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Chapter 1

Introduction

XML (eXtensible Markup Language) ([BPSM+04]) is a W3C standard for
exchanging structured documents and data over the internet. It is a format
that is very flexible, because it allows user-defined tags, and the content
of an XML document is easy to interpret by both humans and computers.
Therefore, XML has become the standard format for data exchange over the
world wide web. An example XML document is shown in Figure 1.1.

XML schemas allow users to define their own format of XML documents.
An XML schema describes the tags that can be used in the XML document,
and the structure the document must have. Using XML schemas has many
benefits. An example is the problem of data integration: Suppose there are
two data-sources on the internet whose data is stored using XML documents.
Furthermore, each data-source has an XML schema which defines all its
XML documents. Then, it is possible to integrate these data-sources in one
database by only studying their XML schemas, and not every XML document
separately.

The most used and widespread XML schema languages are Document
Type Definitions (DTDs) ([BPSM+04]), XML Schema ([SMT05]), and Relax
NG ([CM01]). The first popular XML schema language was DTD. It is a
simple language that uses grammar rules with regular expressions on the
right-hand sides, to describe the structure of XML documents. An example
DTD which defines the XML document of Figure 1.1 is shown in Figure 1.2.

DTDs have become the standard XML schema language, but its possibil-
ities are rather limited. Therefore, a number of new XML schema languages
have been created. The most popular of these languages is XML Schema.
XML Schema has an XML based syntax. So, an XML Schema Definition
(XSD) is itself an XML document. XML Schema also has a typing system,
and a lot of other useful features, which are not included in DTD. One of
these is the possibility to express that a number of elements can occur in any
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<cd>

<song>

<title>Susan’s house</title>

<length>223</length>

<singlesSold>55000</singlesSold>

</song>

<song>

<title>Beautiful freak</title>

<length>213</length>

<singlesSold>100000</singlesSold>

</song>

<song>

<title>Flower</title>

<length>227</length>

</song>

</cd>

Figure 1.1: An example XML document that describes a part of the album
’Beautiful Freak’ by Eels. For every song, the title and the length (in seconds)
is given. If a song has been a single, the number of singles sold are described
by singlesSold. The values are chosen randomly.

<!DOCTYPE cd [

<!ELEMENT cd (song*)>

<!ELEMENT song (title,length,singlesSold?)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT length (#PCDATA)>

<!ELEMENT singlesSold (#PCDATA)>

]>

Figure 1.2: A DTD which defines the XML document of Figure 1.1.
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order. This can be done by surrounding these elements by the all tag. If we
want to do this in a DTD, we have to list all possible permutations of the
elements (n! possibilities for n children). Another feature is the possibility
to indicate the minimum and maximum number an element can occur. The
minoccurs and maxoccurs attributes of an element allow us to specify these
numbers. Again, we can do this in a DTD, but we have to list that element
maxoccurs times. An example XSD, which defines the XML document of
Figure 1.1, is shown in Figure 1.3. Here, we use the all tag to specify that
the elements title, length, and singlesSold can occur in any order. The minoc-
curs and maxoccurs attributes are used to indicate that a cd must contain
at least one and at most twenty songs.

Another extension of DTD is Relax NG. This is a very elegant and power-
ful XML schema language, but has not become as popular as XML Schema.
Relax NG has an XML based syntax, and a simpler equivalent compact syn-
tax. Like XML Schema, it has a typing system for its elements. As an
alternative for the all tag of XML Schema, it allows the &-operator in its
regular expressions. This binary operator is called the shuffle or interleave
operator, and allows the words accepted by its two operands to be shuffled.
Relax NG does not have an alternative for the minoccurs and maxoccurs
attributes. An example of a (part of) a Relax NG document which describes
the element song as it is defined by the XSD in Figure 1.3, is shown in Figure
1.4. The shuffle operator is used to replace the all tag of XML Schema.

In this work, we are interested in the optimization of XML schema lan-
guages. An example of an optimization problem is the minimization of XML
schemas. A minimized schema allows us to do document validation more
efficiently, and improves the running time of other tests on the schema. To
minimize a schema, we can create a smaller schema and check if it still de-
fines the same set of XML documents as the original schema. The problem
of checking whether two schemas define the same set of XML documents is
the equivalence problem.

Analogously to the equivalence problem, we also define the inclusion and
intersection (non-emptiness) problem.

• Equivalence: Given two schemas D1 and D2, do D1 and D2 define
exactly the same set of XML documents?

• Inclusion: Given two schemas D1 and D2, is every document defined
by D1 also defined by D2?

• Intersection (non-emptiness): Given schemas D1, . . . , Dn, does there
exist an XML document that is defined by every Di, i = 1, . . . , n?
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<schema>

<element name="cd" type="cdType">

<xs:element name="single">

<xs:complexType>

<xs:sequence>

<xs:all>

<xs:element name="title" type="xs:string"/>

<xs:element name="length" type="xs:integer"/>

<xs:element name="singlesSold" type="xs:integer"/>

</xs:all>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="regular">

<xs:complexType>

<xs:sequence>

<xs:all>

<xs:element name="title" type="xs:string"/>

<xs:element name="length" type="xs:integer"/>

</xs:all>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="cdType">

<xs:complexType>

<xs:sequence>

<xs:choice minoccurs = "1" maxoccurs = "20">

<xs:element name="song" type="single"/>

<xs:element name="song" type="regular"/>

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

</schema>

Figure 1.3: An XSD which defines the XML document in Figure 1.1, but
violates the EDC constraint.
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element song {

element title { text }

& element length { xsd:integer }

& element singlesSold { xsd:integer }?

}

Figure 1.4: A description of the song element by a Relax NG document, in
compact syntax, as defined by the XSD in Figure 1.3.

Figure 1.5: The tree representation of the XML document of Figure 1.1.

These three problems are the building blocks of most optimization problems
for XML schemas. Therefore, it is important to determine the complexity of
these problems for the different types of XML schema languages.

To be able to study the complexity of these problems, we have to make
an abstraction of XML documents and XML schema languages. XML doc-
uments are represented by trees. The tree representation of the XML docu-
ment of Figure 1.1 is shown in Figure 1.5.

We abstract from DTDs with extended context free grammars, which
we will also call DTDs. These extended context free grammars use regular
expressions to describe their content.

Example 1.1. We can abstract from the DTD of Figure 1.2 by the following
DTD:

cd → song∗

song → title length singlesSold?

One of the major differences between DTD on one hand, and XML
Schema and Relax NG on the other hand, is the typing system. Therefore,
we add a typing system to DTDs, which gives us extended DTDs (EDTDs)
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([PV00]). These EDTDs exactly represent Relax NG schemas. However,
XML Schema enforces constraints which Relax NG does not have. There-
fore the class of EDTDs is too powerful to represent XML Schema. One of
these constraints is element declarations consistent (EDC). EDC says that
in a regular expression, no elements with the same name, but with a dif-
ferent type can be used. We can limit the power of EDTDs to single-type
EDTDs (EDTDst), which exactly describe XML Schema languages with the
EDC constraint ([BMNS05],[MLMK05]). These EDTDsts do not allow that
two elements with the same name, but a different type occur in the same
expression. We use EDTDsts as an abstraction for XML Schema.

Example 1.2. We can abstract from the XSD of Figure 1.3 by the following
EDTD:

cd → (song1 + song2)1..20

song1 → title & length & singlesSold

song2 → title & length

Here, song1 represents the single type songs, and song2 represents the regular
type songs. Note that this EDTD is not single-type since song1 and song2

occur in the same expression. This is because the XSD of Figure 1.3 does not
satisfy the EDC constraint. We can solve this by rewriting our XSD. �

It should be noted that DTD and XML Schema also require its content to
be deterministic or one-unambiguously. This is expressed by the Determinis-
tic Content Models constraint for DTD and the Unique Particle Attribution
rule for XML Schema. We do not enforce these constraints in our model for
DTD (DTD) and XML Schema (EDTDst) because there has been a lot of
discussion over these rules in the XML community (see, for example, page 98
of [vdV02], [Man01], and [SM03]). Therefore, it is interesting to see what the
complexity of the decision problems is for DTD and XML Schema without
these constraints.

DTD, XML Schema, and Relax NG, and their abstractions, all use (sub-
classes of) regular expressions to describe the structure of XML documents.
In these regular expressions, a number of different operators are used. DTDs
use the standard set of operators: concatenation (·), Kleene-star (*), and
disjunction (+). XML Schema adds a number of features. As we have seen,
the all tag can be translated using the shuffle operator (&). The mincount
and maxcount attributes can be translated using the numerical occurrence
operator. The use of this numerical occurrence operator is shown in Example
1.2, and indicates that a cd contains 1 to 20 songs. We denote this operator
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by #. By specifying the operators that are allowed in the regular expressions,
we can define subsets of the regular expressions.

It turns out that the complexity of the decision problems (equivalence,
inclusion, and intersection) for DTDs, and EDTDst is highly correlated with
the complexity of the same decision problems for the subclass of regular
expressions they use ([MNS04]). We also define unranked tree automata
(UTA), which use (subclasses of) regular expressions too. These unranked
tree automata are equally powerful as EDTDs. Therefore, the complexity of
the decision problems for unranked tree automata and EDTDs is the same.
Because of this close correspondence between DTDs, EDTDs, and EDTDsts
on one hand, and regular expressions and unranked tree automata on the
other hand, we will study the complexity of the decision problems for various
subclasses of regular expressions and unranked tree automata.

It is well known that any traditional RE(+, ·, ∗)-expression can be trans-
lated into an equivalent non-deterministic finite automaton (NFA) of poly-
nomial size. These NFAs can then be used to determine upper bounds on the
decision problems for RE(+, ·, ∗). However, translating an RE(+, ·, ∗,&,#)-
expression directly into an equivalent NFA gives a double-exponential blowup.
Therefore, we introduce a new kind of automata, extended NFAs (ENFAs),
which extend the capabilities of the regular NFAs, and allow us to translate
any RE(+, ·, ∗,&,#)-expression directly into such an ENFA of polynomial
size. We often use these ENFAs to determine upper bounds for classes using
the numerical occurrence or the shuffle operator.

We first consider a number of subclasses of regular expressions, which are
defined by allowing a number of operators. For example, the class RE(+, ·, ∗)
defines all regular expressions which only use the +, ·, and ∗ operators. Some
of the complexities were already known in the literature, and are summarized
in Table 1.1. The new results obtained in this work are summarized in Table
1.2.

equivalence inclusion intersection

RE(+, ·, ∗) PSPACE [SM73] PSPACE [SM73] PSPACE [Koz77]
RE(+, ·, ∗,&) EXPSPACE [MS94] EXPSPACE [MS94]

Table 1.1: Complexity classes for problems with regular expression which
were already known in the literature. All complexities are completeness re-
sults.

These subsets of regular expressions all contain very complex expres-
sions. However, the regular expressions used in practical DTDs and XSDs
are mostly very simple. Bex, Neven, and Van den Bussche have done a study
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equivalence inclusion intersection

RE(+, ·, ∗,#) EXPSPACE EXPSPACE PSPACE
RE(+, ·, ∗,&) PSPACE
RE(+, ·, ∗,#,&) EXPSPACE EXPSPACE PSPACE

Table 1.2: Complexity classes for problems with regular expressions, found
in this work. All complexities are completeness results.

on this subject ([BNVdB04]), and it turns out that more than ninety percent
of the regular expressions occurring in practical DTDs and XSDs are expres-
sions e1 · · · en, where every ei is a factor of the form (x1 + · · ·+ xn), possibly
extended with the *, +, or ? operators, and each xi is a string. Martens,
Neven, and Schwentick, have characterized this class of regular expressions as
CHain Regular Expressions (CHAREs), and studied the complexity of the de-
cision problems for a number of subclasses of these CHAREs ([MNS04]). We
extend these CHAREs with the numerical occurrence operator. We present
some of the results of Martens et. al. in Table 1.3. The results obtained in
this work are summarized in Table 1.4.

equivalence inclusion intersection

CHARE(S\{#}) in PSPACE PSPACE PSPACE

CHARE(a, a?) in PTIME coNP NP
CHARE(a, a∗) in PTIME coNP NP

Table 1.3: Complexity classes for a selection of problems with CHAREs
due to Martens et. al ([MNS04]). Here, CHARE(S\{#}) denotes the full
subset of CHAREs as defined by Martens et. al, and CHARE(a, a?) (resp.
CHARE(a, a∗)) are the simple subsets of CHAREs where only factors of the
form a or a? (resp. a∗), a ∈ Σ, are allowed. All complexities are completeness
results, unless mention otherwise.

Finally, we investigate the complexity of the decision problems for UTAs.
The complexity of these problems depends on the subset of regular expres-
sions used in the transition function of the UTA. For example, the class
UTA(RE(+, ·, ∗,&)) contains all UTAs which only use the three standard
operators and the shuffle operator in their transition functions. The only
result known in the literature is that the equivalence problem and intersec-
tion problem for UTA(RE(+, ·, ∗)) are EXPTIME-complete ([Sei90], [Sei94]).
The results found in this work are summarized in Table 1.5.
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equivalence inclusion intersection

CHARE(S) in EXPSPACE EXPSPACE PSPACE
CHARE(a, a?, a#) in PTIME coNP-hard, NP

in EXPSPACE
CHARE(a, a#>0) in PTIME in PTIME in PTIME

Table 1.4: Complexity classes for problems with CHAREs, found in this
work. Here, CHARE(S) denotes the full subset of CHAREs extended with
the numerical occurrence operator, and CHARE(a, a?, a#) is the simple sub-
set of CHAREs where only factors of the form a, a?, and ak..l are allowed.
The class CHARE(a, a#>0) is equivalent to CHARE(a, a?, a#), with the
difference that we do not allow factors of the form a?, and that the lower
bound of the numerical occurrence operator, k, must be bigger than zero.
All complexities are completeness results, unless mention otherwise.

equivalence inclusion intersection

UTA(RE(+, ·, ∗)) EXPTIME
UTA(RE(+, ·, ∗,#)) EXPSPACE EXPSPACE EXPTIME
UTA(RE(+, ·, ∗,&)) EXPSPACE EXPSPACE EXPTIME
UTA(RE(+, ·, ∗,#,&)) EXPSPACE EXPSPACE EXPTIME

Table 1.5: Complexity classes for problems with unranked tree automata,
found in this work. All complexities are completeness results, unless men-
tioned otherwise.

Using these results and the earlier mentioned correlation between the
complexities of the decision problems for regular expressions, and unranked
tree automata on one hand, and DTDs, EDTDs, and EDTDst on the other
hand, we can establish the complexity of the decision problem for DTDs,
EDTDs, and EDTDst. Since these classes are abstractions of DTD, Relax
NG, and XML Schema, this gives us the complexity of the decision problems
for DTD, Relax NG, and XML Schema.

In chapter 2, we define a number of aspects of the complexity theory
that are important for this work. We first define Turing machines (TM) and
time- and space complexity, based on these Turing machines. We also define
two more powerful Turing machines, non-deterministic TMs and alternating
TMs. Next, we describe the complexity classes we consider in this work and
formally define the notions reduction and completeness.

In chapter 3, we consider tiling problems. This is a class of problems that
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has complete problems for many interesting complexity classes. The corridor
tiling and the 2-player corridor tiling problem are PSPACE and EXPTIME
complete. We introduce the 2n-corridor tiling problem and show that it is
EXPSPACE-complete. These tiling problems are used to show hardness in
a number of proofs in chapters 6 and 7.

In chapter 4, we first define regular expressions and chain regular ex-
pressions. Then, we introduce NFAs and extended NFAs, and show how a
RE(+, ·, ∗,#,&)-expression can be converted into an equivalent ENFA. Fi-
nally, we give some complexity results concerning ENFAs.

In chapter 5, we consider tree languages. We first describe how we will
abstract from XML documents by trees. To recognize these trees, we need
tree automata. We define a number of tree automata, and for these tree
automata we show which have equal power and which are less powerful than
the other. Then, we give the definitions of DTDs, EDTDs, and EDTDsts
and formally define the decision problems we consider. Finally, we give the
correspondence between the complexity of the decision problems for regular
expression and unranked tree automata on one hand, and DTDs, EDTDs,
and EDTDsts on the other hand.

In chapter 6, we investigate the complexity of the equivalence, inclusion
and intersection problem for regular expressions. First, we do this for the
full class of regular expressions. Here, we investigate what the addition of
the numerical occurrence and shuffle operator does for the complexity of our
decision problems. Then, we consider much simpler subclasses of regular
expressions, CHain Regular Expressions (CHAREs).

In chapter 7, we investigate the complexity of the decision problems for
unranked tree automata. For tree automata we can also consider automata
that only use a subset of the classes of regular expressions.

In chapter 8, we present some conclusions about the results of this work.



Chapter 2

Computational complexity

We first define some basic terms. In the rest of this thesis, Σ always denotes
a finite alphabet. A Σ-symbol (or simply symbol) is an element of Σ, and
a Σ-string (or simply string) is a finite sequence x = a1 · · · an of Σ-symbols.
We define the length of x, denoted by |x|, to be n. We denote the empty
string by ε. The set of positions of x is {1, . . . , n} and the symbol of x at
position i is ai. By x1 · x2 we denote the concatenation of two strings x1 and
x2. For readability, we sometimes also denote the concatenation of x1 and
x2 by x1x2.

Most definitions in this chapter are based on the book computational
complexity by Papadimitriou ([Pap94]).

2.1 The Turing machine

The k-tape Turing machine (TM) is a mathematical model of a computer.
A k-tape TM consists of k tapes. Each tape has a head that can be used to
read and write the tape. The tapes are unbounded to the right and consist
of cells which contain symbols. Furthermore, a TM is always in a state and
has a transition function. Based on this transition function, the current state
and the symbols the heads of the tapes are currently reading, the TM can
write a symbol to each of its tapes and/or move its heads. We will use the
k-tape TM as our formal model of computation. The TM is formally defined
as follows:

Definition 2.1. A k-tape Turing machine, where k is an integer, is a quadru-
ple, M = (Q,Σ, δ, q0), and where

1. Q is the finite set of states;

15
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2. Σ is the finite alphabet, and Σ always contains the special blank symbol
and the special start symbol B;

3. δ : Q × Σk → (Q ∪ {qhalt, qaccept, qreject}) × (Σ × {→,←, })k is the
transition function; and

4. q0 ∈ Q is the start state.

We assume that qhalt (the halting state), qaccept (the accepting state), qreject

(the rejecting state), and the head directions← for “left”, → for “right”, and
for “stay”, are not in Q ∪ Σ.

The transition function δ controls the actions the TM takes. Intuitively,
δ(q, a1, . . . , ak) = (p, b1, D1, . . . , bk, Dk) means that, if M is in state q, the
head of the first string is scanning a a1, that of the second a a2, and so on,
then the next state will be p, the first head will write b1 and move in the
direction indicated by D1, and so on for the other heads.

We put a few constraints on δ to restrict the use of the special start
symbol B. When a head reads the B, the head has to move right and the
B has to be rewritten. This makes sure that the tape heads will never fall
of the left end of a tape: If ai =B, then bi =B and Di =→ must hold. The
B can not be written at any other place but the first position of a tape: If
bi =B, then ai =B must hold. Since this transition function is a function
and not a relation, we call this TM a deterministic.

The computation begins by writing the special start symbol B followed
by the input x on the first tape. The other tapes only contain the start
symbol B. The tape heads point to the first position of their tape, the B.
The current state is initialized as q0, the start state.

From here on, the transition function will step by step change the current
state, move the heads and write to the tapes. When the head of a tape is
above the last symbol of that tape and has to move to the right, we write a

at the end of that tape. Thus we ensure that the tapes are truly unbound
to the right.

Since the heads can never fall of the left hand side of the tape and the
tapes are unbounded to the right, there is only one reason why the TM will
halt. That occurs when it reaches a halting state: qhalt, qaccept, or qreject.

To describe the computation of a TM formally we need a way to describe
the complete state the computation is in, a configuration. A configuration of
M is a (2k+1)-tuple (q, w1, u1, . . . , wk, uk), where q ∈ Q is a state and wi, ui

are strings in Σ∗. Here, q is the current state; wi is the string to the left of
the head on the ith tape, including the symbol scanned by the head; and ui

is the string to the right of the head on the ith tape, possibly empty.
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We say that configuration (q, w1, u1, . . . , wk, uk) yields in one step config-
uration (q, w′

1, u
′
1, . . . , w

′
k, u

′
k), denoted (q, w1, u1, . . . , wk, uk) →M (q, w′

1, u
′
1,

. . . , w′
k, u

′
k) if the following is true. First suppose that ai is the last symbol

of wi, for i = 1, . . . , k. We have the following: If Di =→, then w′
i is wi

with its last symbol (which was ai) replaced by bi, and the first symbol of
ui appended to it ( if ui is the empty string); u′i is ui with the first symbol
removed (or, if ui was the empty string, u′i remains empty). If Di =←, then
w′

i is wi with ai omitted from its end, and u′i is ui with bi attached in the
beginning. Finally, if Di = , then w′

i is wi with the ending ai replaced by bi,
and u′i = ui.

Based on the relationship yields in one step, we can now define yields
as its transitive closure. We say that configuration (q, w1, u1, . . . , wk, uk)
yields in l steps configuration (q, w′

1, u
′
1, . . . , w

′
k, u

′
k), denoted (q, w1, u1, . . . ,

wk, uk)→M l
(q, w′

1, u
′
1, . . . , w

′
k, u

′
k), where k ∈ N, if there exist configurations

(q, wi
1, u

i
1, . . . , w

i
k, u

i
k), i = 1, · · · , l + 1, such that (q, wi

1, u
i
1, . . . , w

i
k, u

i
k) →M

(q, wi+1
1 , ui+1

1 , . . . , wi+1
k , ui+1

k ) for i = 1, . . . , l, (q, w1, u1, . . . , wk, uk) = (q, w1
1,

u1
1, . . . , w

1
k, u

1
k) and (q, w′

1, u
′
1, . . . , w

′
k, u

′
k) = (q, wl+1

1 , ul+1
1 , . . . , wl+1

k , ul+1
k ). Fi-

nally, we say that configuration (q, w1, u1, . . . , wk, uk) yields configuration
(q, w′

1, u
′
1, . . . , w

′
k, u

′
k), denoted (q, w1, u1, . . . , wk, uk) →M∗

(q, w′
1, u

′
1, . . . , w

′
k,

u′k), if there is a l ≥ 0 such that (q, w1, u1, . . . , wk, uk)→M l
(q, w′

1, u
′
1, . . . , w

′
k, u

′
k).

Definition 2.2. Let M be a TM and x the input string for M ;

• M accepts x if (q0,B, x,B, ε, . . . ,B, ε)→M∗
(qaccept, u1, w1, . . . , uk, wk),

for some ui, wi ∈ Σ∗, i = 1, . . . k. We say that M(x) = “accept”.

• M rejects x if (q0,B, x,B, ε, . . . ,B, ε) →M∗
(qreject, u1, w1, . . . , uk, wk),

for some ui, wi ∈ Σ∗, i = 1, . . . k. We then say that M(x) = “reject”.

• If (q0,B, x,B, ε, . . . ,B, ε) →M∗
(qhalt, u1, w1, . . . , uk, wk), for some ui,

wi ∈ Σ∗, i = 1, . . . k, we say that M(x) = ukwk. That is, M calculates
a function from strings to strings and its output can be found on the
last tape.

• If M does not end on input x, we say that M(x) =↗.

Definition 2.3. Let L ⊂ (Σ\{ ,B})∗ be a language, that is, a set of strings
of symbols.

• Let M be a TM such that for every x ∈ (Σ\{ ,B})∗ holds that if x ∈ L,
then M(x) = “accept”, and if x /∈ L, then M(x) = “reject”. We then
say that M decides L. If L is decided by a TM M , then L is called a
recursive language.
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• We say that a TM M accepts L when for every x ∈ (Σ−{ ,B})∗ holds
that if x ∈ L, then M(x) = “accept” and if x /∈ L, then M(x) =↗. If
L is accepted by some TM M , we say that L is recursively enumerable.

• For a TM M , define L(M) = {x ∈ Σ∗ | M(x) = “accept”} as the
language accepted by M .

2.2 Time- and space complexity

We will only consider Turing machines that stop on every input. We can
classify these Turing machines, and the problems they solve, based on the
time and space they use.

LetM be a TM that takes as input x and say (q0,B, x,B, ε, . . . ,B, ε)→Mt

(H, u1, w1, . . . , uk, wk), for H ∈ {qaccept, qreject}, and ui, wi ∈ Σ∗, i = 1, . . . , k.

Definition 2.4. The time required by M on input x is t. Suppose that a
language L ⊂ (Σ\{ ,B})∗ is decided by a TM M that for every x ∈ (Σ\{ ,B
})∗ requires no more than f(|x|) time, f : N → N being a non-decreasing
function. We then say that L ∈ TIME(f(n)), and f(n) is a time bound for
M . The class TIME(f(n)) is the collection of Turing machines that operate
in no more than f(n) time.

Definition 2.5. The space required by M on input x is max{|ui| + |wi| |
i = 1, . . . , k}, the maximum number of tape cells used by the longest tape
during the computation. Suppose that a language L ⊂ (Σ\{ ,B})∗ is decided
by a TM M that for every x ∈ (Σ − { ,B})∗ requires no more than f(|x|)
space, f : N → N being a non-decreasing function. We then say that L ∈
SPACE(f(n)), and f(n) is a space bound for M . The class SPACE(f(n)) is
the collection of Turing machines that operate in no more than f(n) space.

The number of tapes used by a TM is not important when we consider
its complexity.

Theorem 2.6. Given any k-tape Turing machine M operating within time
f(n), there exists a one-tape Turing machine M ′ operating within time O(f(n)2)
such that, for any input x, M(x) = M(x′).

The following Theorems show that multiplicative constants are not im-
portant.

Theorem 2.7. Let L ∈ TIME(f(n)). Then, for any ε > 0, L ∈ TIME(f ′(n)),
where f ′(n) = εf(n) + n+ 2.

Theorem 2.8. Let L ∈ SPACE(f(n)). Then, for any ε > 0, L ∈ SPACE(f ′(n)),
where f ′(n) = 2 + εf(n).
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2.3 Non-deterministic Turing machines

Definition 2.9. A non-deterministic Turing machine (NTM) is a determin-
istic Turing machine where the transition function is of the form δ : Q×Σk →
P ((Q∪{qhalt, qaccept, qreject})×(Σ×{→,←, })k), where P stands for powerset.
We thus allow the Turing machine to make non-deterministic choices in every
step. We say that a NTM M decides a language L ⊂ (Σ−{ ,B})∗ if for every
x ∈ (Σ\{ ,B})∗ holds that x ∈ L if and only if there exist ui, wi ∈ Σ, i =
1, . . . , k, such that (q0,B, x,B, ε, . . . ,B, ε)→M∗

(qaccept, u1, w1, . . . , uk, wk).
We say that a NTM M decides language L in time f(n), if N decides L,

and, moreover for any x ∈ Σ∗, if (q0,B, x,B, ε, . . . ,B, ε)→Mk
(q, u1, w1, . . . ,

uk, wk), then k ≤ f(|x|). That is, we require that M , besides deciding L,
does not have computation paths longer than f(n), where n is the length of
the input. The set of languages decided by NTMs within time f is denoted
by NTIME(f(n)). The class NSPACE(f(n)) is defined analogously for non-
deterministic space complexity. Here, we do not allow any computation path
to use more than f(n) space, where n is the length of the input.

2.4 Alternating Turing machines

A non-deterministic Turing machine increases the power of a deterministic
Turing machine. Similarly, an alternating Turing machine will extend the
power of the non-deterministic Turing machine. First, let us take a different
definition of the non-deterministic Turing machine: A configuration leads
to acceptance if and only if it is either a final accepting configuration or
(recursively) at least one of its successors leads to acceptance. That is, each
configuration is in some sense an implicit OR of its successor configuration.

Suppose now that we also allow configurations to be AND configurations
and thus only lead to acceptance if all its successors lead to acceptance. We
will say that a configuration is in the mode AND or OR. The mode of each
configuration is determined by the state of the configuration. The state set
is thus divided in two distinct sets, the AND (or universal) states and the
OR (or existential) states. The machine accepts its input if and only if the
initial configuration leads to acceptance. The alternating Turing machine is
formally defined as follows:

Definition 2.10. An alternating Turing machine (ATM) is a non deter-
ministic Turing machine M = (Q,Σ, δ, q0) in which the set of states Q is
partitioned into two sets, Q = QAND ] QOR. Let x be an input and con-
sider the tree of computations of M on input x. Each node in this tree is
a configuration of the precise machine and includes the step number of the



CHAPTER 2. COMPUTATIONAL COMPLEXITY 20

machine. The children of a node with configuration γ in this tree are all
configurations γ′ such that γ yields in one step γ′. The leaf nodes are config-
urations which contain a halting state. Define now recursively, starting from
the leaves of the tree and going up, a subset of these configurations, called the
eventually accepting configurations as follows: First, all leaf configurations
with state qaccept are eventually accepting. A configuration γ with state in
QAND is eventually accepting if and only if all of its successor configurations
(configurations γ′ such that γ yields in one step γ′) are eventually accepting.
A configuration γ with state in QOR is eventually accepting if and only if at
least one of its successor configurations is eventually accepting.

We say that M accepts x if the initial configuration is eventually accept-
ing. We say that an ATM M decides a language L if M accepts all strings
x ∈ L and rejects all strings x /∈ L. We let ATIME(f(n)) be the class of all
languages decided by an alternating Turing machine, for which all computa-
tions on input x halt after at most f(|x|) steps. Analogously, ASPACE(f(n))
is the class of all languages decided by an alternating Turing machine that
uses no more than f(|x|) space on input x.

