.6)

Also the complements of the patterns need to be defined. They are referred to as

P
c,v
i and P

c,h
i .

P
c,v
i (~ω) = 1−Pv

i (~ω) (6.7)

P
c,h
i (~ω) = 1−Ph

i (~ω) (6.8)
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The captured radiance can now be modeled applying the previous definitions. The

remainder part of this section will focus on the use of horizontal Gray code patterns

only. However, an analogous derivation can be done for vertical patterns.

Li(~v) =
1

2

[

Ld +Ls(~v)+
∫

Ω
Ψ

(

2i−2(φ− π
2
+σh)

2σh

+
1

4

)

Rd(~ω,~n)d~ω

+
∫

Ω
Ψ

(

2i−2(φ− π
2
+σh)

2σh

+
1

4

)

Rs(~r,~ω,~n)d~ω

] (6.9)

If the frequency of the pattern i is sufficiently large, the Lambertian term is ap-

proximately zero, as shown by Lamond et al. [Lamond 09]. The underlying reason

for this is that the Lambertian reflection can be seen as an applied low frequency con-

volution filter blurring away the high frequency pattern. Hence the following form

can be obtained:

Li(~v) =
1

2

[

Ld +Ls(~v)+
∫

Ω
Ψ

(

2i−2(φ− π
2
+σh)

2σh

+
1

4

)

Rs(~r,~ω,~n)d~ω

]

(6.10)

When the pattern frequency is high compared to the size of the specular lobe, the

same holds for the specular term, meaning that it also converges to zero. Hence, the

wider the specular lobe, the faster this term converges to zero. As the same reasoning

applies for the pattern complement Pc
i , the difference between the radiance of a scene

illuminated by Pi and Pc
i converges to zero after a certain pattern refinement level i:

|Li(~v)−Lc
i (~v)| =

1

2
|Ld +Ls(~v)−Lc

d −Lc
s(~v)| = 0 (6.11)

Concretely, the smallest pattern number i has to found, such that for all the sub-

sequent patterns j ≥ i the intensity differences

∣

∣

∣
L j(~v)−Lc

j(~v)
∣

∣

∣
drop below a given

threshold (figure 6.2 (b)). When i is found, it is converted into a corresponding

Phong kernel K(ω) = cosn(ω) (figure 6.2 (c)). Therefore we propose a simple heuris-

tic which takes into account the following constraint: The surface area
∫ π/2

0 K(ω)dω

under the kernel K has to halve if the assigned i increases one level. We have empiri-

cally established that this relation can be well-approximated by a simple exponential

function:

n = 4(i−1) (6.12)
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Figure 6.3: Relation between pattern refinement level i and the gloss level n.

This relation is illustrated in figure 6.3. Note we assign no n value when i = 0 as

the material is then meant to be perfectly diffuse.

It should be noted that this kernel fitting is only approximate because of the lim-

ited number of input images we require and the reflection model we employ. How-

ever, as the focus of our work lies more on the efficiency and easy applicability than

on pure accuracy, it yields sufficiently precise results, as can be seen in the next sec-

tion.

6.4 Results and Discussion

We have created a proof of concept implementation of the described procedure. The

setup we employed consists of a 19 inch LCD monitor and a Canon EOS 400D

camera. Experiments were done on different specular materials including plastics,

leather, metals, glass and polished marble. For all our results 40 input images were

recorded, 10 for each direction plus their complements.

Results on real-world examples are illustrated in figure 6.4. Column (a) shows

the acquired normal maps stored in the red, green and blue color channel. Column (b)
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contains the gloss maps. The gloss values range from black to white. Black values

indicate diffuse reflections, white values represent highly specular reflections, and

intermediate grey values represent glossy reflections. The results show for example

that different metal coatings yield different gloss values (top row), the glass of the

watch is more specular than the plastics (middle row), and scratches on the wallet’s

hasp make it locally less specular (bottom row). However, also notice in this image

that self-shadowed regions in the pores and grooves of the leather are mistakenly

classified as non-specular since the occlusion assumptions did not hold. Column (c)

shows virtual renderings of the scanned surfaces under point light illumination, taking

into account the displayed normal and gloss maps as well as regular texture maps.

