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SYNONYMS

Database constraints

DEFINITION

For a relational database to be valid, it is not sufficient that the various tables of which it is composed
conform to the database schema. In addition, the instance must also conform to the intended meaning
of the database. [15] While many aspects of this intended meaning are inherently informal, it will in
general induce certain formalizable relationships between the data in the database, in the following
sense: whenever a certain pattern is present among the data, this pattern can either be extended or
certain data values must be equal. Such a relationship is called a database dependency. The vast
majority of database dependencies in the literature are of the following form [5]:

(∀x1) . . . (∀xn)ϕ(x1, . . . , xn) ⇒ (∃z1) . . . (∃zk)ψ(y1, . . . , ym, z1, . . . , zk).

Here, {y1, . . . , ym} ⊆ {x1, . . . , xn}, ϕ is a (possibly empty) conjunction of relation atoms using all the
variables x1, . . . , xn, and ψ is either a single equality atom involving universally quantified variables
only (in which case the dependency is called equality-generating); or ψ is a non-empty conjunction of
relation atoms involving all the variables y1, . . . , ym, z1, . . . , zk (in which case the dependency is called
tuple-generating. A tuple-generating dependency is called full if it has no existential quantifiers; in the
other case, it is called embedded.

HISTORICAL BACKGROUND

The theory of database dependencies started with the introduction of functional dependencies by Codd in his
seminal paper. [8] They are a generalization of (super)keys. A relation satisfies a functional dependency X → Y

(where X and Y are sets of attributes) if, whenever to tuples agree on X they also agree on Y . For example, if
in a employee relation of a company database with schema

Ω = {EMP-NR,EMP-NAME,DEPT, JOB,SALARY},

the functional dependencies

{EMP-NR} → {EMP-NAME,DEPT, JOB,SALARY};
{DEPT, JOB} → {SALARY}

hold, this means that EMP-NR is a key of this relation, i.e., uniquely determines the values of the other attributes,
and that JOB in combination with DEPT uniquely determines SALARY.
Codd also noticed that the presence of a functional dependency X → Y also allowed a lossless decomposition
of the relation into its projections onto X ∪ Y and X ∪ Y (Y denoting the complement of Y ). In the example
above, the presence of {DEPT, JOB} → {SALARY} allows for the decomposition of the original relation into its
projections onto {DEPT, JOB,SALARY} and {EMP-NR,EMP-NAME,DEPT}.
Hence, the identification of constraints was not only useful for integrity checking but also for more efficient
representation of the data and avoiding update anomalies through redundancy removal.



Subseqent researchers (e.g., [18]) noticed independently that the presence of the functional dependency X → Y

is a sufficient condition for decomposability of the relation into its projection onto X ∪ Y and X ∪ Y , but not a
necessary one. For example,

DRINKER BEER BAR
Jones Tuborg Tivoli
Smith Tuborg Far West
Jones Tuborg Tivoli
Smith Tuborg Tivoli

can be decomposed losslessly into its projections onto {DRINKER,BEER} and {BEER,BAR}, but neither
{BEER} → {DRINKER} nor {BEER} → {BAR} holds. This led to the introduction of the multivalued
dependency: a relation satisfies the multivalued dependency X →→ Y exactly when this relation can be decomposed
losslessly into its projections onto X∪Y and X∪Y . Fagin [10] also introduced embedded multivalued dependencies :
A relation satisfies the embedded multivalued dependency X →→ Y |Z if its projection onto X ∪ Y ∪ Z can be
decomposed losslessly into its projections onto X ∪Y and X ∪Z. Sometimes, however, a relation be decomposed
losslessly into three or more of its projections but not in two. This led Rissanen [17] to introduce a more general
notion: a relation satisfies a join dependency X1 ⊲⊳ · · · ⊲⊳ Xk if it can be decomposed losslessly into its projections
onto X1, . . . , Xk.
Quite different considerations led to the introduction of inclusion dependencies [6], which are based on the
concept of referential integrity, already known to the broader database community in the 1970s. As an
example, consider a company database in which one relation, MANAGERS, contains information on department
managers, in particular, MAN-NAME, and another, EMPLOYEES, contains general information on employees,
in particular, EMP-NAME. As each manager is also an employee, every value MAN-NAME in MANAGERS
must also occur as a value of EMP-NAME in EMPLOYEES. This is written as the inclusion dependency
MANAGERS[MAN-NAME] ⊆ EMPLOYEES[EMP-NAME]. More generally, a database satisfies the inclusion
dependency R[A1, . . . , An] ⊆ S[B1, . . . , Bm] if the projection of the relation R onto the sequence of attributes
A1, . . . , An is contained in the the projection of the relation S onto the sequence of attributes B1, . . . , Bn.
The proliferation of dependency types motivated researchers to propose subsequent generalizations, eventually
leading to the tuple- and equality-generating dependencies of Beeri and Vardi [5] defined higher. For a complete
overview, the reader isd referred to [14] or the bibliographic sections in [2]. For the sake of completeness, it should
also be mentioned that dependency types have been considered that are not captured by the formalism of Beeri
and Vardi. An example is the afunctional dependency of De Bra and Paredaens (see, e.g., Chapter 5 of [15]).