2.5 Complexity classes

Languages and their corresponding Turing machines can be classified based
on their time and space requirements. A complexity class is a collection
of languages that satisfy certain space or time conditions. The Turing ma-
chines that decide these languages can be deterministic, non-deterministic or
alternating Turing machines. The complexity classes used in this work are:

• P = PTIME =
⋃

k≥1 TIME(nk);

• NP = NPTIME =
⋃

k≥1 NTIME(nk);

• EXPTIME =
⋃

k≥1 TIME(2nk
);

• NEXPTIME =
⋃

k≥1 NTIME(2nk
);

• L = LOGSPACE = SPACE(log n);

• NL = NLOGSPACE = NSPACE(log n);

• AL = ALOGSPACE = ASPACE(log n);

• PSPACE =
⋃

k≥1 SPACE(nk);

• NPSPACE =
⋃

k≥1 NSPACE(nk);
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• APSPACE =
⋃

k≥1 ASPACE(nk);

• EXPSPACE =
⋃

k≥1 SPACE(2nk
); and

• NEXPSPACE =
⋃

k≥1 NSPACE(2nk
).

These complexity classes have been widely studied. We give a few impor-
tant results concerning their relationships. First, we must define the class of
functions we consider.

Definition 2.11. Let f : N → N. We say that f is a proper complexity
function if f is nondecreasing (that is, f(n + 1) ≥ f(n) for all n), and
furthermore the following is true: There is a k-string Turing machine M
such that, for any integer n, and any input x of length n, (q0,B, x,B, ε, . . . ,B
, ε) →Mt

(h, x,B, j2 , . . . ,B, j3 , . . . ,B, jn ,B,uf(x)), such that t = O(n +
f(n)), and the ji = O(f(|x|)) for i = 2, . . . , k−1, with t and the ji’s depending
only on n. In other words, on input x, M computes the string uf(x), where u
is a “quasi-blank” symbol. And, on any input x, Mf halts after O(|x|+f(|x|))
steps and uses O(f(|x|)) space besides its input.

Almost every function used in practice satisfies this definition. Examples
of proper complexity functions are log n2, n log n, n2, n3 + 3n, 2n,

√
n, and n!.

Theorem 2.12. ([Pap94]) Suppose that a language L is decided by a non-
deterministic Turing machine N in time f(n). Then it is decided by a 3-
tape deterministic Turing machine N in time O(cf(n)), where c > 1 is some
constant depending on N .

Corollary 2.13.

NTIME(f(n)) ⊆
⋃
c>1

TIME(cf(n)) (2.1)

and thus,
NP ⊆ EXPTIME (2.2)

Theorem 2.14. (The time hierarchy Theorem) If f(n) ≥ n is a proper
complexity function, then the class TIME(f(n)) is properly contained within
TIME(f(2n+ 1)3).

Corollary 2.15.
P ⊂ EXPTIME (2.3)

Theorem 2.16. (The space hierarchy Theorem) If f(n) is a proper com-
plexity function, then the class SPACE(f(n)) is properly contained within
SPACE(f(2n+ 1)3).
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Corollary 2.17.

L ⊂ PSPACE (2.4)

PSPACE ⊂ EXPSPACE (2.5)

Theorem 2.18. ([Pap94])

SPACE(f(n)) ⊆ NSPACE(f(n)) (2.6)

NSPACE(f(n)) ⊆ ASPACE(f(n)) (2.7)

TIME(f(n)) ⊆ NTIME(f(n)) (2.8)

NTIME(f(n)) ⊆ SPACE(f(n)) (2.9)

NSPACE(f(n)) ⊆ TIME(klog n+f(n)) (2.10)

Theorem 2.19. (Savitch) If f(n) ≥ log n is a proper complexity function,
then NSPACE(f(n)) ⊆ SPACE(f 2(n)).

Corollary 2.20.

PSPACE = NPSPACE (2.11)

EXPSPACE = NEXPSPACE (2.12)

Theorem 2.21. ([CKS81])

ASPACE(f(n)) = TIME(kf(n)) (2.13)

Corollary 2.22.

AL = P (2.14)

APSPACE = EXPTIME (2.15)

Using these theorems, we can put together the following equation:
L ⊆ NL ⊆ AL = P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ APSPACE

= EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE = NEXPSPACE
Here, we already know that L 6= PSPACE and PSPACE 6= EXPSPACE.

It follows that at least one of the inclusions between L, NL, P, NP and
PSPACE must be strict. The same holds for the inclusions between PSPACE,
EXPTIME, NEXPTIME and EXPSPACE. It is generally assumed, but not
proven, that all these inclusions are strict.

Definition 2.23. Let L ⊆ (Σ\{ ,B})∗ be a language. The complement
of L is defined as L = (Σ\{ ,B})∗\L. If C is a complexity class, then
coC = {L | L ∈ C}.

The classes L, NL, P, EXPTIME, AL, PSPACE, NPSPACE, and APSPACE
are closed under complement. NP is closed under complement if and only if
P = NP, NEXPTIME if and only if EXPTIME = NEXPTIME.
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2.6 Reductions and completeness

Definition 2.24. We say that language L1 is logspace reducible, or simply
reducible, to language L2 if there is a function F from strings to strings
computable by a deterministic TM M in LOGSPACE such that for all inputs
x the following is true: x ∈ L1 if and only if F (x) ∈ L2. The function F is
called a reduction from L1 to L2.

Turing machines in LOGSPACE have a read-only input tape and a read-
write output tape. Only operations on the output tape count when comput-
ing the complexity of the TM. In this way we allow the TM to read its entire
input. This extra feature does not increase the power of the TM.

Definition 2.25. Let C be a complexity class, and let L be a language in C.
We say that L is C-complete if any language L′ ∈ C can be reduced to L.

It is important to establish complete problems for a complexity class.
These problems represent the class since they possess the essence and diffi-
culty of that class.

Definition 2.26. We say that a class C ′ is closed under reductions if, when-
ever L is reducible to L′ and L′ ∈ C ′, then also L ∈ C ′

Most interesting complexity classes, including every class defined in the
previous section, are closed under reduction. Furthermore, we know that
if two classes C and C ′ are both closed under reductions, and there is a
language L which is complete for both C and C ′, then C = C ′.
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Tiling problems

Definition 3.1. In a tiling problem we are given a set of tile types O. A tile
is a square of unit size which is divided in four triangles by the two diagonals.
A tile type o is obtained by selecting a color from a finite set of colors for each
of the four triangles, denoted o =< l, t, r, b >, where l, t, r, and b represent the
left, top, right, and bottom color respectively. Tile types can not be rotated
or reflected.

A tiling is a mapping from a subset of the square grid in the plane to a
set of tile types O, til : {1, . . . ,m}×{1, . . . , n} → O for n,m ∈ N. That is, a
covering of a region in the plane by instances of the tiles in O. Furthermore,
this mapping must have the property that two tiles which share a horizontal
or vertical edge in the plane have equal colors for the two triangles adjacent
to this edge. We also say that O tiles the m× n-corridor.

In this context we define the sets H and V , which represent the horizontal
and vertical constraints. Let oi =< li, ti, ri, bi > and oj =< lj, tj, rj, bj >
then H = {(oi, oj) | oi, oj ∈ O and ri = lj} and V = {(oi, oj) | oi, oj ∈
O and ti = bj}. An alternative definition of a tiling is a mapping til for
which (til(k, l), til(k + 1, l)) ∈ V , for 1 ≤ k < m and 1 ≤ l ≤ n; and
(til(k, l), til(k, l + 1)) ∈ H, for 1 ≤ k ≤ m and 1 ≤ l < n.

Definition 3.2. In the corridor tiling problem, we are given an instance
τ = 〈O, b, t, n〉, where O is a finite set of tile types, b, t are n-tuples of
tiles and n ∈ N is given in unary. Here, b, and t stand for the bottom
and top row, respectively. We have to decide whether there exists a valid
tiling til : {1, . . . ,m} × {1, . . . , n} → O, for some m ∈ N, such that b =
(til(1, 1), . . . , til(1, n)), and t = (til(m, 1), . . . , til(m,n)). Such a tiling is a
corridor tiling.

Definition 3.3. The 2n-corridor tiling problem is the problem: given an
instance τ = 〈O, obot, otop, n〉, where O is a finite set of tile types, obot, otop ∈ O

24
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are tile types and n ∈ N is given in unary, decide whether O tiles the m×2n-
corridor for some m ∈ N in such a way that obot is placed at (1, 1) and otop

is placed at (m, 1). Such a tiling is a 2n-corridor tiling.

We can extend tiling problems to tiling games. In such a game, we have
two players: CONSTRUCTOR and SPOILER. These players can place one
tile on turn. CONSTRUCTOR tries to create a valid tiling, and SPOILER
tries to prevent that. CONSTRUCTOR wins the game if SPOILER places
an illegal tile (a tile whose borders don’t match the borders of the tiles that
were already placed), or if a valid tiling is constructed. We say that CON-
STRUCTOR has a winning strategy if he wins no matter what SPOILER
does.

Definition 3.4. The 2-player corridor tiling problem, is the problem: Given
an instance τ = 〈O, b, t, n〉 for the corridor tiling problem, does CONSTRUC-
TOR have a winning strategy for the corridor tiling game on τ .

Theorem 3.5. • The corridor tiling problem is PSPACE-complete.

• The 2-player corridor tiling problem is EXPTIME-complete.

• The 2n-corridor tiling problem is EXPSPACE-complete.

Proof. The first and second result are due to Chlebus ([Chl86]). We show
that the 2n-corridor tiling problem is in EXPSPACE (Lemma 3.6), and that
it is EXPSPACE-hard (Lemma 3.7).

Lemma 3.6. The 2n-corridor tiling problem is in EXPSPACE.

Proof. We give a non-deterministic exponential space algorithm that given an
input τ = 〈O, obot, otop, n〉 for the 2n-corridor tiling problem, decides whether
there exists a 2n-corridor tiling for τ . Since NEXPSPACE = EXPSPACE,
this shows that the problem is in EXPSPACE.

The following algorithm always stores two consecutive rows of tiles, cur-
rentRow and previousRow.

1. Start by guessing the start row and call it currentRow. The first tile
is obot and all other tiles are guessed.

2. Check the horizontal constraints in the currentRow. If they are not
satisfied, REJECT. If they are satisfied and if the first tile of the
currentRow is otop, ACCEPT.

3. Let previousRow = currentRow and guess a new currentRow. Check
the vertical constraints between the previousRow and the currentRow.
If they are not satisfied, REJECT.
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4. GOTO step 2.

This algorithm tries to guess a correct tiling for the m × 2n-corridor. It
starts by guessing the bottom row and checks if it is a valid row. Then, it
keeps on guessing new rows on top of the previous one. For each new row
it checks for each of its tiles if it is compatible with its neighbors. If it is a
valid row and if its first tile is otop, we have constructed a correct 2n-corridor
tiling for τ .

If there exists a tiling for τ , there is a run of the algorithm that constructs
that tiling and accepts. If there does not exist such a tiling, the TM will never
accept.

It only remains to show that the computation is done using only expo-
nential space. We always store 2 rows of tiles of length 2n. Since n is given
in unary in the input, this requires exponential space. We have to check the
vertical and horizontal constraints of the tiles in steps 2 and 3. This can be
done by running through the set of tiles and thus only requires logarithmic
space pointers to the input.

Lemma 3.7. The 2n-corridor tiling problem is EXPSPACE-hard.

Proof. To show that the 2n-corridor tiling problem is EXPSPACE-hard, we
have to prove that every language L ∈ EXPSPACE can be reduced to the
2n-corridor tiling problem, using a log-space reduction. We have to find a
function F , such that for every string x, F (x) is the encoding of a set of
tile-types O, an integer n > 0 and two tiles obot, otop ∈ O, so that there exists
a 2n-corridor tiling for 〈O, obot, otop, n〉 if and only if x ∈ L.

The only property of L that we know is that it is in EXPSPACE. So,
there must exist a Turing machine M = (Q,Σ, δ, q0) that decides L and that
on input x never uses more than 2(|x|)k

space, for some constant k. To be
able to do the reduction, we first have to create a Turing machine M ′ that
also decides L but differs in a few aspects to M . We call the Turing machine
that does the reduction R.

Proposition 3.8. For every exponential space Turing machine M = (Q,Σ,
δ, q0) and string x = a1 · · · an, ai ∈ Σ, we can construct, in logarithmic space,
an exponential space Turing machine M ′ = (Q′,Σ, δ′, q′0), such that

1. x is accepted by M if and only if x is accepted by M ′; and

2. M ′ only accepts when the tape head is above the first tape cell, and

3. M ′ starts its computation by writing C on the 2(|x|)k
+ 1th position of

the tape.
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Proof. We describe the changes we have to make to M to generate M ′.
For item 2, we have to create a new accept state, q′accept. We change the
transition function such that when it reaches qaccept, it moves the head to the
first position of the tape. There, it enters q′accept.

For item 3, we change the transition function in such a way that when
the algorithm starts, we write a C-symbol to the 2(|x|)k

+ 1th position of the
tape and move the tape head back to the first position of the tape.

Note that all these changes do not affect the work of M . After we have
put the C into place, the tape head does not move over the C anymore. We
know that M never uses more than 2(|x|)k

space. Therefore, it only uses the
first to 2(|x|)k

positions on the tape of M ′, and will it never move over the C
symbol, which is located at the 2(|x|)k

+ 1th position of the tape. Finally, M ′

reaches q′accept if and only if M reaches qaccept. Therefore, x is accepted by M
if and only if x is accepted by M ′.

Our proposition requires that the changes are made in logarithmic space.
For the requirement in item 2, we have to create a new accept state, and
we have to add transitions that move the tape head to the first position of
the tape. This can be done by a constant number of transitions, and thus in
logarithmic space.

The second adjustment is the hardest. Since this reduction has to be
done in logarithmic space, we can not just create 2(|x|)k

+ 1-states to move
to the 2(|x|)k

+ 1th position, write the C and move back. Instead we start by
writing 2(|x|)k

in binary on the tape immediately after the input x and use a
special token # to separate the input and the binary representation of 2(|x|)k

.
Immediately after this string we write the C-token. Our tape now looks like
B a1 · · · an#10 · · · 0 C and the head is placed at the rightmost position of
the binary number.

We create states that repeat the following:

1. If the number on the tape is equal to |x|+ (|x|)k + 2, stop.

2. Decrease the number with 1.

3. Move the tape head to the C-token, replace it with a and write an C
on the next position to the right.

This algorithm moves the C-token one place to the right in every iteration.
Since the C-token starts at position |x| + (|x|)k + 3, it will be in position
2(|x|)k

+1 after 2(|x|)k − (|x|+(|x|)k +2) iterations. That is why it stops when
the number on the tape is equal to |x|+ (|x|)k + 2.

Of course, the states that execute this algorithm again have to be gener-
ated in logarithmic space. We begin by computing (|x|)k on the worktape of
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R. We do this by always keeping k, |x| and a temporary solution in binary
on the worktape. The temporary solution is 1 in the beginning. Then, we
multiply the temporary solution k times by |x|. We use the k as counter,
diminish it by 1 after every multiplication and stop when k equals 0. At the
end, the temporary solution is equal to (|x|)k. Note that since (|x|)k and |x|
are polynomials in |x|, they only require logarithmic space to store. Further-
more, k is a constant and thus imposes no problem. The computation of the
multiplications can also be done in logarithmic space.

Now we can create (|x|)k on our worktape, we can generate the necessary
states. We first have to write 2(|x|)k

in binary on the tape. This is a number
of the form 100 · · · 00, with (|x|)k zeros. So, we first create a state that writes
the “1”. Then we create (|x|)k states, using (|x|)k as a counter, that all write
a “0” and then pass control to the next state.

During the computation we have to check if the number on the tape of
M ′ is equal to |x|+ (|x|)k + 2. To create the states that check that, we first
generate |x| + (|x|)k + 2 in binary on our worktape (of R). To be equal,
the binary pattern of the number on the tape has to be the same as that of
|x| + (|x|)k + 2, possibly preceded by a number of zeros. So, we run from
right to left through our number and check for every bit of the number if
it is equal to the corresponding bit of |x| + (|x|)k + 2. We can do this by
creating log d|x|+ (|x|)k + 2e states. If the binary pattern of the number is
equal to that of |x| + (|x|)k + 2, we only have to check if all the following
characters, upto the #-token, are “0”. If this is the case, the number is
equal to |x| + (|x|)k + 2. To generate this series of states, we have to run
one time from right to left through the number |x| + (|x|)k + 2, which we
have generated on our worktape. Since |x| + (|x|)k + 2 can be stored using
logarithmic space, this all only requires logarithmic space.

All other operations only require a constant number of states. To decrease
a number with 1, we only have to find the rightmost “1”-token (one state),
change it into a “0” (one state) and change all zeros to the right of that
place into a “1” (one state). After moving the tape head to the C-token (one
state), we move the C-token one place (one state) and move the head back
to the rightmost position of the number (one state).

Finally, when this algorithm is done we overwrite the number and the
#-token with -tokens (one state) and move the head to the first position of
the tape (one state).

By proposition 3.8, we know that given an input x, we can transform
M to an equivalent TM M ′ with certain properties. We will use M ′ in the
rest of this proof. We can start by describing all input elements of the 2n-
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corridor tiling problem. These are defined in such a way that when a tiling is
possible, M ′ (and thus M) accepts the string x = a1a2 · · · a|x|. In that tiling,
every row represents a configuration of M ′. More specifically, the horizontal
sides of the tiles (bottom and top) describe the tape contents, the position of
the head, and the current state. The vertical sides (left and right) represent
the movement of the tape head and the state of the Turing machine. The
tile-types are defined as follows:

1. ∀a ∈ Σ: < , a, , a >;

2. ∀q, a : δ′(q, a) = (r, b, ), r ∈ Q′, b ∈ Σ: < , (r, b), , (q, a) >;

3. ∀q, a : δ′(q, a) = (r, b,→), r ∈ Q′, b ∈ Σ: < , b,→ r, (q, a) >;

4. ∀a ∈ Σ,∀q ∈ Q′, a 6=B: <→ q, (q, a), , a >;

5. ∀q, a : δ′(q, a) = (r, b,←), r ∈ Q′, b ∈ Σ: <← r, b, , (q, a) >;

6. ∀a ∈ Σ,∀q ∈ Q′, a 6=C: < , (q, a),← q, a >;

7. < , (q0, a1), 1, > , < |x|+ 1, , |x|+ 1, > en ∀i, 1 < i ≤ |x|:
< i, ai, i+ 1, >; and

8. < , (q′accept,B), , (q′accept,B) >.

We define obot as < , (q0, a1), 1, > and otop as < , (q′accept,B), , (q′accept,B
) >.

We see that the horizontal sides of the tiles hold two different types of
symbols, a symbol a ∈ Σ or a tuple (q, a), with q ∈ Q′ and a ∈ Σ. A symbol a
means that there is an a at that position of the tape. The tuple (q, a) means
that there is an a at that position of the tape, the tape head is above that
tape position and the machine is in state q. The vertical sides hold symbols
of the form , → q or ← q, with q ∈ Q′. A means that the tape head is
not at that position. A → q (or ← q) means that the tape head is at that
position, moves to the right (or left) and that the state of M ′ becomes q.
Figure 3.1 shows the tile types again in a graphical way.

We will now discuss the different tile types. The tiles of item 1 make sure
that all symbols on the tape that are not affected by the tape head, stay
the same. The tiles in items 2 to 6 take care of the changes made by the
head. When the tape head stays at the same position, we have to adjust the
symbol at that position and the state (item 2). When the head moves to the
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Figure 3.1: The tiles used in the proof of the EXPSPACE-complenetess of
the 2n-corridor tiling problem.

right, the current symbol is adjusted and the right side of the tile is marked
with the new state and a right arrow to denote the right movement (item 3).
Furthermore for every symbol, except B, it is possible that the tape head
will arrive from the left, with a right movement, at that symbol (item 4). We
don’t create these tiles for the symbol B since the definition of our Turing
machine does not allow the B to occur at any other position but the first.
The tiles in items 5 and 6 do exactly the same for a left movement of the tape
head. Here, we don’t create a tile for the symbol C, since C it is impossible
for M ′ to reach the C at the 2(|x|)k

+ 1th position of the tape. The tiles in
item 7 take care of the input. Its first tile, < , (q0, a1), 1, >, is obot and must
be located at the first position of the first row. The only tile that fits at the
left side is < 1, a2, 2, > and so on until the tile < |x|, a|x|, |x|+ 1, >. After
this, only the tile < |x|+1, , |x|+1, > can complete this row. The top sides
of this first row are (q0, a1)a2 · · · an · · · , exactly the starting configuration
of M ′. Finally, when the tape head arrives at q′accept at the first position of
the tape, the tile in item 8 will copy (q′accept,B). Since otop is equal to this
tile, the tiling will then be accepted.

Finally, we say that n = 4 + 14|x|k. This number will be explained later.
We have to show that there exists a 2n-corridor tiling if and only if M ′ (and
thus M) accepts x. Suppose that there exists a 2n-corridor tiling. By the
construction of the tiles and because obot has to be the tile at the first position
of the first row, we know that the top sides of the bottom row encode the
start configuration of M ′. The next row is placed on top of this row and
must, by construction of the tiles, contain a valid configuration that can
follow the first configuration. This holds for all rows of the tiling and thus
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will the m rows of the tiling encode a valid series of configurations c1 · · · cm.
Since the first tile of the top row must be otop, we have constructed a tiling
that encodes a valid accepting run of M ′ on x, and thus x is also accepted
by M .

There is however one problem with this explanation. It is possible that
a tile of type 4 or 6 is be placed at the leftmost or rightmost position of
the tape, hereby inserting a new (phantom) head. It is obvious that if this
happens, we can not be sure anymore that a correct tiling encodes a valid
run of M ′. This is solved by the special B and C tokens. By the definition
of our TM, the B-token is always located at the first position of the tape.
Since in item 6 no tile of the form <→ q, (q,B), ,B> is constructed, it is
impossible that a phantom head will appear at the left side of the tape.

At the right side, the situation is a bit more complicated. It is possible
that a phantom head will appear there. However, since in item 4 no tiles of
the form < , (q,C),← q,C> are constructed, the C-token will block every
possible phantom head. The C-token is placed at the 2(|x|)k

+ 1th position,
so there is enough place at the left of C to simulate M ′. One little problem
still arises, it takes a number of steps of M ′ to place the C at the 2(|x|)k

+1th
position. Until it is placed, we must be sure that a phantom head cannot
have reached one of the first 2(|x|)k

+ 1 positions. The following proposition
gives us an upper bound on the number of steps it takes to put the C into
place.

Proposition 3.9. The TM M ′, places C on the 2(|x|)k
+ 1th position in less

than 22+12|x|k steps.

Proof. We investigate the steps described in proposition 3.8, that place the
C-token:

• Write the number and C and move the tape head back to the last bit
of the number: |x|k + 2 steps.

• Move the C to its 2(|x|)k
+1th position: To check if the number is equal

to |x|+(|x|)k +2 and diminish it by one, we never need more than 4|x|k
steps. The number of steps to reach and move C becomes bigger every
time. We know that we never have to repeat these two operations more
than 2(|x|)k

times. This gives us 2(|x|)k
4|x|k +2(2+3+ . . .+(2(|x|)k

+1))
steps.

If we sum these, and use (very rough) substitutions, we can easily see that
this sum is always smaller than 22+12|x|k .
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Using proposition 3.9, we have defined n as 4 + 14|x|k, which forces the
rows of the tiling to have a width of 24+14|x|k . This solves our problem of the
phantom heads because a phantom head can only be born at the rightmost
position of a row. Afterwards, it can only move one place to the left for each
new row. So, by the time the first phantom head can reach the 2(|x|)k

+ 1th
tile, the C is already put in place, and blocks the phantom head.

We can now really show that if there exists a valid 2n-corridor tiling, M ′

(and thus M) accepts x. The only difference with our first argument, is
that not the whole rows of our tiling encode configurations of M ′, but only
the 2(|x|)k

+ 1 first tiles of every row encode a configuration of M ′. By our
definition of n and the use of the symbols B and C, we have seen that we can
guarantee that no phantom head can occur in the first 2(|x|)k

+ 1 positions
of our tiling. Therefore, our original reasoning is correct again and a valid
tiling encodes an accepting run of M ′ on x.

Conversely, suppose that x is accepted by M . We know, by construction,
that x is also accepted by M ′. We can now easily simulate the accepting run
of M ′ on x by a tiling. The first row of the tiling consists of the tiles that
are specially made to encode the start configuration. For all the other rows,
the first (2(|x|)k

+ 1) tiles represent the successive configurations. The tiles
that come after the first (2(|x|)k

+ 1) tiles can all be filled with < , , , >
tiles. Finally, the accepting configuration on the top row is copied using the
tile < , (q′accept,B), , (q′accept,B) > as the first tile and the tiles < , a, , a >
for every other position on the tape with the symbol a ∈ Σ written on it.

This is a valid tiling. Furthermore is the first tile of the bottom row
equal to obot =< , (q0, a1), 1, >, and is the first tile of the top row equal to
otop =< , (q′accept,B), , (q′accept,B) >. This gives us a valid 2n-corridor tiling.

The only thing left to show is that we can do this reduction in logarithmic
space. We have already shown that the adaptations to M can be done in
logarithmic space. We have to show that the input items for the 2n-corridor
tiling problem can be constructed in logarithmic space.

The integer n is a polynomial that can be constructed by successive ad-
ditions and multiplications of other polynomial factors. These numbers can
all be stored in logarithmic space. The addition and multiplication of these
polynomials also does not require more than logarithmic space.

Finally, we investigate the different tile-types. For the tiles constructed
in items 1 to 6, we only have to keep track of one pointer to the set of
states and/or one pointer to the set of symbols. These pointers only require
logarithmic space. Sometimes, we also have to check the transition function.
This can also be done by running through the transition function and thus
using logarithmic space. For the tiles in item 7 we have to keep the variable
i. This variable can never be bigger than |x| and can thus be stored using
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dlog |x|e space. The tile in item 8 and the assignment of obot and otop require
constant space.



Chapter 4

Regular expressions

4.1 Regular expressions

Before defining regular expressions, we describe some basic terms concerning
string languages. The set of all strings over an alphabet Σ is denoted by Σ∗.
A string language is a subset of Σ∗. For two string languages L,L′ ⊆ Σ∗,
we define their concatenation L · L′ to be the set {x · x′ | x ∈ L, x′ ∈ L′}.
We abbreviate L · L · · ·L (i times) by Li, and define L0 = {ε}. The shuffle
operator & is defined inductively as:

• w& ε = ε&w = {w}, for w ∈ Σ∗; and

• ax& bw = a(x& bw) ∪ b(ax&w), for x,w ∈ Σ∗ and a, b ∈ Σ.

Definition 4.1. The set of regular expressions over Σ, denoted by RE, is
defined as follows:

• ∅, ε, and every Σ-symbol is a regular expressions; and

• when r and s are regular expressions, r · s, r + s, r∗, rk..l(k, l ∈
N and k ≤ l), and r& s are also regular expressions.

The language defined by a regular expression r, denoted by L(r), is inductively
defined as follows:

• L(∅) = ∅;

• L(ε) = {ε};

• L(a) = {a};

• L(r · s) = L(r) · L(s);

34
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• L(r + s) = L(r) ∪ L(s);

• L(r∗) =
⋃∞

i=0 L(r)i;

• L(rk..l) =
⋃l

i=k L(r)i; and

• L(r& s) = L(r) &L(s) =
⋃

x1∈L(r),x2∈L(s) x1 &x2.

The ·,+, ∗-operators are the standard operators for regular expressions.
The expressions of the form rk..l are called numerical occurrence indicators.
Here, the expression r must occur at least k and at most l times. We will
call k the minimum bound and l the maximum bound. The last operator, &,
is the shuffle operator. It allows the words of its operands to be shuffled.

Example 4.2. The regular expression a0..5 & bc describes strings with exactly
one b, exactly one c, and zero to five a’s. These characters can occur in any
order, the only restriction is that the b comes before the c. Examples of strings
defined by a0..5 & bc are abaacaa, baca, and bc. The string acab is not defined
by a0..5 & bc. �

The size of a numerical occurrence indicator with lower and upper bounds
k and l is defined as dlog ke + dlog le, the space required to store k and l in
binary. The size of a regular expression r over Σ is the number of symbols,
Σ-symbols and operator symbols, occurring in r plus the sum of the sizes of
the numerical occurrence indicators in r. By r? and r+, we abbreviate the
expressions r + ε and r · r∗, respectively. Often, we omit the concatenation
symbol · and replace r · s by rs and sometimes we denote x ∈ L(r) simply
by x ∈ r.

We will often consider subsets of the here defined regular expressions. By
RE(S), S being a list of operators, we denote all regular expressions that can
be formed using only the operators in S. The numerical occurrence indicator
is represented by #. For example, RE(·,+, ∗) denotes the “standard” set
of regular expressions and RE(·,+, ∗,#,&) represents the set of all regular
expressions.

As mentioned in the introduction, we will also study classes of simpler
regular expressions. These CHAREs are defined as follows:

Definition 4.3. A base symbol is a regular expression s, s∗, s+, s?, or sk..l

(k, l ∈ N, k ≤ l), where s is a non-empty string; a factor is of the form
e, e∗, e+, e? or ek..l (k, l ∈ N, k ≤ l) where e is a disjunction of base symbols
of the same kind. That is, e is of the form (s1 + · · ·+sn), (s∗1 + · · ·+s∗n), (s+

1 +
· · ·+s+

n ), (s1?+ · · ·+sn?), or (sk1..l1
1 + · · ·+skn..ln

n ), where n ≥ 0 and s1, . . . , sn

are non-empty strings. A chain regular expression (CHARE) is ∅, ε, or a
sequence of factors.



CHAPTER 4. REGULAR EXPRESSIONS 36

The regular expressions ((abc)∗ + b∗)(a+ b)?(ab)1..2(ac+ b)∗(a0..2 + c2..4)∗

is a chain regular expression. The expression (a+b)+(a∗b∗), however, is not.
We use a uniform syntax to denote subclasses of chain regular expressions

by specifying the allowed factors. We distinguish whether the string s of a
base symbol consists of a single symbol (denoted by a) or a string (denoted by
w) and whether it is extended by ∗,+, ?, or #. Furthermore, we distinguish
between factors with one disjunct or with arbitrarily many disjuncts: the
latter is denoted by (+ · · · ). Finally, factors can again be extended by ∗,+, ?,
or #. A list of possible factors and their corresponding expressions are listed
in Table 4.1.

