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Abstract. Space-time prisms capture all possible spatio-temporal loca-
tions of a moving object between sample points given speed limit con-
straints on its movement. These sample points are usually considered to
be perfect measurements. In this paper we restrict ourselves to a road
network and extend the notion of sample points to sample regions, which
are bounded, sometimes disconnected, subsets of space-time wherein each
point is a possible location, with its respective probability, where a mov-
ing object could have originated from or arrived in. This model allows us
to model measurement errors, multiple possible simultaneous locations
and even flexibility of a moving object.
We develop an algorithm that computes the envelope of all space-time
prisms that have an anchor in these sample regions and we developed an
algorithm that computes for any spatio-temporal point the probability
with which a space-time prism, with anchors in these sample regions,
contains that point. We implemented these algorithms in Mathematica
to visualise all these newly-introduced concepts.

1 Introduction

One of the dominant ideas underlying the activity-based modelling approach
to travel forecasting is that while interacting and performing activities, indi-
viduals are faced with the inseparability and scarce nature of space and time.
Individual movement implies a trade-off between these resources and is condi-
tioned by the various constraints and opportunities offered by the urban, phys-
ical and institutional context in which individuals are embedded [22, 13]. These
ideas were already recognised as early as the late 1950s in the seminal work by
Hägerstrand [4, 3] and became known as time geography. A key concept of time
geography is the space-time prism which captures potential human movement
between two discrete space-time points, also often referred to as anchor points.
Classical space time prisms assume a uniform travel velocity in an isotropic
and homogenous space. Therefore, they tend to overestimate individual travel
possibilities, given that individuals are usually confined to transportation net-
works with link-specific travel velocities. Hence, they have merely conceptual
value but are inadequate for analytically solving problems concerning the ex-
tent of individual access. A number of scholars have addressed this issue and
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proposed geo-computational algorithms to implement space-time prisms within
networks relying on shortest path calculations [11, 28, 10, 9], isochrones [17, 15],
and velocity fields [14].

These network-based implementations of space-time prisms assume that the
spatio-temporal coordinates of the anchor points are exactly known and strictly
fixed in space as well as in time. In reality, however, this is typically not the case
as uncertainty may arise from different sources related to the purpose-specific
ways in which anchor points of space-time prisms are commonly defined or mea-
sured. Firstly, in research on individual space-time accessibility, it has become
common practice to define anchor points as the start and end points of fixed
activities and to derive these retrospectively from activity and travel diary data
[24, 8]. As noted by Rietveld [20] and Witlox [26], the accuracy of reported de-
parture and arrival points is affected by rounding and geocoding imprecision
which might bias the assessment of individual accessibility. Secondly, individual
movement can be recorded by means of discrete time stamped anchor points
obtained with high resolution using location aware technologies (LATs) [6] such
as the global positioning system (GPS) and radio-location methods [12]. The
use of such devices implies both measurement and sampling errors. While sam-
pling errors relate to the observation frequency with which the anchor points are
recorded, measurement errors result from the inaccuracy inherent to the tracking
technique used. In the case of GPS, measurement errors are often modelled as a
bivariate normal distribution in the (x, y)-plane [19]. Thirdly and perhaps most
problematic for representing an individual’s travel possibilities is the uncertainty
on the part of the individuals themselves. When making scheduling decisions,
individuals have to reckon with the uncertain performance of the transportation
system and the possibly uncertain duration and location of their future space-
time requirements [7]. Finally, as argued by Schwanen [21], considering anchor
points as temporally fixed is questionable as arriving on time at a meeting ap-
pointment is often conceived of as a range of acceptable arrival times rather than
a single clock time.

Despite the variety of sources from which uncertainty in anchor points may
arise, until now the main focus has been directed towards the management of
uncertainty in moving object databases (MOD) [27, 23, 18] and the effects of
uncertain travel times due to systematically recurring congestion or unreliable
transportation systems [5, 2]. The equally important question as to what extent
uncertain anchor points might influence the possibilities for travel and activity
participation, however, has received only scant attention in literature on in-
dividual space-time accessibility analysis. This issue pertains to the degree of
flexibility of the temporal boundaries of activities. Notable exceptions include
Hendricks [7] and Neutens [16], both relying on classical time geography and
consequently assuming an isotropic and homogenous travel environment.

This paper presents a formal framework to model space-time prisms on road
networks with uncertainty about the anchor points. Although uncertainty falls
apart in different subcategories (e.g., inaccuracy, incompleteness, inconsistency,
imprecision, vagueness), we will concentrate only those forms of spatio-temporal
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uncertainty that can be modelled by two independent probability functions, for
space and time respectively. The approach presented allows gaining sound insight
in the travel and meeting possibilities of individuals facing uncertain space-time
commitments. Anchor points of space-time prisms will be represented by a finite
set of possible outcomes to which a degree of uncertainty is assigned. Road
networks will be represented by a graph embedding in R2 that is comprised
of edges and vertices labelled with law-imposed speed limits. This paper has a
dual aim. Firstly, we will provide and implement an algorithm to compute and
visualise space-time prisms on road networks when uncertainty distributions
are assigned to the anchor points. Our algorithm computes and visualises the
fraction of space-time prisms from these uncertain anchor regions that cover
that point. The spatial projection of the network-based space-time prisms under
uncertainty is derived as well. Secondly, we will illustrate the usefulness of the
implemented algorithm in assessing the implications of uncertain anchor points
on the opportunities for individual and joint activity participation.

The remainder of the paper is organised as follows. In Section 2, we start
with defining space-time prisms, trajectories, road networks, and trajectories
and space-time prisms on road networks. Section 3 then introduces the notion of
sample regions and corresponding uncertain space-time prisms. In this section we
also present an algorithm to compute and visualise this envelope of an uncertain
space-time prism. Section 4 introduces the algorithm to compute the fraction of
the uncertain prism that covers a given spatio-temporal point and the probability
of that fraction. Moreover, we implemented this in Mathematica to visualise
uncertain space-time prisms and the probability in each spatio-temporal point
of this prism. In Section 5 we illustrate some immediate applications of our
results. Finally, we conclude with the major findings and outline the avenues for
future research.

2 Preliminaries

In this section, we outline some basic definitions of the tools we will be using.
As we do not introduce new results for the general setting, we restrict ourselves
to a road network.

Definition 1. Let R denote the set of real numbers. A road network RN is
a graph embedding in R2 of a labelled graph given by a finite set of vertices
V = {(xi, yi) ∈ R2 | i = 1, . . . , N} and a set of edges E ⊆ V ×V that are labelled
by a speed limit and an associated time span. This graph embedding satisfies
the following conditions. Edges are embedded as straight line segments between
vertices.4 If an edge between (xi, yi) and (xj , yj) is labeled by the speed limit

vij > 0, then its time span wij is

√
(xi−xj)2+(yi−yj)2

vij
, i.e., it is the time needed

to get from one side of an edge to another when travelling at the speed limit. ⊓⊔
4 These edge embeddings may intersect in non-vertex points. So, we can model bridges

and tunnels in our model.
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So, we have RN = {(x, y) = (1 − λ)(xi, yi) + λ(xj , yj) | λ ∈ [0, 1] and ((xi,
yi), (xj , yj)) ∈ E} ∪ V.
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Fig. 1. A trajectory in space-time and its projection on the road network.

A trajectory can be anything continuous, be it a polyline or something more
differentiable. We assume trajectories are recorded as a discrete list of time-
stamped locations, called sample points, and that nothing is known about an
object’s position between those sample points other than an upper bound on its
speed. Moreover, we assume all our trajectories to be part of the road network.

Definition 2. First we define trajectories and then their restriction to a road
network.

– Let I ⊆ R be an interval. A trajectory T is the graph of a mapping α : I →
R2 : t 7→ α(t) = (αx(t), αy(t)), i.e., T = {(t, αx(t), αy(t)) ∈ R × R2 | t ∈ I}.
We call I the time domain of T .

– A trajectory sample is a finite set S = {(t0, x0, y0), (t1, x1, y1), ..., (tN , xN ,
yN )} of time-space points. The order on time, t0 < t1 < · · · < tN , induces a
natural order on the sample.

– If T is a trajectory given by the functions αx and αy, then it must satisfy
(αx(t), αy(t)) ∈ RN for all t in the time domain of T and for a trajectory
sample S = {(t0, x0, y0), (t1, x1, y1), ..., (tN , xN , yN)} we must have (xi, yi) ∈
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RN for all i = 0, . . . , N . A trajectory (sample) on a road network RN is
a trajectory (sample) whose spatial projection is in RN, as illustrated in
Figure 1.

⊓⊔

Figure 1 shows a road network and a trajectory, as well as a sample, on top of
it.

We now define space-time prisms. In the traditional sense, a space-time prism
is the union of all trajectories from one point to another that are constraint
by a speed limit. A space-time prism for an object moving in the real plane,
unconstrained in its movement, is defined as follows [4, 12, 1].