Besides inherent problems of the relief acquisition, such as light occlusions, the

main limitation is the small number of available per pixel samples due to efficient bi-

nary encoding. Only p possible gloss levels can be distinguished using our technique,

where p is the number of patterns used (in our case 10). In addition, as the kernel

width is directly dependent on the exponentially decreasing pattern’s stripe width,

only a few possible kernels can be assigned to diffuse materials. A more dense kernel

size distribution may be desirable in this case.

6.5 Conclusions

In this chapter we have illustrated how a straightforward extension of a Gray code

based normal scanning can provide us with a very simple reflectance approximation

in the form of a single Phong exponent. However, taking into account these ap-

proximate gloss maps, in addition to traditional texture and normal maps, tends to

considerably improve rerenderings of heterogenous materials.

6.6 Future Work

Improvements are possible regarding the convolution kernel approximations. Cur-

rently we are looking into recovering more general BRDFs by adding extra and more

optimal patterns to allow for a more precise kernel fitting. Furthermore we believe

this work can function as basis for an integrated normal map acquisition system,

where the type of pattern/method depends on which mesostructure regions are pro-

cessed.
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(a) (b) (c)

Figure 6.4: Results. (a) normal maps obtained from detected codes, (b) gloss maps

containing Phong exponents, (c) renderings.
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7.1 Summary

We have proposed methods for acquiring local surface orientation and reflectance

properties of small-scale surface details, or the surface’s mesostructure. The primary

focus was on increasing the applicability by providing an efficient, easy to implement

and execute approach, employing off-the-shelf hardware components.

Our setup consisted of a regular digital still camera and a computer screen as pla-

nar illuminant. Light patterns were displayed on the screen, illuminating the surface

to be scanned, and reflections were captured by the camera. The recorded images

were then processed yielding a digital representation of the relief and reflectance of

the scanned surface.

The presented results showed that a simple and inexpensive screen and camera

can be turned into a mesostructure acquisition system yielding high quality scans.

We believe our system has possible applications in several areas, such as computer

games, computer aided design and industrial inspection.

7.1.1 Setup Calibration

We have presented two novel automatic methods for calibrating the screen-camera

setup, using a single moving spherical mirror. A ground truth evaluation has shown

that both algorithms can be performed within practical error bounds. The edge

method requires a low number of input images, but a considerable amount of sphere

movements. The full surface method, however, requires a higher number of input im-

ages but only a single sphere displacement (two different sphere locations) suffices.

The overall error is lower for the latter technique because of the increased number of

data samples.

7.1.2 Relief Acquisition

Whilst current methods often require specialized hardware setups or need a high

number of input images, ours only needs a low-cost setup, while retaining a simi-

lar quality. Depending on the type of light patterns employed, 3 to 6 or 11 to 30 input

images suffice for acquiring a high quality normal map of specular, glossy or diffuse

surfaces. Separation between diffuse and specular/glossy reflections is achieved by

cross-polarization of the emitted linearly polarized light by the LCD display.
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Each presented scanning method is suited for scanning a different class of ma-

terials. As pointed out by our ground truth evaluation on photorealistically rendered

imagery, Gray codes perform well for highly specular surfaces, whereas gradients

are suited for more glossy surfaces. An additional advantage of gradient patterns is

the ability to obtain surface normals from Lambertian reflections. The results are

convincing, as shown on our real-world examples.

All three presented methods can easily be implemented and executed efficiently.

This is because only basic image processing are involved, all working on a per pixel

basis, allowing for straightforward parallellization.

7.1.3 Glossiness Acquisition

As both the geometric relief and the reflectance properties strongly influence a sur-

face’s appearance, we propose a method to also analyze the gloss level of the specular

reflection component. This is achieved by a straightforward extension of the Gray

code based normal acquisition method. Taking into account the obtained gloss maps

in addition to traditional texture and normal maps tends to considerably improve

rerenderings of heterogenous materials.

7.2 Future Work

In this section some interesting future directions will be given.