We denote subclasses of chain regular expressions by CHARE(X), where
X is a list of the allowed factors. For example, we write CHARE((+a)∗, w?)
for the set of regular expressions e1 · · · en where every ei is either (i) (a1 +
· · · + am)∗ for some a1, . . . , am ∈ Σ and m ≥ 1, or (ii) w? for some w ∈ Σ+.
If A = {a1, . . . , an} is a set of symbols, we often denote (a1 + . . .+an) simply
by A. We denote the class of all chain regular expressions by CHARE(S).
Finally, we denote the class of all chain regular expressions without numerical
occurrence indicators as CHARE(S\{#}). This is the class of chain regular
expressions as defined by Martens et al. [MNS04].

4.2 Automata for regular expressions

We need a way to test if a string x is accepted by a regular expression r. We
use automata to do this.

Definition 4.4. A deterministic finite automaton (DFA) is a tuple A =
(Q,Σ, q0, qf , δ) where

• Q is the finite set of states;

• Σ is the finite alphabet;

• δ : Q× Σ→ Q is the transition function;

• q0 ∈ Q is the start state; and

• qf ∈ Q is the final state.

A run of a DFA A on a string x = a1 · · · an is a function λ : {1, . . . , n +
1} → Q such that

• λ(1) = q0; and
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factor expression
a a
a∗ a∗

a+ a+

a? a?
ak..l a#

w∗ w∗

w+ w+

w? w?
wk..l w#

(a1 + · · ·+ an) (+a)
(a1 + · · ·+ an)∗ (+a)∗

(a1 + · · ·+ an)+ (+a)+

(a1 + · · ·+ an)? (+a)?
(a1 + · · ·+ an)k..l (+a)#

(a∗1 + · · ·+ a∗n) (+a∗)
(a+

1 + · · ·+ a+
n ) (+a+)

(a1? + · · ·+ an?) (+a?)

(ak1..l1
1 + · · ·+ akn..ln

n ) (+a#)
(w1 + · · ·+ wn) (+w)
(w1 + · · ·+ wn)∗ (+w)∗

(w1 + · · ·+ wn)+ (+w)+

(w1 + · · ·+ wn)? (+w)?
(w1 + · · ·+ wn)k..l (+w)#

(w∗
1 + · · ·+ w∗

n) (+w∗)
(w+

1 + · · ·+ w+
n ) (+w+)

(w1? + · · ·+ wn?) (+w?)

(wk1..l1
1 + · · ·+ wkn..ln

n ) (+w#)

Table 4.1: Possible factors in chain regular expressions and how they are
denoted. (a, ai ∈ Σ, w,wi ∈ Σ∗, k, l, ki, li ∈ N)
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• for all i ∈ {1, · · · , n}, λ(i+ 1) = δ(λ(i), ai).

A run is accepting if λ(n + 1) = qf . A string is accepted if there is an
accepting run for it. The set of all strings accepted by A is denoted by L(A).

We can add non-determinism in the conventional way. Denote Σ ∪ {ε}
by Σε.

Definition 4.5. A non-deterministic finite automaton (NFA) is a deter-
ministic finite automaton, where the transition function δ is of the form
δ : Q× Σε → P (Q), P (Q) being the powerset of Q.

On input a string x, suppose that we can write x as x = a1 · · · an, ai ∈ Σε.
A run of a NFA A on x is a function λ : {1, · · · , n+ 1} → Q such that

• λ(1) = q0; and

• for all i ∈ {1, · · · , n}, λ(i+ 1) ∈ δ(λ(i), ai).

A run is accepting if λ(n + 1) = qf . A string is accepted if there is an
accepting run for it. The set of all strings accepted by A is denoted by L(A).

Note that in the definition of our automata, we allow only one start and
only one accept state. In some other definitions of string automata, sets of
start or final states are allowed. This, however, does not add power to the
automata. We have chosen one start and final state because this makes some
proofs easier to understand.

Theorem 4.6. For any RE(·,+, ∗)-expression r, we can construct a NFA A
such that L(r) = L(A), in time polynomial in the size of r.

Proof. We use a simple construction to transform a regular RE(·,+, ∗) ex-
pression r into an equivalent NFA A = (Q,Σ, q0, qf , δ). This construction is
a slight adaptation of the construction used by Sipser ([Sip96]).

We construct the automaton recursively as follows:

• If r = ∅: Q = {qr, fr}, q0 = qr, qf = fr.

• If r = ε: Q = {qr, fr}, q0 = qr, qf = fr, δ(qr, ε) = fr.

• If r = a, a ∈ Σ: Q = {qr, fr}, q0 = qr, qf = fr, δ(qr, a) = fr.

• If r = e1 · e2: say A(ei) = (Qi,Σ, δi, qi, fi), i = 1, 2: Q = Q1 ∪Q2, q0 =
q1, qf = f2, δ = δ1 ∪ δ2 ∪ δ(f1, ε) = q2.

• If r = e1 + e2: say A(ei) = (Qi,Σ, δi, qi, fi), i = 1, 2: Q = Q1 ∪ Q2 ∪
{qr, fr}, q0 = qr, qf = fr, δ = δ1 ∪ δ2 ∪ δ(qr, ε) = q1 ∪ δ(qr, ε) = q2 ∪
δ(f1, ε) = fr ∪ δ(f2, ε) = fr.
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• If r = e∗: say A(e) = (Qe,Σ, δe, qe, fe): Q = Q1 ∪ {qr, fr}, q0 = qr, qf =
fr, δ = δe ∪ δ(qr, ε) = qe ∪ δ(qr, ε) = fr ∪ δ(fe, ε) = qe ∪ δ(fe, ε) = fr.

This construction adds a constant number of new states and entries in
the transition function for every symbol in r. Since there are a polynomial
number of symbols in r, this construction operates in polynomial time.

The recursive construction of the NFA is illustrated in Figure 4.1.

We will now expand the capabilities of the NFA with counters, and al-
low the automaton to be in more than one state at once. This gives us
the possibility to translate a RE(·, ∗,+,#,&) directly into such an extended
non-deterministic finite automaton (ENFA). Kilpelainen already mentioned
the idea of extending NFAs with counters ([KT03]). Jedrzejowicz and Szepi-
etowski fully defined shuffle automata ([JS01]). Here, we expand these shuffle
automata with a counter mechanism.

In an ENFA, every state has a mincount and a maxcount and maintains
a counter. Every time a state is visited, its counter is augmented by 1. A
state also has two different types of out-edges, in and reset edges. For a
state q, we are allowed to follow an in edge if counter(q) < maxcount(q)
and are allowed to follow a reset edge if counter(q) ≥ mincount(q) and
counter(q) ≤ maxcount(q). If we follow a reset edge, we also reset the
counter of that state to zero. These counters help us to immediately translate
the numerical occurrence indicator into an ENFA.

Furthermore, we add transitions that go from one (split) state to two new
states. Conversely, there are also transitions that go from two states to one
(merge) state. Therefore, a configuration of an ENFA will be a set of states,
instead of just one state.

An ENFA is defined as follows:

Definition 4.7. An extended non-deterministic finite automaton (ENFA)
is a five-tuple (Q,Σ, q0, qf , δ) in which:

• Q = QN ] QS ] QM is the finite set of states, and with every state
q ∈ Q integers mincount(q) and maxcount(q), where mincount(q) ≤
maxcount(q), are associated. Here, QN is the finite set of normal
states, QS is the finite set of split states, and QM is the finite set of
merge states;

• Σ is a finite alphabet;
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Figure 4.1: The construction of an NFA which is equivalent to a given regular
expression.
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• q0 ∈ Q is the start state;

• qf ∈ Q is the accept state; and

• δ : Σε× ((Q×{IN,RESET}×Q)∪ (QS×{RESET}×Q×Q)∪ (Q×
Q× {RESET} ×QM) is a finite set of transitions.

Furthermore, during the computation, we associate an integer count(q) with
every state q.

A partial configuration φ of an ENFA automaton A = (Q,Σ, q0, qf , δ) is a
(|Q|+ 1)-tuple which contains a state q, denoted by state(φ), and an integer
for every p ∈ Q, denoted by count(φ, p). If Q = {q1, . . . , qn}, we represent the
partial configuration φ as (state(φ), q1 = count(φ, q1), . . . , qn = count(φ, qn)).
A configuration γ of A is a finite set of partial configurations.

A configuration γ2 immediately follows a configuration γ1 using a transi-
tion z ∈ δ, denoted by γ1 ⇒z γ2, if the following conditions are satisfied:

• If z = (a, p, IN, q), a ∈ Σε, p, q ∈ Q, then one partial configuration
goes from state p to state q, the count of p in that partial configuration
remains the same, and the count of q in that partial configuration is
incremented.

Formally, there must exist partial configurations φ ∈ γ1, ϕ ∈ γ2, such
that γ2 = (γ1\{φ})∪{ϕ}, and state(φ) = p, state(ϕ) = q, count(φ, p) <
maxcount(p), count(ϕ, q) = count(φ, q)+1, and count(φ, q′) = count(ϕ,
q′), for all q′ ∈ Q, q′ 6= q.

• If z = (a, p, RESET, q), a ∈ Σε, p, q ∈ Q, then one partial config-
uration goes from state p to state q, the count of p in that partial
configuration is reset, and the count of q in that partial configuration
is incremented.

Formally, there must exist partial configurations φ ∈ γ1, ϕ ∈ γ2,
such that γ2 = (γ1\{φ}) ∪ {ϕ}, and state(φ) = p, state(ϕ) = q, and
count(φ, p) ≥ mincount(p), count(φ, p) ≤ maxcount(p), count(ϕ, q) =
count(φ, q) + 1, count(ϕ, p) = 0, and count(φ, q′) = count(ϕ, q′), for all
q′ ∈ Q, q′ 6= q, q′ 6= p.

• If z = (a, p, RESET, q1, q2), a ∈ Σε, p ∈ QS, q1, q2 ∈ Q, then the
partial configuration which is in state p is split in two partial configu-
rations, which are in states q1 and q2. The count of p in both partial
configurations is reset, and the count of q1 (resp. q2) is incremented in
the partial configuration of state q1 (resp. q2).
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Formally, there must exist partial configurations φ ∈ γ1, ϕ1, ϕ2 ∈ γ2,
such that γ2 = (γ1\{φ}) ∪ {ϕ1, ϕ2}, and state(φ) = p, state(ϕ1) =
q1, state(ϕ2) = q2, and count(φ, p) ≥ mincount(p), count(φ, p) ≤
maxcount(p), count(ϕ1, q1) = count(φ, q1)+1, count(ϕ2, q2) = count(φ,
q2)+1, count(ϕ1, p) = count(ϕ2, p) = 0, and count(φ, q′) = count(ϕ1, q

′),
for all q′ ∈ Q, q′ 6= q1, q

′ 6= p, and count(φ, q′) = count(ϕ2, q
′), for all

q′ ∈ Q, q′ 6= q2, q
′ 6= p.

• If z = (a, p1, p2, RESET, q), a ∈ Σε, p1, p2 ∈ Q, q ∈ QM , then two
partial configurations which are in states p1 and p2 are merged into one
partial configuration which is in state q. The counters of p1 and p2 are
reset, and the counter of q is incremented.

Formally, there must exist partial configurations φ1, φ2 ∈ γ1, ϕ1 ∈ γ2,
such that γ2 = (γ1\{φ1, φ2}) ∪ {ϕ}, and state(φ1) = p1, state(φ2) =
p2, state(ϕ) = q, and count(φ, p1) ≥ mincount(p1), count(φ, p1) ≤
maxcount(p1), count(φ, p2) ≥ mincount(p2), count(φ, p2) ≤ maxcount(
p2), and for every p′ ∈ Q, p′ 6= p1, p

′ 6= p2, count(φ1, p
′) = count(φ2, p

′),
and count(ϕ1, q) = count(φ1, q) + 1, count(ϕ1, p1) = 0, count(ϕ1, p2) =
0, and count(φ, q′) = count(ϕ1, q

′), for all q′ ∈ Q, q′ 6= p1, q
′ 6= p2, q

′ 6=
q.

We now extend this notion to a sequence of transitions θ = z1 · · · zn.
We say that a configuration γn follows a configuration γ0 using a sequence
of transitions θ ∈ δ∗, denoted by γ0 ⇒θ γn, if there exist configurations
γ0, . . . , γn such that γi−1 ⇒zi γi, for every 0 < i ≤ n.

For θ = z1 · · · zn a sequence of transitions, we denote by label(θ) the
string associated to θ. That is, label : δ → Σ is defined by label(z) = a,
for z = (a, p, IN, q), z = (a, p, RESET, q), z = (a, p, RESET, q, r), or, z =
(a, p, q, RESET, r) where p, q, r ∈ Q, and a ∈ Σε. Then, for two sequences
of transitions θ1, θ2, we recursively define the label of θ1 · θ2 as label(θ1 · θ2) =
label(θ1) · label(θ2).

Example 4.8. If θ is equal to (c, q1, IN, q2)(ε, q2, IN, q3)(d, q3, RESET, q1),
then label(θ) = cd. Note that the labeling function ignores ε-transitions,
which allows us to follow at any time a ε-transition in the computation. �

A configuration γ0 is the initial configuration of A if it is a singleton {φ},
where state(φ) = q0, count(φ, q0) = 1, and count(φ, q) = 0 for all states
q 6= q0. That is, the computation starts with the start state q0 and all
counters, but the counter of q0, set to zero. The counter of the start state
is set to one, because the count of the current state can never be equal to
zero. Indeed, by beginning the computation, we have in fact entered the
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start state, which has set its counter set to one. A configuration γn is an
accepting configuration if it is a singleton {ϕ}, where state(ϕ) = qf , and
count(ϕ, qf ) ≥ mincount(qf ). We only accept if the current state is the
accept state, and the count of the accept state is greater than its minimum
count. Note that we don’t require the count of the accept state to be less
than or equal the maxcount. This is immediate since the count of a state can
never be bigger than its maxcount. This follows from the fact that when the
count is equal to its maxcount, we are obligated to follow a RESET edge,
whereby we reset the count of the state to zero.

A string x is accepted by A if there exist configurations γ0 and γn, and a
sequence of transitions θ ∈ δ∗, such that

• γ0 is the initial configuration of A;

• γn is an accepting configuration of A;

• label(θ) = x; and

• γ0 ⇒θ γn.

The sequence of transitions θ is also referred to as an accepting run of A on
x. As usual, we denote by L(A) the set of strings accepted by A.

Given a RE(·, ∗,+,#,&)-expression r, we can construct an equivalent
ENFA Ar = (Q,Σ, q0, qf , δ) recursively as follows, where for every state q,
mincount(q) = maxcount(q) = 1 unless stated otherwise.

• If r = ∅, then Q = {qr, fr}, qr, fr ∈ QN , q0 = qr, qf = fr.

• If r = ε, then Q = {qr, fr}, qr, fr ∈ QN , q0 = qr, qf = fr,
δ = {(ε, qr, RESET, fr)}.

• If r = a, a ∈ Σ, then Q = {qr, fr}, qr, fr ∈ QN , q0 = qr, qf = fr, δ =
{(a, qr, RESET, fr)}.

• If r = e1 +e2, then say A(ei) = (Qi,Σ, qi, fi, δi), i = 1, 2: Q = Q1∪Q2∪
{qr, fr}, qr, fr ∈ QN , q0 = qr, qf = fr, δ = δ1 ∪ δ2 ∪ {(ε, qr, RESET, q1),
(ε, qr, RESET, q2), (ε, f1, RESET, fr), (ε, f2, RESET, fr)}.

• If r = e1 · e2, then say A(ei) = (Qi,Σ, qi, fi, δi), i = 1, 2: Q = Q1 ∪
Q2, q0 = q1, qf = f2, δ = δ1 ∪ δ2 ∪ {(ε, f1, RESET, q2)}.

• If r = e∗, then say A(e) = (Qe,Σ, qe, fe, δe): Q = Qe ∪ {qr, fr}, qr, fr ∈
QN , q0 = qr, qf = fr, δ = δe ∪ {(ε, qr, RESET, qe), (ε, fe, RESET, fr),
(ε, fe, RESET, qe), (ε, qr, RESET, fr)}.
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• If r = ek..l, then say A(e) = (Qe,Σ, qe, fe, δe): Q = Qe∪{qr, fr1, fr2}, qr,
fr1, fr2 ∈ QN , q0 = qr, qf = fr2,mincount(fr2) = k,maxcount(fr2) =
l, δ = δe ∪ {(ε, qr, RESET, qe), (ε, fe, RESET, fr1), (ε, fr1, IN, qe),
(ε, fr1, RESET, fr2)}. If k = 0, we add (ε, qr, RESET, fr2) to this
union.

• If r = e1 & e2, then say A(ei) = (Qi,Σ, qi, fi, δi), i = 1, 2: Q = Q1 ∪
Q2 ∪ {qr, fr}, qr ∈ QS, fr ∈ QM , q0 = qr, qf = fr, δ = δ1 ∪ δ2 ∪
{(ε, qr, RESET, q1, q2), (ε, f1, f2, RESET, fr)}.

For all operators but the numerical occurrence and shuffle operator, this
construction is the same as that for NFAs (Figure 4.1). The construction
for the numerical occurrence and shuffle operator is illustrated in Figure
4.2. Here, every edge that does not have an IN or RESET marking, is a
RESET edge, and every state that does not have a mincount or maxcount,
has mincount = maxcount = 1.

Figure 4.2: The construction used for the numerical occurence and shuffle
operator.
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Example 4.9. The regular expression (a + b)1..3 & c∗ is translated in the
following ENFA Ar = ({q1, . . . , q15}, {a, b, c}, q1, q15, δ), where
δ = { (ε, q1, RESET, q2, q11), (ε, q2, RESET, q3), (ε, q3, RESET, q4),

(ε, q3, RESET, q6), (a, q4, RESET, q5), (b, q6, RESET, q7),
(ε, q5, RESET, q8), (ε, q7, RESET, q8), (ε, q8, RESET, q9),
(ε, q9, IN, q3), (ε, q9, RESET, q10), (ε, q11, RESET, q12),
(ε, q11, RESET, q14), (c, q12, RESET, q13), (ε, q13, RESET, q12),
(ε, q13, RESET, q14), (ε, q10, q14, RESET, q15) }

and mincount(q9) = 1, maxcount(q9) = 3, mincount(q) = maxcount(q) =
1, for every q ∈ Q, q 6= q9, and QS = {q1}, QM = {q15}, and QN =
{q2, . . . , q14}. This automaton is illustrated in Figure 4.3. Again, we have
omitted the RESET tags, and mincount and maxcount values when these are
obvious.

Figure 4.3: An ENFA for the regular expression (a+ b)1..3 & c∗.

An accepting run of Ar on the string cabc is demonstrated in Table 4.9.
Here, we only note the count of q9, the only state for which the count is
important. For example, the configuration {(q1, q9 = 1), (q2, q9 = 2)} is in
the states q1, and q2, and for q1 the count of q9 is one, for q2 the count of q9
is two.

�
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configuration transition

{(q1, q9 = 0)} (ε, q1, RESET, q2, q11)
{(q2, q9 = 0), (q11, q9 = 0)} (ε, q11, RESET, q12)
{(q2, q9 = 0), (q12, q9 = 0)} (c, q12, RESET, q13)
{(q2, q9 = 0), (q13, q9 = 0)} (ε, q13, RESET, q12)
{(q2, q9 = 0), (q12, q9 = 0)} (ε, q2, RESET, q3)
{(q3, q9 = 0), (q12, q9 = 0)} (ε, q3, RESET, q4)
{(q4, q9 = 0), (q12, q9 = 0)} (a, q4, RESET, q5)
{(q5, q9 = 0), (q12, q9 = 0)} (ε, q5, RESET, q8)
{(q8, q9 = 0), (q12, q9 = 0)} (ε, q8, RESET, q9)
{(q9, q9 = 1), (q12, q9 = 0)} (ε, q9, IN, q3)
{(q3, q9 = 1), (q12, q9 = 0)} (ε, q3, RESET, q6)
{(q6, q9 = 1), (q12, q9 = 0)} (b, q6, RESET, q7)
{(q7, q9 = 1), (q12, q9 = 0)} (ε, q7, RESET, q8)
{(q8, q9 = 1), (q12, q9 = 0)} (ε, q8, RESET, q9)
{(q9, q9 = 2), (q12, q9 = 0)} (ε, q9, RESET, q10)
{(q10, q9 = 0), (q12, q9 = 0)} (c, q12, RESET, q13)
{(q10, q9 = 0), (q13, q9 = 0)} (ε, q13, RESET, q14)
{(q10, q9 = 0), (q14, q9 = 0)} (ε, q10, q14, RESET, q15)

{(q15, q9 = 0)}

Table 4.2: An accepting run of Ar on cabc

4.3 Properties of extended NFAs

Theorem 4.10. For any RE(·,+, ∗,#,&)-expression r, there exists an ENFA
A such that L(r) = L(A).

Proof. On input a RE(·,+, ∗,#,&)-expression r, we construct the ENFA
A = (Q,Σ, q0, qf , δ) as described above. We prove that L(r) ⊆ L(A) (Lemma
4.11) and L(A) ⊆ L(r) (Lemma 4.12). The theorem then follows.

Lemma 4.11. For any string x, if x ∈ L(r), then x ∈ L(A), and if
γn = {ϕ} is the accepting configuration of the accepting run of A on x,
then count(ϕ, qf ) = 1 and count(ϕ, q) = 0, for every q ∈ Q, q 6= qf .

Proof. We prove this lemma inductively on the structure of r.

• If r = ∅, then L(r) = ∅, trivial.

• If r = ε, then L(r) = {ε}. The accepting run θ of A on ε is θ =
(ε, qr, RESET, fr). The accepting configuration is γn = {ϕ}, where
ϕ = (qf , qr = 0, fr = 1), which satisfies every condition.
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• If r = a, a ∈ Σ, then L(r) = {a}. The accepting run θ of A on a
is θ = (a, qr, RESET, qf ). The accepting configuration is γn = {ϕ},
where ϕ = (qf , qr = 0, qf = 1), which satisfies every condition.

• If r = e1 + e2, suppose that x ∈ L(e1). Then, by induction, there exists
a θx ∈ δ∗e1

, and configurations γ0,x = {φx} and γn,x = {ϕx}, such that
γ0,x ⇒θx γn,x, γ0,x and γ0,x are initial and accepting configurations of
Ae1 respectively, count(ϕx, f1) = 1, and count(ϕx, q) = 0 for all other
states q. Let θ = (ε, qr, RESET, q1)·θx ·(ε, f1, RESET, qf ). Then there
exist initial and accepting configurations γ0 = {φ} and γn = {ϕ} for Ar,
such that γ0 ⇒θ γn, and label(θx) = label(θ) = x. Furthermore, since
γn = {ϕ} follows directly γn,x = {ϕx} by transition (ε, f1, RESET, qf ),
and count(ϕx, f1) = 1 and count(ϕx, q) = 0 for all other states q ∈ Q1,
it follows that count(ϕ, fr) = 1 and count(ϕ, q) = 0 for all other states
q ∈ Q.

• If r = e1 · e2 and x ∈ L(r), then there exist x1 ∈ L(e1) and x2 ∈ L(e2)
such that x = x1 · x2. By induction, for i = 1, 2, there exists a
θxi
∈ δ∗ei

, and configurations γ0,xi
= {φxi

} and γn,xi
= {ϕxi

}, such
that label(θxi

) = xi, γ0,xi
⇒θxi γn,xi

, γ0,xi
and γn,xi

are initial and ac-
cepting configurations of Aei

respectively, and count(ϕxi
, fi) = 1 and

count(ϕxi
, q) = 0 for all q ∈ Qi, q 6= fi. Let θ = θx1 ·(ε, f1, RESET, q2)·

θx2 . Then there exist initial and accepting configurations γ0 = {φ} and
γn = {ϕ} for Ar, such that γ0 ⇒θ γn, and label(θ) = label(θx1) ·
label(θx2) = x. Here, γ0 = {φ} is the initial configuration of the ac-
cepting run of A(e1) on x1, where count(φ, q) = 0 is added for every
q 6∈ Q1, and γn = {ϕ} is the accepting configuration of the accepting
run of A(e2) on x2, where count(ϕ, q) = 0 is added for every q 6∈ Q2.
By induction, the restrictions on the count values for the accepting
configuration hold.

• If r = e∗, and x ∈ L(r), then there are two possibilities. If x = ε, then
there exist initial and accepting configurations for A(r), such that for
θ = (ε, qr, RESET, fr), γ0 ⇒θ γn, label(θ) = ε, and the count condi-
tions on ϕ hold. If x 6= ε, then there exist xi ∈ L(e), i = 1, . . . , n such
that x = x1 · · ·xn. By induction, for every i = 1, . . . , n, there exists
a θxi

∈ δ∗e , and configurations γ0,xi
= {φxi

} and γn,xi
= {ϕxi

}, such
that γ0,xi

⇒θxi γn,xi
, γ0,xi

and γn,xi
are initial and accepting configura-

tions of Ae respectively, and count(ϕxi
, fe) = 1 and count(ϕxi

, q) = 0
for all q ∈ Qi, q 6= fe. Let θ = θx1 · (ε, fe, RESET, qe) · θx2 · · · θxn−1 ·
(ε, fe, RESET, qe) · θxn · (ε, fe, RESET, fr).
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Then, there exist initial and accepting configurations γ0 = {φ} and
γn = {ϕ} for Ar, such that γ0 ⇒θ γn, and label(θ) = label(θx1) · · ·
label(θxn) = x. Here, γ0 = {φ} is the initial configuration of the
accepting run of A(e1), where count(φ, q) = 0 is added for every q 6∈
Q1. Every added ε transition, goes from an accepting configuration for
A(e), to an initial configuration of A(e). By the induction hypothesis,
these accepting configurations only have one counter not equal to 1,
the accept state, which is reset to zero by the RESET transition. This
guarantees a valid transition to the next initial configuration, which
only has the count of its state, qe, set to 1. Finally, the last ε transition
of fe to fr, resets the count of fe to zero and sets the count of fr to 1,
whereby ϕ satisfies the condition on its counters.

• If r = ek..l, and x ∈ L(r), then there are two possibilities. If k = 0,
then x can be equal to ε. If x = ε, then there exist initial and ac-
cepting configurations for A(r), such that for θ = (ε, qr, RESET, fr2),
γ0 ⇒θ γn and label(θ) = ε and the count conditions on γn hold. If
x 6= ε, then there exist xi ∈ L(e), i = 1, . . . , n and k ≤ n ≤ l, such
that x = x1 · · ·xn. By induction, for every i = 1, . . . , n, there ex-
ists a θxi

∈ δ∗e , and configurations γ0,xi
= {φxi

} and γn,xi
= {ϕxi

},
such that label(θxi

) = xi, γ0,xi
⇒θxi γn,xi

, γ0,xi
and γn,xi

are initial
and accepting configurations of Ae respectively, and count(ϕxi

, fe) =
1 and count(ϕxi

, q) = 0 for all q ∈ Qe, q 6= fe. Let θ = θx1 ·
(ε, fe, RESET, fr1)(ε, fr1, IN, qe)·· · ··(ε, fe, RESET, fr1)(ε, fr1, IN, qe)·
θxn · (ε, fe, RESET, fr1)(ε, fr1, RESET, fr2). Then, there exist initial
and accepting configurations γ0 = {φ} and γn = {ϕ} for Ar, such
that γ0 ⇒θ γn, and label(θ) = label(θx1) · · · label(θxn) = x. Here,
γ0 = {φ} is the initial configuration of the accepting run of A(e1), where
count(φ, q) = 0 is added for every q 6∈ Q1. As for the star operator, we
have added ε transitions to go from the accepting configurations of A(e)
to the initial configurations of A(e). We have added two ε transitions
between every word. The first goes from the accept state of A(e) to fr1,
and fr1 goes to the start state of A(e). Furthermore, the last ε tran-
sition is an IN-edge, which means that the counter of fr1 is not reset.
For all the partial configurations ψ of the configurations in the compu-
tations of A(e), we add count(ψ, q) = 0 for every state q 6∈ Qe, q 6= fr1.
For fr1, the count depends on the number of times we have passed fr1,
which is equal to the number of substrings read by A(e). We also see
that the fact that count(ψ, fr1) is not equal to zero does not disturb the
computation of A(e), since A(e) does not know fr1. After reading the n
substrings, we arrive at configuration γ′ = {ϕ′}, with state(ϕ′) = fr1,
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count(ϕ′, fr1) = n, and count(ϕ′, q) = 0 for all other states q. Since,
k ≤ n ≤ l, mincount(fr1) = k, and maxcount(fr2) = k, we can follow
the RESET edge to fr2. Here, we arrive at the accepting configuration
γn = {ϕ}, for which count(ϕ, fr2) = 1, and count(ϕ, q) = 0 for all other
states q.

• If r = e1 & e2 and x ∈ L(r), then there exist x1 ∈ L(e1) and x2 ∈
L(e2) such that x ∈ x1 &x2. By induction, for i = 1, 2, there exists a
θxi
∈ δ∗ei

, and configurations γ0,xi
= {φxi

} and γn,xi
= {ϕxi

}, such that
γ0,xi

⇒θxi γn,xi
, γ0,xi

and γn,xi
are initial and accepting configurations

of Aei
respectively, and count(ϕxi

, fi) = 1 and count(ϕxi
, q) = 0 for all

q ∈ Qi, q 6= fi.

There must exist a θs ∈ θ1 & θ2 such that label(θs) = x. Let θ =
(ε, qr, RESET, q1, q2)θs(ε, f1, f2, RESET, fr). Then there exist initial
and accepting configurations γ0 = {φ} and γn = {ϕ} for Ar, such
that γ0 ⇒θ γn, and label(θ) = label(θs) = x. The first transition
(ε, qr, RESET, q1, q2) takes the initial configuration γ0 = {φ} to γ1 =
{φx1 , φx2}. The transitions of θx1 in θs take φx1 to ϕx1 , and the transi-
tions of θx2 in θs take φx2 to ϕx2 . Hereby, we arrive in the configuration
γ′ = {ϕx1 , ϕx2}. Finally, the last transition (ε, f1, f2, RESET, fr) takes
us to γn = {ϕ}, where all conditions on the counters are respected.