Definition 3. Let p = (xp, yp), q = (xq , yq) ∈ R2. The set of points (t, x, y) in
the space-time prism with origin (tp, p), destination (tq, q) and maximal speed
vmax > 0 satisfy the constraints







(x − xp)
2 + (y − yp)

2 ≤ (t − tp)
2v2

max

(x − xq)
2 + (y − yq)

2 ≤ (tq − t)2v2
max

tp ≤ t ≤ tq

This space-time prism is visualised in Figure 2 and denoted by PR
2

(tp, xp, yp, tq,
xq, yq, vmax). ⊓⊔

(tq, xq, yq)

(tp, xp, yp) (tp, xp, yp)

(tq, xq, yq)

x

t

y

Fig. 2. An example of a space-time prism P
R

2

(tp, xp, yp, tq, xq, yq, vmax).

As a side note, a chain of space-time prisms between a list of sample points
is called a lifeline necklace [1], see Figure 3.

We adapted these space-time prisms to road networks with either uniform
speed limits over the entire network or speed limits that may vary per edge, and
for bi- or unidirectional edges. A space-time prism for an object moving on a
road network is not the intersection of a cylinder on top of a road network and
the unconstrained space-time prism.
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Fig. 3. A trajectory sample and a lifeline necklace.

To define space-time prisms on a road network, we need to define an appro-
priate distance function on the network. This distance measure that we use is
derived from the shortest path-distance used in graph theory [25].

Definition 4. Let RN be a road network, p, q ∈ RN and let Vpq be the set of
vertices V ∪ {p, q} and let Epq equal the set of edges obtained from E by adding
p and q to the vertex set. The road network time between p and q, denoted by
dRN(p, q), is the shortest-path distance5 between p and q in the graph (Vpq , Epq),
with respect to the time-span labelling of the edges.

A path from p to q whose length, with respect to the time-span labelling of
the edges, equals dRN(p, q) is called a fastest path from p to q. ⊓⊔

Note that the road network time between p and q in the above definition has
minimal total weight and equals the shortest time span in which you can reach
q from p. The metric that we describe takes two points from a road network and
returns the shortest time needed to get from one to the other when travelling at
the allowed maximal speed at each segment.

A space-time prism on a road network is the geometric location in R×RN ⊂
R×R2 of all points a moving object could have visited when travelling, restricted
to RN, from an origin p to a destination q with in a time-frame ranging from tp to
tq, respecting the speed limits on the edges of RN. We define this more formally.
Given a road network RN, points p, q and u on RN, and time moments tp and
tq for p and q, we write t−u to abbreviate tp + dRN(p, u) and t+u to abbreviate
tq − dRN(u, q).

Definition 5. Let RN be a road network, let p, q ∈ RN. The space-time prism
on the road network between (tp, p) and (tq, q), with respect to the speed limits of

5 We mean the single-pair shortest-path distance that is commonly used in graph the-
ory and that can be computed efficiently by the well known Dijkstra’s algorithm [25].
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RN is denoted by PRN(tp, p, tq, q) and is defined as the set of (t, u) tuples, where
u ∈ R2 for which







u ∈ RN,
dRN(p, u) + dRN(u, q) ≤ (tq − tp),
t−u ≤ t ≤ t+u .

The space-time prism on the road network between (tp, p) and (tq, q), with respect
to a general maximal speed vmax is the space-time prism on RN after relabelling
all edges of RN with speed limit vmax. ⊓⊔

Fig. 4. A road network space-time prism and its projection on the road network.

Figure 4 illustrates what these space-time prisms on road networks look like.
Figure 4 was generated using our own Mathematica implementation, which is
available at [?].

In the remainder of the paper we will restrict ourselves to the road network
setting.
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3 From uncertainty on sample points to sample regions

and uncertain space-time prisms

In the preliminaries, the sample points were considered perfect data and repre-
sented by space-time points. In real life however, a lot of sources introduce errors
on sample points. Measurement errors, for one, are introduced when measuring
locations using GPS, for example. When a human is asked to keep track of its
locations and time spent there, errors get easily introduced, e.g., “I left work be-
tween 5 and 5:30pm”. Therefore, we extend the concept of certain sample points
to sample regions.

3.1 uncertain sample points

In this section, we expand our model to the use of sample regions to supersede the
notion of sample points. For simplicity, we will start by defining a sample region
on a line segment and later expand this definition to road networks. Another
simplification in our model is that time and space are considered independent
from each other. This ensures that our sample regions are box-shaped in space-
time and that our model behaves in a polygonal fashion. We coin this rectangle
a sample region.

Moreover, in this sample region some subsets can be more likely than others.
This can be described using probability functions. We refer to Figure 5 for a
conceptual representation of this model.

Definition 6. A sample region on a segment is a bounded subset of space-time of
all possible locations of a sample point. Let p = (xp, yp), q = (xq, yq) ∈ R2 be the
spatial borders and t−pq, t

+
pq ∈ R, where t−pq ≤ t+pq, the temporal borders of the re-

gion, meaning the region is bounded by the polygon 〈(t−pq , xp, yp), (t
+
pq , xp, yp), (t

+
pq,

xq, yq), (t
−
pq , xq, yq)〉. We encode this region by the 6-tuple Spq = (p, q, t−pq, t

+
pq, µpq,

χpq), where χpq : R → R+ and µpq : [t−pq, t
+
pq] → R+ are independent probability

functions and χpq : λ 7→ χpq(λ) where χpq is a probability function on the line
(x, y) = (1 − λ)p + λq. ⊓⊔

Note that in the definition above we do not demand that χpq is restricted to
[0, 1]. The reason for this is that on a road network RN we will stitch a finite
number of these previously defined sample regions together and we want these
probability functions to integrate to one on all these regions combined.

Definition 7. A sample region S on a road network RN is a bounded subset of
space-time of all possible locations of a sample point on RN. In particular, it is
a finite set of sample regions on segments as defined in Definition 6, S = ∪iSi

where i = 1, . . . , n and each Si is a sample region on a segment. Moreover, all
the Si are disjoint and integrating all the spatial probability functions over all
the spatial component of these sample regions adds up to one. ⊓⊔

This is illustrated in Figure 5. An uncertain trajectory sample is then a finite
list of sample regions and constitutes a new definition of trajectory samples.
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Fig. 5. An example of a sample region.

Remark 1. – Note that we are not demanding that the regions stitch nicely
together in time. This allows us to model locations that are accessible at
discrete intervals in time. For example, shopping malls that are not open 24
hours a day.

– Secondly, we do not demand that they are continuous in space either. This,
in turn, allows us to model several probable departure and arrival locations,
and, as we will soon elaborate on, calculate a relative likelihood for each
region.

3.2 uncertain space-time prisms

The next step is to adapt the space-time prism model to these sample regions.
This can be done in a straightforward manner as described in the next definition.

Definition 8. Let RN be a road network and Sb and Se sample regions on RN.
An uncertain space-time prism between the sample regions Sb and Se is the
union of all space-time prisms with starting point in Sb and ending point in Se.
An additional constraint is that there needs to exist a space-time prism from
every point in Sb that has an endpoint in Se and vice versa. ⊓⊔

When every point in a sample region is equally probable then the distribution
function for time and space is a uniform distribution. To model those points
that are more probable around the center of a sample region than at the edges,
a normal distribution can be used.

3.3 Computing the envelope of the uncertain prism

In this section we introduce an algorithm that computes the uncertain space-
time prism, which envelopes the union of all space-time prisms that connect a
point from the starting sample regions to a point in the ending sample regions.
This algorithm is a slight adaptation of earlier work [9] where also the proofs of

9



the correctness of this algorithm can be found. We consider each edge separately
and it suffices that we compute, for both vertices of that edge, the earliest arrival
times and latest departure times.

The following observations will simplify the computations significantly. For
each edge, where we are constructing the uncertain prism, we cycle through all
the edges of the starting sample region. For each such edge we note that the
fastest path has to pass over one of the nodes of that edge. Moreover, a path
from the interior of such an edge is longer than a path that departs from at least
one of the nodes. So the earliest time you can reach a node is the minimum of
the road network distances to that node from all nodes of the departure sample
region at the earliest time of that region. Likewise, the latest departure times at
each node will equal the maximum of all road network distances to all nodes of
the arrival sample region at the latest time of that region.

The algorithm looks much like the one we presented in [9] . The major dif-
ference is the pre-computation part of the algorithm. In the first step we use an
adapted breadth-first search to pre-select the vertices that can be part of the
space-time prism and ignore the rest. In the second step we compute the earliest
arrival and latest departure times for each vertex. This computation is not suf-
ficient for the edges that support sample regions, since these computations that
do not take the points in the interior into account.

PRECOMP: input= (V, E, Sb, Se);
output= (RN

′, {(t−u , t+u ) | u ∈ RN
′}, VP , EP)

Step 1. In this step we add vertices to the network and select those nodes and
vertices that can actually support the prism.

– For all Sb,i, Se,j , say such a region is spatially bounded by p, q ∈ R2. If p is a
vertex then do nothing, else let r, s ∈ R2 be the vertices that bound the edge
[r, s] that contains p. Remove that edge from the network, add the vertex p
to the network and add the edges [r, p] and [p, s] to the network. Repeat the
same procedure for q.

