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Abstract The study of moving objects has been capturing the attention
of Geographic Information System (GIS) researchers. Moving objects, carry-
ing location-aware devices, produce trajectory data in the form of a sample
of (Oid, t, x, y)-tuples, that contain object identifier and time-space informa-
tion. Recently, the notion of stops and moves was introduced. Intuitively, if
a moving object spends a sufficient amount of time in a certain geographic
place (which we denote a place of interest of an application), this place is
considered a stop of the object’s trajectory. In-between stops, a trajectory
has moves. In this paper we study how moving object data analysis can ben-
efit from replacing raw trajectory data by a sequence of stops and moves.
We first propose a formal model and query language (denoted Lmo) to ex-
press complex queries involving spatial data stored in a GIS, non-spatial data
(stored in a data warehouse) and moving object data. This query language
also supports different forms of aggregation. We then study the compression
of trajectory data produced by moving objects, using the concepts of stops
and moves. We show that stops and moves are expressible in Lmo and that
there exists a fragment of this language (that can be expressed by means
of regular expressions) allowing to talk about temporally ordered sequences
of stops and moves. We use this fragment to perform data mining over tra-
jectory data. We present an implementation and a case study, and discuss
different applications of our approach.
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1 Introduction

Geographic Information Systems (GIS) have been extensively used in various
application domains, ranging from economical, ecological and demographic
analysis, to city and route planning [23, 26]. In recent years, time is playing
an increasingly important role in GIS and spatial data management [19].
One particular line of research in this direction, concerns moving object data.
Moving objects, carrying location-aware devices, produce trajectory data in
the form of a sample of (Oid, t, x, y)-tuples, that contain object identifier
and time-space information. Recently, the notions of stops and moves were
introduced [1, 3, 18]. These concepts serve to compress the trajectory data
that is produced by moving objects using application-dependent places of
interest. A designer may want to select a set of places of interest that are
relevant to her application. For instance, in a tourist application, such places
can be hotels, museums and churches. In a traffic control application, they
may be road segments, traffic lights and junctions, stored in GIS layers. If a
moving object spends a sufficient amount of time in a place of interest, this
place is considered a stop of the object’s trajectory. In between stops, the
trajectory has moves. Thus, we can replace a raw trajectory by a sequence of
application-relevant stops and moves, which also add semantic information
to the model.

We motivate our work with the following example. Figure 1 (left) shows a
simplified map of Paris, containing two hotels, denoted Hotel 1 and Hotel 2
(H1 and H2 from here on), the Louvre and the Eiffel tower. We consider three
moving objects, O1, O2 and O3. Object O1 goes from H1 to the Louvre, the
Eiffel tower, spends just a few minutes there, and returns to the hotel. Object
O2 goes from H2 to the Louvre, the Eiffel tower, (spending a couple of hours
visiting each place), and returns to the hotel. Object O3 leaves H2 to the
Eiffel tower, visits the place, and returns to H2. Figure 1 (center) shows part
of these trajectory samples. All points of the same trajectory are temporally
ordered and stored together (i.e., the raw trajectories table is sorted by Oid

and t). In what follows, we will use the object identifier as the trajectory
identifier, unless specified.

Many useful applications open in this scenario. For instance, a GIS user
may be interested in finding out trajectory information, like “number of per-
sons going from H1 to the Louvre and then to the Eiffel tower (stopping to
visit both places) in the same day”. An analyst may want to discover hid-
den information using data mining techniques. For example, she would like
to identify interesting patterns in the trajectory data using association rule
mining. She may also want to verify a certain pattern, like “people do not
visit two museums in the same day”. Complex queries that aggregate non-
spatial information, and also involve GIS and moving object data, must also
be addressed. For instance, “total sales in museums located on the left bank
of the Seine, such that people visit them before going to the Eiffel Tower in
the same day”.
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Oid t x y
O1 1 x1 y1

O1 2 x2 y2

O1 3 x3 y3

O1 4 x4 y4

... ... ... ...
O2 5 x5 y5

O2 6 x6 y6

O2 7 x7 y7

... ... ... ...
O3 4 x5 y5

O3 5 x8 y8

O3 6 x9 y9

... ... ... ...

Oid gid ts tf
O1 H1 1 10
O1 L 20 30
O1 H1 100 140
O2 H2 5 20
O2 L 25 40
O2 E 50 80
O2 H2 120 140
O3 H2 4 10
O3 E 10 40
O3 H2 60 140

Fig. 1 Running example (left), its moving object fact table (center), and its compressed
fact table (right)

1.1 Contributions and Paper Organization

A common framework integrating moving object, spatial and non-spatial data
can be a powerful tool for the tasks mentioned above. We first present an
overview of the conceptual model and query language (supporting aggrega-
tion) that integrates GIS and non-spatial data (stored in a data warehouse)
in a unified framework (Section 2). Full details of this model are given in [8]
and [7]. We also give a geometric definition of stops and moves, and show that
they are computable from the raw trajectory data. At the basis of the query
language is a multi-sorted first-order language Lmo for moving object and
GIS data in which one can specify properties of moving objects, geometric
elements of GIS layers and non-spatial GIS data stored in a data warehouse
(Section 3). This language was first introduced by the authors in an extended
abstract [9]1. Here we provide a more detailed presentation. We then discuss
the advantages of computing a concise table from the raw trajectory data, us-
ing stops and moves (Section 4). Section 5 introduces smRE, a sub-language
of Lmo that allows us to talk about temporally ordered sequences of stops and
moves. The syntax of this language is given in the form of regular expressions.
We show that this language considerably extends the language proposed by
Mouza and Rigaux [18], and can be used to efficiently express data mining
and pattern matching tasks over trajectory data. Section 6 presents a pre-
liminary implementation, and the use of smRE for data mining, through a
case study based on real-world data.

1 A technical report is available [10]
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1.2 Related Work

The field of moving objects databases has been extensively studied in the
last ten years, especially regarding data modeling an indexing. Güting and
Schneider [12] provide a good reference to this large corpus of work. Wolfson
et al stated a set of capabilities that a moving object database must have, and
introduced the DOMINO system, that develops those features on top of exist-
ing database management systems (DBMS) [25]. Hornsby and Egenhofer [13]
introduced a framework for modeling moving objects, that supports viewing
objects at different granularities, depending on the sampling time interval.
For mining trajectories in road networks, Brakatsoulas et al. [2] proposed to
enrich trajectories of moving objects with information about the relation-
ships between trajectories (e.g., intersect, meets), and between a trajectory
and the GIS environment (stay within, bypass, leave). They also propose a
mining language denoted SML (for Spatial Mining Language). This language
is oriented to traffic networks, and it is not clear how it could be extended
to other scenarios. Moreover, all information on moving objects must be pro-
cessed (on the contrary, we use semantic information to reduce, if possible,
the amount of data to be considered). Also in the framework of road traffic
mining, Gonzalez et al. [11] use a partitioning approach for obtaining interest-
ing driving and speed patterns from large sets of traffic data. They compute
frequent path-segments at the area level with a support relative to the traffic
in the area (i.e., a kind of adaptative support), and propose an algorithm to
automatically partition a road network and build a hierarchy of areas. The
work of Lee et al. [16] is aimed at discovering common sub-trajectories, using
a partitioning strategy which divides a trajectory into a set of line segments,
and then groups similar line segments together into a cluster.