Lemma 4.12. For any string x, if x ∈ L(A), then x ∈ L(r).

Proof. We proof this inductively on the structure of A:

• If r = ∅, then there does not exist an accepting run on A.

• If r = ε, then θ = (ε, qr, RESET, qf ) is the only accepting run of A,
and thus L(A) = {label(θ)} = {ε} = L(r).

• If r = a, then θ = (a, qr, RESET, qf ) is the only accepting run of A,
and thus L(A) = {label(θ)} = {a} = L(r).

• If r = e1 + e2, then, for i = 1, 2, every accepting run θ of A is equal
to (ε, qr, RESET, qi) · θx · (ε, fi, RESET, qf ), where θx is an accepting
run for A(ei). Assume that i = 1, the proof for i = 2 is similar. By
induction, we know that label(θx) ∈ L(e1). Furthermore, we know that
L(e1) ⊆ L(r), and label(θx) = label(θ), and thus label(θ) ∈ L(r).
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• If r = e1 · e2, then every accepting run θ of A is equal to θx1 · (ε, f1,
RESET, q2) · θx2 , where θx1 (resp. θx1) is an accepting run for A(e1)
(resp. A(e2)). By induction, we know that label(θx1) ∈ L(e1), and
label(θx2) ∈ L(e2). It follows that label(θ) = label(θx1) · label(θx2) ∈
L(r).

• If r = e∗, then there are are two possibilities. The accepting run θ of
A can be equal to (ε, qr, RESET, fr). We know that label(θ) = ε ∈
L(r). The accepting run θ can also be equal to θx1 · (ε, fe, RESET, qe) ·
θx2 · · · θxn−1 ·(ε, fe, RESET, qe)·θxn ·(ε, fe, RESET, fr), for some n ∈ N,
where θxi

is an accepting run for A(e), for i = 1, . . . , n. Since label(θ) =
label(θx1) · · · label(θxn), it follows, by induction, that label(θ) ∈ L(r).

• If r = ek..l, then there are are two possibilities. If k = 0, the ac-
cepting run θ of A can be equal to (ε, qr, RESET, fr2). We know
that label(θ) = ε ∈ L(r). The accepting run θ can also be equal
to θ = θx1 · (ε, fe, RESET, fr1)(ε, fr1, IN, qe) · · · · · (ε, fe, RESET, fr1)
(ε, fr1, IN, qe) · θxn · (ε, fe, RESET, fr1)(ε, fr1, RESET, fr2), for some
n ∈ N, k ≤ n ≤ l, where θxi

is an accepting run for A(e), for
i = 1, . . . , n. Since label(θ) = label(θx1) · · · label(θxn), and k ≤ n ≤ l,
it follows, by induction, that label(θ) ∈ L(r).

• If r = e1 & e2, then every accepting run of θ of A must be equal
to (ε, qr, RESET, q1, q2)θs(ε, f1, f2, RESET, fr), for which there ex-
ist θ1, θ2, such that for i = 1, 2, θi is an accepting run for A(ei),
and θs ∈ θ1 & θ2. Therefore, label(θ1) ∈ L(e1), label(θ2) ∈ L(e2),
and label(θs) ∈ label(θ1) & label(θ2). It follows, by induction, that
label(θ) = label(θs) ∈ L(r).

Lemma 4.13. The size of the ENFA A(r), constructed by the previous al-
gorithm on the RE(·,+, ∗,#,&)-expression r, is polynomial in the size of r.
Furthermore is the size of a configuration of A(r) at any time polynomial in
the size of r and A(r).

Proof. It is easy to see that A(r) is polynomial in the size of A(r). For every
symbol or operator in r, we add a constant number of new states. Since the
number of symbols and operators in r is a polynomial, it follows that the size
of A(r) is polynomial in the size of r.

For the second part of this lemma, we first note that the size of any partial
configuration of A(r) is polynomial in the size of A(r). Indeed, it stores one
state, and for every state it stores a counter in binary. These counters can
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never become bigger than the maxcount value of their corresponding state,
which are stored in A(r). We thus have a polynomial number of counters of
polynomial size.

Next, we show that the total number of partial configurations in a con-
figuration of A(r) can never be bigger than the number of shuffle operators
in r plus 1. Every shuffle operator of r results in one split state and one cor-
responding merge state of A(r). In the construction of A(r) (Figure 4.1 and
Figure 4.2), we see that every smaller automaton is always fully nested in its
super automaton. It follows that when a split state of A(r) splits a partial
configuration in two partial configurations, it has to pass by its correspond-
ing merge state before it can reach that split state again. In the worst case,
A(r) has used every split state and its configuration contains the number of
shuffle operators in r plus 1 partial configurations. Before it can reach any
split state again, it has to pass by its corresponding merge state, by which it
reduces the number of partial configurations again.

Lemma 4.14. Suppose we have constructed an ENFA A for a RE(·,+, ∗,#,&)-
expression using the previously mentioned algorithm, then we can decide
whether ε ∈ L(A) in space polynomial in the size of A.

Proof. The following non-deterministic algorithm decides whether ε ∈ L(A):

1. Let γ be the initial configuration of B.

2. Guess whether to GOTO 3, or GOTO 4.

3. Guess a ε-transition θ ∈ δ, and check if there exists a configuration η,
such that γ ⇒θ η. If so, let γ = η, and GOTO 2, else REJECT.

4. If γ is an accepting configuration of B, ACCEPT, else, REJECT.

This algorithm follows a random number of ε-transitions. If ε ∈ L(A),
there is a run of this algorithm which reaches an accepting configuration and
accepts. If this algorithm accepts, we have reached an accepting configuration
by only following ε-transitions, and therefore ε ∈ L(A).

By Lemma 4.13, we know that the sizes of γ and η are polynomial in
the size of A. Therefore, this algorithm is in NPSPACE. Since NPSPACE =
PSPACE, the lemma follows.



Chapter 5

Tree languages

5.1 Trees

We can view an XML document as a finite tree with labels from a finite
alphabet Σ. Therefore, we will abstract XML documents by Σ-trees. An
XML document and its corresponding tree are shown in Figure 1.1 and Figure
1.5. Note that we leave out the actual data values, since these are not
important for the structure of the tree.

The set of unranked Σ-trees, denoted by τΣ, is the smallest set of strings
over Σ and the parenthesis symbols “(” and “)” such that, for a ∈ Σ and
w ∈ τ ∗Σ, a(w) is in τΣ. So, a tree is either ε (empty) or is of the form
a(t1 . . . tn) where each ti is a tree. In the tree a(t1 . . . tn), the subtrees t1 . . . tn
are attached to the root labeled a. We write a rather than a(). Since there is
no apriori bound on the number of children of a node in a Σ tree, these trees
are unranked. We will also consider binary trees, trees where every internal
node has exactly two children. For every t ∈ τΣ, the set of nodes of t, denoted
by Dom(t), is the set defined as follows:

• If t = ε, then Dom(t) = ∅.

• If t = a(t1 . . . tn), where a ∈ Σ and each ti ∈ τΣ, then Dom(t) =
{ε} ∪

⋃n
i=1{iu | u ∈ Dom(ti)}.

The label of a node u in the tree t = a(t1 . . . tn), denoted by labt(u), is
defined as follows:

• If u = ε, then labt(u) = a.

• If u = iu′, then labt(u) = labti(u′).

52
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We define the depth of a tree t, denoted by depth(t), as follows: if t = ε,
then depth(t) = 0; and if t = a(t1 · · · tn) then depth(t) = max{depth(ti) | i =
1, . . . , n}+ 1. A path in a tree t is a complete linear sequence of nodes from
the root to the leaf. A word w ∈ Σ∗ is a Σ-path of a tree t if w is the sequence
of labels of a path of t. In the sequel, whenever we say tree, we mean Σ-tree.
A tree language is a set of trees. A tree language T is homogeneous if the
root node of every tree in T has the same label.

5.2 Tree automata

As we did for string languages, we can also define automata for tree languages.
These tree automata are more diverse than the string automata. We can
distinguish between binary tree automata and unranked tree automata.

5.2.1 Binary tree automata

Binary tree automata can be deterministic or non-deterministic, and oper-
ate top down or bottom up. These differences give us the following four
interesting tree automata.

Definition 5.1. A deterministic top down binary tree automaton (deter-
ministic TD-BTA) is a tuple A = (Q,Σ, δ, q0, (Fσ)σ∈Σ) where

• Q is a finite set of states;

• Σ is a finite alphabet;

• δ : Q× Σ→ (Q×Q) is the transition function;

• q0 ∈ Q is the initial state; and

• for every σ ∈ Σ, Fσ ⊆ Q is the finite set of accepting states for leaves
with label σ.

A run of a deterministic top down binary tree automata A on a binary
tree t, is a function λ : Dom(t)→ Q, such that

• λ(ε) = q0; and

• for every internal node u ∈ Dom(t), with left child u1 and right child
u2, (λ(u1), λ(u2)) = δ(λ(u), labt(u)).

The run is accepting if for every leaf node u, λ(u) ∈ Flabt(u). The size of a
deterministic TD-BTA is |Q| × |Σ|, the number of entries for the δ function.
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Definition 5.2. A deterministic bottom up binary tree automaton (deter-
ministic BU-BTA) is a tuple A = (Q,Σ, δ, (qσ)σ∈Σ, F ) where

• Q is a finite set of states;

• Σ is a finite alphabet;

• δ : (Q×Q)× Σ→ Q is the transition function;

• for every σ ∈ Σ, qσ is the initial state for leaves with label σ; and

• F ⊆ Q is the set of final states.

A run of a deterministic bottom up binary tree automata A on a binary
tree t, is a function λ : Dom(t)→ Q, such that

• λ(u) = qlabt(u) for every leaf node u; and

• for every internal node u ∈ Dom(t), with left child u1 and right child
u2, λ(u) = δ(λ(u1), λ(u2), lab

t(u)).

The run is accepting if λ(ε) ∈ F . The size of a deterministic BU-BTA is
|Q| × |Σ|.

Definition 5.3. A non-deterministic top down binary tree automaton (non-
deterministic TD-BTA) is a tuple A = (Q,Σ, δ, I, (Fσ)σ∈Σ) where

• Q is a finite set of states;

• Σ is a finite alphabet;

• δ : Q× Σ→ P (Q×Q), where P (Q×Q) is the powerset of Q×Q, is
the transition function;

• I ⊆ Q is the set of initial states; and

• for every σ ∈ Σ, Fσ is the set of accepting states for leaves with label
σ.

A run of a non-deterministic top down binary tree automata A on a
binary tree t, is a function λ : Dom(t)→ Q, such that

• λ(ε) ∈ I; and

• for every internal node u ∈ Dom(t), with left child u1 and right child
u2, (λ(u1), λ(u2)) ∈ δ(λ(u), labt(u)).
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The run is accepting if for every leaf node u, λ(u) ∈ Flabt(u). The size of
a non-deterministic TD-BTA is |Q| × |Σ|, the number of entries for the δ
function.

Definition 5.4. A non-deterministic bottom up binary tree automaton (non-
deterministic BU-BTA) is a tuple A = (Q,Σ, δ, (Iσ)σ∈Σ, F ), where

• Q is a finite set of states;

• Σ is a finite alphabet;

• δ : (Q × Q) × Σ → P (Q), where P (Q) is the powerset of Q, is the
transition function;

• for every σ ∈ Σ, Iσ is the set of initial states for leaves with label σ;
and

• F ⊆ Q is the set of final states.

A run of a non-deterministic bottom up binary tree automata A on a
binary tree t, is a function λ : Dom(t)→ Q, such that

• λ(u) ∈ Ilabt(u) for every leaf node u; and

• for every internal node u ∈ Dom(t), with left child u1 and right child
u2, λ(u) ∈ δ(λ(u1), λ(u2), lab

t(u)).

The run is accepting if λ(ε) ∈ F . The size of a non-deterministic BU-BTA
is |Q| × |Σ|.

5.2.2 Unranked tree automata

We have now defined the four possible (deterministic vs. non-deterministic
and top down vs bottom up) automata for binary tree languages, and turn
to unranked tree languages. Here, we will only define one variant, a non-
deterministic bottom up automata. We do this because a deterministic un-
ranked tree automaton would, because of its deterministic property, have to
put a maximum rank on the trees it accepts. Therefore it would not be able
to take full advantage of its unranked property. We do not define a top down
automaton, because it would be too similar to our bottom up automaton.
The only difference would be that the set of final states would become the
set of initial states.

Definition 5.5. An unranked tree automaton (UTA) is a tuple A = (Q,Σ,
δ, F ), where
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• Q is a finite set of states;

• Σ is a finite alphabet;

• δ is a function Q×Σ→ Reg(Q) such that δ(q, a) is a regular expression
over the alphabet Q for every a ∈ Σ and q ∈ Q; and

• F ⊆ Q is the set of final states.

A run of A on a tree t is a function λ : Dom(t)→ Q such that for every
v ∈ Dom(t) with n children, λ(v1) · · ·λ(vn) ∈ δ(λ(v), labt(v)). Note that
when v has no children, then the criterion reduces to ε ∈ δ(λ(v), labt(v)). A
run is accepting if λ(ε) ∈ F . The size of an UTA is |Q| + |Σ| plus the sum
of the sizes of all regular expressions occurring in δ.

A tree is accepted if there is an accepting run for it. The set of all accepted
trees is denoted by L(A).

Since we use regular expressions in our transition function, we can limit
or extend the power of the UTA by specifying a class of regular expressions
that are allowed in the UTA. If R is a class of regular expressions, then
UTA(R) is the set of UTAs that only use the regular expressions in R in their
transition function. For example, UTA(RE(+, ·, ∗)) denotes the “standard”
set of unranked tree automata.

5.2.3 Equivalence of tree automata

We have defined five different tree automata. In this section, we investigate
the power of these different automata. Many of the proofs in this section are
based on work by Thatcher ([Tha73]).

Theorem 5.6. A set T of trees is recognizable by a non-deterministic BU-
BTA if and only if T is recognizable by a deterministic BU-BTA.

Proof. Of course, a deterministic automaton can never be more powerful than
its non-deterministic counterpart. We show that we can simulate every non-
deterministic BU-BTA A = (Q,Σ, δ, (Iσ)σ∈Σ, F ) by a deterministic BU-BTA
B = (Q′,Σ, δ′, (qσ)′σ∈Σ, F

′), using a product construction.
The state set Q′ of B is the powerset of Q, P (Q). That is, B will at any

node capture all states that A can be in at that node. The set of final states
F ′ is equal to {C | C ∩ F 6= ∅}. The automaton B accepts if at the root
node, one of the states in its set of states is a final state for A. The transition
function δ′ must be created in such a way that given two sets of states C1, C2

and an alphabet symbol σ, it calculates all possible states the automaton A
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can be in. That is, δ′(σ,C1, C2) =
⋃

qi∈Ci
δ(σ, q1, q2). Finally, the initial state

for σ ∈ Σ, q′σ = Iσ.
If A accepts a tree t, there exists an accepting run λ for A on t. Take the

run λ′ of B on t (there exists only one since B is deterministic). By construc-
tion, we know that for any node u ∈ Dom(t), λ(u) ∈ λ′(u). Furthermore,
λ(ε) ∈ F and thus, by construction, λ′(ε) ∈ F ′.

Conversely, if B accepts a tree t, then its run λ′ is an accepting run for
B on t. Since λ′ contains all possible runs of A, and since λ′(ε) ∩ F 6= ∅ (λ′

is an accepting run), we can construct an accepting run λ for A on t.

Theorem 5.7. A set T of trees is recognizable by a non-deterministic BU-
BTA if and only if T is recognizable by a non-deterministic TD-BTA.

Proof. In Lemma 5.8 we show how we can simulate a non-deterministic TD-
BTA by a non-deterministic BU-BTA. In Lemma 5.9 we do the opposite.
Together, these lemmas prove the theorem.

Lemma 5.8. A set T of trees is recognizable by a non-deterministic BU-BTA
if T is recognizable by a non-deterministic TD-BTA.

Proof. For any non-deterministic TD-BTA A = (Q,Σ, δ, I, (Fσ)σ∈Σ), we can
construct an equivalent non-deterministic BU-TDAB = (Q,Σ, δ′, (Iσ)′σ∈Σ, F

′)
as follows:

• I ′σ = Fσ,∀σ ∈ Σ; and

• F ′ = I; and

• δ′(σ, q1, q2) = {q | (q1, q2) ∈ δ(σ, q)}

Let λ be an accepting run for A on a tree t , we claim that λ also is an
accepting run for B on t. For all leaf nodes u with labt(u) = σ, λ(u) ∈ Fσ

and thus λ(u) ∈ I ′σ. Since δ and δ′ are in fact the same functions, λ follows
the transition function for δ′ as it does for δ. This assures that λ is a run for
B on t. Finally, λ(ε) ∈ I and thus λ(ε) ∈ F ′, which makes sure that λ is an
accepting run for B on t.

The same reasoning holds for an accepting run λ for B on a tree t. It is
also a run for A on t. It is an accepting run for A, since for every leaf node
u, λ(u) ∈ I ′σ, and thus λ(u) ∈ Fσ.

Lemma 5.9. A set T of trees is recognizable by a non-deterministic TD-BTA
if T is recognizable by a non-deterministic BU-BTA.
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Proof. For any non-deterministic BU-BTA A = (Q,Σ, δ, (Iσ)σ∈Σ, F ), we can
construct an equivalent non-deterministic TD-BTAB = (Q,Σ, δ′, I ′, (Fσ)′σ∈Σ)
as follows:

• F ′
σ = Iσ,∀σ ∈ Σ; and

• I ′ = F ; and

• δ′(σ, q) = {(q1, q2) | q ∈ δ(σ, q1, q2)}

Let λ be an accepting run forA on a tree t, we claim that λ also is an accepting
run for B on t. Since I ′ = F and λ(ε) ∈ F , it follows that λ(ε) ∈ I ′. Since δ
and δ′ are in fact the same functions, λ follows the transition function for δ′

as it does for δ. This assures that λ is a run for B on t. Finally, for all leaf
nodes u with labt(u) = σ, λ(u) ∈ Fσ and thus λ(u) ∈ I ′σ, which makes sure
that λ is an accepting run for B on t.

The same reasoning holds for an accepting run λ for B on a tree t. It is
also a run for A on t. It is an accepting run for A, since λ(ε) ∈ I ′, and thus
λ(ε) ∈ F .

Theorems 5.6 and 5.7 show that deterministic BU-BTAs, non-deterministic
BU-BTAs and non-deterministic TD-BTAs all recognize the same set of bi-
nary tree languages. One would expect that the non-deterministic TD-BTU
are equally powerful. This, however, is not true.

Theorem 5.10. The set of binary tree languages recognizable by a determin-
istic TD-BTA is a strict subset of the set of binary tree languages recognizable
by a non-deterministic TD-BTA.

Proof. Of course, the deterministic TD-BTA can never be more powerful
than the non-deterministic TD-BTA. To prove that they are less powerful,
we show that the tree language {a(ba), a(ab)} can be recognized by a non-
deterministic TD-BTA, but not by a deterministic TD-BTA.

To prove this formally, we will characterize the classes of languages recog-
nized by deterministic TD-BTAs. Let Σ be a finite alphabet and R a regular
subset of Σ∗. Define TR to be the set of all trees t which have the property
that every Σ-path of t is in R. For any regular R, TR is recognizable by a
TD-BTA.

Let A = (Q,Σ, δ, q0, F ) be a DFA that recognizes R. Let B = (Q,Σ, δ′,
(Iσ)′σ∈Σ, F ). Here, δ′(σ, q) = (δ(σ, q), δ(σ, q)), where σ ∈ Σ and q ∈ Q; and
for every σ ∈ Σ, (Iσ) = {q0}. The tree automaton B simulates the actions of
A on every path of its tree. Since B has the same final states as A, B only
accepts if every Σ-path is accepted by A. It follows that B recognizes TR.
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Example 5.11. Let Σ = {a, b} and R the subset of Σ∗ defined by the regular
expression a∗b, then TR is the set of trees where the root and every internal
node is labeled with a and every leaf node is labeled b. �

This result shows the power of a deterministic TD-BTA. However, we are
interested in its limitations. It turns out that its power does not reach much
further than the power just stated.

A path in a tree t over an alphabet Σ can be represented by a string in
{l, r}∗, where the l and r stand for the left and right branches in the tree.
Furthermore, we add a Λ in the begin of the string to ensure that such a path
has the same length as its corresponding path of labels. For example, Λlr is
a path that goes left at the root and follows by going right to the leaf node.
We represent a path with its labels as a pair (p, x), where p is a path over
Λ{l, r}∗, x is a string of labels over Σ∗, and p and x have the same length.
Using these label-path pairs, we can construct ∆x = ({Λ}×Σ) · ({l, r}×Σ)∗,
where (Λ, σ1)(β2, σ2) · · · (βk, σk) is equivalent to (Λβ2 · · · βk, σ1 · · ·σk).

For a regular set R in ∆Σ, let CR be the set of trees t such that every
label-path pair of t is in R. The exact power of the deterministic TD-BTAs
is characterized by Magidor and Moran as follows

Lemma 5.12. A set of trees T is recognizable by a deterministic TD-BTA
if and only if T = CR for some regular subset R of ∆Σ.

Let’s return to the tree language {a(ba), a(ab)}. Assume there exists a
deterministic TD-BTA A which recognizes exactly {a(ba), a(ab)}. To accept
the two given trees, the corresponding regular subset R of ∆Σ must at least
accept (∆l, ab), (∆l, aa), (∆r, ab), and (∆r, aa). It follows that A must accept
{a(ba), a(ab), a(aa), a(bb)}. Since this set of trees is bigger than the original
one, A can not exist.

The non-deterministic TD-BTA B = (Q,Σ, δ, I, (Fσ)σ∈Σ) which recog-
nizes {a(ba), a(ab)} is the following:

• Q = {qs, qa, qb}; and

• Σ = {a, b}; and

• δ(qs, a) = {(qa, qb), (qb, qa)}; and

• I = {qs}

• Fa = {qa}, and Fb = {qb}.

This shows that {a(ba), a(ab)} is recognizable by non-deterministic TD-
BTA and not by a deterministic TD-BTA, which concludes our proof.
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Figure 5.1: An unranked tree and its binary encoding.

It is hard to compare binary tree automata and unranked tree automata
since they do not consider the same class of tree languages. However, we
can encode every unranked tree into a binary tree. An example is shown
in Figure 5.1. Here, the first child of a node u remains the first node of
u but is explicitly encoded as its left child. The other children of u are
right descendants of its first child. Whenever there is only one child, a # is
inserted for the other child. Denote the encoding of a tree t by enc(t) and
the decoding of a tree t by dec(t).

By using this encoding and decoding, the following has been proven:

Theorem 5.13. ([GKPS05],[Nev02],[Suc02])

• For every UTA(RE(+, ·, ∗)) B there is a non-deterministic BU-BTA A
such that L(A) = {enc(t) | t ∈ L(B)}. Moreover, A can be computed
in polynomial time.

• For every non-deterministic BU-BTA A there is an UTA(RE(+, ·, ∗))
B such that L(B) = {dec(t) | t ∈ L(A)}. Moreover, B can be computed
in polynomial time.

This theorem states that, in some sense, the BU-BTA and the UTA(+, ·, ∗)
have the same expressive power.

We can conclude that deterministic BU-BTAs, non-deterministic TD-
BTAs, non-deterministic BU-BTAs, and UTA(RE(+, ·, ∗))s all have the same
expressive power. The deterministic TD-BTAs are less powerful than all the
other automata.

5.3 XML schema languages

In this section, we present abstractions from XML schema languages, such
as Document Type Definition, XML Schema, and Relax NG. We first give
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an abstraction of a Document Type Definition.

Definition 5.14. Let R be a class of regular expressions over Σ. A DTD(R)
D is a tuple (d, sd) where d is a function that maps Σ-symbols to expressions
in R, and sd ∈ Σ is the start symbol.

For convenience of notation, we denote (d, sd) by d and leave the start
symbol sd implicit whenever this cannot give rise to confusion. A tree t
satisfies d if

• labt(ε) = sd; and

• for every u ∈ Dom(t) with n children, labt(u1) · · · labt(un) ∈ L(d(labt(u))).

By L(d) we denote the set of trees satisfying d. The size of a DTD D is |Σ|
plus the sum of the sizes of the regular expressions in d. For clarity, we write
d(a) = r as a→ r.

Example 5.15. A DTD which defines the XML document of Figure 1.1 is
shown in Figure 1.2. We can abstract from this DTD by the following DTD:

cd → song∗

song → title length singlesSold?

XML Schema and Relax NG extend DTDs by a typing system. Therefore,
Papakonstantinou and Vianu have extended this model with types ([PV00]).

Definition 5.16. An extended DTD (EDTD) is a 5-tuple D = (Σ,Σ′, d, sd, µ),
where Σ′ is an alphabet of types, the tuple (d, sd) is a DTD over Σ′, and µ
is a mapping from Σ′ to Σ. Notice that µ can be extended to define a homo-
morphism on trees. A tree t then satisfies an extended DTD if t = µ(t′) for
some t′ ∈ L(d). Again, we denote by L(D) the set of trees satisfying D.

In the sequel, we also denote by µ the homomorphic extension of µ to
strings, trees, or regular expressions. For ease of exposition, we always take
Σ′ = {ai | 1 ≤ i ≤ ka, a ∈ Σ, i ∈ N} for some natural numbers ka, and we
set µ(ai) = a. For a node u in a Σ-tree t, we say that ai is a type of u with
respect to D when

• there exists a Σ′-tree t′ ∈ L(D) such that µ(t′) = t; and

• labt′(u) = ai.

The size of a EDTD D is |Σ| + |Σ′| plus the sum of the sizes of the regular
expressions in d. By EDTD(R) we denote the class of EDTDs in which the
internal DTD is a DTD(R).
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Example 5.17. An XML Schema which defines the XML document in Fig-
ure 1.1, is shown in Figure 1.3. We create a type for a “single” song, and a
“regular” song, and use these to define a cd. We also illustrate some extra
features of XML Schema over DTD. The use of the all tag allows the child
nodes of a song to occur in any order. By setting minoccurs to one and max-
occurs to twenty, we specify that a compact disc must have at least one song,
and no more than twenty songs. The equivalent EDTD is the following:

cd → (song1 + song2)1..20

song1 → title & length & singlesSold

song2 → title & length

Here, song1 represents the single type songs, and song2 represents the regular
type songs. �

We can express every XML schema or Relax NG document by an EDTD,
but not every EDTD can be expressed by an XML Schema. That is because
XML schema enforces some additional constraints. Relax NG does not have
any constraints, and therefore is equally powerful as EDTDs.

One of these XML Schema constraints is Element Declarations Consis-
tent (EDC). EDC says that in a regular expression, no elements with the
same name, but with a different type can be used. Therefore, we describe
a variant of EDTDs, single type EDTDs, which incorporates the EDC rule
([BMNS05],[MLMK05]).

Definition 5.18. Let D = (Σ,Σ′, d, sd, µ) be an EDTD. A regular expression
r over Σ′ is single-type if there do not exist strings w1a

iv1 and w2a
jv2 in

L(r), with µ(ai) = µ(aj) and i 6= j. We say that D is a single-type EDTD
(EDTDst) when every regular expression d(ai) is single-type.

By EDTDst(R), we denote the class of single-type EDTDs in EDTD(R).

Example 5.19. If we look back at our example XML Schema (Figure 1.3),
we see that it does not satisfy the EDC rule. Its corresponding EDTD also
is not a single-type EDTD. To solve this, we can leave out the different types
of the songs:

cd → (song)1..20

song → title & length & singlesSold?
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Or, we can keep our types in tact by expanding our structure:

cd → singleSongs regularSongs

singleSongs → (song1)∗

regularSongs → (song2)∗

song1 → title & length & singlesSold

song2 → title & length

Note that this new EDTD is single-type, but does not define our original
XML document (Figure 1.1) anymore. �

We have now defined DTDs, EDTDs, and EDTDst, which form an ab-
straction for DTD, Relax NG, and XML Schema, respectively. As mentioned
in the introduction, our abstractions of DTD and XML Schema, do not take
into account the Deterministic Content Models or equivalently Unique Par-
ticle Attribution constraints.

We say that a DTD (d, s) is reduced if for every symbol a that occurs in
d, there exists a tree t ∈ L(d) and a node u ∈ Dom(t) such that labt(u) = a.
For example, the DTD (d, a) where Σ = {a, b}, d(a) = ε and d(b) = b only
defines the tree a(). Since b does not occur in this tree, the DTD is not
reduced.

A DTD can be reduced in PTIME by the following algorithm ([MNS04]):

1. Compute the set R ⊆ Σ of symbols that are reachable from the start
symbol s of the DTD.

2. Compute in a bottom up manner the set of all symbols S = {a |
L((d, a)) 6= ∅}.

3. Replace every occurrence of a symbol in Σ\(R∩S) in a regular expres-
sion by ∅, and remove symbols in Σ\(R ∩ S) from the DTD.

An EDTD or EDTDst is reduced if its DTD is reduced. In the sequel, we
assume that all DTDs and EDTDs are reduced.

Theorem 5.20. The class of tree languages definable by EDTDs is precisely
the class of homogeneous tree languages definable by UTAs. Furthermore,
given an EDTD D, we can construct an equivalent UTA, accepting homo-
geneous tree languages, in space logarithmic in the size of D; and given an
UTA A, accepting homogeneous tree languages, we can construct an equiva-
lent EDTD D, in space logarithmic in the size of A.
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Proof. We first show that for any EDTD, we can construct an equivalent
UTA, accepting homogeneous tree languages, in logarithmic space(Lemma
5.21). Then, we prove the opposite (Lemma 5.23).