– The second part of this step consists of an adapted breadth-first search al-
gorithm where we keep looking for and storing vertices and edges until their
road network distance to any Sb,i or Se,j is larger than the maximal differ-
ence in time between any pair (Sb,i, Se,j). Let tmax = maxi,j{t+e,j−t−b,i | Sb,i =

(pb,i, qb,i, t
−

b,i, t
+
b,i, µb,i, χb,i) and Se,j = (pe,j , qe,j , t

−

e,j , t
+
e,j , µe,j , χe,j)}. The fol-

lowing steps need to be repeated for all {r | ∃i : Sb,i = (p, q, t−, t+, µ, χ) or ∃j :
Se,j = (p, q, t−, t+, µ, χ) and r = p or r = q}.
Initialise a queue with the node r and distance 0. Add r to the road network
RN

′. Repeat the following steps until the queue is empty.
1. Remove the top element from the queue, which is a vertex s and a

distance ts.
2. For all the edges [p, s] connected to s that are not handled yet do the

following:
• Add the vertex p and the edge [p, s] to RN

′ and mark the edge [p, s]
as handled.
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• If ts + dRN(s, p) ≤ tmax then add the vertex p and the distance
ts + dRN(s, p) to the queue.

Step 2. In this step we compute the earliest arrival time and latest departure
time in each vertex, with respect to all the sample regions where we can leave
from and all regions where we can arrive in.

Let Vb = {(r, t−) | ∃i : Sb,i = (p, q, t−, t+, µ, χ) and r = p or r = q} and
Ve = {(r, t+) | ∃j : Se,j = (p, q, t−, t+, µ, χ) and r = p or r = q}.

Now we cycle through all the pairs (r, t−) contained in Vb and apply a single-
source shortest path algorithm (e.g., Dijkstra’s algorithm) for each r on the
graph RN

′. For each vertex u in RN
′ we store its smallest road network time

from r, i.e., the arrival time t−u = t− +dRN(r, u). For the first node r we initialise
the nodes u with that arrival time, for all other nodes r we set the arrival time
t−u to t−u = min{t−u , t− + dRN(r, u)}.

Again, we cycle through all the pairs (r, t+) contained in Ve and apply a
single-source shortest path algorithm (e.g., Dijkstra’s algorithm) for each r on
the graph RN

′. For each vertex u in RN
′ we store its largest road network time

from r, i.e., the arrival time t+u = t+−dRN(r, u). For the first node r we initialise
the nodes u with that arrival time, for all other nodes r we set the arrival time
t+u to t+u = max{t+u , t+ − dRN(r, u)}.

When we make our last pass for the last element of Ve, we store each vertex
u for which t−u ≤ t+u in the set VP . In the set EP we store all edges that connect
to at least one vertex in VP .

The next step is to construct the polygons that constitute the space-time
prism. This step is identical to the algorithm 3D-space-time prism described
in [9]. Since we already provided a correctness proof in that same paper we
will omit to repeat this here. The only difference is that we need to correct the
polygons for the sample regions since our computations neglected the internal
points of the sample region. An example of this is illustrated in Figure 6.

We can correct this by adding an extra, easy to compute, triangular polygon
for each sample region. For each starting region Sb,i = (p, q, t−, t+, µ, χ) we add

the polygon 〈(p, t−), (q, t−), (p+q

2 , dRN(p,q)
2 )〉 as illustrated in Figure 6 on the right.

Likewise, for each ending region Se,j = (p, q, t−, t+, µ, χ) we add the polygon

〈(p, t+), (q, t+), (p+q

2 ,− dRN(p,q)
2 )〉.

3D-space-time prism: input= (RN
′, {(t−u , t+u } | u ∈ RN

′}, VP , EP);
output= drawing of PRN(tp, p, tq, q,).

For each edge (r, s), with r = (xr, yr) and s = (xs, ys), in EB, we do the following
for r and s. There are several possible cases one needs to consider and they are
illustrated in Figure 7 and Figure 8.

– These are Cases 1 and 2, illustrated in Figure 7: If wrs ≤ (t+r −t−r )
2 , then

draw the polygon 〈(t0, x0, y0), (t
+
r , xr, yr), (t

−
r , xr, yr), (t0, x0, y0)〉 where t0 =

11
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Fig. 6. The omitted part of a sample region.

t−r +t+r
2 and

(x0, y0) = (xr, yr) +
(t+r − t−r )

2
vrs

(xs − xr, ys − yr)

drs

.

Otherwise, draw the polygon 〈(t1, xs, ys), (t
+
r , xr , yr), (t

−
r , xr , yr), (t0, xs, ys), (t1,

xs, ys)〉 where t0 = t−r + wrs and t1 = t+r − wrs.

– This is Case 3, illustrated in Figure 8 in the left most figure: In this case one
is able to reach s from r before one has to leave s again. In other words, t+s ≥
t−r +wrs. In which case the polygon 〈(t−r , xr, yr), (t1, xr, yr), (t

+
s , xs, ys), (t0, xs, ys)〉

is drawn where t0 = t−r + wrs and t1 = t+s − wrs.

Cases 1, 2 and 3 combined gives us the two right most figures of Figure 8.

– Repeat the previous steps with the indices r and s interchanged.

The result of this pre-computation algorithm, together with the 3D-space-

time prism-algorithm is shown in Figure 9. Note that unlike in Figure 4, where
a prism starts and ends in a single point, this prism has a lot of possible locations
to start from and to arrive at.
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Fig. 8. Cases 3, 4 and 5.
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Fig. 9. An envelope of space-time prisms on sample regions.

4 Measuring spatio-temporal uncertainty and flexibility

with respect to sample regions

In this section we take things a step further and introduce the main contribution
of this paper. When we introduced sample regions, we used distributions func-
tions to model the likelihood of every point in the sample region, but we have
yet to exploit those attributes of sample regions.

Let r be any spatio-temporal point inside the envelope of the uncertain space-
time prism. We know that r is covered by at least one space-time prism with a
starting point in the starting region and an ending point in the ending region.
Suppose, and this is the case for most points in the envelope, that there is
an entire subset of the sample regions consisting of points which are anchors
for space-time prisms that contain r. We can then measure,i.e., integrate the
distribution functions over, these subsets by means of the distribution functions
we introduced in Definition 6, and we can choose to

– restrict ourselves to the starting regions,
– restrict ourselves to the ending regions,
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– multiply the two numbers above.

In all three cases we get a number between zero and one, this is per construction
of the sample regions.

In the first case we obtain the likelihood that the anchor of a space-time prism
that contains r is part of the starting regions. In the second case we obtain the
likelihood that the anchor of a space-time prism that contains r is part of the
ending regions. In the third case we obtain the simultaneous likelihood that the
anchor of a space-time prism that contains r is part of the starting and ending
regions. The fraction of the sample regions that have a starting and ending point
of a space-time prism that contains that particular space-time point r.

Definition 9. Let r be a spatio-temporal point on a road network RN and Sb, Se

sample regions on RN.

– The emanating fraction of r with respect to Sb equals the measure, with
respect to the distribution functions of S, of the subsets of S that contain
anchors, with a smaller time coordinate than r of space-time prisms on RN

that contain r.
– The absorbing fraction of r with respect to Se equals the measure, with

respect to the distribution functions of S, of the subsets of S that contain
anchors, with a larger time coordinate than r of space-time prisms on RN

that contain r.
– The fraction of r with respect to travel from Sb to Se equals the product of

(the emanating fraction of r with respect to Sb) with (the absorbing fraction
of r with respect to Se).

⊓⊔

In the following section we show the surprisingly simple, i.e., polygonal, shape
of these subsets. Moreover we provide an algorithm to compute these subsets and
associated fractions as defined in Definition 9.

4.1 Algorithm(s)

The algorithm is based on the following observations, which do not require proof.
Due to the additive nature of integrals, i.e., an integral over a surface equals

the sum of integrals over disjoint subsets that cover the surface, we can treat
each of the rectangular regions in space-time separately and add them together
once the computation is done. A sample region can thus be seen as the sum of
sample regions on straight edges of the road network.

Let r = (tr, xr, yr) be the space-time point for which we wish to compute the
fraction of space-time prisms that contain that point. For each of those separate
rectangular sample regions we can distinguish between two cases. Either there
exists a point s in the spatial part of the sample region for which there exists more
than one fastest path to r, or there does not. If this point exists we simply divide
the rectangular region into two new regions along the temporal line through s.
This operation ensures we are again in the latter case, where there exists no
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two new regions

(ts, xs, ys)(ts, xs, ys)

fastest paths to (tr , xr, yr)

sample region

Fig. 10. A divided sample region.

spatial point, in the interior of the region, for which there exists more than one
fastest path to r. See Figure 10.

The second observation, which we will prove in Theorem 1, states that it
suffices to find all space-time paths that originate in the starting sample region
and end in r, and all space-time paths that originate in r and arrive in the ending
sample region.

Theorem 1. There exists a space-time prism PRN(tp, xp, yp, tq, xq, yq) that con-
tains r if and only if there exists a trajectory from (tp, xp, yp) to (tq, xq, yq) on
RN through r.

Proof. The proof is trivial, the equivalence holds by the very definition of a
space-time prism.

Though the proof is trivial, it holds the key to our algorithm, which is based
on the following two observations. Assume that the interior of the sample region
Sb does not contain a point with more than one path with the same road network
time to r. We will show in the algorithm below how to split the sample regions
to smaller regions that satisfy that condition.