7.2.1 Setup Calibration

As cameras are often focussed on the scene in front of the setup, and not on the

reflected screen, we currently need to refocus the camera. This is not desirable since

we then alter the internal camera parameters implying a recalibration. Therefore, we

are now looking for alternative pattern sequences which are more insensitive to blur

due to an out of focus camera.

In the near future, we will also compare the use of Gray code patterns to other

codification methods in order to limit the number of required recordings. Specifically,

we expect the use of gradient patterns [Ma 07] can reduce the number of input images

from 30-35 to less than 10, reducing the calibration time even more.
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7.2.2 Relief Acquisition

Our current setup limits the range of normals that can be acquired. A larger monitor,

or multiple monitors (figure 5.21), would alleviate this problem. Another possibility

would be to illuminate the mesostructure from different angles by using a turntable,

and then to register and fuse the results.

It would be interesting to develop an hybrid method that incorporates highly spec-

ular, glossy as well as diffuse components for computing a normal map of heteroge-

neous materials. The distinct methods yield distinct normal maps for the same object,

but how can they be merged into a single, and more correct, normal map?

7.2.3 Glossiness Acquisition

Improvements are possible regarding the convolution kernel approximations. Cur-

rently we are looking into recovering more general BRDFs by adding extra and more

optimal patterns to allow for a more precise kernel fitting. Furthermore we believe

this work can function as basis for an integrated normal acquisition system, where

the type of pattern/method depends on which mesostructure regions are processed.
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Bijlage B

Samenvatting (Dutch Summary)

Gedurende de laatste decennia hebben computers steeds een belangrijkere rol in-

genomen bij het uitvoeren van een breed scala aan taken. Eén van deze taken is het

weergeven van virtuele scènes op een overtuigende manier. De zogenaamde ren-

dertechnieken die dit mogelijk maken, worden binnen verscheidene toepassingsge-

bieden, zoals computerspelletjes, gebruikt. Zelfs het genereren van foto-realistische

beelden is ondertussen zeer gebruikelijk, zoals bijvoorbeeld in de post-productie

van films. Snelle en/of nauwkeurige rendertechnieken, die lichttransport binnen de

virtuele wereld benaderen of nauwkeurig simuleren, werden door de jaren heen ont-

wikkeld en verfijnd.

Zelfs indien lichtinteractie op een fysiek correcte wijze gesimuleerd wordt, zijn

de uiteindelijke resultaten steeds afhankelijk van het verstrekte 3D model. Als de

ingevoerde scène geen kleinschalige oppervlakte details zoals krassen, onvolkomen-

heden, enz. bevat, zal deze als onrealistisch worden opgevat. Het handmatig modelle-

ren van deze “details” kan een tijdsintensieve taak zijn. Dit wijst erop dat het gebruik

van automatische scanmethoden wenselijk is.

Hoewel tal van geometrie acquisitie-technieken bestaan, zijn ze meestal enkel in

staat om globale oppervlakte informatie te verwerven, waardoor lokale kleinschalige

eigenschappen van het reliëf verdwijnen. In de praktijk worden lokale afwijkingen

ten opzichte van het globale oppervlak nog al te vaak handmatig gemodelleerd door

ontwerpers, in plaats van deze uit de reële wereld in te scannen. Hetzelfde geldt
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voor reflectie-eigenschappen, die vaak handmatig worden nagemaakt met behulp van

zogenaamde “shaders” op de grafische kaart. Eén van de redenen hiervoor is de com-

plexiteit van de huidige beschikbare methoden. Vele aanpakken vereisen speciale op-

stellingen, met exotische hardware componenten, tijdrovende kalibratie procedures,

moeilijke implementaties en scanprocedures.

In dit proefschrift is het doel om het scannen van kleinschalige oppervlakte eigen-

schappen beschikbaar te maken voor het grote publiek en zo de kloof tussen huidig

onderzoek en praktisch gebruik te dichten. Dit wordt bereikt door een aanpak voor

te stellen die efficiënt is en eenvoudig kan worden geïmplementeerd en uitgevoerd.