Lemma 5.21. Given an EDTD D, we can construct an equivalent UTA A,
accepting homogeneous tree languages, in space logarithmic in the size of D.

Proof. Given an EDTD D = (ΣD,Σ
′
D, d, sd, µ), we construct an UTA A =

(Q,ΣA, δ, F ) such that L(D) = L(A) as follows

• Q = Σ′
D; and

• ΣA = ΣD; and

• ∀σ ∈ Σ′
D : δ(σ, µ(σ)) = d(σ); and

• F = {sd}.

Proposition 5.22. Let t be a tree satisfied by D. Let t′ be the tree over Σ′

such that t′ is satisfied by d and µ(t′) = t. The function λ : Dom(t) → Q,
where for every node u of t, λ(u) = labt

′
(u), defines an accepting run of A

on t.

Proof. We prove this proposition by induction on the depth of t. To do
this, we need an extra notion of a run on a tree. We say that a run λ of
A on t is an accepting run up to depth k, if λ(ε) ∈ F and for every node u
with depth(u) ≤ k and with n children, λ(u1) · · ·λ(un) ∈ δ(λ(u), labt(u)).
Obviously, a run λ of A on t is an accepting run if it is an accepting run up
to depth(t).

Basis: The node at depth 1 is the root node. We know that λ(ε) =
labt

′
(ε) = sd. Since sd ∈ F , this defines an accepting run up to depth 1.
The induction step: Suppose that λ(u) = labt

′
(u) defines an accepting run

of A on t up to depth n, we prove that λ(u) = labt
′
(u) defines an accepting

run of A on t up to depth n + 1. For every node v of t′ at depth n, we
know that its children are in d(v). Since we have defined δ(σ, µ(σ)) to be
equal to d(σ), we know that λ defines an accepting run of A on t up to depth
n+ 1.

From this proposition, it follows that for every t ∈ L(D), t ∈ L(A).
Therefore, L(D) ⊆ L(A).

Conversely, if there exists an accepting run λ of A on a tree t, then t′,
where labt

′
(u) = λ(u), is satisfied by d. This can be proven in an analogue

manner as in Proposition 5.22. It follows that L(A) ⊆ L(D).
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It only remains to show that this construction can be done in logarithmic
space. The construction of A consists in fact only of copying D, and can
easily be done in logarithmic space.

Lemma 5.23. Given an UTA A, accepting homogeneous tree languages, we
can construct an equivalent EDTD D, in space logarithmic in the size of A.

Proof. Given an UTA A = (Q,ΣA, δ, F ) accepting homogeneous tree lan-
guages, we have to construct an EDTD D = (ΣD,Σ

′
D, d, sd, µ) such that

L(A) ⊆ L(D).
We suppose that A has the following property: The set F is a singleton

{qf} and L(δ(qf , a)) is empty for all but one a ∈ Σ. This symbol is the label
of the root node of every tree accepted by A.

We show that for every UTA A1 = (Q1,ΣA1, δ1, F1) accepting homoge-
neous tree languages, an equivalent UTA A = (Q,ΣA, δ, F ) with these prop-
erties exists. Since we are only considering homogeneous tree languages, we
know that there is a unique root symbol, say s. Suppose that there exists an
accept state q, for which δ(q, a) 6= ∅, a 6= s, we know that this transition can
never lead to an accepting run. We can thus replace these useless δ-values
with the empty set.

We now create a new state, qf , which will be the new and only accepting
state. Let δ(qf , s) be the concatenation of all δ(q, s)-values, q ∈ F1, separated
by ’+’ tokens. The new value of F is {qf}. We see that qf replaces the old
accept states as accept state and can never be used at another place in the
tree. This guarantees that the new UTA is equivalent to the old UTA.

Now we know that A has the previously mentioned property, D can be
constructed as follows:

• ΣD = ΣA;

• Σ′
D = {aq | a ∈ ΣA and q ∈ Q};

• µ(aq) = a;

• d(aq) = δ(q, a) in which every state-symbol p is replaced by (ap
1 + · · ·+

ap
n), assuming ΣA = {a1, . . . , an}; and

• sd = sqf , where qf is the only accept state and s is the only symbol for
which δ(qf , a), a ∈ Σ, is not empty.

Proposition 5.24. Let t be a tree accepted by A, and λ : Dom(t) → Q the
accepting run of A on t. Then, the tree t′, with for any node u ∈ Dom(t),
labt

′
(u) = labt(u)λ(u), is satisfied by d, and µ(t′) = t.
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Proof. By construction, µ(t′) = t. We prove that t′ is satisfied by d by
induction on the depth of t′. We say that a tree t is recognized up to depth
k by a DTD (d, sd), if labt(ε) = sd, and for every node u with depth(u) ≤ k
and with n children, labt(u1) · · · labt(un) ∈ L(d(labt(u)). Obviously, a tree t
is recognized by (d, sd) if it is recognized by (d, sd) up to depth(t).

Basis: labt
′
(ε) = labt(ε)λ(ε) = sqf , which is the start symbol of d. There-

fore, d recognizes t′ up to depth 1.
The induction step: Suppose that t′ is recognized by d up to depth n,

we prove that t′ is recognized by d up to depth n + 1. For every node v of
t′ at depth n, we know that its children are in δ(λ(v), labt(v)). If v has n
children, we can write these as λ(v1) · · ·λ(vn). Since we have defined d(aq)
to be δ(q, a), where every state-symbol p is replaced by (ap

1 + · · · + ap
n), we

know that labt(v1)λ(v1) · · · labt(vn)λ(vn) ∈ L(d(labt(v)λ(v))).

From this proposition, it follows that for every t ∈ L(A), t ∈ L(D).
Therefore, L(A) ⊆ L(D).

Conversely, suppose that a tree t is satisfied by D. Then there exists
a tree t′ such that labt

′
(u) = labt(u)type(u), for every node u of t, and t′ is

satisfied by d. The accepting run of A on t is λ, where λ(u) = type(u), for
every node of t. This can be proven in an analogue manner as in Proposition
5.24. It follows that L(D) ⊆ L(A).

It only remains to show that this construction can be done in logarithmic
space. We have to construct a type for every symbol-state combination,
and we have to alter the transition function of A. This can all be done in
logarithmic space.

This concludes the proof of Theorem 5.20.

5.4 Decision problems

Definition 5.25. Let M be a subclass of the class of regular expressions, tree
automata, DTDs, EDTDs, and EDTDsts.

• Inclusion for M: Given two expressions, automata, or schemas d, d′ ∈ M,
is L(r) ⊆ L(r′)?

• Equivalence for M: Given two expressions, automata, or schemas d, d′ ∈
M, is L(r) = L(r′)?

• Intersection (non-emptiness) for M: Given an arbitrary number of ex-
pressions, automata, or schemas d1, . . . , dn ∈ M, is

⋂n
i=1 L(di) 6= ∅?
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Let R be a subclass of the class of regular expressions.

• Universality for R: Given an expression r ∈ R, is L(r) = L(Σ∗)?

The inclusion, equivalence and intersection problem are the fundamental
problems studied in this work. The universality problem is sometimes useful
to prove hardness for the inclusion and equivalence problem.

In this work, we are mostly interested in the complexity of these problems
for DTDs, EDTDs, and, EDTDsts, because of their correspondence to schema
languages used in practice. However, the complexities of these problems are
closely related to these of regular expressions, and unranked tree automata.

Theorem 5.26. ([MNS04]) Let R be be a class of regular expressions and
C be a complexity class which is closed under positive reductions. Then the
following are equivalent:

• Inclusion for R is in C.

• Inclusion for DTD(R) is in C.

• Inclusion for EDTDst(R) is in C.

The corresponding statement holds for the equivalence problem.

Theorem 5.27. ([MNS04]) Let R be be a class of regular expressions and
C be a complexity class which is closed under positive reductions. Then the
following are equivalent:

• Intersection for R is in C.

• Intersection for DTD(R) is in C.

These theorems show that by establishing the exact complexities for reg-
ular expressions, we know the complexity of these problems for DTDs and
EDTDsts. The only problem that does not fall under this classification is the
intersection problem for EDTDsts. Since every EDTD can be simulated by
an UTA, the upper bound for the intersection problem for UTAs also gives
us an upper bound for the intersection problem for EDTDsts. Furthermore,
it follows that the complexity of the decision problems for UTAs immediately
carry over to EDTDs.

Because of this close correspondence between regular expressions and un-
ranked tree automata on one hand, and DTDs, EDTDsts, and EDTDs on
the other hand, we will study the decision problems for various interesting
subclasses of regular expressions and unranked tree automata. Regular ex-
pressions are studied in chapter 6, unranked tree automata in chapter 7.



Chapter 6

Complexity of regular
expressions

6.1 Regular expressions

In this section, we investigate the complexity of the equivalence, inclusion
and intersection problem for regular expressions. We do this for a number of
interesting subclasses of regular expressions. The results are summarized in
Table 6.1.

equivalence inclusion intersection

RE(+, ·, ∗) PSPACE [SM73] (6.1) PSPACE [SM73] (6.1) PSPACE [Koz77] (6.7)
RE(+, ·, ∗,#) EXPSPACE (6.2) EXPSPACE (6.2) PSPACE (6.8)
RE(+, ·, ∗,&) EXPSPACE [MS94] (6.2) EXPSPACE [MS94] (6.2) PSPACE (6.8)
RE(+, ·, ∗,#,&) EXPSPACE (6.2) EXPSPACE (6.2) PSPACE (6.8)

Table 6.1: Complexity classes for problems with regular expressions. All
complexities are completeness results. For results already known in the lit-
erature, the reference is added. The theorem numbers are given in brackets.

We see that the results for the equivalence and inclusion problem are the
same. For the “standard” set of regular expressions RE(+, ·, ∗), these prob-
lems are in PSPACE. When we add the numerical occurrence operator or the
shuffle operator, we immediately go one exponential higher, to EXPSPACE.
However, when we add both operators, we remain in EXPSPACE.

The results for the intersection problem came as a surprise. For the stan-
dard set of regular expressions, the intersection problem also is in PSPACE.
One would expect that the addition of one of the two extra operators would
take it to EXPSPACE. This, however, is not the case. We can even add both

68
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operators and still remain in PSPACE.
Note that PSPACE and EXPSPACE are closed under complement and

therefore the same completeness results hold for the complement of the equiv-
alence, inclusion and intersection problem.

6.1.1 Equivalence and inclusion

Theorem 6.1. ([SM73]) The equivalence, and inclusion problem for RE(+, ·, ∗)
are PSPACE-complete.

Theorem 6.2. The equivalence and inclusion problem for RE(+, ·, ∗,#,&)
are EXPSPACE-complete. These problems remain EXPSPACE-hard for
RE(+, ·, ∗,#) and RE(+, ·, ∗,&).

Proof. We prove this theorem in a series of lemmas. First, we prove that the
equivalence and inclusion problem for RE(+, ·, ∗,#,&) are in EXPSPACE
(Lemma 6.3). In Lemma 6.4, we prove that the equivalence and inclusion
problem for RE(+, ·, ∗,#) are EXPSPACE-hard. It has already been shown
that the equivalence problem for RE(+, ·, ∗,&) is EXPSPACE-complete ([MS94],
Lemma 6.5). We use this to show that the inclusion problem for RE(+, ·, ∗,&)
is EXPSPACE-hard. Together, these lemmas prove the theorem.

Lemma 6.3. The equivalence and inclusion problem for RE(+, ·, ∗,#,&) are
in EXPSPACE.

Proof. We give a non-deterministic EXPSPACE algorithm that decides the
complement of the inclusion problem for RE(+, ·, ∗,#,&). Since NEXP-
SACE = EXPSPACE, and EXPSPACE is closed under complement, it fol-
lows that the inclusion problem is in EXPSPACE. Finally, we use the algo-
rithm for the complement of the inclusion problem to show that the equiva-
lence problem for RE(+, ·, ∗,#,&) is in EXPSPACE.

On input RE(+, ·, ∗,#,&)-expressions r1, r2, we have to decide whether
L(r1) 6⊆ L(r2). In order to do this, we construct extended NFAs A1, and
A2 such that L(A1) = L(r1), and L(A2) = L(r2), using the construction
described in section 4.2.

We will now try to guess a string, character by character, that is accepted
by A1, but not by A2. Therefore, we maintain at any time a set of config-
urations C1 (resp. C2) which contains all configurations that A1 (resp. A2)
can be in after reading the current string.

We define the ε-closure of Ci, i = 1, 2, as Ci expanded with the set of all
configurations reachable from configurations in Ci using only ε-transitions in
Ai. The ε-closure of Ci can be computed by searching all ε-transitions in Ai
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that can be followed by one of the configurations in Ci. Then, we add all
new configurations that are reached by following these transitions to Ci. We
repeat this until Ci does not change anymore.

We can now describe the algorithm:

1. On input r1, r2, construct ENFAs A1 = (Q1,Σ, q1, f1, δ1) , A2 = (Q2,Σ,
q2, f2, δ2) such that L(A1) = L(r1), and L(A2) = L(r2).

2. For i = 1, 2, let Ci = {γi}, where γi is the initial configuration of Ai.

3. For i = 1, 2, let Ci be the ε-closure of Ci, and let Ci = Ci.

4. If C1 contains an accepting configuration, and C2 does not, ACCEPT.

5. Guess the next symbol a ∈ Σ

6. For i = 1, 2, let Wi = {(a, p, c, q) ∈ δi | p, q ∈ Qi, c ∈ {IN,RESET}}∪
{(a, p, RESET, q, q′) ∈ δi | p, q, q′ ∈ Qi} ∪ {(a, p, p′, RESET, q) ∈ δi |
p, p′, q ∈ Qi}. That is, Wi is the set of all transitions of Ai that follow
an a.

7. For i = 1, 2, let Ci = {γ | γi ⇒w γ, γi ∈ Ci, w ∈ Wi}.

8. GOTO 3.

This algorithm will non-deterministically try to guess a string, character
by character, that is recognized by r1 but not by r2. In step 1, we construct
extended NFAs corresponding to the regular expressions r1 and r2, and we
initialize the sets of configurations C1 and C2 by the initial configurations
of A1 and A2 (step 2). We compute the ε-closure of C1 and C2 to find all
configurations A1 and A2 can be in without reading a symbol (step 3). Then,
we check if C1 contains an accepting configuration (A1 can accept), and C2

does not (A2 can not accept). If that is the case, we have guessed a string
that is accepted by A1 and not by A2. At this point, that string is ε, but
we return here after guessing every following symbol. In step 5, we guess
the first symbol a of our string. Then, we compute the sets of all possible
transitions that follow the symbol a, Wi, and use this to recompute the Ci

(steps 6 and 7). Then, we go back to step 3, where we again compute the
ε-closure of the Ci, and check if the string is accepted by A1, and not by A2.

Suppose, L(r1) 6⊆ L(r2), then there must exist a string x, such that
x ∈ L(r1) and x /∈ L(r2). There exists a run of our algorithm that guesses
x, and accepts. Suppose that our algorithm accepts. That means that it
has guessed a string x, such that x ∈ L(r1) and x /∈ L(r2). It follows that
L(r1) 6⊆ L(r2).
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Finally, we show that this algorithm operates in exponential space. For
i = 1, 2, we know that the size of the A1 and A2 is polynomial in the size of
r1 and r2, and that the size of the configurations of Ai is polynomial in the
size of Ai and ri (Lemma 4.13). If the size of the configurations is bounded
by a polynomial f(n), then we know that there can not be more than 2f(n)

different configurations. Therefore, the sets C1, C1, C2, and C2 can maximally
contain exponentially many configurations of polynomial size, and thus have
an exponential size. The symbol a, and the sets W1 and W2 can all be stored
in polynomial space. The computation of these sets in the different steps,
can easily be done in exponential space.

We now have an algorithm to decide the complement of the inclusion
problem. An algorithm for the complement of the equivalence problem is
the following: on input RE(+, ·, ∗,#,&)-expressions r1, r2, guess whether
to compute whether L(r1) 6⊆ L(r2) or L(r2) 6⊆ L(r1). Again, since NEX-
PSPACE = EXPSPACE, and EXPSPACE is closed under complement, it
follows that the equivalence problem for RE(+, ·, ∗,#,&) is in EXPSPACE.

Lemma 6.4. The equivalence and inclusion problem for RE(+, ·, ∗,#) are
EXPSPACE-hard.

Proof. To show that the equivalence problem for RE(+, ·, ∗,#) is EXPSPACE-
hard, we do a reduction from the 2n-corridor tiling problem, which is EXPSPACE-
complete (Theorem 3.5). On input a tiling system τ = 〈O, obot, otop, n〉, we
construct two regular expressions r1 and r2 such that L(r1) = L(r2) if and
only if there exists a 2n-corridor tiling for τ .

To this end, we define a string representation for a tiling. Each row of the
tiling, denoted by Ri, is represented by the tiles it consists of, for example
“o0o2o3o1” for a row of length four. An entire tiling withm rows is represented
by its rows, separated by #-tokens. This gives us #R0# · · ·#Rm#, R0 being
the bottom row and Rm being the top row.

Now we define r1 and r2. Let Σ = O ∪ {#}, and r1 = Σ∗. We define r2
as the regular expression that captures all possible strings except those that
represent the encoding of a correct 2n-corridor tiling for τ . If r2 captures all
possible strings, and thus is equal to Σ∗, there does not exist a 2n-corridor
tiling for τ . Conversely, if L(r1) 6= L(r2), there does exist a 2n-corridor tiling
for τ .

We give a regular expression for every possible error in a string. We define
r2 as the disjunction of the following expressions:

1. The string does not start or end with a # : OΣ∗ + Σ∗O.
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2. Between two successive #-tokens, there are more or less than 2n tiles:
Σ∗#O0..2n−1#Σ∗ + Σ∗#O2n+1..2n+1O∗#Σ∗.

3. Two tiles are horizontally adjacent, but this is not permitted by the
tiling system: ∀o1, o2 ∈ O : (o1, o2) /∈ H → Σ∗o1o2Σ

∗.

4. Two two tiles are vertically adjacent, but this is not permitted by the
tiling system: ∀o1, o2 ∈ O : (o1, o2) /∈ V → Σ∗o1Σ

2n..2n
o2Σ

∗.

5. The tile at position (1,1) is not equal to obot, let Ob = O\{obot}: #ObΣ
∗.

6. The tile at position (m,1) is not equal to otop, let Ot = O\{otop}:
Σ∗#OtO

∗#.

By construction, we see that every string that is captured by one of the
above expressions, does not express a correct 2n-corridor tiling for τ . We
have to prove that if a string is not captured by one of these expressions, it
indeed is a valid encoding of a 2n-corridor tiling for τ . Since the string does
not match the regular expressions in items 1 and 2 it already is a tiling. That
is, a sequence of rows of tiles of length 2n. The regular expressions of items 3
and 4 assure that all tiles that are horizontally and vertically adjacent, have
the permission of the tile system to border. Items 5 and 6 assure that the
tiles obot and otop are positioned at the right places. We can conclude that
a string which is not captured by one of the previous regular expressions,
represents a correct 2n-corridor tiling.

It only remains to show that this reduction can be done in logarithmic
space. The regular expression in item 1 has to list all members of O. This can
be done by keeping a pointer to the set O, which requires only logarithmic
space with respect to the size of O. In item 2 we have to generate the numbers
2n − 1 and 2n + 1. In binary these numbers are of the form 11 · · · 1, with n
ones, and 100 · · · 01, with n−1 zeros. It is easy to generate these numbers by
writing n in binary on the worktape and thus only using logarithmic space.
In item 3, we have to keep two pointers to O, which both require logarithmic
space. Checking if a tuple of two tiles is in H is easy. Item 4 is a combination
of items 3 and 2. We also have to keep two pointers to O, check if a tuple
of tiles is in V and generate the number 2n. Again, 2n written in binary is
100 · · · 00 with n zeros and can be generated in logarithmic space by writing
n in binary on the work tape. The regular expressions in items 5 and 6
impose no new problems.

The proof for the EXPSPACE-hardness of the inclusion problem is com-
pletely analogue. We generate the same regular expressions r1 and r2. Since
r1 is equal to Σ∗, r1 ⊆ r2 if and only if r1 = r2.
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For RE(+, ·, ∗,&), it has been shown in [MS94] that the complement of
the equivalence problem and the complement of the universality problem are
EXPSPACE-complete. Since EXPSPACE is closed under complement, the
following easily follows:

Lemma 6.5. The equivalence and universality problem for RE(+, ·, ∗,&) are
EXPSPACE-complete.

Lemma 6.6. The inclusion problem for RE(+, ·, ∗,&) is EXPSPACE-hard.

Proof. We reduce the universality problem for RE(+, ·, ∗,&), which is EXP-
SPACE-complete (Lemma 6.5), to the inclusion problem for RE(+, ·, ∗,&).
Given a RE(+, ·, ∗,&)-expression r, output r1 = Σ∗ and r2 = r. Since r = Σ∗

if and only if Σ∗ ⊆ r, this is a valid reduction. This can of course be done in
logarithmic space.

This concludes the proof of Theorem 6.2.

6.1.2 Intersection

Theorem 6.7. ([Koz77]) The intersection problem for RE(+, ·, ∗) is PSPACE-
complete.

Theorem 6.8. The intersection problem for RE(+, ·, ∗,#,&) is PSPACE-
complete. It remains PSPACE-hard for RE(+, ·, ∗,#) and RE(+, ·, ∗,&).

Proof. We already know that the intersection problem for RE(+, ·, ∗) is
PSPACE-hard (Theorem 6.1). We only have to show that the intersection
problem for RE(+, ·, ∗,#,&) is in EXPSPACE (Lemma 6.9). The Theorem
follows.

Lemma 6.9. The intersection problem for RE(+, ·, ∗,#,&) is in PSPACE.

Proof. On input RE(+, ·, ∗,#,&)-expressions r1, . . . , rn, we have to decide
whether

⋂n
i=1 L(ri) 6= ∅. In order to do this, we start by constructing ex-

tended NFAs A1, . . . An, such that for every i, L(Ai) = L(ri). Then, we try
to guess a string, character by character, that is accepted by every Ai. In
the analogues algorithm for the equivalence and inclusion problem (Lemma
6.3), we always maintained a set of all configurations the Ai could be in after
reading the current string. We had to do this because we also had to make
sure that a string is not accepted by an automaton. This is not required in
the intersection problem. Therefore, we maintain at any time just one of the
possible configurations γi, Ai can be in. Of course, these configurations γi

can contain more than one partial configuration.
The algorithm goes as follows:
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1. On input r1, . . . , rn, construct ENFAs A1, . . . An, Ai = (Qi,Σ, qi, fi, δi),
such that L(Ai) = L(ri).

2. For i = 1, . . . , n, let γi be the initial configuration of Ai.

3. For i = 1, . . . , n, guess whether to follow an ε-transition of Ai and
update γi accordingly.

4. Guess whether to repeat step 3 (GOTO 3) or continue with the algo-
rithm (GOTO 5).

5. If, for every i, γi is an accepting configuration for Ai, ACCEPT.

6. Guess the next symbol a ∈ Σ.

7. For i = 1, . . . , n, guess a transition wi ∈ δi. If, for any i, the first
element of wi (the symbol read) is not equal to a, or there does not
exist a configuration ηi such that γi ⇒wi ηi, REJECT. Else, for every
i, let γi = ηi.

8. GOTO 3.

This algorithm will non-deterministically try to guess a string, character
by character, that is recognized by every ri, i = 1, . . . , n. In step 1, we
construct extended NFAs corresponding to the regular expressions r1, . . . , rn,
and we initialize the configurations of the Ai, by their initial configurations
(step 2). In step 3 and 4, we allow the automata to follow an arbitrary
number of ε-transitions and update the configurations accordingly. If all γi

are accepting configurations, this means that we have guessed a string that is
accepted by every ri and that we have guessed a valid accepting run of every
Ai on this string (step 5). At this point, that string is ε, but we return here
after guessing every following symbol. In step 6, we guess the first symbol
a of our string. Then, we guess a transition that the automata will follow.
Of course, this transition must follow an a, and be a valid transition given
the current configuration. If that is the case, we update the configurations
accordingly (step 7). Then, we return to step 3, where we again allow the
automata to follow ε-transitions, and can check whether the current string
is accepted by every automaton.

Suppose,
⋂n

i=1 L(ri) 6= ∅, then there must exist a string x, such that
x ∈ L(ri), for every i. There exists a run of our algorithm that guesses x,
guesses a valid accepting run for every Ai on x, and accepts. Suppose that
our algorithm accepts. That means that it has guessed a string x, such that
x ∈ L(ri), for every i. It follows that

⋂n
i=1 L(ri) 6= ∅.
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Finally, we show that this algorithm operates in polynomial space. By
Lemma 4.13, we know that the size of the constructed Ais is polynomial in
the size of the ris, and that the size of the configurations of Ai is polynomial
in the size of Ai and ri. Therefore, the configurations γi are of polynomial
size. The symbol a can of course stored in polynomial space. Guessing
transitions, checking whether transitions are valid, and updating the current
configurations can all be done in polynomial space.

This concludes the proof of Theorem 6.8.

6.2 Chain regular expressions

As mentioned in the introduction, we also study a simpler class of regular ex-
pressions, CHAREs. The definition of these CHAREs can be found in Section
4.1. We present some of the results obtained in [MNS04] on these CHAREs,
and investigate what happens when we add the numerical occurrence indi-
cator to the class of CHAREs. The results of this section are summarized in
Table 6.2.

equivalence inclusion intersection

CHARE(S\{#}) in PSPACE * (6.10) PSPACE * (6.10) PSPACE * (6.10)
CHARE(S) in EXPSPACE (6.12) EXPSPACE (6.11) PSPACE (6.13)
CHARE(a, a?) in PTIME * (6.14) coNP *(6.14) NP *(6.8)
CHARE(a, a∗) in PTIME * (6.14) coNP *(6.14) NP *(6.8)
CHARE(a, a?, a#) in PTIME (6.15) coNP-hard, NP (6.17)

in EXPSPACE (6.20)
CHARE(a, a#>0) in PTIME (6.21) in PTIME (6.21) in PTIME (6.21)

Table 6.2: Complexity classes for problems with CHAREs. All complexities
are completeness results, unless mentioned otherwise. Results marked with
a * are due to Martens et. al ([MNS04]). The theorem numbers are given in
brackets.

For the class of CHAREs without the numerical occurrence indicator,
CHARE(S\{#}), the complexities are almost the same as the complexities
of its parent class RE(+, ·, ∗) (Theorem 6.1,6.7). That is, the results are the
same for the inclusion and intersection problem, but the exact complexity
of the equivalence problem has not yet been established. Of course, it is in
PSPACE, but it is possible that it is more tractable.
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When we add the numerical occurrence indicator, CHARE(S), we get
the same result. The inclusion problem is EXPSPACE-complete, and the
intersection problem is PSPACE-complete. These complexities are the same
as the complexities of its parent class RE(+, ·, ∗,#) (Theorems 6.2 and 6.8).
The complexity of the equivalence problem for CHARE(S) remains open. We
know that is in EXPSPACE, but it is again possible that it is more tractable.

We study these CHARE expressions because we want to find subsets
of the set of regular expressions that are used in practice and for which
our problems become tractable. Therefore, we also consider simple subsets
of CHARE-expressions where no disjunctions are allowed. One would ex-
pect the corresponding decision problems to be tractable. However, most
problems quickly turn out to be NP or coNP-complete. The inclusion and
intersection problem for CHARE(a, a?) and CHARE(a, a∗) are coNP and
NP-complete. The equivalence problem for these classes is in PTIME.

When we add the numerical occurrence indicator to the CHARE(a, a?)-
expressions, the complexities seem to remain the same. Intersection for
CHARE(a, a?, a#) is NP-complete and the equivalence problem remains in
PTIME. For the inclusion problem, we only know that it is also coNP-hard.

The equivalence problem for CHARE(a, a?, a#) is in PTIME, but can be
we also find a subset of the CHARE-expressions with numerical occurrence
indicators for which the inclusion and intersection problem is tractable? We
can, but we have to restrict the power of the numerical occurrence indicator.
Let CHARE(a, a#>0) be the set of regular expression in which only factors
of the form a (a ∈ Σ) or ai···j (a ∈ Σ, i, j ∈ N and i > 0) are allowed. The
only difference with CHARE(a, a#) is that we do not allow the lower bounds
of the numerical occurrence indicators to be zero. For CHARE(a, a#>0), we
show that the equivalence, inclusion and intersection problem are in PTIME.

Theorem 6.10. ([MNS04])

• The inclusion problem for CHARE(S\{#}) is PSPACE-complete.

• The equivalence problem for CHARE(S\{#}) is in PSPACE.

• The intersection problem for CHARE(S\{#}) is PSPACE-complete.

Theorem 6.11. The inclusion problem for CHARE(S) is EXPSPACE-complete.

Proof. This proof is essentially the same as the proof for the PSPACE-
completeness of the inclusion problem for CHARE(S\{#}) ([MNS04]). We
only use the 2n-corridor tiling problem instead of the normal corridor tiling
problem and the definitions of the regular expressions are somewhat different.
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Since the inclusion problem for RE(+, ·, ∗,#) is in EXPSPACE (Theorem
6.2), and the regular expression of CHARE(S) are a strict subset of these
in RE(+, ·, ∗,#), it follows that the inclusion problem for CHARE(S) is in
EXPSPACE. To show that it is EXPSPACE-hard, we do a reduction from
the 2n-corridor tiling problem, which is EXPSPACE-complete (Theorem 3.5).
Given a tiling system τ = 〈O, obot, otop, n〉, we construct regular expressions
r1 and r2 in such that L(r1) ⊆ L(r2) if and only if there exists no 2n-corridor
tiling for τ .

We use the same string representation to encode a tiling as in the proof for
the EXPSPACE-hardness of the inclusion problem for RE(+, ·, ∗,#) (Lemma
6.4). That is, #R0#R1# · · ·#Rm#, in which each Ri represents a row and
is of the form O2n

, and R0 is the bottom row and Rm is the top row. We
define some collections of symbols: O# = O ∪ {#} and O$,# = O ∪ {$,#}.
The following regular expressions detect strings that do not encode a correct
2n-corridor tiling for τ :

1. Between two successive #-tokens, there may not be less than 2n tiles:
O∗

##O0..2n−1#O∗
#.