1. First, a fastest path that leads to r and contains the edge contained by Sb

either intersects Sb, goes over Sb, i.e., all its time coordinates are larger than
those of Sb, or under Sb, i.e., all its time coordinates are smaller than those
of Sb. If it goes over Sb, i.e., all its time coordinates are greater than those of
Sb, then all points of Sb clearly have a path to r, since any moving object in
a point in Sb can just wait until its time coordinate equals that of the fastest
path and leave to r following that path. Likewise, if the path goes under Sb,
i.e., all its time coordinates are smaller than those of Sb, then no moving
object departing from Sb is able to reach r in time. If the path intersects
Sb, then all space-time points of Sb with a time coordinate smaller than the
point on the path with the same spatial coordinates have a path that reaches
r in time. This is depicted in the shaded region in Figure 11a.

2. Secondly, a fastest path that emanates from r and contains the edge con-
tained by Se either intersects Se, goes over Se or under Se. If it goes under
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Se, i.e., all its time coordinates are smaller than those of Se, then all points
of Se can be reached from r, since any moving object that departs from r
can reach a point with spatial coordinates in Se and wait until its time co-
ordinate equals that of a point in Se. Likewise, if the path goes over Se, i.e.,
all its time coordinates are greater than those of Se, then no moving object
departing from r is able to reach Se in time. If the path intersects Se, then
all space-time points of Se with a time coordinate greater than the point on
the fastest path with the same spatial coordinates have a path from r that
can be reached in time. This is depicted in the shaded region in Figure 11b.
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Fig. 11. Subsets of sample regions that are possible to connect to a fixed space-time
point.

These observations are necessary and sufficient to compose the algorithm.
Once these areas have been determined we can integrate the distribution func-
tions over them and compute a probability for a specific space-time point. The
nature of these areas allow easy computation of these integrals.

Let r = (tr, xr, yr) be the space-time point for which we wish to compute the
fraction of space-time prisms covering it. Let Sb be the starting sample region
and Se be the ending sample region. Let Sb,i be the restriction of Sb to a single
edge and i be a natural number to count the number sample regions on R that
Sb contains, the definition of Se,i is analogous. The first step in the algorithm
is to compute appropriately sized sample regions. These are regions where each
point in the spatial interior has a unique fastest path to the given space-time
point r.

The following algorithm takes a spatio-temporal point r = (tr, xr, yr) as
input and outputs three numbers : the emanating fraction Sb,r of r with respect
to Sb, the absorbing fraction Se,r of r with respect to Se and the fraction Sr of
r with respect to travel from Sb to Se.

PointProbability: input= (V, E, tr, xr, yr, Sb, Se); output= Sb,r,Se,r,Sr
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Fig. 12. How to split a sample region.

Initialisation. Set Sb,r and Se,r equal to 0.

Step 1. Let Sb,i = (p, q, t−pq, t
+
pq, µpq, χpq) where p = (xp, yp), q = (xq , yq). The

following needs to be repeated for each Sb,i. Let dp = tr − dRN((xr , yr), (xp, yp)),
dq = tr − dRN((xr , yr), (xq , yq)), dpq = dRN((xp, yp), (xq , yq)) and vpq be the
reigning speed limit on the segment that supports Sb,i.

– Case 1: dp ± dpq = dq

• If dp − dpq = dq then interchange the roles of p and q, now we have
dp + dpq = dq.

• If dq ≤ t−pq then do nothing and move on to the next Sb,i. See Figure 13
on the left.

x

t+pq

t−pq

p q

dq

dp

t

dq

dp

xp q

t

t−pq

t+pq

Fig. 13. Case illustration.
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• If dp > t+pq then let replace Sb,r by Sb,r +
∫ 1

0
χpq and move on to the

next Sb,i. See Figure 13 on the right.
• Else If dp ≤ t−pq then let A be the area bounded by the polygon
〈(dp, xp, yp), (dp, xq, yq), (dq, xq, yq)〉 else let A be the area bounded by
the polygon 〈(dp, xp, yp), (t

−
pq , xp, yp), (t

−
pq , xq, yq), (dq, xq, yq)〉. Replace Sb,r

by Sb,r +
∫ ∫

A
µpχp. See Figure 14 on the left for the first polygon, and

on the right for the second polygon.

dq

dp

xp q

t−pq

t+pq

t

xp q

t−pq

t+pq

dq

dp

t

Fig. 14. Case illustration.

Note that although A is likely to exceed the boundary of Sb,i, the integral is
still well defined because µp is zero outside Sb,i.

– Case 2: dp ± dpq 6= dq

If this is the case we have to compute the point on the segment where the two
fastest paths from this segment to r intersect and distinguish three separate
sub-cases. The first is the easiest, when dp, dq ≤ t−pq then this inequality will
also hold for the time-coordinate where the 2 fastest paths from r intersect,
in that case none of the points from Sb,i will be able to reach r in time.

• If dp, dq ≤ t−pq then do nothing and proceed to the next sample region.
See Figure 15 on the left.

If all time coordinates satisfy
dp+dq−dpq

2 , dp, dq > t+pq then all points of Sb,i

will be able to reach r in time. In that case it is pointless to compute inter-
sections and divide the sample region. Hence,

• If
dp+dq−dpq

2 , dp, dq > t+pq then replace Sr by Sr +
∫ 1

0
χpq and proceed

to the next sample region. See Figure 15 on the right.

In the remaining case one of the fastest paths from r intersects Sb,i and
we need to split Sb,i into two regions such that all points in those regions
have a unique fastest path to r. We apply the same strategy as in [9]. As
shown in Figure 12, we merely need to reduce our computations to the two-
dimensional case, compute the x-coordinate of the intersection and multiply
that by an appropriate unit vector. In this case Sb,i will be split at the spatial
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Fig. 15. Case illustration.

point

s = (xs, ys) = (xp, yp) +

(

dp − dq + dpq

2/vpq

)

· (xq − xp, yq − yp)
√

(xq − xp)2 + (yq − yp)2
.

• Else Replace Sb,i by the two new regions S′
b,i and S′′

b,i where

- S′
b,i = (p, s, t−pq, t

+
pq, µpq, χpq ◦ f) where

f(λ) = λ ·
√

(xs − xp)2 + (ys − yp)2

(xq − xp)2 + (yq − yp)2
;

- S′′
b,i = (s, q, t−pq, t

+
pq, µpq, χpq ◦ g) where

g(λ) = λ ·
√

(xq − xs)2 + (yq − ys)2

(xq − xp)2 + (yq − yp)2
+

√

(xs − xp)2 + (ys − yp)2

(xq − xp)2 + (yq − yp)2
;

and store dp in the vertex (xp, yp), dq in the vertex (xq, yq) and
dp+dq−dpq

2
in the vertex (xs, ys) to avoid re-computation in Case 1. Now proceed as
in Case 1 for each of these two new regions.

Step 2. The procedure Se,i is very much like the one outlined in Step 1, except,
as indicated in Figure 11, we need to construct the polygons on the other side of
the fastest path.

Let Se,i = (p, q, t−pq, t
+
pq, µpq, χpq) where p = (xp, yp), q = (xq, yq). The fol-

lowing needs to be repeated for each Se,i. Let dp = tr + dRN((xr , yr), (xp, yp)),
dq = tr + dRN((xr , yr), (xq , yq)), dpq = dRN((xp, yp), (xq , yq)) and vpq be the
reigning speed limit on the segment that supports Se,i.

– Case 1: dp ± dpq = dq
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• If dp − dpq = dq then interchange the roles of p and q, now we have
dp + dpq = dq.

• If dp > t+pq then do nothing and move on to the next Se,i.

• If dq ≤ t−pq then let replace Se,r by Se,r +
∫ 1

0
χpq and move on to the

next Se,i.
• Else If dq > t+pq then let A be the area bounded by the polygon
〈(dp, xp, yp), (dq , xp, yp), (dq , xq, yq)〉 else let A be the area bounded by
the polygon 〈(dp, xp, yp), (t

+
pq , xp, yp), (t

+
pq , xq, yq), (dq, xq, yq)〉. Replace Se,r

by Se,r +
∫ ∫

A
µpχp.

Note that although A is likely to exceed the boundary of Se,i, the integral is
still well defined because either µp is zero outside Se,i.

– Case 2: dp ± dpq 6= dq

If this is the case we have to compute the point on the segment where the two
fastest paths from this segment to r intersect and distinguish three separate
sub-cases. The first is the easiest, when dp, dq ≤ t−pq then this inequality will
also hold for the time-coordinate where the 2 fastest paths from r intersect,
in that case none of the points from Sb,i will be able to reach r in time.

• If dp, dq > t+pq then do nothing and proceed to the next sample region.

If all time coordinates satisfy
dp+dq+dpq

2 , dp, dq ≤ t−pq then any moving point
starting from r will be able to reach all points in Se,i in time. In that case it
is pointless to compute intersections and divide the sample region. Hence,

• If
dp+dq+dpq

2 , dp, dq ≤ t+pq then replace Se,r by Se,r +
∫ 1

0 χpq and proceed
to the next sample region.

In the remaining case one of the fastest paths from r intersects Se,i and
we need to split Se,i into two regions such that all points in those regions
have a unique fastest path to r. We apply the same strategy as in [9]. As
illustrated in Figure 12, we merely need to reduce our computations to the
two-dimensional case, compute the x-coordinate of the intersection and mul-
tiply that by an appropriate unit vector. In this case Se,i will be split at the
spatial point

s = (xs, ys) = (xp, yp) +

(

dq − dp + dpq

2/vpq

)

· (xq − xp, yq − yp)
√

(xq − xp)2 + (yq − yp)2
.