Techniques that add semantic information to trajectory data have been re-
cently proposed. Giannotti et al. [6] study trajectory pattern mining, based
on so-called Temporally Annotated Sequences (T AS), an extension of se-
quential patterns, where there is a temporal annotation between two nodes.
In this way, s1, 2, s2 defines a pattern that starts at s1 and after 2 seconds
arrives at s2. In other words, a trajectory pattern is a set of trajectories that
visit the same sequence of places with similar travel times between each of
them. They also propose three different mining methods. They also intro-
duce the concept of Region of Interest (RoI). Although with similar goals,
our work clearly differs from [6] in several ways. We work with stops and
moves instead of pre-defined regions of interest. This allows to identify which
of the RoIs are really relevant to a trajectory. We also use these stops and
moves to “encode” or compress a trajectory, which, in many practical sit-
uations is enough to identify interesting sequences very efficiently. A basic
difference is also that, in, [6], the authors focus on computing the RoIs dy-
namically from the trajectories. On the contrary, in our approach, the user
defines the places of interest of an application in advance, and from them
we compute the stops and moves to perform trajectory mining. Finally, our
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approach allows integration between trajectories and background geographic
data, an issue mentioned albeit not addressed in [6].

Mouza and Rigaux [18] presented a model where trajectories are repre-
sented by a sequence of moves. They propose a query language based on reg-
ular expressions, aimed at obtaining so-called mobility patterns. Note that
this language, as well as the proposals commented above, does not relate tra-
jectories with the GIS environment, which limits the types of queries that can
be addressed. With a similar idea, Damiani et al. [3] introduced the concept
of stops and moves, in order to enrich trajectories with semantically anno-
tated data. Alvares et al. [1] presented a framework for trajectory analysis
based on stops and moves. In this paper we will show how these ideas can be
effectively implemented and used.

The problem of trajectory similarity in moving object databases is a new
topic in the spatio-temporal database literature. Existing work focuses on
the spatial notion of similarity, sometimes borrowing from the time-series
analysis field. This is the approach followed by Pelekis et al. [22] introduced
a framework consisting of a set of distance operators based on parameters of
trajectories like speed and direction, and propose distance operators based
on this. Frentzos et al. [5] proposed an approximation method for supporting
the k-most-similar-trajectory search using R-tree structures. We will present
a different approach, based on association rule mining, in Section 6.

Data aggregation is still quite an open field, either in GIS or in a moving
objects scenario. Meratnia and de By [17] study trajectory aggregation by
identifying similar trajectories and merging them in a single one, and dividing
the area under study into homogeneous spatial units. Papadias et al [20]
index historical aggregate information about moving objects. Our approach
for spatial aggregation is described in [8] and its implementation discussed
in [4]2. Kuijpers and Vaisman [15] presented a taxonomy of aggregate queries
on moving object data. The model and query language we present here covers
the different types of aggregation queries in this taxonomy.

2 Preliminaries and Background

Spatial data in a GIS are organized in thematic layers, containing informa-
tion on geometric objects. For instance, one layer may contain rivers, another
one road networks, etc. Although these geometric objects could be annotated
with numerical and/or textual data, given the size of the data involved, and
that aggregation will be relevant in our discussion, we will assume (although
this is not a limitation of our model) that non-spatial data is stored in a data
warehouse. Typically, in a data warehouse, numerical data are stored in fact
tables built along several dimensions. For instance, if we are interested in the

2 An implementation of the system (called Piet) can be found at
http://piet.exp.dc.uba.ar/piet
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Fig. 2 A GIS dimension schema (left) and A GIS dimension instance (right)

sales of certain products in stores in a given region, we may consider the sales
amounts in a fact table over the three dimensions store, time and product. In
general dimensions are organized into aggregation hierarchies. Thus, stores
can aggregate over cities which in turn can aggregate into regions and coun-
tries. Each of these aggregation levels can also hold descriptive attributes
like city population, the area of a region, etc. On-line Analytical Process-
ing (OLAP) provides tools for exploiting the data warehouse, for instance,
through roll-up and drill-down operations [14].

A GIS dimension [4] consists of a set of graphs, each one describing geome-
tries (polygons, polylines, points) in a thematic layer. Figure 2 (left) depicts
the schema of a GIS dimension: the bottom level of each hierarchy, denoted
the Algebraic part, contains the infinite points in a layer, and could be de-
scribed by means of linear algebraic equalities and inequalities [21]. Above
this part there is the Geometric part, that stores the identifiers of the geo-
metric elements of GIS and is used to solve the geometric part of a query
(i.e., find the polylines in a river representation). Each point in the Algebraic
part may correspond to one or more elements in the Geometric part. Thus,
at the GIS dimension instance level we will have rollup relations (denoted
rgeom1→geom2
L ). These relations map, for example, points in the Algebraic

part, to geometry identifiers in the Geometric part in the layer L. For ex-
ample, rpoint→Pg

Lprovince
(x, y, pg1) means that point (x, y) corresponds to a polygon

identified by pg1 in the Geometric part, in the layer representing provinces
(note that a point may correspond to more than one polygon, or to polylines
that intersect with each other). Finally, there is the OLAP part of the GIS
dimension. This part contains the conventional OLAP structures. The levels
in the geometric part are associated to the OLAP part via a function, de-
noted αdimLevel→geom

L,D . For instance, αriverId→gr

Lr,Rivers associates information about
a river in the OLAP part (riverId), to the identifier of a polyline (gr) in a
layer containing rivers (Lr) in the Geometric part.
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Example 1. Figure 2 (left) shows the schema of a GIS dimension, where we
have defined three layers, for rivers, cities, and provinces, respectively. The
schema is composed of three graphs; the graph for rivers contains edges saying
that a point (x, y) in the algebraic part relates to a line identifier in the
geometric part, and that in the same portion of the dimension, this line
corresponds to a polyline identifier.

In the OLAP part we have information given by two dimensions, repre-
senting districts and rivers, associated to the corresponding graphs, as the
figure shows. For example, a river identifier at the bottom level of the Rivers
dimension representing rivers in the OLAP part, is mapped to the polyline
level in the geometric part in the graph of the rivers layer Lr.

Figure 2 (right) shows a portion of a GIS dimension instance of the rivers
layer Lr in the dimension schema on the left. Here, an instance of a GIS di-
mension in the OLAP part is associated to the polyline pl1, which corresponds
to the Seine river. For simplicity we only show four different points at the
point level {(x1, y1), . . . , (x4, y4)}. There is a relation rpoint→line

Lr
containing

the association of points to lines in the line level, and a relation rline→polyline
Lr

,
between the line and polyline levels, in the same layer. !"

Elements in the geometric part can be associated with facts, each fact
being quantified by one or more measures, not necessarily a numeric value.
The OLAP part may contain not only fact tables quantifying geometric di-
mensions, but also classical OLAP fact tables defined in terms of the OLAP
dimension schemas.

Moving objects are integrated in the framework above, using a distin-
guished fact table denoted Moving Object Fact Table (MOFT).

Let us first say what a trajectory is. In practice, trajectories are available
by a finite sample of (ti, xi, yi) points, obtained by observation.