2. Between two successive #-tokens, there may not be more than 2n tiles:
O∗

##O2n+1..2n+1O∗#O∗
#.

3. Two tiles are horizontally adjacent, but this is not permitted by the
tiling system: ∀o1, o2 ∈ O : (o1, o2) /∈ H → O∗

#o1o2O
∗
#.

4. Two tiles are vertically adjacent, but this is not permitted by the tiling
system: ∀o1, o2 ∈ O : (o1, o2) /∈ V → O∗

#o1O
2n..2n

# o2O
∗
#.

These regular expressions capture all strings that do not encode a tiling or
violate the horizontal or vertical constraints of τ . Let e1, . . . , ek be an enu-
meration of the above expressions. Let e = e1 · · · ek. Because every ei starts
and ends with O∗

#, L(e) ⊆ L(ei), for every i. We now define r1 and r2. Let
r1 = $e$ · · · $e$#obotO

∗
#otopO

∗#$e$ · · · $e$ with k-times e$ at the beginning
and k-times e$ at the end of the string. Let r2 = $O∗

$,#$e1$e2$ · · · $ek$O
∗
$,#$.

Note that both regular expressions consist of a sequence of expressions of the
form a, (+a)∗ and (+a)i..j. So they are both in CHARE(S).

We must prove that r1 ⊆ r2 if and only if there does not exist a 2n-
corridor tiling for τ . Let r1 ⊆ r2. Then for every string uwu′ ∈ r1 where
u, u′ ∈ L($e$e$ · · · $e$) and w ∈ #obotO

∗
#otopO

∗#, uwu′ ∈ r2. However, as r2
contains k + 3 times the symbol $, and every string in L(r1) starts and ends
with $, there is an i such that w ∈ L(ei). So w does not encode a correct
tiling, and thus there does not exist a 2n-corridor tiling for τ . Conversely,
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assume that there is a uwu′ ∈ L(r1) where u, u′ ∈ L($e$e$ · · · $e$) that is
not in r2. Then w /∈

⋃k
i=1 L(ei) and, hence, encodes a correct tiling.

The only thing left to show is that this reduction can be done in logarith-
mic space. Constructing e is just a matter of constructing every ek. In items
1 and 2 we have to output every symbol in O, this requires one pass through
O, which requires one pointer that only uses logarithmic space. We also have
to generate the numbers 2n−1 and 2n+1 in binary. In the proof of Lemma 6.4,
we already saw that that can be done by using log n space. In items 3 and
4, we have to keep two pointers to O, which both require logarithmic space.
Checking if a tuple of two tiles is in H or V is easy. The expressions itself
contain again the enumeration of all symbols of O and the number 2n, and
thus can be generated in logarithmic space. Now we know that every ei and
e can be generated in logarithmic space, it is straightforward to generate r1
and r2 in logarithmic space. We do have to generate e several times since it
is too big to store.

Theorem 6.12. The equivalence problem for CHARE(S) is in EXPSPACE.

Proof. This immediately follows from the fact that the equivalence problem
for RE(+, ·, ∗,#) is EXPSPACE-complete (Theorem 6.2). It, however, is
possible that this problem is complete for a lower complexity class.

Theorem 6.13. The intersection problem for CHARE(S) is PSPACE-complete.

Proof. We know that the intersection problem forRE(+, ·, ∗,#) is in PSPACE
(Theorem 6.8). Since CHARE(S) is a subset of RE(+, ·, ∗,#), it follows that
the intersection problem for CHARE(S) is in PSPACE.

We know that the intersection problem for CHARE(S\{#}) is PSPACE-
hard (Theorem 6.10). Since CHARE(S\{#}) is a subset of CHARE(S), it
follows that the intersection problem for CHARE(S) is PSPACE-hard.

Theorem 6.14. ([MNS04])

• The inclusion problem is coNP-complete for CHARE(a, a?) and CHARE(a, a∗).

• The equivalence problem is in PTIME for CHARE(a, a?) and CHARE(a, a∗).

• The intersection problem is NP-complete for CHARE(a, a?) and CHARE(a, a∗).

Next, we show that the equivalence problem remains in PTIME for CHA-
RE(a, a?, a#). In order to do this, we need a normal form for CHARE(a, a?,
a#) expressions, the sequence normal form. Since the regular expressions
in CHARE(a, a?, a#) cannot contain +-tokens, we only need to know the
minimal and maximal number of occurrences of the base symbols in the
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regular expression. Let e[i, j] denote a sequence of at least i and at most j
occurrences of the base symbol e.

In order to construct the sequence normal form of an expression, we write
e[1, 1] for e, e[0, 1] for e?, and e[n,m] for en..m. After this, we combine succes-
sive factors e[i1, j1] and e[i2, j2] into e[i1 + i2, j1 + j2] whenever possible. For
example, the sequence normal form of a?a2..4bb?a3..10a is a[2..5]b[1, 2]a[4, 11].

Finally we introduce some notions. If f is an expression e[i, j], we write
e(f) for e, l(f) for the lower bound i and u(f) for the upper bound j.
If r = a1[i1, j1] · · · an[in, jn] is an expression in sequence normal form, say
maxlength(r) =

∑n
k=1 jk. That is, the maximum length a string matched

by r can have. The length of the expression r = r1 · · · rn in sequence normal
form is denoted by length(r) and is equal to n. Finally, we call a substring
v of a string w a block of w when w is of the form ak1

1 · · · akn
n , where for each

i = 1, . . . , n− 1 ai 6= ai+1 and v is of the form aki
i for some i.

Theorem 6.15. The equivalence problem for CHARE(a, a?, a#) is in PTIME.

Proof.

Lemma 6.16. Two CHARE(a, a?, a#)-expressions r1 and r2 are equivalent
if and only if their sequence normal form is the same.

Proof. In [MNS04] it is shown that two CHARE(a, a?) expressions are equiv-
alent if and only if their sequence normal form is the same1. We can write
every CHARE(a, a?, a#)-expression as an CHARE(a, a?)-expression by re-
placing every factor of the form bi..j by b · · · bb? · · · b? with i times b and j− i
times b?. Let r′1 and r′2 be the CHARE(a, a?) expressions by applying this
to r1 and r2. We see that the normal forms of r1 (resp. r2) and r′1 (resp r′2)
are equal. Since r′1 and r′2 are equivalent if and only if their sequence normal
form is the same, the lemma follows.

The algorithm to solve the equivalence problem is obvious. Given two
regular expressions r1 and r2, generate their sequence normal form r′1 and r′2.
If these are the same accept, else reject. By Lemma 6.16 this algorithm is
correct.

It only remains to show that the sequence normal form of a CHARE(a,
a?, a#)-expression r can be generated in polynomial time. We first run
through r one time and rewrite the factors of r into factors of the form e[i, j].
After this we run through the new string to combine successive factors. This

1In fact, it is shown that two CHARE(a, a?, a∗) expressions are equivalent if their strong
sequence normal form is the same, where the strong sequence normal form is the sequence
normal form modulo some rewrite rules. However, for CHARE(a, a?) expressions, the
strong and normal sequence normal form are always the same.
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also requires only one pass through the string. Finally, we must compare the
two generated normal forms, which can also be done in linear time.

Theorem 6.17. The intersection problem for CHARE(a, a?, a#) is NP-
complete.

Proof. Before we can prove that the intersection problem for CHARE(a, a?, a#)
is in NP, we need a new way to represent a string.

Definition 6.18. ([MNS04]) A compressed string is a finite sequence of
pairs (a, i), where a ∈ Σ is a symbol and i > 0 is a natural number. The
pair (a, i) stands for the string ai. The size of a pair (a, i) is dlog ie, plus
the size of a. The size of a compressed string v = (a1, i1), . . . , (an, in) is the
sum of the sizes of (a1, i1), . . . , (an, in). The length of the compressed string
is the number of pairs (a, i) it consists of and is denoted by length(v). By
string(v), we denote the decompressed string corresponding to v, which is
the string ai1

1 . . . a
in
n . Note that string(v) can have a size exponentially larger

than v.

Lemma 6.19. If there is a string that is accepted by a number of CHARE(a,
a?, a#) expressions r1, . . . , rn, we can rewrite it as a compressed string v =
(a1, j1), . . . , (am, jm), for which m ≤ min{length(rk) | 1 ≤ k ≤ n} and
jl ≤ min{maxlength(rk) | 1 ≤ k ≤ n}, 1 ≤ l ≤ m.

Proof. Suppose that there exists a string w, with m blocks which is accepted
by every rk, for k = 1, . . . , n. We first rewrite it as a compressed string
v = (a1, j1), . . . , (am, jm). Since it is matched by every expressions rk and
since a factor of any ri can never match more than one block of v, m can
never have more blocks than the length of any expression rk. Thus, m ≤
min{length(rk)}. Furthermore, since v is matched by every ri, no jl can be
bigger than maxlength(rk), for any k, l. So we get jl ≤ min{maxlength(rk) |
1 ≤ k ≤ n}, 1 ≤ j ≤ m.

We can now prove that the intersection problem for CHARE(a, a?, a#) is
in NP. We have to give a non-deterministic polynomial time algorithm which
decides for a number of regular expressions r1, . . . , rn over RE(a, a?, a#) if
the intersection of these regular expressions is non-empty. So our algorithm
accepts when it finds a string that is accepted by all regular expressions.
The algorithm begins by expressing all regular expressions in their sequence
normal form. After this, we guess a compressed string and check if it is
accepted by all regular expressions. By Lemma 6.19, we know that we only
have to generate strings that satisfy the restrictions given in Lemma 6.19.

We start by guessing the length m of the compressed string v, an integer
between 0 and min{length(ri) | 1 ≤ i ≤ n}. Then, for each k, for which
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1 ≤ k ≤ m, we guess a symbol ak ∈ Σ and an integer jk, for which 0 < jk ≤
min{maxlength(ri) | 1 ≤ i ≤ n}.

We have to check if v is accepted by every expression r1, . . . , rn. We do this
by guessing an assignment of v for every regular expression. For an expression
rk in sequence normal form with length l, an assignment of v for rk is a
sequence of l integers b1 · · · bl. This assignment must be interpreted as follows:
The first b1 symbols in v are matched by the first expression of rk, the b1+1th
to b1+b2th symbols in v are matched by the second expression of rk and so on.
Note that no bi can be bigger than maxlength(ri), since an expression rk can
never match more than maxlength(ri) symbols. So we guess an assignment
b1 · · · bl for each rk in which for each bi, 0 ≤ bi ≤ maxlength(rk).

We can check if an assignment b1 · · · bl of v for rk = e1 · · · el is valid. This
can be done by running simultaneously through these three strings. For each
bi, if not l(ei) ≤ bi ≤ u(ei) reject. If one of the first bi symbols of v is not
equal to e(ei), reject. Remove the first bi symbols of v and move on to bi+1.
If we reach the end of the string and v is not empty, reject. If we have not
rejected now, the assignment is valid and v is accepted by rk.

If all assignments are valid, we have found a string which is accepted by
all regular expressions and we accept.

If there exists a string which is accepted by all regular expressions, there
will be a run of the algorithm in which that string is guessed and in which a
valid assignment for every regular expression is guessed. On the contrary, if
no such string exists, and thus the intersection of the regular expressions is
empty, we won’t be able to guess a string and a valid assignment for every
regular expression.

This algorithm has to operate in polynomial time. Constructing the
normal forms of the regular expressions can be done by running two times
through the strings. Guessing the string v consists of guessing m (a polyno-
mial) times a symbol and an integer between 0 and min{maxlength(rk) | 1 ≤
k ≤ n}. Since the integer has a binary encoding, it always has a polynomial
size. The total string v has a polynomial size. Finally, we must guess an as-
signment for every regular expression and check if it is valid for that regular
expression. For any rk, every assignment consists of m integers between 0
and maxlength(rk). Every assignment can thus be generated in polynomial
time and has polynomial size. Checking if the assignment for any rk is valid
can be done by running simultaneously through the string v, the expression
rk and its assignment, which are all of polynomial size.

Since CHARE(a, a?) is a strict subset of CHARE(a, a?, a#) and intersec-
tion for CHARE(a, a?) is NP-hard (Theorem 6.14), intersection for CHARE(
a, a?, a#) also is NP-hard.
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We see that the addition of the the numerical occurrence indicator to
CHARE(a, a?), did not affect the complexity of the equivalence and intersec-
tion problem. We conjecture that the same holds for the inclusion problem,
but we haven’t been able to prove it. Here, the results that immediately
follow from the other theorems are presented.

Theorem 6.20. The inclusion problem for CHARE(a, a?, a#) is coNP-hard,
and in EXPSPACE.

Proof. Since CHARE(a, a?) is a strict subset of CHARE(a, a?, a#) and inclu-
sion for CHARE(a, a?) is coNP-hard (Theorem 6.14), inclusion for CHARE(
a, a?, a#) also is coNP-hard.

Conversely, since CHARE(a, a?, a#) is a strict subset of RE(+, ·, ∗,#),
and inclusion for RE(+, ·, ∗,#) is in EXPSPACE (Theorem 6.2), it follows
that inclusion for CHARE(a, a?, a#) also is in EXPSPACE.

Theorem 6.21. The equivalence, inclusion and intersection problem for
CHARE(a, a#>0) are in PTIME.

Proof. We show that the equivalence (Lemma 6.22), inclusion (Lemma 6.23)
and intersection problem (Lemma 6.24) for CHARE(a, a#>0) are in PTIME.

Lemma 6.22. The equivalence problem for CHARE(a, a#>0) is in PTIME.

Proof. We already know that the equivalence problem for CHARE(a, a?, a#)
is in PTIME (Theorem 6.15). Since every CHARE(a, a#>0)-expression also
is a CHARE(a, a?, a#)-expression, the lemma immediately follows.

Lemma 6.23. The inclusion problem for CHARE(a, a#>0) is in PTIME.

Proof. Given two RE(a, a#>0)-expressions r1 and r2, we start by creating
their sequence normal forms r′1 and r′2.

Let’s take a string x1 accepted by r′1. We know that every factor in r′1
must match at least one symbol and that the base symbols of two consecutive
factors in r′1 cannot be the same. Knowing this it is easy to see that the
number of blocks in x1, and thus in every string accepted by r1, must be
equal to length(r′1). The same holds for r′2. Following this we see that if
length(r′1) 6= length(r′2), L(r1) cannot be a subset of L(r2).

If the length of the two sequence normal forms is equal, we have to in-
vestigate the factors. Say r′i = ei,1[li,1, ui,1] . . . ei,n[li,n, ui,n] , i = 1, 2. Every
compressed string x accepted by r1 and/or r2 will be of the form ak1

1 . . . akn
n .

Furthermore is every block of x matched by precisely one factor of r′1 and/or
r′2. More precisely, the jth block, 0 < j ≤ n, of x will be matched by the jth
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factor of r′1 and/or r′2. It follows that if for some j, 0 < j ≤ n, e1,j 6= e2,j,
l1,j > l2,j or u1,j < u2,j we can construct a string s with its jth block that is
matched by r′2 but not by r′1. If e1,j = e2,j, l1,j < l2,j and u1,j > u2,j for every
j, 0 < j ≤ n, we can never construct a block that is only matched by r′2 and
we can thus never construct a string that is accepted by r′2 but not by r′1.

This gives us the following algorithm for the inclusion problem:

1. Given two RE(a, a#>0)-expressions r1 and r2 , construct their sequence
normal forms r′1 and r′2.

2. If length(r′1) 6= length(r′2), REJECT.

3. Say r′i = ei,1[li,1, ui,1] . . . ei,n[li,n, ui,n] , i = 1, 2.

4. If ∃j, 0 < j ≤ n, e1,j 6= l2,j, l1,j > l2,j, or u1,j < u2,j, REJECT. Else,
ACCEPT.

This algorithm clearly operates in polynomial time. In step 1 we construct
the sequence normal forms, this can be done in polynomial time. In step 4
we have to run one time through the sequence normal forms of polynomial
size. This also imposes no problem.

Lemma 6.24. The intersection problem for CHARE(a, a#>0) is in PTIME.

Proof. To test whether the intersection of a number of regular expressions
r1, . . . , rm is non-empty, we can follow the same logic as in Lemma 6.23. We
also begin by creating their sequence normal forms r′1, . . . , r

′
n. If a string x

is accepted by all regular expressions, the length of their sequence normal
forms must all be equal to the number of blocks in x. Thus, if the length of
all the sequence normal forms isn’t the same, the intersection must be empty.

Let r′i = ei,1[li,1, ui,1] . . . ei,m[li,m, ui,m] , i = 1, . . . , n. The intersection of all
regular expression is non-empty if for every j, 0 < j ≤ m we can construct
a block that is matched by the jth factor of every r′i. The string that is
accepted by all regular expressions is the sequence of these blocks. If there is
a j, 0 < j ≤ m, for which we cannot construct such a block it is not possible
to construct a string that is accepted by all regular expressions. Given a j, we
can construct such a block if max {li,j | 0 < i ≤ n} ≤ min {ui,j | 0 < i ≤ n}.

This gives us the following algorithm for the intersection problem:

1. Given n RE(a, a#>0)-expressions r1, . . . , rn , construct their sequence
normal forms r′n, . . . , r

′
n.

2. If length(r′k) 6= length(r′l), for some k, l, 0 < k, l ≤ n, REJECT.
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3. Say r′i = ei,1[li,1, ui,1] . . . ei,m[li,m, ui,m] , i = 1, . . . , n.

4. If ∃j, 0 < j ≤ m : min{ui,j | 1 ≤ i ≤ n} < max{li,j | 1 ≤ i ≤ n},
REJECT. Else, ACCEPT.

This algorithm works in polynomial time. We only have to construct the
sequence normal forms of the given regular expressions and read them once.
This can all be done in polynomial time.



Chapter 7

Complexity of unranked tree
automata

In this chapter, we investigate the equivalence, inclusion and intersection
problem for unranked tree automata. The complexity of these problems
depends on the class of regular expressions allowed in the UTA. The results
of this chapter are summarized in Table 7.1.

equivalence inclusion intersection

UTA(RE(+, ·, ∗)) EXPTIME [Sei90] (7.1) EXPTIME (7.1) EXPTIME [Sei94] (7.9)
UTA(RE(+, ·, ∗,#)) EXPSPACE (7.1) EXPSPACE (7.1) EXPTIME (7.9)
UTA(RE(+, ·, ∗,&)) EXPSPACE (7.1) EXPSPACE (7.1) EXPTIME (7.9)
UTA(RE(+, ·, ∗,#,&)) EXPSPACE (7.1) EXPSPACE (7.1) EXPTIME (7.9)

Table 7.1: Complexity classes for problems with unranked tree automata.
All complexities are completeness results. The complexity of the equivalence
and intersection problem for UTA(RE(+, ·, ∗)) are due to Seidl. The theorem
numbers are given in brackets.

We see that the equivalence, inclusion, and intersection problem for UTA(
RE(+, ·, ∗)) are EXPTIME-complete. When we add the numerical occur-
rence, shuffle, or both operators, the intersection problem remains EXPTIME-
complete. The corresponding problems for regular expressions where all
PSPACE-complete. So, in comparison to regular expressions, we go from
space to time complexity, but go one exponential higher.

The complexity of the equivalence and inclusion problem for regular ex-
pression with the numerical occurrence or shuffle operator is EXPSPACE.
Therefore, we expected the corresponding problems for unranked tree au-
tomata to be 2EXPTIME-complete. However, it turns out that the complex-

85
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ity of the equivalence and inclusion problem for unranked tree automata ex-
tended with the numerical occurrence or shuffle operator also is EXPSPACE.
Even when we add both operators, we remain in EXPSPACE.

Note that EXPTIME and EXPSPACE are closed under complement and
therefore the same completeness results hold for the complement of the equiv-
alence, inclusion and intersection problem.

7.1 Equivalence and inclusion

Theorem 7.1.

• The equivalence and inclusion problem for UTA(RE(+, ·, ∗)) are EXP-
TIME-complete.

• The equivalence and inclusion problem for UTA(RE(+, ·, ∗,#,&)) are
EXPSPACE-complete. These problems remain EXPSPACE-hard for
UTA(RE(+, ·, ∗,#)) and UTA(RE(+, ·, ∗,&)).

Proof. We prove this theorem in a series of lemmas. We first show that
the equivalence and inclusion problem for UTA(RE(+, ·, ∗)) are in EXP-
TIME (Lemma 7.2). Seidl has already shown this for the equivalence prob-
lem ([Sei90]), but we use another technique which can also be used for
UTA(RE(+, ·, ∗,#,&))s. Then, we show how we can adjust the algorithm of
Lemma 7.2 to prove that the equivalence and inclusion problem for UTA(RE(
+, ·, ∗,#,&)) are in EXPSPACE (Lemma 7.4). In Lemma 7.6, we show that
the inclusion and equivalence problem for UTA(RE(+, ·, ∗)) are EXPTIME-
hard. Finally, we prove that the equivalence and inclusion problem for
UTA(RE(+, ·, ∗,#)) and UTA(RE(+, ·, ∗,&)) are EXPSPACE-hard (Lemma
7.8). Together, these lemmas prove the theorem.

Lemma 7.2. The equivalence and inclusion problem for UTA(+, ·, ∗) are in
EXPTIME.

Proof. We give an EXPTIME algorithm which decides the equivalence prob-
lem for UTA(+, ·, ∗). The algorithm for the inclusion problem is analogue.
On input two UTA(+, ·, ∗)s A1 = (Q1,Σ, δ1, F1), A2 = (Q2,Σ, δ2, F2), we
have two decide if L(A1) = L(A2).

To this end, we construct a set E of tuples (C1, C2), where C1 ⊆ Q1 and
C2 ⊆ Q2. Here, E contains a tuple (C1, C2) if and only if there exists a tree
t such that

1. for every q ∈ C1, there exists a run λ of A1 on t such that λ(ε) = q.
That is, q is the state at the root for a run of A1 on t;
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2. for every q ∈ Q1, q 6∈ C1, there does not exist a run λ of A1 on t such
that λ(ε) = q;

3. for every q ∈ C2, there exists a run λ of A2 on t such that λ(ε) = q;
and

4. for every q ∈ Q2, q 6∈ C2, there does not exist a run λ of A2 on t such
that λ(ε) = q;

Intuitively, if a set (C1, C2) ∈ E, this means that there exists a tree t such
that the states in C1 (resp. C2) can be the only states at the root node for any
run of A1 (resp. A2) on t. We will also say that t generates the set (C1, C2).
Note that these sets C1 and C2 contain all states that can be reached at the
root node, and not just the accepting state. However, A1 (resp. A2) accepts
t if and only if C1 ∩ F1 (resp. C2 ∩ F2) is not empty.

Suppose that we have computed E, and E contains the tuples (C1, C2)
for all possible trees. We can now search E for a tuple (C1, C2) such that
C1 ∩ F1 6= ∅, and C2 ∩ F2 = ∅. If there exists such a tuple, we know that
there exists a tree t such that t ∈ L(A1) and t 6∈ L(A2), which proves that
L(A1) 6= L(A2). We also do the opposite. We search for a tuple (C1, C2) such
that C1 ∩ F1 = ∅, and C2 ∩ F2 6= ∅, which also shows that L(A1) 6= L(A2).
Therefore, when we have computed E, we search all tuples for one of the
two previous properties to show that L(A1) 6= L(A2). If there does not exist
a tuple that has one of the two previous properties, we know that every
possible tree is accepted by A1 and A2, or rejected by A1 and A2.

We construct the set E recursively. We first compute every possible
element of E for every tree of depth 1 over Σ. Then, given the set E which
contains all tuples for trees with depth ≤ m, we add all tuples for trees
with depth ≤ m + 1. We repeat this last step until no tuples are added to
E anymore. At that point, we know that E will not grow anymore, and
contains all possible tuples we searched for.

We describe the different steps in more depth. We first have to generate
all tuples for trees of depth 1. For every a ∈ Σ, we add a tuple (C1, C2) to E,
where for i = 1, 2, Ci = {q | ε ∈ δ(q, a)}. We can decide whether ε ∈ δ(q, a),
by constructing an NFA A such that L(A) = L(δ(q, a)). For A, we check if
we can reach an accept state of A by using only ε-transitions. This can be
done in PTIME.

For the induction step, we have the set E, which already contains all
tuples (C1, C2), such that there exists a tree with depth ≤ m which generates
the tuple (C1, C2). For any tuple (C1, C2), not yet in E, we have to decide
whether there exists a tree with depth ≤ m+1, which generates (C1, C2). In
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Proposition 4.14, we show that this can be done in EXPTIME. Finally, we
add all tuples that are generated by a tree with depth ≤ m+ 1 to E.

We show that this algorithm is in EXPTIME. The basis step only requires
a polynomial number of steps. In every induction step, we have to decide
for every tuple which is not yet in E, if we have to add it. In Proposition
7.3, we show that deciding this for one tuple can be done in exponential
time. Furthermore, there are only an exponential number of different values
for C1 and C2, since C1 ⊆ Q1 and C2 ⊆ Q2. It follows that the number of
tuples (C1, C2) also is an exponential since we have an exponential number of
combinations times an exponential number of combinations, which remains
exponential. Therefore, in every induction step, we maximally have to exe-
cute an exponential time algorithm, exponentially many times. This again
is an exponential.

The question is how many times we have to execute the induction step.
We know that every induction step has to add at least one tuple. If no tuple
is added in the induction step, we stop the algorithm. However, we just
showed that there only an exponential number of different tuples. Therefore,
we maximally have to execute the induction step an exponential number of
times. All together, this again is an exponential. Finally, we have to check a
few properties of an exponential number of tuples. This can also be done in
exponential time.

The following lemma concludes the proof of this theorem.

Proposition 7.3. We are given the set E, which contains every tuple (C ′
1, C

′
2),

such that there exists a tree with depth ≤ m which generates the tuple (C ′
1, C

′
2)

for UTAs A1, and A2. Then, we can decide for a tuple (C1, C2) whether it
is generated by a tree with depth ≤ m+ 1. Furthermore, this can be done in
time exponential in the size of A1 and A2.

Proof idea We construct a non-deterministic polynomial space algorithm
that solves the problem. Since NPSPACE ⊆ EXPTIME, the proposition
follows.

We try to guess a tree t that generates (C1, C2). This tree has a symbol
a ∈ Σ as label of the root node, and this root node has a number of children,
which form trees with depth ≤ m, say t1, . . . , tn. The tree t is then of the
form a(t1 · · · tn). Every subtree ti, i = 1, . . . , n, generates a tuple (Ci

1, C
i
2) of

states, which A1 and A2 can be in at the root of ti. For i = 1, 2, we see that
Ai can be in a state q at the root node of t, if there exists a w ∈ C1

i · · ·Cn
i ,

such that w ∈ δi(q, a). Here, C1
i · · ·Cn

i is a regular expression, where every
Cj

i stands for the disjunction of all its elements.
So, to check if (C1, C2) is generated by t, we have to check if for every

q1 ∈ C1 (resp. q2 ∈ C2), there exists a string w1 ∈ C1
1 · · ·Cn

1 (resp. w1 ∈
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C1
2 · · ·Cn

2 ) such that w1 ∈ δ1(q1, a) (resp. w2 ∈ δ2(q2, a)). And, for every
q1 ∈ Q1, q1 6∈ C1 (resp. q2 ∈ Q2, q2 6∈ C2), there may not exist such a string
w1 (resp. w2). To check if such strings do or do not exist, we use NFAs. We
construct NFAs for the transition functions δ1(q, a), δ2(q, a). Note that the
alphabet of these NFAs is the set of states of the UTAs A1 and A2. For the
states q which are in C1 or C2, we only have to show that there exists a string
w which is accepted by its corresponding NFA. We use non-determinism to
guess the string w and guess the accepting run of that automaton on w.
Therefore, we only maintain one possible state that automaton can be in.
For the states q which are not in C1 or C2, we have to be sure that there does
not exist a w which is accepted by its corresponding automaton. Therefore,
we can not just guess one w, and one run of that automaton on w. Instead,
we have to maintain a set of all possible states that automaton can be in
after reading any possible w. If this set does not contain an accept state,
this means that the automaton does not accept any possible w.

Proof. The following non-deterministic polynomial space algorithm decides
whether there exists a tree t with depth ≤ m + 1, which generates (C1, C2)
for A1 and A2.

1. Guess an a ∈ Σ, the label of the root node of t.

2. Construct the various NFAs based on a and the transition functions of
A1 and A2:

(a) For every q ∈ C1, construct an NFA B1 such that L(δ1(q, a)) =
L(B1). Denote these NFAs by B1

1 , . . . , B
k1
1 , where k1 = |C1|, and

for i = 1, . . . , k1, B
i
1 = (Qi

1,Σ
i
1, q

i
1, f

i
1, δ

i
1).

(b) For every q ∈ Q1, q 6∈ C1, construct an NFA B1 such that

L(δ1(q, a)) = L(B1). Denote these NFAs by B
1

1, . . . , B
l1
1 , where

l1 = |Q1\C1|, and for i = 1, . . . , l1, B
i

1 = (Q
i

1,Σ
i

1, q
i
1, f

i

1, δ
i

1).

(c) For every q ∈ C2, construct an NFA B2 such that L(δ2(q, a)) =
L(B2). Denote these NFAs by B1

2 , . . . , B
k2
2 , where k2 = |C2|, and

for i = 1, . . . , k2, B
i
2 = (Qi

2,Σ
i
2, q

i
2, f

i
2, δ

i
2).

(d) For every q ∈ Q2, q 6∈ C2, construct an NFA B2 such that

L(δ2(q, a)) = L(B2). Denote these NFAs by B
1

2, . . . , B
l2
2 , where

l2 = |Q2\C2|, and for i = 1, . . . , l2, B
i

2 = (Q
i

2,Σ
i

2, q
i
2, f

i

2, δ
i

2).

3. For i = 1, 2, j = 1, . . . , ki, let sj
i = qj

i .