• Else Replace Se,i by the two new regions S′
e,i and S′′

e,i where
- S′

e,i = (p, s, t−pq, t
+
pq, µpq, χpq ◦ f) where

f(λ) = λ ·
√

(xs − xp)2 + (ys − yp)2

(xq − xp)2 + (yq − yp)2
;

- S′′
e,i = (s, q, t−pq, t

+
pq, µpq, χpq ◦ g) where

g(λ) = λ ·
√

(xq − xs)2 + (yq − ys)2

(xq − xp)2 + (yq − yp)2
+

√

(xs − xp)2 + (ys − yp)2

(xq − xp)2 + (yq − yp)2
;
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and store dp in the vertex (xp, yp), dq in the vertex (xq, yq) and
dp+dq−dpq

2
in the vertex (xs, ys) to avoid re-computation in Case 1. Now proceed as
in Case 1 for each of these two new regions.

Output Sb,r, Se,r and Sr = Sb,r · Se,r .

Now that we have an algorithm for an individual point, we can construct
one to visualise this for all points of an uncertain space-time prism envelope.
However, we will not do this for all points, we divide the envelope in smaller
regions, pick a representative point for each region, compute its probability and
assign a suitable colour to that entire region.

The 3D-space-time prism algorithm outputs a set of polygons. Again we
cycle over all the edges of the road network that contain such a polygon. For
each such edge we intersect the polygons with a two-dimensional grid on that
edge, the size of the grid depends on a pre-chosen resolution. The intersection
gives again a set of polygons, where no polygon is larger than the cells of the
grid. For each of those we compute the center of mass which we will feed to our
PointProbability-algorithm. This in turn yields a number, between zero and
one, which we associate with that center of mass and its polygon and use it to
assign an appropriate colour to the polygon.

Fig. 16. A space-time prism with the emanating fraction (left) and absorbing fraction
(right) coloured in shades of red.

We implemented these algorithms in Mathematica as a proof-of-concept. In
Figure 16 on the left we restricted our algorithm to compute the emanating
fraction of each spatio-temporal point. In Figure 16 on the right we restricted
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Fig. 17. A space-time prism with the fraction of each space-time point coloured in
shades of red.

our algorithm to compute the absorbing fraction of each spatio-temporal point.
In Figure 17 our algorithm computed the emanating fraction of each spatio-
temporal point with respect to travel from the originating regions to the desti-
nation region. In all these examples we assumed a uniform distribution on the
sample regions.

5 Applications

In the previous sections we introduced a multitude of new concepts and quan-
tities. Each of those separately and combined can be used in a number of ap-
plications which we outline here. Such applications include error analysis and
measuring uncertainty and flexibility.

5.1 Measuring flexibility

At the end of the previous section we generated a fully coloured prism where all
spatio-temporal points indicated their fraction simultaneously.
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Assume that in a point r the emanating fraction of r with respect to Sb, as
defined in Definition 9, is close to one. This means that we can reach r from most
of Sb. More importantly, this means there exists a path from Sb that reaches the
spatial component of r and allows us to spend a time at this location that equals
almost all of the temporal width of Sb. We illustrate this in Figure 18. The
shaded part of Sb covers almost all of Sb, which means the emanating fraction of
r with respect to Sb is close to one. A fastest path from any point on the bottom
of Sb to the spatial location of r would be parallel in space-time to the fastest
path drawn in Figure 18. Moreover, suppose the temporal height of Sb equals
△t, then any such path to the right of s from the bottom of Sb arrives at least
△t earlier at the spatial location of r, we can thus spend at least △t-time at
the spatial location of r. If we leave from the left of s we have a little less than
△t-time to spend. So, the higher the emanating fraction, the more flexibility we
have to choose when and where to leave from Sb and vice versa.

Likewise, assume that in a point r the absorbing fraction of r with respect
to Se, as defined in Definition 9, is close to one. This means that we can reach
most of Se from r. More importantly, we can spend an amount of time, that
equals almost all of the temporal width of Se, at the spatial component r before
we have to leave again and still be able to reach Se in time.

This gives us a measure of flexibility we have with respect to the starting and
ending regions at each location at each moment in time. A more practical way
is to apply a kind of spatial projection on the road network. If we project, for
each location, the maximum of these fractions in time onto the road network, we
immediately obtain the flexibility we have to reach those locations with respect
to our schedule or probable locations to leave from or arrive at.
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fastest path to r

Fig. 18. Illustration of flexibility.
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5.2 Measurement errors and space-time prisms

A common strategy in error analysis is to model errors on observed values and
analyse how these propagate onto derived values. Using the envelope from Sec-
tion 3.3, we can do two things.

Firstly, since our sample regions are bounded sets by definition, the envelope
is the union of all possible space-time prisms with anchors in the sample regions.

Secondly, as is common in error analysis, we can compute a confidence region
on the spatial and temporal component separately of each region, this is again
a box-shaped region and compute the envelope with that confidence region as a
new sample region. Note that we can not use a simultaneous confidence region
for both space and time since those regions are usually elliptical in nature. This
again returns the union of all space-time prisms with anchors in those confidence
regions.

6 Conclusions and future work

Space-time prisms model uncertainty between sample points, which are usually
considered to be perfect measurements. In this paper we extended the notion of
sample points to sample regions, which are bounded, sometimes disconnected,
subsets of space-time wherein each point is a possible location, with its respective
probability, where a moving object could have originated from or arrived in. This
model allows us to model measurement errors, multiple possible simultaneous
locations and even flexibility of a moving object.

We developed an algorithm that computes the envelope of all space-time
prisms that have an anchor in these sample regions and we developed an algo-
rithm that computes for any spatio-temporal point the probability with which
a space-time prism, with anchors in these sample regions, contains that point.

We left out a complexity consideration. It is straightforward once you have
the number of nodes obtained from the pre-computation, but obtaining that
number however is not so trivial. This would rely on defining suitable heuristics
that relate the width of temporal intervals to the number of possible distinct
edges that can be travelled, which in turn also relies on network density. But
these are all aspects we left out in our simplified model and can be tackled in
future work.

As for scalability, when treating a chain of prisms, i.e., a lifeline necklace, each
prism can be computed separately and completely independent. Our algorithm
is thus very scalable on large trajectory samples.

In the simplest case, when all distributions on space and time are uniform,
the uncertain prism has a lot of symmetry. Further study is needed to exploit
this symmetry and speed up the computation.

In this paper we restricted our sample regions to box shapes, this can easily
be extended to other shapes because the intersection we need to compute remains
the same, i.e., the intersection of one or two half-spaces with the sample region.
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One aspect that has not been studied in this paper is a measure to rank a
space-time point’s probability inside a single prism. Intuitively one can imagine
that points near the edge of the prism are less likely that points on the interior,
however, a suitable likelihood function to express this intuition has not been
found. A logical step is then to figure out a way to combine both measures and
interpret them in a sensible manner.
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Appendix: The Mathematica implementation

ClearAll @"Global` *" D; $MinPrecision = 20;
Needs@"Combinatorica`" D; << Imtek`Polygon`;
$ContextPath; << Imtek`Point`; $ContextPath;
minMaxT@p_D : = Module @8i, tmin, tmax <, tmin = Infinity;

tmax = -Infinity; For @i = 0, i < Length @pD, Module @
8<, If @p@@i DD@@3DD < tmin, tmin = p@@i DD@@3DDD;
If @p@@i DD@@3DD > tmax, tmax = p@@i DD@@3DDD; D,

i ++D; 8tmin, tmax <D;
counterClockWise2DPolygon @pgon2d _D : =

Module @8<, If @Hpgon2d @@2DD@@1DD - pgon2d @@1DD@@1DDL*
Hpgon2d @@3DD@@2DD - pgon2d @@2DD@@2DDL -
Hpgon2d @@2DD@@2DD - pgon2d @@1DD@@2DDL*
Hpgon2d @@3DD@@1DD - pgon2d @@2DD@@1DDL < 0,

Reverse @pgon2d D, pgon2d DD
project @g_, r _, pgon _D : = Module @8j, gon2d <,

gon2d = 8<; For @j = 0, j < Length @pgonD,
Module @8tmp = 8g@@2DD@@r DD@@1DD@@1DD,

g@@2DD@@r DD@@1DD@@2DD, pgon @@j DD@@3DD<<,
gon2d = Append@gon2d, 8Norm@tmp - pgon@@j DDD,

pgon@@j DD@@3DD<DD, j ++D;
counterClockWise2DPolygon @gon2d DD

reconstruct3DPolygon @g_, r _, s _, twoDGon _D : =
Module @8i, ix = g@@2DD@@r DD@@1DD@@1DD,

iy = g@@2DD@@r DD@@1DD@@2DD, jx =

g@@2DD@@sDD@@1DD@@1DD, jy = g@@2DD@@sDD@@1DD@@2DD,
afst = Norm@g@@2DD@@sDD@@1DD - g@@2DD@@r DD@@1DDD,
ijx, ijy, threeDGon <, ijx = Hjx - ix L� afst;

ijy = Hjy - iy L� afst; threeDGon = 8<;
For @i = 0, i < Length @twoDGonD, threeDGon =