SCIENTIFIC FUNDAMENTALS

The development of database dependency theory has been driven mainly by two concerns. One of them is solving
the inference problem, and, when decidable, developing tools for deciding it. The other is, as pointed out in the
historical background, the use of database dependencies to achieve decompositions of the database contributing to
more efficient data representation, redundancy removal, and avoiding update anomalies. Each of these concerns
is discussed in some more detail below.
Inference

The inference problem is discussed here in the context of tuple- and equality-generating dependencies. The
question that must be answered is the following: given a subtype of the tuple- and equality generating
dependencies, given as input a set of constraints C and a single constraint c, both of the given type, is it
decidable whether C logically implies c In other words, is it decidable if each database instance satisfying C
also satisfies c? Given that database dependencies have been defined as first-order sentences, one might be
inclined to think that the inference problem is just an instance of the implication problem in mathematical
logic. However, for logical implication, one must consider all models of the given database scheme, also those
containing infinite relations, while database relations are by definition finite. (In other words, the study of the
inference of database dependencies lies within finite model theory.) To separate both notions of inference, a
distinction is made between unrestricted implication (denoted C |= c) and finite implication (denoted C |=f c) [5].
Since unrestricted implication is recursively enumerable and finite implication is co-recursively enumerable, their
coincidence yields that the finite implication problem is decidable. The opposite, however is not true, as is shown
by the following counterexample. Consider a database consisting of a single relation R with scheme {A,B}. Let
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C = {B → A,R[B] ⊆ R[A]} and let c be the inclusion dependency R[A] ⊆ R[B]. One can show that C |=f c, but
C 6|= c, as illustrated by the following, necessarily infinite, counterexample:

A B
0 1
1 2
2 3
3 4
...

...
As will be pointed out later, the finite implication problem for functional dependencies and so-called unary
inclusion dependencies (i.e., involving only one attribute in each side) is decidable.
An important tool for deciding (unrestricted) implication is the chase. In the chase, a table is created for each
relation in the database. For each relation atom in the left-hand side of the dependency c to be inferred, its tuple
of variables is inserted in the corresponding table. This set of tables is then chased with the dependencies of C: in
the case of a tuple-generating dependency, new tuples are added in a minimal way until the dependency is satisfied
(in each application, new variables are substituted for existential variables); in the case of an equality-generating
dependency, variables are equated until the dependency is satisfied. The result, chase(C), which may be infinite,
can be seen as a model for C. It is the case that C |= c if and only if the right-hand side of c is subsumed by some
tuple of chase(C) (in the case of a tuple-generating dependency) or the required equality has been aplied during
the chase procedure.
In the case where only full tuple-generating dependencies and equality-generating dependencies are involved, the
chase procedure is bound to end, as no existential variables occur in the dependencies, whence no new values are
introduced. In particular, the unrestricted implication problems coincides with the finite implication problem,
and is therefore decidable. Deciding this inference problem is EXPTIME-complete, however.
The inference problem for all tuple- and equality-generating dependencies is undecidable, however (whence
unrestricted and finite implication do not coincide). In 1992, Herrmann [13] solved a longstanding open problem
by showing that the finite implication problem is already undecidable for embedded multivalued dependencies.
Another approach towards deciding inference of dependency types is trying to find an axiomatization: a finite
set of inference rules that is both sound and complete. The existence of such an axiomatization is also a
sufficient condition for the decidability of inference. Historically, Armstrong [1] was the first to propose such
an axiomatization for functional dependencies. This system of inference rules was eventually extended to a sound
and complete axiomatization for functional and multivalued dependencies together: [3]

(F1) ∅ |= X → Y if Y ⊆ X (reflexivity)
(F2) {X → Y } |= XZ → Y Z (augmentation)
(F3) {X → Y, Y → Z} |= X → Z (transitivity)
(M1) {X →→ Y } |= X →→ Y (complementation)
(M2) ∅ |= X →→ Y if Y ⊆ X (reflexivity)
(M3) {X →→ Y } |= XZ →→ Y Z (augmentation)
(M4) {X →→ Y, Y →→ Z} |= X →→ Z − Y (pseudo-transitivity)
(FM1) {X → Y } |= X →→ Y (conversion)
(FM2) {X →→ Y, Y → Z} |= X → Z − Y (interaction)