4. For i = 1, 2, j = 1, . . . , li, let S
j

i = {qj
i}.
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5. For i = 1, 2, j = 1, . . . , ki, guess, if possible, whether to follow an
epsilon transition δj

i (s
j
i , ε) = s′ji , and set sj

i = s′ji . Guess whether to
repeat step 5 (GOTO 5) or continue with the algorithm (GOTO 6).

6. For i = 1, 2, j = 1, . . . , li, compute S ′
j

i = {q | δj

i (qs, ε) = q, qs ∈ S
j

i},
and let S

j

i = S
j

i ∪ S ′
j

i . Repeat step 6 until no S
j

i changes anymore.

7. If, for every i = 1, 2, j = 1, . . . , ki, s
j
i = f j

i , and for every i = 1, 2,

j = 1, . . . , li, f
j

i 6∈ S
j

i , ACCEPT.

8. Guess a tuple (C ′
1, C

′
2) ∈ E. This tuple represents the next child or

subtree of t.

9. For i = 1, 2, j = 1, . . . , ki, guess a p ∈ C ′
i, guess, if possible, a transition

δj
i (s

j
i , p) = s′ji , and set sj

i = s′ji . If no such transition exists, REJECT.

10. For i = 1, 2, j = 1, . . . , li, compute S ′
j

i = {q | δj

i (qs, p) = q, qs ∈ S
j

i , p ∈
C ′

i}, and let S
j

i = S ′
j

i .

11. GOTO 5.

We describe the algorithm step by step. We begin by guessing the label
of the root of t (step 1). Then, we create NFAs based on a and the transition
functions of A1 and A2 (step 2). The Bj

i automata represent those states

that are in the Ci. The B
j

i automata represent those states that are not
in the Ci. For the Bj

i we only have to guess one string which is accepted.
Therefore, we only maintain one state sj

i and guess the accepting run of Bj
i

on one guessed string. For the B
j

i , we have to check if none of the possible

strings is accepted, therefore we maintain sets S
j

i of all possible states the

B
j

i can be in.

In steps 3 and 4, we initialize the sj
i and S

j

i with their start states. Then,
we allow every Bj

i to follow a random number of ε-transitions (step 5). In

step 6, we update the S
j

i such that the S
j

i contain all states that can be
reached by only following ε-transitions. Next, we check if every Bj

i accepts,

and no B
j

i accepts (step 7). If this is the case, we have found a tree that
generates (C1, C2) and can accept. If we can not accept, we guess the next
child of the root node represented by the tuple (C ′

1, C
′
2). For the Bj

i , we guess

a state from C ′
i, and follow a transition using that state (step 9). For the B

j

i ,

we follow every possible transition using the states in C ′
i, and update the S

j

i

accordingly (step 10). Then, we return to step 5 to follow ε-transitions, and
to check if we can accept or guess a next child.
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If this algorithm accepts, we have guessed a tree t with as root label a,
and as children t1, . . . , tn, where for i = 1, . . . , n, (Ci

1, C
i
2) is generated by ti.

For i = 1, 2, we have shown that for every q ∈ Ci, there exists a w ∈ C1
i · · ·Cn

i

such that w ∈ δi(q, a). It follows that there exists a run λ of Ai on t, for
which λ(ε) = q. We have also shown that for every q ∈ Qi, q 6∈ Ci, there
does not exist a w ∈ C1

i · · ·Cn
i such that w ∈ δi(q, a). It follows that there

dos not exist a run λ of Ai on t, for which λ(ε) = q. Furthermore, since every
guessed tuple (Ci

1, C
i
2) represents a tree ti with depth ≤ m, we know that t

has depth ≤ m+ 1.
Conversely, suppose that there exists a tree t with depth ≤ m + 1, such

that t generates (C1, C2). Suppose that t is of the form a(t1 · · · tn), where
every ti generates the tuple (Ci

1, C
i
2). Since t has depth ≤ m + 1, we know

that every ti must have depth ≤ m. Furthermore, we know that E contains
all tuples generated by trees with depth ≤ m. Therefore, there exists a run
of our algorithm which (i) guesses the rootlabel a of t, (ii) guesses the tuples
(Ci

1, C
i
2) representing the ti, and (iii) guesses the accepting runs of the Bj

i .

Furthermore, since we have constructed the B
j

i for the states not in C1 and

C2, and t generates exactly (C1, C2), none of the B
j

i can accept after guessing
the nth child. This run of our algorithm accepts.

Finally, we have to show that this algorithm operates in polynomial space.
We create a polynomial number of NFAs (|Q1|+ |Q2|), which are all of poly-
nomial size (Theorem 4.6). For these NFAs we maintain one state sj

i , or a

set of states S
j

i . These variables or states are all polynomial in the size of
the NFAs, which are themselves polynomial in the size of A1 and A2. The

variables s′ji , and S
′j
i require an equal amount of space as sj

i , and S
j

i , respec-
tively. The computations performed in the different steps of the algorithm
can all be done in polynomial space.

We have shown that the equivalence problem for UTA(+, ·, ∗) is in EXP-
TIME. The algorithm for the complement of the inclusion problem is ana-
logue. We generate the same set E. The only difference is that if we want
to check if L(A1) 6⊆ L(A2), we have to check if there is a tuple (C1, C2) ∈ E,
such that C1∩F1 6= ∅ and C1∩F1 = ∅. If that is the case, then there exists a
tree t such that t ∈ L(A1) and t 6∈ L(A2). If there does not exist such a tuple,
we know that L(A1) ⊆ L(A2). Since EXPTIME is closed under complement,
it follows that the inclusion problem for UTA(+, ·, ∗) is in EXPTIME.

Lemma 7.4. The equivalence and inclusion problem for UTA(RE(+, ·, ∗,#,&))
are in EXPSPACE.
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Proof. We can use the same algorithm as we did for the algorithms for the
equivalence and inclusion problem for UTA(RE(+, ·, ∗,#,&)), which are in
EXPTIME (Lemma 7.2). The only difference is that the UTAs are now al-
lowed to use the numerical occurrence and shuffle operator in their transition
functions. Therefore, we have to use ENFAs instead of NFAs, which takes
our algorithm to EXPSPACE.

Since these algorithms are so similar, we only describe the differences
between the two algorithms. In the basis step, we have to check whether
ε ∈ r, where r is a RE(+, ·, ∗,#,&)-expression. We have already shown that
we can do this in space polynomial of the size of r (Lemma 4.14). In the
induction step, we have to create a polynomial number of ENFAs Bj

i and

B
j

i equivalent to RE(+, ·, ∗,#,&)-expressions instead of NFAs equivalent to
RE(+, ·, ∗)-expressions. These ENFAs can be constructed in time polyno-
mial in the size of the regular expression and therefore have a polynomial
size (Lemma 4.13). The variables sj

i will now contain a configuration of the

Bj
i , instead of a state, and the variables S

j

i contain a set of configurations of

the B
j

i . One configuration of any of the Bj
i s or B

j

i s, has a size polynomial in

the size of the Bj
i s or B

j

i s (Lemma 4.13). Therefore, the sj
i can be stored in

polynomial size, and the S
j

i can be stored in exponential size. The latter fol-
lows from the fact that there can only exist an exponential number different
polynomial size configurations. Since an exponential number of polynomi-

ally sized configurations can be stored in exponential space, the S
j

i can be

stored in exponential space. The computation of these variables sj
i and S

j

i

in the different steps of the algorithm of the induction step can be done in a
similar way as we did for NFAs. We can also follow ε-transitions and normal
transitions as we do for NFAs. These computations can of course be done in
exponential space.

If we combine this information, we see that it requires exponential space
to check for one tuple if it is generated by a tree with depth ≤ m + 1 in
the induction step. In one induction step, we maximally have to do this an
exponential number of times. Since using exponential space an exponential
number of times also requires exponential space, every induction step can be
done in exponential space. We have also argued that we maximally have to
do an exponential number of induction steps. Therefore, the total algorithm
can be done in exponential space.

The following lemma is used in the proof of Lemma 7.6.

Lemma 7.5. Given a NFA A, we can construct an UTA(RE(+, ·, ∗)) B,
which accepts a tree t if and only if t contains a path which is accepted by A.
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Proof. Let A = (Q,Σ, q0, qf , δ) be a NFA. We construct B = (Q′,Σ′, δ′, F ′)
as follows:

• Q′ = Q ∪ {qa};

• Σ′ = Σ;

• For any q ∈ Q, σ ∈ Σ, say δ(q, σ) = {q1, . . . , qn}. If qf 6∈ {q1, . . . , qn},
then δ′(q, σ) = q∗a(q1 + · · ·+ qn)q∗a. If qf ∈ {q1, . . . , qn}, then δ′(q, σ) =
q∗a(q1 + · · ·+ qn)q∗a + ε; and

• For any σ ∈ Σ, δ′(qa, σ) = q∗a; and

• F ′ = {q0}.

In this construction, B will guess a path in the tree, and accepts at the
end of that path if A accepts that path. All other paths are always accepted.
So, if a tree t contains a path that is accepted by A, that path will be guessed
by a run of B, and t is accepted. If a tree is accepted by B, it must have a
path that is accepted by A.

Lemma 7.6. The equivalence and inclusion problem for UTA(RE(+, ·, ∗))
are EXPTIME-hard.

Proof. We first prove that the equivalence problem for UTA(RE(+, ·, ∗)) is
EXPTIME-hard. The proof for the inclusion problem is analogue. We do
a reduction from the 2-player corridor tiling problem, which is EXPSPACE-
complete (Theorem 3.5). On input an instance τ = 〈O, b, t, n〉, we generate
UTA(RE(+, ·, ∗))s A1 and A2, such that L(A1) = L(A2) if and only if CON-
STRUCTOR has a winning strategy for the corridor tiling game on τ .

In this proof, we use a strategy tree for a corridor tiling game, as defined
by Martens ([Mar06], Theorem 9.9). Every path in such a tree encodes a
tiling. The label of the root is #, and every other node is labeled with a tile.
Since CONSTRUCTOR and SPOILER place their tiles in turn, the tiles of
CONSTRUCTOR are always located at even depth, and those of SPOILER
at odd depth. The SPOILER tiles have exactly one child, which represents
the choice of the CONSTRUCTOR at that point. The CONSTRUCTOR
tiles have all possible tiles as children, representing all possible choices of
SPOILER. Each of these tiles which is not valid, because it does not satisfy
the horizontal or vertical constraints, has error as the label of its child. This
shows that this is not a valid path. We can encode a winning strategy of
CONSTRUCTOR in such a strategy tree. So, there exists a strategy tree
that encodes a winning strategy of CONSTRUCTOR if and only if there
exists a winning strategy for CONSTRUCTOR.
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Figure 7.1: A strategy tree for the winning strategy of CONSTRUCTOR in
the 2-player corridor tiling problem of Example 7.7.

Example 7.7. Take the instance τ = 〈O, b, t, n〉, where

• O = {o1, o2, o3};

• b = t = (o1, o2);

• n = 2;

where the following horizontal and vertical constraints hold

• H = {(o1, o2), (o3, o2), (o3, o3)}; and

• V = {(o1, o3), (o2, o2), (o2, o3), (o3, o1), (o3, o2).

For the 2-player corridor tiling problem on τ , CONSTRUCTOR has a win-
ning strategy. The strategy tree that encodes this winning strategy is shown
in Figure 7.1. Depending on the choices of SPOILER, this strategy can lead
to two valid corridor tilings. These are shown in Figure 7.2. �

We define A1 as the UTA which accepts all possible trees over the alphabet
Σ = O ∪ {#, error}, and A2 will be the UTA that accepts all possible trees
over Σ except those that encode a strategy tree for a winning strategy of
CONSTRUCTOR. If no such tree exists, and thus the 2-player corridor tiling
problem rejects, A2 is equal to A1. Conversely, if the 2-player corridor tiling
problem accepts, there exists such a strategy tree and A2 is not equal to A1.

We begin by describing A1 = (Q1,Σ, δ1, F1):
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o1 o2 o1 o2

o3 o2 o3 o3

o1 o2 o1 o2

Figure 7.2: The two possible valid tilings that can be constructed from the
strategy tree of Figure 7.1.

• Q1 = F1 = {q};

• Σ = O ∪ {#, error}; and

• For any σ ∈ Σ: δ1(q, σ) = q∗.

We describe A2 using a number of UTAs and NFAs which express certain
errors in a strategy tree. We use these NFAs to check if a path of the tree,
rather than the whole tree, contains an error. In Lemma 7.5, we have seen
how we can construct an UTA, which accepts a tree if it contains a path which
is accepted by a NFA. Finally, we take the union of these UTAs, which will
be A2. We now describe all possible errors in a tree that prevent it to be a
correct strategy tree. Suppose that the set of tiles O = {o1, . . . , on}.

1. The tree t does not have # as root symbol, # occurs at any other
position in t, error occurs at a non-leaf node of t, t does not have
exactly one choice for a tile of CONSTRUCTOR, or t does not have all
possible tiles as choices for SPOILER. The following UTA, (Q,Σ, δ, F ),
checks these conditions:

• Q = {qv, qa, qc, qs
1, . . . , q

s
n};

• F = {qv};
• δ(qv,#) = qc, and for any σ ∈ Σ, σ 6= #, δ(qv, σ) = q∗a;

• For any σ ∈ Σ, δ(qa, σ) = q∗a;

• δ(qc,#) = q∗a, δ(q
c, error) = q+

a , and for every σ ∈ Σ, σ 6= #, σ 6=
error, δ(qc, σ) = q1..n−1

a +qn+1..n+1
a q∗a +qs

1q
n−1..n−1
a +qaq

s
2q

n−2..n−2
a +

· · ·+ qn−2..n−2
a qs

n−1qa + qn−1..n−1
a qs

n; and

• For any i = 1, . . . , n, δ(qs
i ,#) = δ(qs

i , error) = q∗a, δ(q
s
i , oi) =

qc + qaq
+
a . For any oi ∈ O, qs

j ∈ Q, i 6= j, δ(qs
j , oi) = q∗a.

The state qv always is the state at the root node, the nodes which
contain a tile which is placed by CONSTRUCTOR are in state qc,
and the nodes which contain a tile that is placed by CONSTRUCTOR
are in one of the states q1, . . . , qn, depending on which tile, o1, . . . , on,
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must be placed at that position. By maintaining this information in
our states, we can search for misplaced labels and, if we find such an
error, we immediately go into state qa. The state qa is used to denote
that we have found an error and can accept. We explain the transition
function δ(qc, σ) = q1..n−1

a + qn+1..n+1
a q∗a + qs

1q
n−1..n−1
a + qaq

s
2q

n−2..n−2
a +

· · · + qn−2..n−2
a qs

n−1qa + qn−1..n−1
a qs

n a bit more in depth. A node which
contains a tile that is placed by CONSTRUCTOR, must have exactly
n child nodes which contain o1, · · · , on, in that order. The two first
factors of this transition function make sure that if it has more or less
than n children, we immediately accept. If there are exactly n children,
we guess for which child node we will test if it contains a wrong tile.
This is done by the last n factors of the transition function.

Note that our regular expression can only use the operators ·,+, and ∗.
The numerical occurrence indicators used in these regular expressions
are abbreviations, rather than operators.

2. The tree contains a path that does not end with error, and whose
length is not equal to 1 +m · n, for any m ∈ N. We construct a NFA,
(Q,Σ, q0, qf , δ), which accepts such a path.

• Q = {qv, qa, q1, . . . , qn};
• q0 = qv;

• qf = qa;

• δ(qv,#) = q1;

• For i = 1, . . . , i− 1, σ ∈ Σ, σ 6= error, δ(qi, σ) = {qi+1, qa}; and

• For σ ∈ Σ, δ(qn, σ) = {q1}.

In this automaton, qv is the start state and qa is the accept state. The
states q1 to qn are used to keep track of the position in the string modulo
n. If we are at the last position of the string, we don’t read ’error’, and
we are not in state qn, we can accept.

3. The tree contains a path which encodes a tiling for which the bottom
row is not equal to b. A path encodes a tiling if it does not end with
error. We construct a NFA, (Q,Σ, q0, qf , δ), which accepts such a path.

• Q = {qv, qa, q1, . . . , qn};
• q0 = qv;

• qf = qa;
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• δ(qv,#) = {q1};
• For i = 1, . . . , n− 1, δ(qi, b(i)) = {qi+1};
• For i = 1, . . . , n, σ ∈ Σ, σ 6= b(i), δ(qi, σ) = {qa}; and

• For σ ∈ Σ, σ 6= error, δ(qa, σ) = qa.

The state qv is again the start state. The states q1 to qn check if the
first n tiles are at any position different from b. If that is the case, we
enter state qa and remain in state qa until the end of the string. If the
last symbol of the string is not equal to ’error’, we accept.

4. The tree contains a path which encodes a tiling for which the top row
is not equal to t. A path encodes a tiling if it does not end with error.
We construct a NFA, (Q,Σ, q0, qf , δ), which accepts such a path.

• Q = {qv, qa
1 , . . . , q

a
n+1, q

r, qr
1, . . . , q

r
n};

• q0 = qv;

• qf = qa
n+1;

• δ(qv,#) = qr;

• For any σ ∈ Σ, δ(qr, σ) = {qr, qr
1};

• For i = 1, . . . , n− 1, δ(qr
i , t(i)) = {qr

i+1};
• For i = 1, . . . , n, σ ∈ Σ, σ 6= t(i), δ(qr

i , σ) = {qa
i+1}; and

• For i = 1, . . . , n, σ ∈ Σ, σ 6= error, δ(qa
i , σ) = qa

i+1.

This automaton is almost the same as the previous one, but its a bit
more complicated because we have to check the last n tiles instead of
the first n tiles. The state qv is again the start state, the states with
a r in superscript denote that we are going to reject the string, those
marked with a a denote that we are going to accept the string. The
states with a subscript ranging from one to n+ 1 are used to control if
the top row is equal to t and the subscripts denote the position in this
top row.

We always begin in qv, which immediately passes the control to state
qr. We stay in qr until we guess that we have reached the first tile of
the top row and enter qr

1. From here on, the states qr
1 to qr

n, and qa
1 to

qa
n+1 are used to check if the top row is different from t. If it is different,

at any position, we arrive at the state qa
n+1, and accept.

5. The tree contains a path in which CONSTRUCTOR violates a hori-
zontal constraint.
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From here on, we will only describe the automata informally. The
formal constructions of the automata are straightforward.

The NFA reads the string, and non-deterministically chooses a position
which contains a tile placed by SPOILER to check if the horizontal
constraints between this tile and the next tile are respected. If they
are not respected, we accept. The only place where we do not have to
check the horizontal constraints between two successive tiles is between
the last tile of one row, and the first tile of the next row. To make sure
that we do not control this, we create states n states which keep track
of the position in the tiling.

6. The tree contains a path in which SPOILER violates a horizontal con-
straint, which is not immediately followed by an error label.

This NFA works almost the same as the previous. The only difference
is that when it finds a violation of the horizontal constraints, it can not
immediately accept, but has to check if the next symbol is not equal
to ’error’, and can then accept.

7. The tree contains a path in which CONSTRUCTOR violates a vertical
constraint.

This automaton is also very similar to the two previous ones. We only
have to add n states, that can search for the tile exactly on top of a
given tile. For these two tiles, we can check the vertical constraints.

8. The tree contains a path in which SPOILER violates a vertical con-
straint, which is not immediately followed by an error label.

Again, we just have to extend the previous automaton. When we find a
violation of the vertical constraints, we have to check if the next symbol
is not equal to ’error’.

We show that a tree t that is not accepted by the first UTA, and which
does not contain a path that is accepted by any of the NFAs, encodes a
strategy tree for a winning strategy of CONSTRUCTOR.

If t is not accepted by the UTA in item 1, the structure of the tree must
be that of a strategy tree. The NFA in item 2 checks that every path that
does not end on error, has the right length to encode a tiling. The NFAs in
item 3 and 4 make sure that for every encoding of a tiling in t, the bottom
and top row are equal to b and t, respectively. The last four NFAs check that
the horizontal and vertical constraints are respected by CONSTRUCTOR,
and that they are respected by SPOILER, or that if they are not respected,
this is immediately labeled with error. Thus, if t is not accepted by any
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of these trees it must encode a strategy tree, in which CONSTRUCTOR
has a strategy such that no matter what SPOILER does, SPOILER must
place an invalid tile (which is marked by error) or a valid corridor tiling is
created. In other words, t encodes a strategy tree for a winning strategy of
CONSTRUCTOR.

To construct A2, we first transform the different NFAs into corresponding
UTAs using the construction of Lemma 7.5. This gives us a constant number
of UTAs. For two UTAs A1 = (Q1,Σ, δ1, F1), and A2 = (Q2,Σ, δ2, F2),
Au = (Q1∪Q2,Σ, δ1∪δ2, F1∪F2) accepts L(A1)∪L(A2), assumingQ1∩Q2 = ∅.
If that is not the case, it can be achieved by proper renaming. The union
of a constant number of UTAs similarly is the union of the state sets, the
alphabet, the union of the transition function and the union of the final state
sets. We use this technique to compute the union of the UTAs obtained
earlier.

As discussed earlier, A1 accepts all possible trees, and A2 accepts all
trees except those that encode a winning strategy for CONSTRUCTOR in
the corridor tiling game on τ . Therefore L(A1) = L(A2) if and only if
CONSTRUCTOR does not have a winning strategy on τ .

It only remains to show that this reduction can be done in logarithmic
space. The construction of A1, and the constructions of various UTAs and
NFAs of A2, only range over the tiles in O, b, t, and n. This requires log-
arithmic space. The transformation of the NFAs in UTAs only reads the
NFAs, which are of polynomial size, and thus requires logarithmic space. Fi-
nally, taking the union of a constant number of UTAs, of polynomial size,
also requires logarithmic space. The problem with this approach is that we
have to store intermediate NFAs and UTAs which requires polynomial space.
However, we can also describe the whole UTA A2 immediately, instead of
splitting it up into smaller parts. We have split it up because that makes
the proof more comprehensible. The construction of this big automaton A2

only ranges over the tiles in O, b, t, and n, and can thus be generated in
logarithmic space.

We have now shown that the equivalence problem for UTA(RE(+, ·, ∗))
is EXPTIME-hard. For the inclusion problem, we do exactly the same re-
duction, and create the same UTAs A1 and A2. Since, A1 accepts all possible
trees, L(A1) ⊆ L(A2) if and only if L(A1) = L(A2).

Lemma 7.8. The equivalence and inclusion problem for UTA(RE(+, ·, ∗,#))
and UTA(RE(+, ·, ∗,&)) are EXPSPACE-hard.

Proof. We first prove that the equivalence problem for UTA(RE(+, ·, ∗,#))
is EXPSPACE-hard. The proofs for the inclusion problem for UTA(RE(+, ·,
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∗,#)), and the equivalence and inclusion problem for UTA(RE(+, ·, ∗,&))
are analogue.

We reduce the equivalence problem forRE(+, ·, ∗,#), which is EXPSPACE
complete (Theorem 6.2), to the equivalence problem for UTA(RE(+, ·, ∗,#)).
Given two RE(+, ·, ∗,#) expressions r1, r2 over an alphabet Σ, we construct
UTA(RE(+, ·, ∗,#)) automata A1, and A2, such that L(r1) = L(r2) if and
only if L(A1) = L(A2).

For i = 1, 2, we construct Ai = (Qi,Σi, δi, Fi) as follows:

• Qi = {qs} ∪ Σ;

• Assume # 6∈ Σ, Σi = Σ ∪ {#};

• δi(qs,#) = ri, and for σ ∈ Σ, δi(σ, σ) = ε; and

• Fi = {qs}.

In this construction, A1 (resp. A2) accepts all trees of depth 2, whose root
label is #, and for which the string of the children of the root node is defined
by r1 (resp. r2). It follows that L(r1) = L(r2) if and only if L(A1) = L(A2).

This construction writes a constant number of elements, and only reads
the alphabet of the regular expressions and the regular expressions self. This
can al be done in logarithmic space.

For the inclusion problem for UTA(RE(+, ·, ∗,#)), we reduce from the
inclusion problem for RE(+, ·, ∗,#), which is also EXPSPACE-complete.
We can construct the automata in exactly the same way. The proofs for
the equivalence and inclusion problem for UTA(RE(+, ·, ∗,&)) are also ana-
logue. The only difference is that we have to reduce from the equivalence
and inclusion problem for RE(+, ·, ∗,&).

This concludes the proof of theorem 7.1.

7.2 Intersection

Theorem 7.9. The intersection problem for UTA(RE(+, ·, ∗,#,&)) is EXP-
TIME-complete. It remains EXPTIME-hard for UTA(RE(+, ·, ∗)), UTA(
RE(+, ·, ∗,#)), and UTA(RE(+, ·, ∗,&)).

Proof. In Lemma 7.11, we prove that the intersection problem for UTA(RE(+,
·, ∗)) is EXPTIME-hard. In Lemma 7.12, we prove that the intersection prob-
lem for UTA(RE(+, ·, ∗,#,&)) is in EXPTIME. The theorem follows.
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Lemma 7.10. ([MNS04]) The intersection problem for
EDTDst(CHARE((+a), w?, (+a)?, (+a)∗)) is EXPTIME-hard.

Lemma 7.11. The intersection problem for UTA(RE(+, ·, ∗)) is EXPTIME-
hard.

Proof. We reduce the intersection problem for EDTDst(CHARE((+a), w?,
(+a)?, (+a)∗)) (Lemma 7.10) to the intersection problem for UTA(RE(+, ·, ∗)).
On input EDTDst(CHARE((+a), w?, (+a)?, (+a)∗)) D1, . . . , Dn, we must
generate UTA(RE(+, ·, ∗))s A1, . . . , An such that

⋂n
i=1 L(Di) 6= ∅ if and only

if
⋂n

i=1 L(Ai) 6= ∅.
Since every CHARE((+a), w?, (+a)?, (+a)∗)-expression is a RE(+, ·, ∗)-

expression and every single-type EDTD is an EDTD, we know that every
EDTDst(CHARE((+a), w?, (+a)?, (+a)∗)) also is an EDTD(RE(+, ·, ∗)). We
have already shown that for every EDTD(RE(+, ·, ∗)) D, we can construct
an UTA(RE(+, ·, ∗)) A, in logarithmic space, such that L(A) = L(D) (The-
orem 5.20).

The reduction constructs for every Di its equivalent automaton Ai. Since
L(Di) = L(Ai), for every i, we know that

⋂n
i=1 L(Di) 6= ∅ if and only if⋂n

i=1 L(Ai) 6= ∅. This reduction uses logarithmic space since the construction
of the automata is done in logarithmic space.

Lemma 7.12. The intersection problem for UTA(RE(+, ·, ∗,#,&)) is in
EXPTIME.

Proof. Given a number of UTA(RE(+, ·, ∗,#,&))s A1, . . . An, Ai = (Qi,Σ,
δi, Ii), we have to decide whether

⋂n
i=1 L(Ai) 6= ∅. We give an alternating

polynomial space algorithm that tries to guess a tree t that is accepted by
every Ai. It accepts if such a tree exists, and rejects if it does not. Since
APSPACE = EXPTIME, this concludes the lemma.

The algorithm tries to guess the tree t in a top down manner. For every
Ai, we always maintain the current state si that Ai is in at the current node.
Note that we only have to keep one state and not a set of states, since we
only have to proof that a tree is accepted and not that it is rejected by
an automaton. Therefore, keeping one state is enough to assure that an
accepting run for every Ai on t will be guessed if t is accepted by every Ai.

Guessing the state at a node is not straightforward, since our transition
function is defined using regular expressions. However, we can construct an
equivalent ENFA for these regular expressions. Note that the alphabet of
these ENFAs are the states of the tree automata. By using these ENFA, we
can guess the states the Ai are in.
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During the computation we use a few variables: a ∈ Σ holds the label at
the current node. For every 0 < i ≤ n, si ∈ Qi contains the state Ai is in
at the current node. The string automaton constructed from the transition
function of Ai is Bi. The configuration of automaton Bi is denoted by γi.
The algorithm goes as follows:

1. For i = 1, . . . , n, existentially guess an si from Ii.

2. Existentially guess an a ∈ Σ.

3. For i = 1, . . . , n, construct an ENFA Bi = (QBi
,Σ, δBi

, qBi
, FBi

) such
that L(Bi) = L(δi(a, si)).

4. If ε ∈ L(δi(a, si)) = L(Bi), for every i, ACCEPT.

5. For i = 1, . . . , n, let γi be the initial configuration of Bi.

6. For i = 1, . . . , n, guess whether to follow an ε-transition of Bi and
update γi accordingly.

7. Guess whether to repeat step 6 (GOTO 6) or continue with the algo-
rithm (GOTO 8).

8. For i = 1, . . . , n, guess a non-epsilon transition wi ∈ δi. If, for any i,
there does not exist a configuration ηi such that γi ⇒wi ηi, REJECT.
Else, for every i, let γi = ηi and si is the symbol read by the transition
wi.

9. For i = 1, . . . , n, guess whether to follow an ε-transition of Bi and
update γi accordingly.

10. Guess whether to repeat step 9 (GOTO 9) or continue with the algo-
rithm (GOTO 11).

11. If, for every i, γi is an accepting configuration of Bi GOTO 11.a, else
GOTO 11.b

(a) Existentially guess whether this node was the last child of its par-
ent (GOTO 2), or if there are more right siblings of the current
node (GOTO 11.b)

(b) Universally guess whether to go to the right sibling of the current
node (GOTO 6) or to go to the first child of the current node
(GOTO 2).
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We explain the algorithm step by step. We start by guessing the state of
the root for every automaton (step 1) and the label of the root of our tree
(step 2). Then, we construct a string automaton Bi for every automaton Ai

based on the state and the label of the root, and the transition function of
Ai (step 3). This string automaton accepts all sequences of states, that the
children of the root node can have. If, for every i, ε ∈ L(δi(a, si)), we can
accept (step 4). In step 5, we set the current configuration of Bi to its initial
configuration. Steps 6 and 7 allow every Bi to follow a number of epsilon
transitions. After (possibly) following these epsilon transitions, we guess a
transition for every Bi. If these transitions are all valid transitions, we update
the current configuration of Bi and save the symbol read in si. Steps 9 and
10 are identical to steps 6 and 7 and allow the Bi to follow ε-transitions.