Append@threeDGon, 8ix + twoDGon@@i DD@@1DD* ijx,
iy + twoDGon@@i DD@@1DD* ijy,
twoDGon@@i DD@@2DD<D, i ++D; threeDGon D

included @pol1 _, pol2 _D : = Module @8icheck = True, i <, For @
i = 0, Hi < Length @pol1 DL && icheck, icheck = icheck &&

imsPointInPolygonQ @pol1 @@i DD, pol2 D, i ++D; icheck D

intersect @g_, r _, s _, p _, vierkantje_ D : =
Module @8p2d = project @g, r, p D, ins <,

If @included @vierkantje, p2d D, ins = vierkantje,
ins = imsConvexIntersect @8p2d, vierkantje <, 14. DD;

reconstruct3DPolygon @g, r, s, ins DD

colorPol @g_, Sb _, Se _, r _, s _, weight _, pol _D : =
Module @8FSb = 0, FSe = 0, totalSbArea = 0, totalSeArea = 0,

dcr, dcs, center = reconstruct3DPolygon @g, r, s,
8imsCenterOfMass @project @g, r, pol DD<D@@1DD,

i, j <, dcr = Norm@8g@@2DD@@r DD@@1DD@@1DD,
g@@2DD@@r DD@@1DD@@2DD, center @@3DD< - center D*

weight �Norm@g@@2DD@@r DD@@1DD - g@@2DD@@sDD@@1DDD;
dcs = Norm@8g@@2DD@@sDD@@1DD@@1DD,

g@@2DD@@sDD@@1DD@@2DD, center @@3DD< - center D*
weight �Norm@g@@2DD@@r DD@@1DD - g@@2DD@@sDD@@1DDD;
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For @i = 0, i < Length @SbD, totalSbArea =

totalSbArea + imsArea @880, Sb @@i DD@@2DD@@1DD<,
8Norm@g@@2DD@@Sb@@i DD@@1DD@@1DDDD@@1DD -

g@@2DD@@Sb@@i DD@@1DD@@2DDDD@@1DDD,
Sb@@i DD@@2DD@@1DD<,
8Norm@g@@2DD@@Sb@@i DD@@1DD@@1DDDD@@1DD -

g@@2DD@@Sb@@i DD@@1DD@@2DDDD@@1DDD, Sb @@i DD@@
2DD@@2DD<, 80, Sb @@i DD@@2DD@@1DD<<D, i ++D;

For @i = 0, i < Length @SeD, totalSeArea =

totalSeArea + imsArea @880, Se @@i DD@@2DD@@1DD<,
8Norm@g@@2DD@@Se@@i DD@@1DD@@1DDDD@@1DD -

g@@2DD@@Se@@i DD@@1DD@@2DDDD@@1DDD,
Se@@i DD@@2DD@@1DD<,
8Norm@g@@2DD@@Se@@i DD@@1DD@@1DDDD@@1DD -

g@@2DD@@Se@@i DD@@1DD@@2DDDD@@1DDD, Se @@i DD@@
2DD@@2DD<, 80, Se @@i DD@@2DD@@2DD<<D, i ++D;

For @i = 0, i < Length @SbD, Module @
8dp = center @@3DD - Min @Sb@@i DD@@3DD@@2DD@@r DD + dcr,

Sb@@i DD@@3DD@@2DD@@sDD + dcs D,
dq = center @@3DD - Min @Sb@@i DD@@3DD@@3DD@@r DD + dcr,

Sb@@i DD@@3DD@@3DD@@sDD + dcs D,
dpq = Sb@@i DD@@3DD@@1DD, SbPol, split,
SbWidth = Norm@g@@2DD@@Sb@@i DD@@1DD@@1DDDD@@1DD -

g@@2DD@@Sb@@i DD@@1DD@@2DDDD@@1DDD<, split =

Hdp - dq + dpqL*SbWidth �H2 *Sb@@i DD@@3DD@@1DDL;
SbPol = 880, Sb @@i DD@@2DD@@1DD<,
8SbWidth, Sb @@i DD@@2DD@@1DD<, 8SbWidth,

Sb@@i DD@@2DD@@2DD<, 80, Sb @@i DD@@2DD@@2DD<<;
If @Hdp + dpq � dqL ÈÈ Hdp - dpq � dqL,

If @Min @dp, dq D ³ Sb@@i DD@@2DD@@2DD,
FSb = FSb + imsArea @SbPol D� totalSbArea,
If @Min @dp, dq D <= Sb@@i DD@@2DD@@1DD,

FSb = FSb + imsArea @imsConvexIntersect @8SbPol, 880,
Max@dp, dq D<, 80, Min @dp, dq D<, 8SbWidth,
Min @dp, dq D<<<, 14. DD� totalSbArea,

FSb = FSb + imsArea @imsConvexIntersect @

8SbPol, 880, dp <, 80, Sb @@i DD@@2DD@@1DD<,
8SbWidth, Sb @@i DD@@2DD@@1DD<,
8SbWidth, dq <<<, 14. DD� totalSbArea DD,

If @HHdp + dq - dpqL� 2L ³ Sb@@i DD@@2DD@@2DD,
FSb = FSb + imsArea @SbPol D� totalSbArea,
If @HHdp + dq - dpqL� 2L <= Sb@@i DD@@2DD@@1DD,

FSb = FSb + HimsArea @imsConvexIntersect @

8SbPol, 880, dp <, 80, Hdp + dq - dpqL� 2<,
8split, Hdp + dq - dpqL� 2<<<, 14. DD +

imsArea @imsConvexIntersect @8SbPol,
88split, Hdp + dq - dpqL� 2<, 8SbWidth,
Hdp + dq - dpqL� 2<, 8SbWidth,
dq<<<, 14. DDL� totalSbArea,

FSb = FSb + HimsArea @imsConvexIntersect @

8SbPol, 880, dp <, 80, Sb @@i DD@@2DD@@1DD<,
8split, Sb @@i DD@@2DD@@1DD<, 8split,
Hdp + dq - dpqL� 2<<<, 14. DD +

imsArea @imsConvexIntersect @8SbPol,
88split, Hdp + dq - dpqL� 2<, 8split,

Sb@@i DD@@2DD@@1DD<, 8SbWidth,
Sb@@i DD@@2DD@@1DD<, 8SbWidth, dq <<<,

14. DDL� totalSbArea DDDD, i ++D;

29



For @i = 0, i < Length @SeD, Module @
8dp = center @@3DD + Min @Se@@i DD@@3DD@@2DD@@r DD + dcr,

Se@@i DD@@3DD@@2DD@@sDD + dcs D,
dq = center @@3DD + Min @Se@@i DD@@3DD@@3DD@@r DD + dcr,

Se@@i DD@@3DD@@3DD@@sDD + dcs D,
dpq = Se@@i DD@@3DD@@1DD, SePol, split,
SeWidth = Norm@g@@2DD@@Se@@i DD@@1DD@@1DDDD@@1DD -

g@@2DD@@Se@@i DD@@1DD@@2DDDD@@1DDD<, split =

Hdq - dp + dpqL*Norm@g@@2DD@@Se@@i DD@@1DD@@1DDDD@@
1DD - g@@2DD@@Se@@i DD@@1DD@@2DDDD@@1DDD�

H2 *Se@@i DD@@3DD@@1DDL;
SePol = 880, Se @@i DD@@2DD@@1DD<,
8SeWidth, Se @@i DD@@2DD@@1DD<, 8SeWidth,

Se@@i DD@@2DD@@2DD<, 80, Se @@i DD@@2DD@@2DD<<;
If @Hdp + dpq � dqL ÈÈ Hdp - dpq � dqL,

If @Max@dp, dq D <= Se@@i DD@@2DD@@1DD,
FSe = FSe + imsArea @SePol D� totalSeArea,
If @Max@dp, dq D >= Se@@i DD@@2DD@@2DD, FSe =

FSe + imsArea @imsConvexIntersect @8SePol, 880,
Max@dp, dq D<, 80, Min @dp, dq D<, 8SeWidth,
Max@dp, dq D<<<, 14. DD� totalSeArea,

FSe = FSe + imsArea @imsConvexIntersect @

8SePol, 880, Se @@i DD@@2DD@@2DD<, 80, dp <,
8SeWidth, dq <, 8SeWidth, Se @@i DD@@2DD@@

2DD<<<, 14. DD� totalSeArea DD,
If @HHdp + dq + dpqL� 2L <= Se@@i DD@@2DD@@1DD,

FSe = FSe + imsArea @SePol D� totalSeArea,
If @HHdp + dq + dpqL� 2L >= Se@@i DD@@2DD@@2DD,

FSe = FSe + HimsArea @imsConvexIntersect @

8SePol, 880, Hdp + dq + dpqL� 2<, 80, dp <,
8split, Hdp + dq + dpqL� 2<<<, 14. DD +

imsArea @imsConvexIntersect @8SePol,
88split, Hdp + dq + dpqL� 2<, 8SeWidth, dq <,
8SeWidth, Hdp + dq + dpqL� 2<<<,