Definition 1 (Trajectory). A trajectory is a list of time-space points 〈(t0,
x0, y0), (t1, x1, y1), ..., (tN , xN , yN )〉,
where ti, xi, yi ∈ R for i = 0, ..., N and t0 < t1 < · · · < tN . We call the
interval [t0, tN ] the time domain of the trajectory. !"

For the sake of finite representability, we may assume that the time-space
points (ti, xi, yi), have rational coordinates.

A moving object fact table (MOFT for short, see the table in the right
hand side of Figure 1), contains a finite number of identified trajectories.

Definition 2 (Moving Object Fact Table). Given a finite set T of trajec-
tories, a Moving Object Fact Table (MOFT) for T is a relation with schema
< Oid, T, X, Y >, where Oid is the identifier of the moving object, T rep-
resents time instants, and X and Y represent the spatial coordinates of the
objects. An instance M of the above schema contains a finite number of tu-
ples of the form (Oid, t, x, y), that represent the position (x, y) of the object
Oid at instant t, for the trajectories in T . !"
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RC1
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RC4

Fig. 3 An example of a trajectory with two stops and three moves.

We now define what the stops and moves of a trajectory are. In a GIS
scenario, this definition is dependent on the particular places of interest in
a particular application. For instance, in a tourist application, places of in-
terest may be hotels, museums and churches. In a traffic application, places
of interest may be road segments, road junctions and traffic lights. First, we
define the notion of “places of interest of an application”.

Definition 3. [Places of Interest] A place of interest (PoI) C is a tuple
(RC ,∆C), where RC is a (topologically closed) polygon, polyline or point
in R2 and ∆C is a strictly positive real number. The set RC is called the
geometry of C and ∆C is called its minimum duration. The places of inter-
est of an application PA is a finite collection of PoIs with mutually disjoint
geometries. !"

Definition 4. [Stops and moves of a trajectory] Let T = 〈(t0, x0, y0), (t1,
x1, y1), ..., (tn, xn, yn)〉 be a trajectory. Also, PA = {C1 = (RC1 ,∆C1), ...,
CN = (RCN , ∆CN )}.

A stop of T with respect to PA is a maximal contiguous subtrajectory
〈(ti, xi, yi), (ti+1, xi+1, yi+1), ..., (ti+!, xi+!, yi+!)〉 of T such that for some k ∈
{1, ..., N} the following holds: (a) (xi+j , yi+j) ∈ RCk for j = 0, 1, ..., #; (b)
ti+! − ti > ∆Ck .

A move of T with respect to P is: (a) a maximal contiguous subtrajectory of
T in between two temporally consecutive stops of T ; (b) a maximal contiguous
subtrajectory of T in between the starting point of T and the first stop of T ;
(c) a maximal contiguous subtrajectory of T in between the last stop of T
and ending point of T ; (d) the trajectory T itself, if T has no stops. !"

Figure 3 illustrates these concepts. In this example, there are four places of
interest with geometries RC1 , RC2 , RC3 and RC4 . The trajectory T is depicted
here by linearly interpolating between its sample points, to indicate their
order. Let us imagine that T is run through from left to right. If the three
sample points in RC1 are temporally far enough apart (longer than ∆C1),
they form a stop. Imagine that further on, only the two sample points in RC4
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are temporally far enough apart to form a stop. Then we have two stops in
this example and three moves.

We remark that our definition of stops and moves of a trajectory is ar-
bitrary and can be modified in many ways. For example, if we would work
with linear interpolation of trajectory samples, rather than with samples, we
see in Figure 3, that the trajectory briefly leaves RC1 (not in a sample point,
but in the interpolation). We could incorporate a tolerance for this kind of
small exits from PoIs in the definition, if we define stops and moves in terms
of continuous trajectories, rather than on terms of samples. Finally, in what
follows we will assume that samples are taken at regular and relatively short
intervals. The following property is straightforward.

Proposition 1. There is an algorithm that returns, for any input (PA, T )
with PA the places of interest of an application, and T a trajectory 〈(t0,
x0, y0), (t1, x1, y1), ..., (tn, xn, yn)〉, the stops of T with respect to PA. This
algorithm works in time O(n · p), where p is the complexity of answering the
point-query [23]. !"

3 Querying Moving Object Data

The model introduced in Section 2 supports a language (in fact, a multi-
sorted first-order logic), that we denote Lmo. We now define Lmo formally.

Definition 5. The first-order query language Lmo has four types of variables:
real variables x, y, t, . . . ; name variables Oid, ...; geometric identifier variables
gid, ... and dimension level variables a, b, c, ..., (which are also used for dimen-
sion level attributes). Besides (existential and universal) quantification over
all these variables, and the usual logical connectives ∧,∨,¬, ..., we consider
the following functions and relations to build atomic formulas in Lmo:

• for every rollup function in the OLAP part, we have a function symbol
f

Ai→Aj

Dk
, where Ai and Aj are levels in the dimension Dk in the OLAP

part;
• analogously, for every rollup relation in the GIS part, we have a relation

symbol r
Gi→Gj

Lk
, where Gi and Gj are geometries and Lk is a layer;

• for every α relation associating the OLAP and GIS parts in some layer Li,
we have a function symbol α

Ai→Gj

Lk,D!
, where Ai is an OLAP dimension level

and Gj is a geometry, Lk is a layer and D! is a dimension;
• for every dimension level A, and every attribute B of A, there is a function

βA→B
Dk

that maps elements of A to elements of B in dimension Dk;
• we have functions, relations and constants that can be applied to the alpha-

numeric data in the OLAP part (e.g., we have the ∈ relation to say that
an element belongs to a dimension level, we may have < on income values
and the function concat on string values);
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• for every MOFT, we have a 4-ary relation Mi;
• we have arithmetic operations + and ×, the constants 0 and 1, and the

relation < for real numbers.
• finally, we assume the equality relation for all types of variables.

If needed, we may also assume other constants. !"

Different types of aggregation can be added to the language. The list below,
although not complete, covers the most interesting and usual cases (see [15]
for an extensive list of examples of moving object aggregation queries).

• The Count operator applied to sets of the form {Oid | φ(Oid)}, where
moving objects identifiers satisfying some Lmo-definable property φ are
collected;

• the Count operator applied to sets of the form {(Oid, t) | φ(Oid, t)},
where moving objects identifiers combined with time moments, satisfying
some Lmo-definable property φ, are collected (assuming that this set is
finite; otherwise the count is undefined);

• the Count operator applied to sets of the form {(Oid, t, x, y) | φ(Oid, t, x, y)},
where moving objects id’s combined with time and space coordinates, sat-
isfying some Lmo-definable property φ, are collected (assuming that this
set is finite);

• the Area operator applied to sets of the form {(x, y) ∈ R2 | φ(x, y)},
which define some Lmo-definable part of the plane R2 (assuming that this
set is linear and bounded);

• the Count, Max and Min operators applied to sets of the form {t ∈ R |
φ(t)}, when the Lmo-definable condition φ defines a finite set of time in-
stants and the TimeSpan operator when φ defines an infinite, but bounded
set of time instants (the semantics of Count, Max and Min is clear and
TimeSpan returns the difference between the maximal and minimal mo-
ments in the set);

• the Max-l, Min-l, Avg-l and TimeSpan-l operators applied to sets of
the form {(ts, tf ) ∈ R2 | φ(ts, tf )}, which represents an Lmo-definable
set of time intervals. The meaning of these operators is respectively the
maximum, minimum and average lengths of the intervals if there is a finite
number of intervals and the timespan of the union of these intervals in the
last case;

• the Area operator applied to sets of the form {gid | φ(gid)}, where iden-
tifiers of elements of some geometry (in the geometric part of our data
model), satisfying an Lmo-definable φ are collected. The meaning of this
operator is the total area covered by the geometric elements corresponding
to the identifiers.