Daarbij zijn enkel alomvertegenwoordigde hardware componenten vereist. Onze

opstelling bestaat uit een gewone digitale fotocamera en een computerscherm dat

fungeert als een vlakke lichtbron. Lichtpatronen, die het te scannen oppervlak be-

lichten, worden weergegeven op het scherm en de reflecties worden opgenomen door

de camera. De opgenomen beelden worden vervolgens verwerkt tot een digitale re-

presentatie van het oppervlakte reliëf alsook de reflectie-eigenschappen van het ge-

scande oppervlak.

Met het verwezenlijken van het voorgenoemde systeem, hebben we wetenschap-

pelijke bijdragen geleverd in drie subdomeinen, namelijk (a) kalibratie, (b) opmeten

van reliëf, (c) opmeten van glans. Deze zullen nu afzonderlijk besproken worden.

We hebben twee nieuwe methoden gepresenteerd voor het automatisch kali-

breren van de scherm-camera opstelling. Beide methoden maken gebruik van een

enkele, manueel te verplaatsen, sferische spiegel. Uit de nauwkeurigheidsevaluatie

is gebleken dat beide algoritmen kunnen worden uitgevoerd binnen een praktische

foutmarge. De eerste methode vereist slechts een klein aantal invoerbeelden, maar

wel een aanzienlijke hoeveelheid manuele interventies voor het verplaatsen van de

spiegel. De tweede methode vereist echter een groter aantal invoerbeelden, maar

slechts één enkele spiegel verplaatsing is vereist (of dus twee verschillende sfeer lo-

caties). De nauwkeurigheid hiervan is ook beter vanwege de grotere hoeveelheid aan

beschikbare gegevens die zich in de opnames bevinden.

Voor het opmeten van het reliëf van het oppervlak, volstaan 3 tot 6 of 11 tot

30 invoerbeelden voor het verkrijgen van een normaalmap van hoge kwaliteit van

speculaire, glossy of diffuse oppervlakken. Dit aantal is afhankelijk van de aard van

de gebruikte lichtpatronen, namelijk Gray codes of gradiënten. Het scheiden van
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diffuse en speculaire/glossy reflecties is vereist en wordt verkregen door middel van

cross-polarisatie van het lineair gepolariseerd licht van de LCD-display.

Elke gepresenteerde scanmethode is geschikt voor het scannen van een andere

klasse van materialen. Zoals blijkt uit de kwaliteitsevaluatie op fotorealistisch geren-

derde beelden, presteren Gray codes goed voor sterk spiegelende oppervlakken, ter-

wijl gradiënten beter geschikt zijn voor meer glossy oppervlakken. Een bijkomend

voordeel van gradiënt patronen is de mogelijkheid om ook oppervlakte normalen te

verkrijgen uit Lambertiaanse (diffuse) reflecties. De resultaten zijn overtuigend, zoals

getoond werd op voorbeeldscans van objecten uit de reële wereld. De gepresenteerde

methoden kunnen op een eenvoudige manier worden geïmplementeerd en efficiënt

worden uitgevoerd. Dit komt omdat alleen elementaire beeldverwerkingsoperaties

nodig zijn, die allen werken op een per pixel basis, waardoor deze ook eenvoudig

kunnen worden geparallelliseerd.

Aangezien zowel het geometrische reliëf als de reflectie-eigenschappen het uiter-

lijk van een oppervlak sterk beïnvloeden, stellen we ook een methode voor om het

glansniveau van speculaire reflecties te bepalen. Dit wordt bereikt door een een-

voudige uitbreiding van de Gray code gebaseerde acquisitie methode. Het in re-

kening brengen van het verkregen glansniveau, naast de traditionele kleur en reliëf

informatie, verbetert weergaven van heterogene materialen aanzienlijk.

De gepresenteerde resultaten binnen deze dissertatie tonen aan dat een een-

voudige en goedkope scherm-camera combinatie kan worden omgezet in een systeem

dat hoge kwaliteit scans van mesostructuren oplevert. Wij geloven dat ons systeem

toepasbaar is in verschillende domeinen, zoals computerspelletjes, computer-aided

design en industriële inspectie.
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