14. DDL� totalSeArea,
FSe = FSe + HimsArea @imsConvexIntersect @

8SePol, 880, Se @@i DD@@2DD@@2DD<,
80, dp <, 8split, Hdp + dq + dpqL� 2<,
8split, Se @@i DD@@2DD@@2DD<<<, 14. DD +

imsArea @imsConvexIntersect @8SePol,
88split, Se @@i DD@@2DD@@2DD<,
8split, Hdp + dq + dpqL� 2<, 8SeWidth, dq <,
8SeWidth, Se @@i DD@@2DD@@2DD<<<,

14. DDL� totalSeArea DDDD, i ++D;

8pol, FSb, FSe, FSb *FSe<D

computeFragmentedPolygon @g_, Sb _, Se _,

r _, s _, weight _, pgons3d _, resolution_ D : =
Module @8j, k, l, h, m, n, tmin = Infinity,

tmax = -Infinity, fragPol = 8<, coloredPol = 8<<,
For @j = 0, j < Length @pgons3d D, Module @8ttmin, ttmax <,
8ttmin, ttmax < = minMaxT@pgons3d @@j DDD;
If @ttmin < tmin, tmin = ttmin D;
If @ttmax > tmax, tmax = ttmax D; D, j ++D;
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For @h = 0, h < Length @pgons3d D, Module @
8p = pgons3d @@hDD<, m = Htmax - tmin L� resolution;
n = Norm@g@@2DD@@r DD@@1DD - g@@2DD@@sDD@@1DDD�

resolution; For @k = 0, k <= m, For @l = 0, l <= n,
Module @8vierkantje = 880 + Hl - 1L* resolution,

tmin + Hk - 1L* resolution <, 8l * resolution,
tmin + Hk - 1L* resolution <, 8l * resolution,
tmin + k * resolution <, 80 + Hl - 1L* resolution,
tmin + k * resolution <<, instemp <,

instemp = intersect @g, r, s, p, vierkantje D;
If @! MemberQ@fragPol, instemp D &&
HLength @instemp D > 2L,

Module @8<, fragPol = Append@fragPol, instemp D;
coloredPol = Append@coloredPol, colorPol @

g, Sb, Se, r, s, weight, instemp DD; DD; D,
l ++D, k ++D; D, h ++D; coloredPol D;

drawBead @g_, speedlimits _, resolution_ D : =
Module @8arrivals, departures, validprism,

startingregiontimes, destinationregiontimes,
i, bead3d = 8<, bead2d = 8<, rn = 8<, Vbead = 8<,
weights = g@@1DD, distances = g@@1DD, speeds = g@@1DD,
numberofvertices = Length @g@@2DDD,
numberofedges = Length @g@@1DDD<,

g = SetEdgeWeights @g, WeightingFunction ® Euclidean D;
For @i = 0, i < numberofedges,

Module @8<, distances @@i DD = g@@1DD@@i DD@@2DD@@2DD;
speeds @@i DD = speedlimits @@

Random@Integer, 81, Length @speedlimits D<DDD;
weights @@i DD = distances @@i DD� speeds @@i DD; D, i ++D;

g = SetEdgeWeights @g, weights D;
H*Initializing the arrivals and departures arrays *L

startingregiontimes = Sb;
destinationregiontimes = Se;
arrivals = g@@2DD;
departures = g@@2DD;
For @i = 0, i < Length @arrivals D,

arrivals @@i DD = Infinity, i ++D;
For @i = 0, i < Length @departures D,

departures @@i DD = Infinity, i ++D;
H*Computing the earliest possible

arrival time for each node *L

For @i = 0, i < Length @SbD,
Module @8r = Sb@@i DD@@1DD@@1DD, s = Sb@@i DD@@1DD@@2DD,

j, tb = Sb@@i DD@@2DD@@1DD, tarrivals1 =

Dijkstra @g, 8Sb@@i DD@@1DD@@1DD<D@@1DD@@2DD,
tarrivals2 = Dijkstra @g, 8Sb@@i DD@@1DD@@2DD<D@@

1DD@@2DD<, For @j = 0, j < Length @tarrivals1 D,
Module @8<, Sb = ReplacePart @Sb, 8i, 3, 2, j < ®

tarrivals1 @@j DDD; Sb = ReplacePart @Sb,
8i, 3, 3, j < ® tarrivals2 @@j DDDD, j ++D;

For @j = 0, j < Length @arrivals D, arrivals @@j DD =
tb + Min @arrivals @@j DD - tb, tarrivals1 @@j DD,

tarrivals2 @@j DDD, j ++D; D, i ++D;
validprism = True;
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H*Computing the latest possible
departure time for each node *L

For @i = 0, i < Length @SeD,
Module @8r = Se@@i DD@@1DD@@1DD, s = Se@@i DD@@1DD@@2DD,

j, te = Se@@i DD@@2DD@@2DD, tdepartures1 =

Dijkstra @g, 8Se@@i DD@@1DD@@1DD<D@@1DD@@2DD,
tdepartures2 =

Dijkstra @g, 8Se@@i DD@@1DD@@2DD<D@@1DD@@2DD<,
For @j = 0, j < Length @tdepartures1 D, Module @8<, Se =

ReplacePart @Se, 8i, 3, 2, j < -> tdepartures1 @@j DDD;
Se = ReplacePart @Se, 8i, 3, 3, j < ->

tdepartures2 @@j DDDD, j ++D;
For @j = 0, j < Length @departures D, departures @@j DD =

te - Min @departures @@j DD - te, tdepartures1 @@j DD,
tdepartures2 @@j DDD, j ++D; D, i ++D;

H*Verifying if EVERY point in the destination
region CAN be reached *L

Module @8drs <, For @i = 0,
Hi < Length @SeDL && validprism, Module @

8j, t = Se@@i DD@@2DD@@1DD, r = Se@@i DD@@1DD@@1DD,
s = Se@@i DD@@1DD@@2DD, found = False <,

For @j = 0, Hj < numberofedges L &&H! found L,
If @Se@@i DD@@1DD � g@@1DD@@j DD@@1DD,

Module @8<, found = True; drs = weights @@j DD;
Se = ReplacePart @Se, 8i, 3, 1 < -> drs D;
destinationregiontimes @@i DD =
Hdepartures @@r DD + departures @@sDD - drs L� 2; DD,

j ++D; validprism = validprism && HHarrivals @@r DD +
arrivals @@sDD + drs L� 2 <= t LD, i ++DD;

H*Verifying if EVERY point in the starting
region CAN be started from *L

Module @8drs <, For @i = 0,
Hi < Length @SbDL && validprism, Module @

8j, t = Sb@@i DD@@2DD@@2DD, r = Sb@@i DD@@1DD@@1DD,
s = Sb@@i DD@@1DD@@2DD, found = False <,

For @j = 0, Hj < numberofedges L &&H! found L,
If @Sb@@i DD@@1DD � g@@1DD@@j DD@@1DD,

Module @8<, found = True; drs = weights @@j DD;
Sb = ReplacePart @Sb, 8i, 3, 1 < -> drs D;
startingregiontimes @@i DD =
Harrivals @@r DD + arrivals @@sDD + drs L� 2; DD, j ++D;

validprism = validprism && HHdepartures @@r DD +
departures @@sDD - drs L� 2 >= t LD, i ++DD;

If @validprism, Print @"prism is valid"D ,
Print @"prism is NOT valid" DD;

For @i = 0, i < numberofvertices,
If @departures @@i DD ³ arrivals @@i DD,

Vbead = Vbead Ü 8i <D, i ++D;
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If @validprism, For @i = 0, i < numberofedges,
Module @8v = speeds @@i DD, L = distances @@i DD,

w = weights @@i DD, r = g@@1DD@@i DD@@1DD@@1DD,
s = g@@1DD@@i DD@@1DD@@2DD, pol3d = 8<, rx, ry,
sx, sy, rsx, rsy <, rx = g@@2DD@@r DD@@1DD@@1DD;

ry = g@@2DD@@r DD@@1DD@@2DD; sx =
g@@2DD@@sDD@@1DD@@1DD; sy = g@@2DD@@sDD@@1DD@@2DD;

rsx = Hsx - rx L� L; rsy = Hsy - ry L� L;
If @Ø HMemberQ@Vbead, r D ê MemberQ@Vbead, s DL,

rn = rn Ü 888rx, ry, 0 <, 8sx, sy, 0 <<<D;
If @HMemberQ@Vbead, r DL ì HMemberQ@Vbead, s DL,

If @HHarrivals @@r DD + wL £ departures @@sDDL ê
HHarrivals @@sDD + wL £ departures @@r DDL,

bead2d = bead2d Ü 888rx, ry, 0 <, 8sx, sy, 0 <<<,
Module @8rd = v *Hdepartures @@r DD - arrivals @@r DDL� 2,

sd = v *Hdepartures @@sDD - arrivals @@sDDL� 2<,
bead2d = bead2d Ü 888rx, ry, 0 <, 8rx + rd * rsx,

ry + rd * rsy, 0 <<<; bead2d = bead2d Ü
888sx, sy, 0 <, 8sx - sd * rsx, sy - sd * rsy, 0 <<<;

rn = rn Ü 888rx + rd * rsx, ry + rd * rsy, 0 <,
8sx - sd * rsx, sy - sd * rsy, 0 <<<; DDD;