Finally, we check whether the configurations γi are all accepting config-
urations (step 11). If that is the case, this node can be the last child of its
parent. If we guess that it is the last, we go back to step 2, where we guess
the label of the current node, and repeat the entire algorithm. If we guess
that it is not the last, we go to step 11.b, where we also arrive when not all γi

are accepting configurations. There, we have to go to the right sibling (step
6) and go to the first child (goto 2).

If this algorithm accepts, then we have constructed a tree t and an ac-
cepting run for every Ai on t. Therefore, t ∈ L(Ai), for every i.

Suppose that a tree t is accepted by every Ai, and that t is minimal in the
sense that we can not construct a tree t′ 6= t such that t′ is accepted by every
Ai, and that for every u ∈ Dom(t′), labt

′
(u) = labt(u). That is, t must have

all unnecessary child nodes and subnodes pruned away. Then, there will be
a run of our algorithm that (i) guesses t and (ii) guesses the accepting run
of Ai on t, for every i. The tree t must be minimal, because our algorithm
immediately accepts when possible (see step 4). If the intersection of L(Ai)
is non-empty, there exists a minimal tree t accepted by every Ai, and thus
our algorithm accepts.

Finally, we show that this algorithm operates in polynomial space. The
variables we store, all require no more than polynomial space; a, ui, and si

store one element of Σ, QBi
, and Qi. The automata Bi, can be constructed in

polynomial time, and are stored in polynomial space, and the configurations
γi can also be stored in polynomial space (Lemma 4.13). In step 2, we have
to check if ε is accepted by a constant number of ENFAs. Checking whether
ε is accepted by an ENFA B can be done in space polynomial in B (Lemma
4.14).

This concludes the proof of Theorem 7.9.



Chapter 8

Conclusion

In this thesis, we have established the complexity of the equivalence, inclu-
sion, and intersection problem for various subclasses of regular expressions
and unranked tree automata. For the subclass of regular expressions, where
only the standard set of operators (+, ·, ∗) are allowed, the three decision
problems are PSPACE-complete. We have shown that the complexity of
the equivalence or inclusion problem becomes EXPSPACE when we add the
numerical occurrence, shuffle or both operators. The intersection problem
remains in PSPACE, even when we add both operators.

We have also extended the class of CHAREs with the numerical occur-
rence indicator. For the full class of these CHAREs, the complexity of the
inclusion and intersection problems remains the same as the complexity of
the full set of regular expressions. It is however possible that the equivalence
problem for these CHAREs can be solved more efficient. For a much simpler
subset of CHAREs, CHARE(a, a?, a#), the inclusion and intersection prob-
lems still remain coNP-hard, and NP-complete. The equivalence problem
for CHARE(a, a?, a#) is tractable. We also found a subset of the CHAREs,
CHARE(a, a#>0), for which the three decision problems become tractable.

For unranked tree automata, it was only known that the equivalence and
intersection problem for UTA(RE(+, ·, ∗)) are EXPTIME-complete. We have
shown that the inclusion problem for UTA(RE(+, ·, ∗)) is also EXPTIME-
complete. As for regular expressions, the complexity of the intersection prob-
lem remains the same if we add the numerical occurrence and/or shuffle oper-
ators. One would expect that the complexity of the equivalence and inclusion
problem would also go one exponential higher, to 2EXPTIME. This, how-
ever, is not the case. The addition of one or both operators only takes the
equivalence and intersection problem for UTAs to EXPSPACE, which is the
same as the corresponding problems for regular expressions.

Using these results and the correlation between the complexities of the

104
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decision problems for regular expressions, and unranked tree automata on
one hand, and DTDs, EDTDs, and EDTDst on the other hand, we can
establish the complexity of the decision problem for DTDs, EDTDs, and
EDTDst. Since these classes are abstractions of DTD, Relax NG, and XML
Schema, respectively, this gives us more information about the complexity of
the decision problems for these schema languages.

In Table 8.1, we summarize the complexities of the decision problems for
DTD, XML Schema, and Relax NG, that can be established using the com-
plexities of the decision problems for regular expressions and unranked tree
automata. For example, we know that the complexities of the equivalence
problem for a subset of the regular expressions R, DTD(R), and EDTDst(R)
are the same. DTDs allow their regular expressions to use the operators
+, ·, and ∗. So, the complexity of the equivalence problem for RE(+, ·, ∗),
which is PSPACE, carries over to actual DTDs. XML Schema uses the op-
erators +, ·, ∗,& and #, and the complexity of the equivalence problem for
RE(+, ·, ∗,#,&) is EXPSPACE. Therefore, the complexity of the equivalence
problem for XML Schema also is EXPSPACE.

equivalence inclusion intersection

DTD PSPACE PSPACE PSPACE
XML Schema EXPSPACE EXPSPACE EXPTIME
Relax NG EXPSPACE EXPSPACE EXPTIME

Table 8.1: The complexities of the equivalence, inclusion, and intersection
problem for DTD, XML Schema, and Relax NG, where the determinism
constraints for DTD and XML Schema are not enforced.

For Relax NG, which is abstracted by EDTDs, we know that UTAs and
EDTDs are equivalent. Since Relax NG uses the operators +, ·, ∗, and &,
the complexity of the decision problems for UTA(RE(+, ·, ∗,&)) immediately
carries over to Relax NG.

The only problem arises for the intersection problem for XML Schema.
The complexity of the intersection problem for EDTDst is not the same as
that of the class of regular expressions it uses. However, we know that
every EDTDst is an EDTD, so the complexity of the intersection prob-
lem for UTA(RE(+, ·, ∗,#,&)), which is EXPTIME, already gives us an
upper bound. Furthermore, we know that the intersection problem for
EDTDst(CHARE((+a), w?, (+a)?, (+a)∗)) is already EXPTIME-hard, which
gives us an EXPTIME lower bound for XML Schema.

As discussed earlier, we do not enforce the determinism constraints of
DTD and XML Schema on our abstractions of these XML schema languages.
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This certainly has an influence on the complexity of our decision problems.
For example, the equivalence and inclusion problem for DTDs which enforce
the determinism constraint are in PTIME, whereas the complexity of these
problems for DTD without these constraints is PSPACE. This, however, is
not the case in general. The complexity of the intersection problem for DTDs
with or without these constraints is PSPACE. Relax NG does not enforce
any constraints, so the complexities found there are the actual complexities
of these problems for Relax NG.

If we look at the results of Table 8.1, we see that none of the decision
problems are tractable for the three XML schema languages, without de-
terminism constraints. Among these, the problems can be solved the most
efficient for DTDs. This is logical, since DTD is simpler than XML Schema
and Relax NG, and does not allow counting or the shuffle operator. We also
see that the complexity for the three decision problem is the same for XML
Schema and Relax NG. The major difference between our models for XML
Schema and Relax NG is that we have incorporated the EDC constraint for
XML Schema. However, it turns out that this constraint does not influence
the complexity of the decision problems.

These conclusions tell us something about the complexity of the decision
problems for the XML schema languages in general. We have also stud-
ied CHAREs, because in most practical DTDs and XSDs only CHAREs are
used. However, as mentioned earlier, the complexities of the inclusion and
intersection problem for the full class of CHAREs are the same as the cor-
responding problems for the class of regular expressions, which allow the
same operators. For the equivalence problem, we have not yet established
the exact complexity for CHAREs. We did find subclasses of CHAREs that
are tractable. For example, the equivalence problem for CHARE(a, a?, a#)
is in PTIME. It follows that the equivalence problem for DTDs and XSDs
which only use regular expressions in CHARE(a, a?, a#) is also in PTIME.
We can make an analogue argumentation for other decision problems and
other subclasses of CHAREs or regular expressions.
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Samenvatting

XML (eXtensible Markup Language) ([BPSM+04]) is een W3C standaard
voor het uitwisselen van gestructureerde documenten en data over het in-
ternet. Het is een formaat dat zeer flexibel is omdat het user-defined tags
toelaat. Bovendien kunnen zowel mensen als computers de inhoud van een
XML document gemakkelijk interpreteren. Daarom is XML de laatste jaren
de standaard geworden voor het uitwisselen van data over het internet. Een
voorbeeld van een XML document wordt getoond in Figuur 8.1.

XML schema’s laten gebruikers toe om een eigen formaat voor XML
documenten te definiëren. Een XML schema beschrijft de tags die in het
XML document gebruikt mogen worden, en de structuur die het XML docu-
ment moet hebben. Gebruik maken van XML schema’s heeft veel voordelen.
Een voorbeeld hiervan is het probleem van data integratie. Stel dat er twee
databronnen op het internet zijn, waarin de data in XML documenten is
opgeslaan. Bovendien heeft elke databron een XML schema dat al zijn XML
documenten definieert. Dan is het mogelijk om deze bronnen in één data-
base te integreren door enkel de XML schema’s te bestuderen, en niet elk
document afzonderlijk.

De meest gebruikte en verspreide XML schema talen zijn Document Type
Definitions (DTDs) ([BPSM+04]), XML Schema ([SMT05]), en Relax NG
([CM01]). De eerste XML schema taal die echt populair is geworden, is DTD.
DTD is een simpele taal die reguliere expressies gebruikt om de structuur van
XML documenten te definiëren. Een voorbeeld van een DTD die het XML
document uit Figuur 8.1 definieerd, wordt getoond in Figuur 8.2.

DTDs zijn de standaard XML schema taal geworden, maar de mogelijk-
heden van DTDs zijn eerder beperkt. Daarom zijn er een aantal nieuwe
XML schema talen ontwikkeld. De meest populaire van deze schema talen
is XML Schema. XML Schema heeft een XML gebaseerde syntax. Dit wil
zeggen dat een XML Schema Definition (XSD) zelf ook een XML document
is. XML Schema bevat ook een systeem om types toe te kennen aan ele-
menten, en een groot aantal andere mogelijkheden, die DTD niet heeft. Eén
van deze mogelijkheden is dat je kan uitdrukken dat een aantal elementen in

110
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<cd>

<song>

<title>Susan’s house</title>

<length>223</length>

<singlesSold>55000</singlesSold>

</song>

<song>

<title>Beautiful freak</title>

<length>213</length>

<singlesSold>100000</singlesSold>

</song>

<song>

<title>Flower</title>

<length>227</length>

</song>

</cd>

Figure 8.1: Een XML document dat een deel van het album ’Beautiful Freak’
van Eels beschrijft. Voor ieder liedje is de titel en de lengte (in seconden)
gegeven. Indien het lied een single is geweest, is ook het aantal verkochte
singles gegeven. De waarden zijn willekeurig gekozen.
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<!DOCTYPE cd [

<!ELEMENT cd (song*)>

<!ELEMENT song (title,length,singlesSold?)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT length (#PCDATA)>

<!ELEMENT singlesSold (#PCDATA)>

]>

Figure 8.2: Een DTD die het XML document uit Figuur 8.1 definieert.

een willekeurige volgorde mogen voorkomen. Dit kunnen we doen door deze
elementen te omringen met de all tag. Indien we hetzelfde willen uitdrukken
in een DTD, moeten we alle mogelijke permutaties van deze elementen op-
sommen. Dit geeft n! mogelijkheden voor n elementen. Een andere extra
functie van XML Schema is dat het toelaat om het minimum en maximum
aantal keren dat een term mag voorkomen aan te geven. Dit kan je doen door
de minoccurs en maxoccurs attributen van een element te specifiëren. Het
is opnieuw mogelijk om dit in een DTD te doen, maar dan moeten we dat
element maxoccurs keer herhalen. In Figuur 8.3 tonen we een XSD die het
XML document van Figuur 8.1 definieert. We gebruiken hier de all tag om
aan te geven dat de elementen title, length, en singlesSold in een willekeurige
volgorde mogen voorkomen. De minoccurs en maxoccurs attributen geven
aan dat een cd minimaal één liedje en maximaal twintig liedjes kan bevatten.

Een andere uitbreiding van DTD is Relax NG. Dit is een zeer elegante en
krachtige XML schema taal, maar ze is niet zo populair als XML Schema.
Relax NG heeft een XML gebaseerde syntax, en een eenvoudigere equivalente
compact syntax. Net zoals XML Schema heeft het een typing systeem voor
zijn elementen. Als een alternatief voor de all tag van XML Schema, laat het
de &-operator toe in zijn reguliere expressies. Deze binaire operator heet de
shuffle of interleave operator, en laat toe om de woorden die door zijn twee
termen geaccepteerd worden, door elkaar te schrijven, of te shufflen. Relax
NG heeft geen alternatief voor de minoccurs en maxoccurs attributen van
XML schema. In Figuur 8.4 tonen we een deel van een Relax NG document,
dat het element song definieert zoals het is beschreven door de XSD in Figuur
8.3. We gebruiken hier de shuffle operator om de all tag van XML Schema
te vervangen.

In dit werk zijn we gëınteresseerd in de optimalisatie van XML schema
talen. Een voorbeeld van een optimalisatie probleem is het minimaliseren van
XML schema’s. Een geminimaliseerd XML schema laat ons toe om document
validatie efficiënter te doen, en ook andere tests op het schema kunnen sneller



BIBLIOGRAPHY 113

<schema>

<element name="cd" type="cdType">

<xs:element name="single">

<xs:complexType>

<xs:sequence>

<xs:all>

<xs:element name="title" type="xs:string"/>

<xs:element name="length" type="xs:integer"/>

<xs:element name="singlesSold" type="xs:integer"/>

</xs:all>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="regular">

<xs:complexType>

<xs:sequence>

<xs:all>

<xs:element name="title" type="xs:string"/>

<xs:element name="length" type="xs:integer"/>

</xs:all>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="cdType">

<xs:complexType>

<xs:sequence>

<xs:choice minoccurs = "1" maxoccurs = "20">

<xs:element name="song" type="single"/>

<xs:element name="song" type="regular"/>

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

</schema>

Figure 8.3: Een XSD die het XML document van Figuur 8.1 definieert, maar
de EDC constraint overtreedt.



BIBLIOGRAPHY 114

element song {

element title { text }

& element length { xsd:integer }

& element singlesSold { xsd:integer }?

}

Figure 8.4: Een beschrijving van het element song in Relax NG, in compacte
syntax, zoals gedefinieerd door de XSD in figuur 8.3.

uitgevoerd worden. Om een schema te minimaliseren, kunnen we een kleiner
schema opstellen, en controleren of dit kleiner schema nog steeds dezelfde
verzameling van XML documenten definieert als het originele XML schema.
Het probleem, waarbij we controleren of twee schema’s dezelfde verzameling
XML documenten definiëren, noemen we het equivalentieprobleem.

Analoog aan het equivalentieprobleem, definiëren we ook het inclusie- en
intersectieprobleem.

• Equivalentie: Gegeven twee schema’s D1 en D2. Definiëren D1 en D2

dezelfde verzameling XML documenten?

• Inclusie: Gegeven twee schema’s D1 en D2. Wordt elk XML document
dat gedefinieerd wordt door D1, ook gedefinieerd door D2?

• Intersectie: Gegeven n schema’s D1, . . . , Dn. Bestaat er een XML do-
cument dat door elke Di gedefinieerd wordt, i = 1, . . . , n?

Deze beslissingsproblemen zijn de bouwstenen van de meeste optimali-
satieproblemen voor XML schema’s. Daarom is het belangrijk om de ex-
acte complixeteit van deze problemen te bepalen voor de verschillende XML
schema talen.

Om de complexiteit van deze problemen te bestuderen, maken we een
abstractie van XML documenten en van de verschillende XML schema talen.
XML documenten worden geabstraheerd door bomen. Figuur 8.5 illustreert
de overeenkomstige boom voor het XML document uit Figuur 8.1.

We gebruiken uitgebreide context vrije grammatica’s, om een abstractie
te maken van DTDs. Deze uitgebreide context vrije grammatica’s gebruiken
reguliere expressies om hun inhoud te beschrijven, en we zullen deze abstrac-
ties ook DTDs noemen.
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Figure 8.5: Het XML document uit Figuur 8.1 voorgesteld als een boom.

Example 8.1. We kunnen een abstractie maken van de DTD in Figuur 8.2
met behulp van de volgende DTD:

cd → song∗

song → title length singlesSold?

Eén van de grote verschillen tussen DTD enerzijds, en XML Schema en
Relax NG anderzijds, is de mogelijkheid om types aan elementen toe te ken-
nen. Daarom breiden we DTDs uit door ook hieraan types toe te voegen. Dit
geeft ons extended DTDs (EDTDs) ([PV00]). Deze EDTDs zijn een goede
abstractie van Relax NG, maar XML Schema legt een aantal beperkingen
op die Relax NG niet heeft. Daarom zijn deze EDTDs te krachtig om XML
Schema voor te stellen. Eén van deze beperkingen is element declarations
consistent (EDC). EDC drukt uit dat in een reguliere expressie, er geen ele-
menten met dezelfde naam, maar met een vershillend type mogen voorkomen.
We kunnen de kracht van EDTDs beperken tot single-type EDTDs (EDTDst)
([BMNS05],[MLMK05]). Deze EDTDsts beschrijven precies de XML schema
talen met de EDC beperking. Een EDTDst laat niet toe dat een reguliere
expressie twee elementen met dezelfde naam, maar met verschillende types
bevat. We gebruiken EDTDsts als een abstractie voor XML Schema.

Example 8.2. We kunnen een abstractie maken van de XSD in Figuur 8.3
met behulp van de volgende EDTD:

cd → (song1 + song2)1..20

song1 → title & length & singlesSold

song2 → title & length

Hier stelt song1 de liedjes voor die een single zijn geweest, en song2 stelt
de gewone liedjes voor. Deze EDTD is geen EDTDst aangezien song1 en
song2 voorkomen in dezelfde expressie. Dit komt omdat de XSD in Figuur
8.3 de EDC constraint overtreedt. We kunnen dit oplossen door de XSD te
herschrijven. �
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We moeten wel opmerken dat DTD en XML schema een beperking op-
leggen die zegt dat de gebruikte reguliere expressies deterministisch of one-
unambiguous moeten zijn. Dit wordt uitgedrukt door de Deterministic Con-
tent Models voor DTD en de Unique Particle Attribution constraint voor
XML Schema. We leggen deze beperkingen niet op aan onze modellen voor
DTD (DTD) en XML Schema (EDTDst), omdat er al vaker discussie is ge-
weest over deze beperkingen in de XML gemeenschap (zie bijvoorbeeld, pag-
ina 98 van [vdV02], [Man01], of [SM03]). Daarom is het interessant om te
zien wat de complexiteit van onze beslissingsproblemen voor DTD en XML
Schema is, wanneer deze beperkingen niet worden opgelegd.

DTD, XML Schema, en Relax NG, en hun abstracties, gebruiken alle-
maal (deelverzamelingen van) reguliere expressies om de structuur van XML
documenten te beschrijven. In deze reguliere expressies worden er een aantal
verschillende operatoren gebruikt. DTDs gebruiken de gebruikelijke verza-
meling van operatoren +, ·, en ∗. XML Schema voegt een aantal mogelijk-
heden toe aan DTD. We hebben reeds gezien dat de all tag kan vertaald
worden met behulp van de shuffle operator (&). De mincount en maxcount
attributen kunnen we vertalen met behulp van de numerical occurrence op-
erator. Het gebruik van deze operator wordt gëıllustreerd in Figuur 8.2, en
geeft in superscript het minimum en maximum aantal voorkomens aan. Hij
wordt hier gebruikt om aan te geven dat een cd minimaal één liedje, en max-
imaal twintig liedjes kan bevatten. We stellen deze operator voor als #. We
kunnen nu deelverzamelingen van de reguliere expressies definiëren, door te
specifiëren welke operators wel, en welke niet gebruikt mogen worden in de
reguliere expressies.

Het blijkt nu dat de complexiteit van de beslissingsproblemen (equivalen-
tie, inclusie, en intersectie) voor DTDs, en EDTDsts, zeer verwant is met
de complexiteit van dezelfde beslissingsproblemen voor dezelfde deelverza-
meling van reguliere expressies die ze gebruiken ([MNS04]). We definiëren
ook boomautomaten (UTA, van het engelse unranked tree automata), die
ook (deelverzamelingen van) reguliere expressies gebruiken. Deze boomauto-
maten zijn even krachtig als EDTDs. Daarom is de complexiteit van de be-
slissingsproblemen voor EDTDs en UTAs steeds hetzelfde. Door deze sterke
overeenkomsten tussen DTDs, EDTDs, en EDTDsts enerzijds, en reguliere
expressies en UTAs anderzijds, zullen we de complexiteit van de beslissings-
problemen voor verschillende deelverzamelingen van reguliere expressies en
UTAs onderzoeken.

We weten reeds dat we iedere “standaard” RE(+, ·, ∗)-expressie kunnen
vertalen naar een equivalentie NFA, met polynomiale grootte. We kunnen
dan deze NFAs gebruiken om bovengrenzen voor de beslissingproblemen voor
RE(+, ·, ∗) te bepalen. Wanneer we echter een willekeurige RE(+, ·, ∗,&,#)-



BIBLIOGRAPHY 117

expressie in een equivalente NFA willen vertalen, kan het zijn dat deze
NFA een dubbel-exponentiële grootte heeft. Daarom introduceren we een
nieuwe soort automaten, extended NFAs (ENFAs). Deze ENFAs zijn een
uitbreiding van gewone NFAs, en laten ons toe om iedere RE(+, ·, ∗,&,#)-
expressie in een equivalente ENFA van polynomiale grootte te vertalen. We
gebruiken deze ENFAs vaak om bovengrenzen voor beslissingsproblemen voor
RE(+, ·, ∗,&,#) te bepalen.

We beschouwen eerst deelverzamelingen van reguliere expressies, die gede-
finieerd worden door het toelaten van een aantal operatoren in de reguliere
expressies. In Tabel 8.2 geven we een overzicht van de (reeds bekende en
nieuwe) resultaten.

equivalentie inclusie intersectie

RE(+, ·, ∗) PSPACE [SM73] PSPACE [SM73] PSPACE [Koz77]
RE(+, ·, ∗,#) EXPSPACE EXPSPACE PSPACE
RE(+, ·, ∗,&) EXPSPACE [MS94] EXPSPACE [MS94] PSPACE
RE(+, ·, ∗,#,&) EXPSPACE EXPSPACE PSPACE

Table 8.2: Complexiteit voor problemen met reguliere expressies. Alle resul-
taten zijn compleetheidsresultaten. Voor resultaten die reeds bekend waren
in de literatuur, is de referentie toegevoegd.

We zien dat alle drie de problemen PSPACE-compleet zijn voor RE(+, ·, ∗).
Wanneer we bij het equivalentie- of inclusieprobleem, de shuffle of numer-
ical occurrence operator toevoegen, worden deze problemen EXPSPACE-
compleet. Indien ze beiden worden toegevoegd, blijven we wel in EXPSPACE.
Je zou verwachten dat dezelfde trend bestaat voor het intersectieprobleem.
Dit is echter niet waar. Het intersectieprobleem blijft in PSPACE, zelfs wan-
neer we beide operatoren toevoegen.

Deze deelverzamelingen van reguliere expressies bevatten allen zeer com-
plexe expressies. Het blijkt echter dat de reguliere expressies die gebruikt
worden in echte DTDs en XSDs, meestal zeer simpel zijn. Bex, Neven, en Van
den Bussche hebben hier een studie over gedaan ([BNVdB04]), en het blijkt
dat meer dan negentig procent van de reguliere expressies die voorkomen in
echte DTDs en XSDs, uitdrukkingen zijn van de vorm e1 · · · en, waarbij iedere
ei een factor is van de vorm (x1 + · · ·+xn), mogelijks uitgebreid met de *, +,
of ? operatoren, en iedere xi een string is. Martens, Neven, en Schwentick
hebben deze klasse van reguliere expressies gedefinieerd als CHAREs, en
hebben de complexiteit van een aantal deelverzamelingen van deze CHAREs
bestudeerd ([MNS04]). In dit werk, breiden we deze CHAREs uit met de
numerical occurrence operator. In Tabel 8.3, geven we een overzicht van een
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aantal resultaten uit [MNS04], en de resultaten van dit werk.

equivalentie inclusie intersectie

CHARE(S\{#}) in PSPACE * PSPACE * PSPACE *
CHARE(S) in EXPSPACE EXPSPACE PSPACE
CHARE(a, a?) in PTIME * coNP * NP *
CHARE(a, a∗) in PTIME * coNP * NP *
CHARE(a, a?, a#) in PTIME coNP-hard, NP

in EXPSPACE
CHARE(a, a#>0) in PTIME in PTIME in PTIME

Table 8.3: Complexiteit voor beslissingsproblem voor CHAREs. Alle resul-
taten zijn compleetheidsresultaten, tenzij het anders vermeld is. Resultaten
gemarkeerd met een * zijn gevonden door Martens, Neven, and Schwentick
([MNS04]).

De klasse CHARE(S) bevat alle mogelijke CHAREs, uitgebreid met de
numerical occurrence operator. We zien dat voor het inclusie- en intersec-
tieprobleem, de complexiteit dezelfde is als deze van RE(+, ·, ∗,#). Het
is echter wel mogelijk dat het equivalentieprobleem efficiënter kan opgelost
worden. We beschouwen ook veel eenvoudigere deelverzamelingen van deze
CHAREs, CHARE(a, a?, a#), en CHARE(a, a#>0). Voor CHARE(a, a?, a#),
zijn het inclusie- en intersectieprobleem nog steeds coNP-hard en NP-compleet.
Voor CHARE(a, a#>0) zijn alle drie de problemen in PTIME.

Ten slotte bestuderen we de complexiteit van de beslissingsproblemen
voor UTAs. De complexiteit van deze problemen hangt af van de deelverza-
meling van de reguliere expressies die in de transitiefunctie gebruikt mogen
worden. De klasse UTA(RE(+, ·, ∗,&)) bevat bijvoorbeeld alle UTAs, die
enkel de drie standaard operatoren in de reguliere expressies van hun transi-
tiefunctie gebruiken. In Tabel 8.4 geven we een overzicht van de resultaten
voor UTAs.

We zien dat de drie problemen voor UTA(RE(+, ·, ∗)) EXPTIME-compleet
zijn. Bovendien blijft de complexiteit van het intersectieprobleem, net zoals
bij reguliere expressies, hetzelfde wanneer we de twee extra operatoren to-
evoegen. In vergelijking met de overeenkomstige problemen voor reguliere
expressies, gaan we dus van plaats- naar tijdcomplexiteit, maar gaan we ook
exponentieel hoger. Wanneer we bij het equivalentie- en inclusieprobleem
de nieuwe operatoren toevoegen, worden deze problemen maar EXPSPACE-
compleet. Hier blijft deze trend dus niet behouden. Sterker nog, de com-
plexiteit van deze problemen is dezelfde als deze van de overeenkomstige
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equivalentie inclusie intersectie

UTA(RE(+, ·, ∗)) EXPTIME [Sei90] EXPTIME EXPTIME [Sei94]
UTA(RE(+, ·, ∗,#)) EXPSPACE EXPSPACE EXPTIME
UTA(RE(+, ·, ∗,&)) EXPSPACE EXPSPACE EXPTIME
UTA(RE(+, ·, ∗,#,&)) EXPSPACE EXPSPACE EXPTIME

Table 8.4: Complexiteit voor problemen met UTAs. Alle resultaten zijn
compleetheidsresultaten. De complexiteiten van het equivalentie- en inter-
sectieprobleem voor UTA(RE(+, ·, ∗)) zijn gevonden door Seidl.

problemen voor reguliere expressies.
We hebben de beslissingsproblemen voor de reguliere expressies en UTAs

bestudeerd, omdat dit ons iets meer kon vertellen over dezelfde problemen
voor DTD, XML Schema, en Relax NG. Op basis van deze resultaten kunnen
we Tabel 8.5 samenstellen. Deze tabel geeft ons voor de verschillende XML
schema talen de complexiteit van de beslissingsproblemen. Merk wel op dat
deze resultaten geen rekening houden met de beperkingen die zeggen dat de
reguliere expressies in DTDs en XSDs deterministisch of one-unambiguous
moeten zijn. Deze beperkingen zorgen ervoor dat sommige, maar zeker niet
alle, problemen efficiënter kunnen opgelost worden.

equivalentie inclusie intersectie

DTD PSPACE PSPACE PSPACE
XML Schema EXPSPACE EXPSPACE EXPTIME
Relax NG EXPSPACE EXPSPACE EXPTIME

Table 8.5: De complexiteit van de verschillende beslissingsproblemen, voor
DTD, XML Schema, en Relax NG, waarbij de beperkingen voor determinis-
tische reguliere expressies voor DTD en XML Schema niet zijn opgelegd.

Indien we naar de resultaten van Tabel 8.5 kijken, zien we dat geen enkel
van deze problemen voor geen enkele XML schema taal efficiënt oplosbaar
is. Indien we de drie schema talen vergelijken, zijn de problemen het meest
efficiënt oplosbaar voor DTD. Dit is logisch aangezien DTD het meest simpel
is, en geen numerical occurrence of shuffle operator toelaat. We zien boven-
dien dat de complexiteit voor de verschillende problemen voor XML Schema
en Relax NG steeds hetzelfde is. Hieruit volgt dat de EDC beperking, die we
aan ons model voor XML Schema opgelegd hebben, geen invloed heeft op de
complexiteit van deze problemen.

Deze conclusies vertellen ons iets over de complexiteit van de beslissings-
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problemen voor de XML schema talen in het algemeen. We hebben ook
CHAREs bestudeerd, omdat de meeste reguliere expressies die in de praktijk
gebruikt worden, CHAREs zijn. Op basis van de resultaten voor CHAREs
kunnen we weer een aantal resultaten voor DTD en XML Schema afleiden.
Bijvoorbeeld, uit het feit dat het equivalentieprobleem voor CHARE(a, a?, a#)
in PTIME is, volgt dat het equivalentieprobleem voor DTD en XML Schema,
waarbij enkel CHARE(a, a?, a#)-expressies mogen gebruikt worden, ook in
PTIME is.