Moreover, (F1)–(F3) are sound and complete for the inference of functional dependencies alone, and (M1)–(M4)
are sound and complete form the inference of multivalued dependencies alone. The above axiomatization is at
the basis of an algorithm to decide inference of functional and multivalued dependencies in low polynomial time.
Of course, the inference problem for join dependencies is also decidable, as they are full tuple-generating
dependencies. However, there does not exist a sound and complete axiomatization for the inference of join
dependencies [16], even though there does exist an axiomatization for a larger class of database dependencies.
There also exists a sound and complete axiomatization for inclusion dependencies: [6]

(I1) ∅ |= R[X ] ⊆ R[X ] (reflexivity)
(I2) {R[A1, . . . , Am] ⊆ S[B1, . . . , Bm]} |= R[Ai1 , . . . , Aik

] ⊆ S[Bi1 , . . . , Bik
]

if i1, . . . , ik is a sequence of integers in {1, . . . ,m} (projection)
(I3) {R[X ] ⊆ S[Y ], S[Y ] ⊆ T [Z]} |= R[X ] ⊆ T [Z] (transitivity)

Above, X , Y , and Z represent sequences rather than sets of attributes. Consequently, the implication problem
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for inclusion dependencies is decidable, even though inclusion dependencies are embedded tuple-generating
dependencies. However, deciding implication of inclusion dependencies is PSPACE-complete.
It has already been observed above that the unrestricted and finite implication problems for functional
dependencies and unary inclusion dependencies taken together do no coincide. Nevertheless, the finite implication
problem for this class of dependencies is decidable. Unfortunately, the finite implication problem for functional
dependencies and general inclusion dependencies taken together is undecidable (e.g., [7]).
Decompositions

As researchers realized that the presence of functional dependencies yields the possibility to decompose the
database, the question arose as to how far this decomposition process ought to be taken. This led Codd in follow-
up papers to [8] to introduce several normal forms, the most ambitious of which is Boyce-Codd Normal Form
(BCNF). A datatabase is in BCNF if, whenever one of its relations satisfies a nontrivial functional dependency
X → Y (i.e., where Y is not a subset of X), X must be a superkey of the relation (i.e., the functional dependency
X → U holds, where U is the set of all attributes of that relation). There exist algorithms that construct a
lossless BCNF decomposition for a given relation. Unfortunately, it is not guaranteed that such a decomposition
is also dependency-preserving, in the following sense: the set of functional dependencies that hold in the relations
of the decomposition and that can be inferred from the given functional dependencies is in general not equivalent
with the set of the given functional dependencies. Even worse, a dependency-preserving BCNF decomposition
of a given relation does not always exist. For that reason, Third Normal Form (3NF), historically a precursor
to BCNF, is also still considered. A datatabase is in 3NF if, whenever one of its relations satisfies a nontrivial
functional dependency X → {A} (A being a single attribute), the relation must have a minimal key containing A.
Every database in BCNF is also in 3NF, but not the other way around. However, there exists an algorithm that,
given a relation, produces a dependency-preservering lossless decomposition in 3NF. Several other normal forms
have also been considered, taking into account multivalued dependencies or join dependencies besides functional
dependencies.
However, one can argue that by giving a join dependency, one actually already specifies how one wants to
decompose a database. If one stores this decomposed database rather than the original one, the focus shifts from
integrity checking to consistency checking: can the various relations of the decompositions be interpreted as the
projections of a universal relation? Unfortunately, consitency checking is in general exponential in the number
of relations. Therefore, a lot of attention has been given to so-called acyclic join dependencies [4]. There are
many equivalent definitions of this notion, one of which is that an acyclic join dependency is equivalent to a set of
multivalued dependencies. Also, global consistency of a decomposition is already implied by pairwise consistency
if and only if the join dependency defining the decomposition is acyclic, which explains in part the desirability of
acyclicity. Gyssens [12] generalized the notion of acyclicity to k-cyclicity, where acyclicity corresponds with the
case k = 2. A join dependency is k-cyclic if it is equivalent to a set of join dependencies each of which has at
most k components. Also, global consistency of a decomposition is already implied by k-wise consistency if and
only if the join dependency defining the decomposition is k-cyclic.

KEY APPLICATIONS*

Despite the explosion of dependency types during the latter half of the 1970s, one must realize that the dependency
types most used in practice are still functional dependencies (in particular, key dependencies) and inclusion
dependencies. It is therefore unfortunate that the inference problem for functional and inclusion dependencies
combined is undecidable.
At a more theoretical level, the success of studying database constraints from a logical point view and the
awareness that is important to distinguish beteen unrestricted and finite implication, certainly contributed to the
interest in and study and further development of finite model theory by theoretical computer scientists.
Finally, decompositions of join dependencies led to a theory of decompositions for underlying hypergraphs, which
found applications in other areas as well, notably in artificial intelligence (e.g., [11, 9]).