If @HMemberQ@Vbead, r DL ì HØ MemberQ@Vbead, s DL,
Module @8rd = v *Hdepartures @@r DD - arrivals @@r DDL� 2<,

bead2d = bead2d Ü 888rx, ry, 0 <,
8rx + rd * rsx, ry + rd * rsy, 0 <<<; rn = rn Ü

888rx + rd * rsx, ry + rd * rsy, 0 <, 8sx, sy, 0 <<<; DD;
If @HMemberQ@Vbead, s DL ì HØ MemberQ@Vbead, r DL,

Module @8sd = v *Hdepartures @@sDD - arrivals @@sDDL� 2<,
bead2d = bead2d Ü 888sx, sy, 0 <,

8sx - sd * rsx, sy - sd * rsy, 0 <<<; rn = rn Ü
888rx, ry, 0 <, 8sx - sd * rsx, sy - sd * rsy, 0 <<<; DD;

If @MemberQ@Vbead, r D, If @
v *Hdepartures @@r DD - arrivals @@r DDL� 2 £ L,
pol3d = pol3d Ü 888rx, ry, arrivals @@r DD<,

8rx, ry, departures @@r DD<, 8rx + rsx * v *
Hdepartures @@r DD - arrivals @@r DDL� 2, ry +

rsy * v *Hdepartures @@r DD - arrivals @@r DDL� 2,
Hdepartures @@r DD + arrivals @@r DDL� 2<<<,

pol3d = pol3d Ü 888rx, ry, arrivals @@r DD<,
8rx, ry, departures @@r DD<,
8sx, sy, departures @@r DD - w<, 8sx, sy,

arrivals @@r DD + w<<<DD; If @MemberQ@Vbead, s D,
If @v *Hdepartures @@sDD - arrivals @@sDDL� 2 £ L,

pol3d = pol3d Ü 888sx, sy, arrivals @@sDD<,
8sx, sy, departures @@sDD<, 8sx - rsx * v *
Hdepartures @@sDD - arrivals @@sDDL� 2, sy -

rsy * v *Hdepartures @@sDD - arrivals @@sDDL� 2,
Hdepartures @@sDD + arrivals @@sDDL� 2<<<,

pol3d = pol3d Ü 888sx, sy, arrivals @@sDD<,
8sx, sy, departures @@sDD<,
8rx, ry, departures @@sDD - w<,
8rx, ry, arrivals @@sDD + w<<<DD;

If @HMemberQ@Vbead, r DL ì HMemberQ@Vbead, s DL,
Module @8<,

If @Harrivals @@r DD + L � vL < departures @@sDD,
pol3d = pol3d Ü 888sx, sy, arrivals @@r DD + w<,

8sx, sy, departures @@sDD<,
8rx, ry, departures @@sDD - w<,
8rx, ry, arrivals @@r DD<<<D;

If @Harrivals @@sDD + wL < departures @@r DD,
pol3d = pol3d Ü 888sx, sy, arrivals @@sDD<, 8rx, ry,

arrivals @@sDD + w<, 8rx, ry, departures @@r DD<,
8sx, sy, departures @@r DD - w<<<DDD;
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H*Add the corrected starting regions to the prism *L

If @validprism, Module @8nfound, j <,
nfound = True;
For @j = 0, Hj < Length @SbDL && nfound,

If @Hr � Sb@@j DD@@1DD@@1DDL &&
Hs == Sb@@j DD@@1DD@@2DDL,

Module @8<, nfound = False;
pol3d = pol3d Ü 888g@@2DD@@r DD@@1DD@@1DD,

g@@2DD@@r DD@@1DD@@2DD, Sb @@j DD@@2DD@@
1DD<, 8Hg@@2DD@@r DD@@1DD@@1DD +

g@@2DD@@sDD@@1DD@@1DDL� 2,
Hg@@2DD@@r DD@@1DD@@2DD + g@@2DD@@sDD@@

1DD@@2DDL� 2, startingregiontimes @@

j DD<, 8g@@2DD@@sDD@@1DD@@1DD,
g@@2DD@@sDD@@1DD@@2DD,
Sb@@j DD@@2DD@@1DD<<<; DD, j ++D;

H*Add the corrected destination
regions to the prism *L

nfound = True;
For @j = 0, Hj < Length @SeDL && nfound,

If @Hr � Se@@j DD@@1DD@@1DDL &&
Hs == Se@@j DD@@1DD@@2DDL,

Module @8<, nfound = False;
pol3d = pol3d Ü 888g@@2DD@@r DD@@1DD@@1DD,

g@@2DD@@r DD@@1DD@@2DD, Se @@j DD@@2DD@@
2DD<, 8g@@2DD@@sDD@@1DD@@1DD,

g@@2DD@@sDD@@1DD@@2DD, Se @@j DD@@2DD@@
2DD<, 8Hg@@2DD@@r DD@@1DD@@1DD +

g@@2DD@@sDD@@1DD@@1DDL�
2, Hg@@2DD@@r DD@@1DD@@2DD +

g@@2DD@@sDD@@1DD@@2DDL� 2,
destinationregiontimes @@

j DD<<<DD, j ++DDD;
bead3d = bead3d Ü computeFragmentedPolygon @g,

Sb, Se, r, s, w, pol3d, resolution DD, i ++DD;
If @validprism, 8Show@Graphics3D @

8Table @8EdgeForm@D, RGBColor @1,
1 - bead3d @@i DD@@2DD, 1 - bead3d @@i DD@@2DDD,

Opacity @1D, Polygon @bead3d @@i DD@@1DDD<,
8i, 1, Length @bead3d D<D,

Table @8RGBColor @0, 1, 0 D, Line @bead2d @@i DDD<,
8i, 1, Length @bead2d D<D,

Table @8RGBColor @0, 0, 0 D, Line @rn @@i DDD<,
8i, 1, Length @rn D<D<,

Boxed ® False, PlotRange ® All DD,
Show@Graphics3D @8Table @8EdgeForm@D, RGBColor @1,

1 - bead3d @@i DD@@3DD, 1 - bead3d @@i DD@@3DDD,
Opacity @1D, Polygon @bead3d @@i DD@@1DDD<,
8i, 1, Length @bead3d D<D,

Table @8RGBColor @0, 1, 0 D, Line @bead2d @@i DDD<,
8i, 1, Length @bead2d D<D,

Table @8RGBColor @0, 0, 0 D, Line @rn @@i DDD<,
8i, 1, Length @rn D<D<,

Boxed ® False, PlotRange ® All DD,
Show@Graphics3D @8Table @8EdgeForm@D, RGBColor @1,

1 - bead3d @@i DD@@4DD, 1 - bead3d @@i DD@@4DDD,
Opacity @1D, Polygon @bead3d @@i DD@@1DDD<,
8i, 1, Length @bead3d D<D, Table @8RGBColor @0, 1, 0 D,

Line @bead2d @@i DDD<, 8i, 1, Length @bead2d D<D,
Table @8RGBColor @0, 0, 0 D, Line @rn @@i DDD<,
8i, 1, Length @rn D<D<,

Boxed ® False, PlotRange ® All DD<DD
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The code above can be reused. The following are the parameters with which
the above code was called. There is a set of speed limits, which are assigned
randomly to each edge of the road network every time the above code is called.
Notice that Sb consists of two regions and Se of one.

speedlimits = 8.85, 1, 1.35 <; resolution = .05;
g = Graph @8881, 2 <<, 882, 5 <<, 885, 6 <<,

886, 13 <<, 8813, 14 <<, 8814, 19 <<, 8818, 19 <<,
8814, 17 <<, 8815, 17 <<, 8816, 17 <<, 8815, 18 <<,
886, 7 <<, 883, 6 <<, 888, 13 <<, 888, 20 <<, 884, 8 <<,
884, 5 <<, 885, 21 <<, 882, 9 <<, 887, 10 <<, 8811, 14 <<,
886, 8 <<, 883, 10 <<, 882, 3 <<, 887, 23 <<, 8811, 13 <<<,
888-1.4101562, -0.08417988 <<,
88-1.2695312, 0.08418 <<,
88-0.76953125, 0.44412196 <<,
88-0.7578125, -0.74020314 <<,
88-0.98828125, -0.2351234 <<,
88-0.4453125, 0.03773582 <<,
88-0.26953125, 0.6473149 <<,
88-0.18359375, -0.89114666 <<,
88-1.0507812, 0.86211896 <<,
88-0.484375, 1.3265603 <<, 880.62890625, 1.0478954 <<,
880.421875, -0.5253992 <<,
880.125, 0.08418 <<, 880.8984375, 0.56023216 <<,
881.296875, -0.27576208 <<,
881.2226562, -0.9608128 <<, 881.0, -0.30478954 <<,
881.6445312, 0.47895503 <<, 881.1992188, 1.0072569 <<,
880.40625, -1.1930335 <<, 88-1.25, -1.030479 <<,
880.7734375, -0.43831635 <<,
880.15234375, 1.018868 <<<D;

Sb = 8884, 5 <, 80, 0.5 <, 80, g @@2DD, g @@2DD<<,
882, 3 <, 80.25, .85 <, 80, g @@2DD, g @@2DD<<<;

Se = 88814, 17 <, 83, 3.15 <, 80, g @@2DD, g @@2DD<<<;
drawBead @g, speedlimits, resolution D
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