Definition 5 describes the syntax of Lmo. The interpretation of all variables,
functions, relation, and constants is standard, as well as that of the logical
connectives and quantifiers. We do not define the semantics formally but
illustrate it through an elaborated example.



Querying and Mining Trajectory Databases Using Places of Interest 11

Example 2. Let us consider the query “Total number of buses running in
the morning in the Paris districts with a monthly income of less than
C 1500,00.” We use the MOFT M (Figure 1, center), that contains the

moving objects samples. For clarity, we will denote the geometry polygons
Pg, polylines Pl and point Pt. We use distr to denote the level district in
the OLAP part of the dimension schema. The GIS layer which contains dis-
trict information is called Ld. We assume that the layers to which a function
refers are implicit by the function’s name. For instance, in αdistr→Pg

Ld,Distr (n) = pg,
the district variable n is mapped to the polygon with variable name pg in
the layer Ld. The query returning the region with the required income is
expressed:

{(x, y) | ∃n∃g1(rPt→Pg
Ld

(x, y, g1) ∧ αdistr→Pg
Ld,Distr (n) = g1 ∧

βdistr→income
Distr (n) < 1.500)}

Here, rPt→Pg
Ld

(x, y, g1) relates (x,y)-points to polygons in the district layer;
the function αdistr→Pg

Ld,Distr (n) = g1 maps the district identifier n in the OLAP
part to the geometry identifier g1; and βdistr→income

Distr (n) maps the district
identifier n to the value of the income attribute which is then compared
through the OLAP relation < with an OLAP constant 1, 500.

The instants corresponding to the morning hours mentioned in the fact
table are obtained through the rollup functions in the Time dimension. We
assume there is a category denoted timeOfDay in the Time dimension, and a
roll up to that level from the category hour (i.e., hour → timeOfDay).
The aggregation of the values in the fact table corresponding only to
morning hours is computed with the following expression: Mmorning =
{(Oid, t, x, y) | fhour→timeOfDay

Time (t) = “Morning” ∧ M(Oid, t, x, y)}. In this
formula “Morning” appears as a constant in the OLAP part. Finally, the
query we discuss reads:

Count{(Oid) | (∃x) (∃y) (∃g1) (∃n) (Mmorning(Oid, t, x, y) ∧
rPt→Pg
Ld

(x, y, g1) ∧ αdistr→Pg
Ld,Distr (n) = g1 ∧ βdistr→income

Distr (n) < 1, 500)}.

!"

Proposition 2. Moving object queries expressible in Lmo are computable.
The proposed aggregation operators are also computable. !"

Proof. (Sketch) The semantics of Lmo is straightforward apart from the
subexpressions that involve +, × and < on real numbers and quantification
over real numbers. These subexpressions belong to the formalism of constraint
databases and they can be evaluated by quantifier elimination techniques [21].
The restrictions we imposed on the applicability of the aggregation operators
make sure that they can be effectively evaluated. In particular, the area of
a set {(x, y) ∈ R2 | φ(x, y)} is computable when this set is semi-linear and
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bounded, and can be obtained by triangulating such linear sets and adding
the areas of the triangles. !"

4 The Stops and Moves Fact Table

Let the places of interest of an application be given. In this section, we de-
scribe how we go from MOFTs to application-dependent compressed MOFTs,
where (Oid, ti, xi, yi) tuples are replaced by (Oid, gid, ts, tf ) tuples. In the lat-
ter, Oid is a moving object identifier, gid is the identifier of the geometry of
a place of interest and ts and tf are two time moments that encode the time
interval [ts, tf ] of a stop. The idea is to replace the MOFT (containing the
raw trajectories), by a stops MOFT that represents the same trajectory more
concisely by listing its stops and the time intervals spent in them.

In practice, the MOFTs can contain huge amounts of data. For in-
stance, suppose a GPS takes observations of daily movements of one thou-
sand people, every ten seconds, during one month. This gives a MOFT of
1000×360×24×30 = 259, 200, 000 records. In this scenario, querying trajec-
tory data may become extremely expensive. Note that a MOFT only provides
the position of objects at a given instant. Sometimes we are not interested
in such level of detail, but we look for more aggregated information instead.
For example, we may want to know how many people go from a hotel to a
museum on weekdays. Or, we can even want to perform data mining tasks
like inferring trajectory patterns that are hidden in the MOFT. These tasks
require semantic information, not present in the MOFT. In the best case, ob-
taining this information from that table will be expensive, because it would
imply a join between this table and the spatial data. As a solution, we pro-
pose to use the notion of stops and moves in order to obtain a more concise
MOFT, that can represent the trajectory in terms of places of interest, char-
acterized as stops. This table cannot replace the whole information provided
by the MOFT, but allows to quickly obtain information of interest without
accessing the complete data set. In this sense, this concise MOFT, which we
will denote SM-MOFT behaves like a summarized materialized view of the
MOFT. The SM-MOFT will contain the object identifier, the identifier of the
geometries representing the Stops, and the interval [ts, tf ] of the stop dura-
tion. Notice that we do not need to store the information about the moves,
which remains implicit, because we know that between two stops there could
only be a move. Also, if a trajectory passes through a PoI, but remains there
an insufficient amount of time for considering the place a trajectory stop, the
stop is not recorded in the SM-MOFT. The case study we will present in
Section 6 will show the practical implications of these issues.

Definition 6 (SM-MOFT). Let PA = {C1 = (RC1 , ∆C1), ..., CN =
(RCN ,∆CN )} be the PoIs of an application, and let M be a MOFT. The SM-
MOFT Msm of M with respect to PA consists of the tuples (Oid, gid, ts, tf )
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such that (a) Oid is the identifier of a trajectory in M 3; (b) gid is the identi-
fier of the geometry of a PoI Ck = (RCk , ∆Ck) of PA such that the trajectory
with identifier Oid in M has a stop in this PoI during the time interval [ts, tf ].
This interval is called the stop interval of this stop. !"

The table in Figure 1 (right) shows the SM-MOFT for our running exam-
ple. Proposition 3 below, states that SM-MOFTs can be defined in Lmo.

Proposition 3. There is an Lmo formula φsm(Oid, gid, ts, tf ) that defines
the SM-MOFT Msm of M with respect to PA. !"

We omit the proof of this property but remark that the use of the formula
φsm(Oid, gid, ts, tf ) allows us to speak about stops and moves of trajectories in
Lmo. We can therefore add predicates to define stops and moves of trajectories
as syntactic sugar to Lmo.