CROSS REFERENCE*

2nd Normal Form (2NF), 3rd Normal Form (3NF), 4th Normal Form (4NF), Boyce-Codd Normal Form (BCNF),
Chase, Equality-generating dependencies, Functional Dependency, Inconsistent databases, Join dependency,
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Multivalued dependency, Normal forms and normalization, Relational Model, Tuple-generating dependencies.

RECOMMENDED READING

Between 5 and 15 citations to important literature, e.g., in journals, conference proceedings, and

websites.

[1] W.W. Armstrong. Dependency Structures of Data Base Relationships. In Proceedings IFIP Congress 74, Stockholm,
Sweden, August 5–10, 1974, J.L. Rosenfeld (Ed.), pp. 580–583. North-Holland, 1974.

[2] S. Abiteboul, R. Hull, V. Vianu. Foundations of Databases. Addison-Wesley, Reading, Mass., 1995. (Part C.)
[3] C. Beeri, R. Fagin, J.H. Howard. A Complete Axiomatization for Functional and Multivalued Dependencies. In

Proceedings ACM SIGMOD International Conference on Management of Data, Toronto, Ontario, August 3–5, 1977,
D.C.P.. Smith (Ed.), pp. 47–61. ACM Press, New York, 1978.

[4] C. Beeri, R. Fagin, D. Maier, M. Yannakakis. On the Desirability of Acyclic Database Schemes. Journal of the ACM,
30(3):479–513, 1983.

[5] C. Beeri, M.Y. Vardi. The Implication Problem for Data Dependencies. In Proceedings International Conference on

Algorithms, Languages, and Programming, Acre, Israel, July 13–17, 1981, S. Even, O. Kariv (Eds.). Lecture Notes in
Computer Science, Vol. 115, pp. 73–85. Springer-Verlag, Berlin/New York, 1981.

[6] M.A. Casanova, R. Fagin, C.H. Papadimitriou. Inclusion Dependencies and their Interaction with Functional
Dependencies. Journal of Computer and System Sciences, 28(1):29–59, 1984.

[7] A.K. Chandra, M.Y. Vardi. The Implication Problem for Functional and Inclusion Dependencies is Undecidable.
SIAM Journal on Computing, 14(3)-671–677, 1985.

[8] E.F. Codd. A Relational Model of Data for Large Shared Data Banks. Communications of the ACM, 13(6):377–387,
1970.

[9] D.A. Cohen, P. Jeavons, M. Gyssens. A Unified Theory of Structural Tractability for Constraint Satisfaction Problems.
Journal of Computer and System Sciences, 2008, in press.

[10] R. Fagin. Multivalued Dependencies and a New Normal Form for Relational Databases. ACM Transactions on

Database Systems, 2(3):262–278, 1977.
[11] G. Gottlob, Z. Miklós, T.Schwentick. Generalized Hypertree Decompositions: NP-Hardness and Tractable Variants. In

Proceedings Twenty-sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Beijing,
China, June 11–13, L. Libkin (Ed.), pp. 13–22. ACM Press, New York, 2007.

[12] M. Gyssens. On the Complexity of Join Dependencies. Transaction on Database Systems, 11(1):81–108, 1986.
[13] C. Herrmann. On the Undecidability of Implications between Embedded Multivalued Dependencies. Information and

Computation, 122(2):221–235, 1995.
[14] P.C. Kanellakis. Elements of Relational Database Theory. In Handbook of Theoretical Computer Science, J. Van

Leeuwen (Ed.), pp. 1074–1156. Elsevier, Amsterdam, 1991.
[15] J. Paredaens, P. De Bra, M. Gyssens, D. Van Gucht. The Structure of the Relational Database Model. EATCS

Monographs on Theoretical Computer Science, W. Brauer, G. Rozenberg, A. Salomaa (Eds.), Vol. 17. Springer-
Verlag, Berlin/New York, 1989.

[16] S.V. Petrov. Finite Axiomatization of Languages for Representation of System Properties. Information Sciences,
47(3):339–372, 1989.

[17] J. Rissanen. Independent Components of Relations. ACM Transactions on Database Systems, 2(4):317–325, 1977.
[18] C. Zaniolo. Analysis and Design opf Relational Schemata for Database Systems. Ph. D. thesis, University of California

at Los Angeles, 1976. Technical Report UCLA-Eng-7669, Department of Computer Science.

5