5 A Query Language for Stops and Moves

We will sketch a query language based on path regular expressions, along the
lines proposed by Mouza and Rigaux [18]. However, our language (denoted
smRE ) goes far beyond, taking advantage of the integration between GIS,
OLAP and moving objects provided by our model. Moreover, queries that
do not require access to the MOFT can be evaluated very efficiently, making
use of the SM-MOFT. In this section we show through examples, that smRE
can be used to query for trajectory patterns, and that smRE turns out to be
a subset of Lmo.

We will assume that there is a different dimension for each type of
(application-dependant) place of interest in the OLAP part of the model.
For instance, there will be a dimension for hotels, with bottom level hotelId,
or a dimension for restaurants, with bottom level restaurantId. Aggregation
levels can be defined as required. There will also be a layer in the Geomet-
ric part of the GIS dimension, that could be designed in different ways. For
simplicity, we consider that all places of interest with the same geometry will
be stored together, meaning that, for example, there will be a layer (i.e., a
hierarchy graph) for polygons representing hotels, and/or one hierarchy for
lines representing street segments. There are also the functions introduced in
Section 2. For example, αhotelId→Pg

Lp,Hotel maps a hotel identifier to a polygon rep-
resenting it, in a layer for polygonal PoIs (Lp). All identifiers of PoIs in Msm

are members of some dimension level in the OLAP part, and are mapped to
a geometry through the function α. We will also need some operators on time
intervals. We say that an interval I1 = [t1, t2] strictly precedes I2 = [t3, t4],

3 We could also use a trajectory identifier other than the object’s id, if we want to analyze
several trajectories of an object in different days. We use this approach in Section 6.
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denoted I1 ! I2, if t1 < t2 < t3 < t4. Note that all stop intervals I1, I2 of the
same trajectory are such that either I1 ! I2 or I2 ! I1.

The idea is based on the construction (described in Definition 7), of a
graph representing the stops and moves of a single trajectory.

Definition 7 (SM-Graph). Let us consider a trajectory sample T of mov-
ing objects, the PoIs of an application PA = {C1 = (RC1 , ∆C1), ..., CN =
(RCN ,∆CN )}, a MOFT M, and its SM-MOFT Msm with respect to A.
Also, for clarity but w.l.o.g., consider that all the tuples in Msm are ordered
according to their stop interval attributes, that is, if t1 and t2 are two consec-
utive tuples in Msm, t1.I ! t2.I, where I represents the time interval in the
tuple (i.e., [ts, tf ]). An SM-Graph for Msm, denoted G(Msm), is a graph
constructed as follows:

1. For each gid ∈
∏

Gid
(Msm) there is a node v in G, denoted v(gid), with a

node number n ∈ N, different for each node.
2. There is an edge m in G between two nodes v1 and v2, for every pair t1, t2

of consecutive tuples in Msm with the same Oid.
3. For each node v ∈ G the extension of v, denoted ext(v) is given by the

identifier of the PoI that represents the node in the OLAP part of the
model.

4. For each node v ∈ G the label of v, denoted label(v) is the name of the
dimension of the PoI in the OLAP Part (i.e., the name of the dimension
D mentioned above).

5. For each node v ∈ G the stop temporal elements of v, denoted STE (v) is
a set of stop intervals {I1, ..., Ik} (technically, a temporal element), such
that there is an interval Ii ∈ STE(v) for each edge incoming to v in G. !"

Note that an object may be at a PoI (long enough for considering this
place a stop in the trajectory) more than once within a trajectory.

Example 3. Figure 4 (left) shows an SM-MOFT for one moving object’s
trajectory. The distinguished term “Now” indicates, as usual in temporal
databases, the current time. We denote Hi, Mi, and Ti, hotels, museums
and tourist attractions, respectively. Figure 4 (right) shows the corresponding
SM-Graph for object O1. As an example, the extension of node 3 is ext(3 ) =
M2 , its label is label(3 ) = Museums, and STE (3 ) = {[80, 100], [410, Now]}.

Figure 5 shows the SM-Graph for the trajectory of object O2 in the
running example of Figure 1. !"

Now we are ready to define our query language based on Stops and Moves.
The language combines the notions of regular expressions and first order
constraints. The SM-Graph G can be seen as an automaton accepting regular
expressions over the places of interest.

Definition 8 (R.E. for Stops and Moves). A regular expression on stops
and moves, denoted smRE is an expression generated by the grammar
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Oid Gid ts tf
O1 H1 0 10
O1 M1 15 30
O1 M2 40 50
O1 M2 60 70
O1 M3 80 100
O1 T1 120 150
O1 T2 180 200
O1 H1 220 240
O1 T2 280 340
O1 M3 410 Now

3

2

6

5

4

1

M2

M3

H1

T2

T1

M1

Fig. 4 An SM-MOFT (left), and its SM-Graph (right)

1

2

3

label(1) = Hotel, extension(1)= H2
STE(1) = {[5,20][120,140]}

label(3) = Turist attraction, extension(3)= E
STE(3) = {[50,80]}

label(2) = Museum, extension(2)= L
STE(2) = {[25,40]}

Fig. 5 The SM-Graph for our running example

E ←− dim | dim[cond] | (E)∗ | (E)+ | E.E | ε |?

where dim ∈ D (a set of dimension names in the OLAP part), ε is the sym-
bol representing the empty expression, “.” means concatenation, and cond
represents a condition that can be expressed in Lmo. The term “?” is a wild-
card meaning “any sequence of any number of dim”. !"

Aggregation is built on top of smRE : for each trajectory T in an SM-
MOFT such that there is a sub-trajectory of T that matches the smRE,
the query returns the Oid of T . Aggregate functions can be applied over this
result. The following examples provide an overview of the language. We begin
with the query “Total number of trajectories from a Hilton hotel to a tourist
attraction, stopping at a museum,” which reads in smRE :

Count(H[name = “Hilton”].?.M.?.T )

As another example, the query “Total number of trajectories that went
from a Hilton hotel to the Louvre, in the morning” is expressed in smRE :

Count(H[name = “Hilton”].?.M [name = “Louvre” ∧
f timeId→TimeOfDay

Time (ts) = “morning”])
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In these queries, the conditions are evaluated over the current nodes (the
node the parser is currently evaluating). For instance, in the latter, if the
parser is at node 1 in Figure 4, the condition name = “Hilton” returns
“true” if ext(1 ).name = “Hilton” and label(1 ) = “Hotel”. Also, ts is a
special variable representing the starting point of the time interval of the
node that is being visited when evaluating the expression. The next query
illustrates the full power of the language. Note that here, the SM-MOFT is
not enough, and we need to go to the geometry. However, for many useful
queries and patterns, much simpler expressions will suffice. The query is:
‘‘Total number of trajectories going from a tourist attraction to a museum in
the 19th district of Paris in the morning,” and in smRE reads:

Count(T.?.M [f timeId→TimeOfDay
Time (I.ts) = “morning” ∧

(∃ gid) (∃ x) (∃ y) (∃ Oid) ∃ (t1) (∃ p) (∃ pg) (∃ d) (M(Oid, t1, x, y) ∧
αmid→Pg

Lp,Museum(p) = gid ∧ rpoint→Pg
Lp

(x, y, gid) ∧ αdistr→Pg
Ld,Distr (d) = pg ∧

pg.number = 19 ∧ fpoint→Pg
Ldist

(x, y) = pg])

The function αmid→Pg
Lp,Museum(p) = gid, maps the id of the PoI (i.e., a museum)

in the extension of the current node (p), to the polygon representing it in
the geographic part (gid). The rollup rpoint→Pg

Lp
(x, y, gid) identifies the x, y

coordinates corresponding to gid. The function αdistr→Pg
Ld,Distr (d) = pg has the

meaning already explained, i.e., it maps a district identifier d in the Distr
dimension to a polygon identifier in layer Ld. The equality fpoint,Pg

Ldist
(x, y) =

pg checks that the point of the trajectory belongs to the 19th district. M is
the MOFT containing the trajectory samples.

Proposition 4. The smRE language is a subset of Lmo. !"

Proof. (Sketch) The proof is built on the property that, for each trajectory
in an SM-MOFT the SM-Graph can be unfolded, and transformed into a
sequence of nodes, given that for all nodes v in the graph, all intervals in
STE (v) are disjoint. This sequence can then be queried using any FO lan-
guage with time variables, like Lmo !"

6 Implementation and Case Study

In this section we present a description of the implementation of our pro-
posal, including the construction of the SM-MOFT, and the details of the
language implementation (based on the formal language explained in Section
5). Finally, we discuss the use of the smRE language for data mining tasks.
Each description is presented along with experimental results using a case
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Fig. 6 PoIs and two trajectories

study based on data obtained from the INFATI Project4. Our intention was
to experiment with real-world data, and at the same time, to work with a
large database. The original data set contained a total of 1.9 million records
of the form (Oid, x, y, t), collected by GPS devices, at intervals of one second.
Since we needed a larger database, we modified and expanded the original
one, until we obtained a MOFT with 30,808,296 tuples, corresponding to
trajectories of 6.276 moving objects. Therefore, we worked with a MOFT
containing a mixture of real-world and synthetic data.

Since the original data set did not include places of interest, we created
them in order to complete the experimental evaluation. We worked with the
following kinds of PoIs: restaurants, coffee shops, hotels and two tourist at-
tractions: an aquarium and a zoo. For the minimum duration (see Definition
3), we adopted the following criteria: 15 minutes for coffee shops, 40 minutes
for restaurants and zoos, 45 minutes for hotels and 20 minutes for the aquar-
ium. These PoIs are shown in Figure 6, using the GIS tool we developed5.
We created a total of seventeen PoIs.

We ran our tests on a dedicated IBM 3400x server equipped with a dual-
core Intel-Xeon processor, at a clock speed of 1.66 GHz. The total free RAM
memory was 4.0 Gb, and there was a 250Gb disk drive.

6.1 Computing the SM-MOFT

We first give details of the computation of the SM-MOFT from the MOFT
containing the raw trajectories. We process the MOFT one trajectory at a

4 http://www.cs.aau.dk/ stardas/infati
5 http://piet.exp.dc.uba.ar/piet/index.jsp
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time. A cursor is placed at the first tuple of the trajectory, and only two
points need to be in main memory at the same time. We used the automaton
shown in Figure 7 to detect the sequence of PoIs that can become a stop in
the trajectory. The transitions in this automaton can be either a readPoint()
action, or the empty string λ. There are four states in the automaton: Start-
Trajectory, EndTrajectory, InsidePOI, and OutsidePOI.

StartTrajectory : This is the initial state. If the first point in the trajectory
belongs to a PoI, the transition is to the InsidePOI state (we have recognized
the beginning of a POI). If not, the transition is to the OutsidePOI state.
InsidePOI: This state can be reached from any state, except EndTrajectory.
Different situations must be analyzed:

• The previous states were OutsidePOI or StartTrajectory. In the first case,
the previous point must belong to a move. In the latter, we are at the
start of the trajectory. The current point corresponds to a POI, which is
a candidate to become a stop (we call this a candidate stop). The time
instant of the PoI becomes the initial time of the interval of this potential
stop.

• The previous state was InsidePOI : if two consecutive points (the previous
and the current ones) are both inside the same POI, then the action will
be: read the next input (i.e., move to the next point). Otherwise, we have
reached the boundary of the PoI, and we are entering another one; thus,
before reading the next input, we need to compute the duration of the
interval in order to check if the sub-trajectory inside the PoI was actually
a stop. If we are using trajectory sampling, the timestamp of the previous
point is the ending time of the stop interval. The timestamp of the current
point is used as the starting time of the interval of the new PoI the object
is entering. If we are using linear interpolation, we build a line between
both points and calculate the intersection between this line and the PoI
(and, of course, the corresponding time instant).

OutsidePOI: this intermediate state can be reached from any state, except
EndTrajectory. Again, different situations must be analyzed:

• The previous states were OutsidePOI or StartTrajectory. In the first case,
the previous point must belong to a move. In the latter we are at the start
of the trajectory. The algorithm reads the next input point.

• The previous state was InsidePOI : the automaton has detected that the
object has left a candidate stop, and proceeds as explained above, com-
puting the duration of the candidate stop to define if the object is still
within a move, or if it has found a stop.

EndTrajectory: The last state, when the cursor has consumed all the tuples
in the MOFT.

To give an idea of practical results, in our case study, starting from a
MOFT containing 30,808,296 tuples, we obtained an SM-MOFT with 105,684
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tuples (i.e., 0.343% of the original size). The process of generating the SM-
MOFT took 1 hour and 6 minutes.

Fig. 7 Automata for Stops & Moves calculation

6.2 Implementing the smRE Language

We describe now the implementation of the smRE language, which is based
on the formal language of Section 56.

The PoIs are stored as OLAP dimensions. Thus, we can place conditions
over attributes in such dimensions. For example, if we have defined a dimen-
sion for restaurants and characterized them by prices and types of food, we
can ask for an specific restaurant (e.g., name or ID) or for Italian restaurants,
i.e., we can work at different aggregation levels. We may also place conditions
over the instants when a stop in a trajectory is reached. An XML document
stores all the attributes that characterize a dimension. We have defined a set
of reserved words to be used in the conditions over a stop. These words are:
(a) ts: represents the beginning of the time interval associated to a stop; (b)
ts date: represents the date part of ts; (c) ts time: represents the time part
of ts; (d) tf , tf date, tf time are analogous to the previous ones, but for the
end of the interval associated to a stop; (e) t , t date, t time are analogous to
the previous ones, but for an instant within the interval associated to a stop.

For the data warehouse representing PoIs we have adopted the well-known
star schema. The MOFT and the SM-MOFT are factless fact tables [14] con-
taining a time dimension. We worked with two separated dimensions for time:
date and time, which is usual in practice. This decision was taken because
populating a time dimension with members spanning one year and granular-
ity up to the second would require 604,800 tuples. Splitting this dimension
into date and time (the latter storing each second of a day), we only need

6 A demo can be found at http://piet.exp.dc.uba.ar/moving
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366 tuples for the date dimension and 86.400 for the time dimension. The
hierarchy of levels for the date dimension is: date → day → month → quarter
→ year. For the time dimension we have: time→second → minute→ hour →
range. The range level will have the members: “Midnight”, “Early Morning”,
“Morning”, “Afternoon”, “Evening” and “Night”. Finally, the schemas of the
tables are: M(Oid, t date, t time, x, y) and Msm(Oid, Gid, ts date, ts time,
tf date, tf time). The language works, by default, with the SM-MOFT table
(see below). For the function f (the rollup functions in the OLAP part of
the model) we use the term rup(x ), where x is the member whose rollup r
computes. We do not need to specify the dimension, which is implicit since
all conditions are applied locally at the node being visited.

We will illustrate the implemented language through examples. We will
use a different font to indicate that we are referring to the actual implemen-
tation. We will work with the PoIs H (hotel), R (restaurant), C (coffee shop),
and Z(zoo). The corresponding dimensions have the attributes: ID (in all di-
mensions); type of food and price for restaurants; and price for coffee shops.

Q1: Trajectories that begin at the “Hilton” hotel, stop at an Italian restaurant
and finish at a cheap coffee shop.

H[name="Hilton"].R[food="Italian"].C[price="cheap"]

Q2: Trajectories that begin at the ”Sheraton”, stop at an Italian restaurant
(during the first quarter of 2002), and finish at a cheap coffee shop, leaving
the latter in the afternoon.

H[name="Sheraton"].
R[food="Italian" and rup(ts_date)="2002.Q2"].
C[price="cheap" and rup(tf_time)="Afternoon"]

Q3: Trajectories of the following form: (a) there is a stop at the ”Hilton”,
and then at an Italian restaurant; this sequence occurs at least one time, and
may be repeated any number of consecutive times; (b) after this sequence, the
trajectories may include visits to other places, and finish at the Zoo.

(H[name="Hilton"].R[food="Italian"])+.?.Z[ ]

Q4:Trajectories that visited the ”Hilton” and stayed in it during the after-
noon.

H[name="Hilton" and rup(t_time)="Afternoon"]

All queries, except Q4 use the Msm table. While Q1 uses only attributes
associated to dimensions, Q2 includes rollup functions for ts date and tf time
(using the date and time dimensions, respectively). Q3 shows the use of a
repetitive group. Q4 needs to access the original MOFT, instead the SM-
MOFT, because it asks for an instant t between ts time and tf time. Notice
that the query could not be solved just using ts time and tf time, because
both of them may rollup to mornings of different days, and time instants
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in between may rollup to “Midnight”, “Early Morning”, or any other possi-
ble range. Our implementation detects this need, and proceeds in the best
possible way, accessing the original MOFT only when needed.

For solving path expressions we implemented the SM-Graph, explained
in Section 5. First, we build the automaton for the regular expression. The
algorithm takes advantage of the order in the temporal elements associated
to the nodes, and unfolds the graph, reproducing the sequences of stops in
the trajectory. This unfolded graph is the input to be processed by the au-
tomaton. A query is solved at most in two steps.

Step 1. If the query does not include a rollup function, we can solve it in
just one step. We match the regular expression to the SM-Graph. Thus, for
each Oid we obtain the sub-trajectories that match the query. Consider the
query:

R[price="cheap"].?.Zoo[ts_date="20/09/200?"]

We obtain the following matches for Oid= 100:
R[ID="Paris" and price="cheap" and
ts_date="18/09/2000" and ts_time="12:00:05" and
tf_date="18/09/2000" and tf_time="14:04:20"].
Zoo[ID="Central" and ts_date="20/09/2000" and ts_time="12:30:00" and
tf_date="20/09/2000" and tf_time="13:45:04"]

R[ID="Paris" and price="cheap" and
ts_date="16/08/2001" and ts_time="23:15:05" and
tf_date="17/08/2001" and tf_time="01:00:10"].
C[ID="Best" and ts_date="17/08/2001" and ts_time="01:10:00" and
tf_date="17/08/2001" and tf_time="02:00:03"].
Zoo[ID="Central" and ts_date="20/09/2001" and ts_time="11:20:00" and
tf_date="20/09/2001" and tf_time="13:00:00"]

The first sub-trajectory shows that there exists a direct path between a
cheap restaurant and the zoo:

Cheap Paris Restaurant[18/09/2000 12:00:05,18/09/2000 14:04:20]
Central Zoo[20/09/2000 12:30:00,20/09/2000 13:45:04]

In the second sub-trajectory there is a path between a cheap restaurant
and the zoo with a coffee shop as intermediate stop.

Cheap Paris Restaurant [16/08/2001 23:15:05,17/08/2001 01:00:10]
Best coffee [17/08/2001 01:10:00,17/08/2001 02:00:03]
Central Zoo [20/09/2001 11:20:00,20/09/2001 13:00:00]

If the query includes the reserved word “t” (instead of “ts” or “tf”), the al-
gorithm must perform an extra verification. For example, if in the query above
we replace the term Zoo[ts date="20/09/200?"] by Zoo[t date="20/09/200?"],
once the interval [ts date ts time, tf date tf time] was computed, the algo-
rithm will check if this interval includes t date.

Step 2.
Step 2.1. If the query includes a rollup function, once the sub-trajectories in
Step 1 are obtained, an MDX7 query is performed to solve the rollup part.
7 MDX is a standard language adopted by most OLAP tools
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Our implementation uses Mondrian8 as the OLAP server. Let us consider the
query:

R[price="cheap"].?.Zoo[rup(ts_time)="Morning"]

Here, before the rollup function could be computed, step 2.1. must ob-
tain the candidate values for ts date matching the regular expression (for
the dimension Zoo). Then, the algorithm executes the MDX query to find
which of the following expressions are true: rup(“12:30:00”) = “Morning”,
and rup(“11:20:00”) = “Morning” (note that in our example, only the latter
verifies the rollup).

Step 2.2. If the query involves a rollup of the reserved word “t”, we have
already explained that the algorithm uses M (instead of Msm). Let us say,
for example, that we replace Zoo[rup(ts time) = "Morning"] in the query
shown in Step 2.1, by Zoo[rup(t time)="Morning"]. We need to find out
if there exists a sample point that rolls up to “Morning”, because it may
happen that even though ts time rolls up to “Afternoon” and tf time rolls
up to “Night”, these situations may occur in different days, and in this case,
there exists an instant in the interval rolling up to “Morning”.

Finally, we remark that our implementation also supports aggregation, as
explained in Section 5. For example:

Count(R[price="cheap"].?.Zoo[t date="20/09/2001"] )

6.3 Using smRE for Data Mining

There are many practical situations in which we are interested in finding
which are the trajectories in the database that verify the same sequence of
stops. In these cases, we do not need to check if these trajectories are similar in
the usual time-series sense, but in a more semantically-oriented way. Further,
we may be interested in different kinds of similarity, with respect to certain
patterns. For example, two trajectories that would not be similar under any
usual metric, may contain the pattern H.R.?.C (see above). For certain kinds
of analysis, this may suffice for considering both trajectories similar.

We propose a two-step method for discovering trajectory patterns. The
first one consists in finding association rules using places of interest, with
a certain support and confidence, in order to reduce the number of combi-
nations of places of interest that must be checked. Then, we use smRE to
analyze the sequences followed by the moving objects and analyze trajectory
patterns. Then, we can either calculate the support of a certain pattern (us-
ing the aggregate function Count, or check which are the trajectories that
follow the pattern.

8 http://mondrian.sourceforge.net/
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ID POI ts tf

101 3 26/10/2001 11:00:03 26/10/2001 12:00:03
101 9 26/10/2001 14:10:00 26/10/2001 15:02:05
101 3 26/10/2001 23:30:00 27/10/2001 02:00:01
101 2 27/10/2001 09:22:00 ...

Fig. 8 The SM-MOFT table for the case study

Association Rules for Stops and Moves. We use the Apriori algorithm
[24] for finding association rules involving stops in trajectories, taking advan-
tage of the information stored in the SM-MOFT. We first need to define what
a transaction means in this scenario. In the case of a Market Basket Analysis,
for instance, a transaction is clearly determined by the items bought together
at the same moment by the consumer. On the contrary, moving objects have
a semi-infinite trajectory and there is no clear notion of what a transaction
is. In our case study we have considered that a transaction is a sequence of
trajectory stops occurred during the same day. Other criteria could be used,
for example, a transaction could be defined as all stops occurred between 6:00
AM on one day and 5:59 AM of the following day. Then, each trajectory of
a moving object could be thought as a sequence of sub-trajectories (trans-
actions, in the association rule sense), each one corresponding to a different
day. Figure 8 shows a fragment of the SM-MOFT produced from the raw
trajectory database. We used an implementation of the Apriori algorithm
included in the Weka framework9. The input to this algorithm is a record
containing the whole trajectory of an object in each observed day. Figure 9
depicts the form of this table, specifically prepared for discovering association
rules at the finest granularity level. The names of the attributes reflect PoI
identifiers instead of dimension names. For example, “H G”, “R C”, “C A”,
denote particular hotels, restaurants and coffee shops, respectively, while “A”
denotes the aquarium. Since we are also interested in multilevel association
rules, i.e., rules with itemsets of different granularity, we also need a table
where the attributes (items) are the dimension levels instead of the identifiers
of the PoIs. We used the following classification attributes: price for coffee
shops, number of stars for hotels, and type of food for restaurants. For the
experiments with the Apriori algorithm we generated the daily transactions
of the 6,276 moving objects. The execution time for this process was 10 sec-
onds and 29,268 transactions were produced. We required a minimal support
and confidence of 25% and 70%, respectively. Finally, the only rule produced,
working at the finest granularity level, was:

C L, H F ⇒ Z
Using higher levels of aggregation (i.e., rules where items are of coarser

granularity), new rules may be discovered. Applying the Apriori algorithm

9 http://www.cs.waikato.ac.nz/ml/weka/
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ID Date Z H G R C C A A ...

101 26/10/2001 ? TRUE ? ? TRUE ...
101 27/10/2001 ? TRUE ? ? ? ...
101 31/10/2001 TRUE ? ? ? TRUE ...
... ... ... ... ... ... ... ...

Fig. 9 Input transactions for Apriori algorithm

we obtained the following rules (the last two columns on the right indicate
support and confidence, respectively):

Hotel 5st, Zoo ⇒ Exp Cof 29.54 99.79
Zoo ⇒ Exp Cof 33.03 99.63
Hotel 5st ⇒ Exp Cof 35.80 99.57
Exp Cof, Zoo ⇒ Hotel 5st 29.54 89.75
Zoo ⇒ Hotel 5st 29.60 89.30
Zoo ⇒ Exp Cof, Hotel 5st 29.54 89.12
Exp Cof, Hotel 5st ⇒ Zoo 29.54 82.51
Hotel 5st ⇒ Zoo 29.60 82.33
Hotel 5st ⇒ Exp Cof, Zoo 29.54 82.16
Aquarium ⇒ Cheap Cof 26.23 71.28

Note that these rules do not account for the temporal order in which these
sequences of stops occurred. For that, we need sequential pattern analysis,
as we explain next. As a final comment, the rules we showed above were pro-
duced in a total time of 5 seconds. This fact remarks the need of computing
the SM-MOFT before the mining process.

Sequential Patterns for Trajectories. We now show how the smRE lan-
guage introduced in this paper can be used to find trajectory patterns that
also account for the temporal order in which the PoIs are visited in a trajec-
tory. For this analysis, we will use the rules discovered in the previous section.
Let us begin with the rule:

Aquarium ⇒ Cheap Coffee
Two possible orders exist, expressed by the smRE queries:

Q1= Count (aquarium[ ].?.coffee[price=“cheap”] )
Q2= Count( coffee[price=“cheap”].?.aquarium[ ] )

From a total of 29,268 transactions, the expression Q1 was verified by
6,966 trajectories. This gives a support of 23.80%. Q2 was verified by 4,287
trajectories, with a support of 14.65%. This suggests that the pattern “people
stop at coffee shops after visiting the aquarium” is the strongest of the two.
Let us now analyze the rule:

Coffee Exp, Hotel 5star ⇒ Zoo

The possible combinations, expressed by the following smRE queries, are:
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Q1=Count(coffee[price=“expensive”].?.hotel[star=“5”].?.zoo[])
Q2=Count(coffee[price=“expensive”].?.zoo[].?.hotel[star=“5”])
Q3=Count(hotel[star=“5”].?.coffee[price=“expensive”].?.zoo[])
Q4=Count(hotel[star=“5”].?.zoo[].?.coffee[price=“expensive”])
Q5=Count(zoo[].?.coffee[price=“expensive”].?.hotel[star=“5”])
Q6=Count(zoo[].?.hotel[star=“5”].?.coffee[price=“expensive”])

The following table summarizes the results, which shows that strongest
pattern here the one expressed by query Q1.

Query # of trajectories support (%)
Q1 8088 27.63
Q2 5427 18.54
Q3 6 0.02
Q4 7662 26.18
Q5 9 0.03
Q6 5391 18.42

For query evaluation we used the SM-Graph explained in Section 5, with
a slight variation: instead of producing a graph for each moving object, we
generated a graph for each transaction. Thus, we generated 29,268 graphs,
each one corresponding to a transaction (i.e., a daily trajectory of a moving
object). The six smRE queries were run 5 times. We report the minimum,
average and maximum execution times for each query.

Query Min (sec) Max (sec) Avg (sec)
Q1 151.76 154.91 153.48
Q2 152.09 156.05 153.78
Q3 152.87 154.19 153.48
Q4 151.48 154.64 153.19
Q5 151.97 154.39 153.47
Q6 151.19 154.33 152.74

7 Future Work

The framework we presented in this paper supports a seamless integration of
spatial, non-spatial, and moving object data. We are currently in the process
of including the implementation described in Section 6 into the Piet frame-
work [4]. The smRE language is a promising tool for mining trajectory data,
specifically in the context of sequential patterns mining with constraints, and
we will continue working in this direction.

We believe that many research directions open from the work presented
here. For example, along the same research line presented in the paper, we
are now working on extending well-known sequential patterns algorithms, in
order to compare these algorithms against the two-step process presented
in this paper. Further, efficient automatic extraction of patterns using the
smRE language could be explored. This means that, instead of writing the
query expression, we would like to generate the ones with a given minimum
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support. Relationships between objects (like the distance changes between
them during a certain period of time) can also be studied, as well as situations
where the positions of the PoIs are not fixed. Updates to the MOFT and the
SM-MOFTs must be studied, not only for the changes in trajectory data (i.e.,
new objects or trajectories), but also under changes in the PoIs.
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