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Abstract Incomplete data are quite common in biomedical and other types of research,
especially in longitudinal studies. During the last three decades, a vast amount of work
has been done in the area. This has led, on the one hand, to a rich taxonomy of missing-
data concepts, issues, and methods, and, on the other hand, to a variety of data-analytic
tools. Elements of taxonomy include: missing data patterns, mechanisms, and modeling
frameworks; inferential paradigms; and sensitivity analysis frameworks. These are described
in detail. A variety of concrete modeling devices is presented. To make matters concrete,
two case studies are considered. The first one concerns quality of life among breast cancer
patients, while the second one examines data from the Muscatine children’s obesity study.

Keywords Expectation-maximization algorithm · Incomplete data · Missing completely at
random · Missing at random · Missing not at random · Pattern-mixture model · Selection
model · Shared-parameter model

1 Introduction

In a longitudinal study, each experimental or observational unit is measured at baseline
and repeatedly over time. Incomplete data are not unusual under such designs, as many
subjects are not available to be measured at all time points. In addition, a subject can be
missing at one follow-up time and then measured again at one of the next, resulting in
nonmonotone missing data patterns. Such data present a considerable modeling challenge
for the statistician.

Rubin (1976) distinguished between three important mechanisms. When missingness is
unrelated to the data, missingness is termed missing completely at random (MCAR). When
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missingness depends on the observed data and, when given the observed data, it does not
depend on the unobserved data, the mechanism is missing at random (MAR). A mechanism
where missigness depends on the unobserved data, perhaps in addition to the observed data,
is termed missing not at random (MNAR). In the likelihood and Bayesian paradigm, and
when mild regularity conditions are satisfied, the MCAR and MAR mechanisms are ignor-
able, in the sense that inferences can proceed by analyzing the observed data only, without
explicitly addressing a (parametric) form of the missing data mechanism. In this situation,
MNAR mechanisms are non-ignorable. Note that frequentist inference is generally ignor-
able only under MCAR.

In the ignorable situation, standard longitudinal data software allowing for unbalanced
data can be used. Examples include the SAS procedures MIXED, GLIMMIX, and
NLMIXED, and the SPlus and R functions lme and nlme, etc... Such tools eliminate comple-
te-case bias by incorporating all available information. However, in the nonignorable case,
methods that do not model the missing data mechanism are subject to bias.

Whereas ignorable likelihood analyses and appropriate frequentist techniques, such as
weighted generalized estimating equations (Robins, Rotnitzky and Zhao, 1995), provide a
versatile framework, as opposed to the collection of simple methods such as complete case
analysis or last observation carried forward, nonignorable missing data occur very com-
monly in longitudinal studies. In many cancer and AIDS clinical trials, the side effects of
the treatment may affect participation, and missingness can depend on the outcome as well
as the treatment covariate. In quality of life studies, compliance is not compulsory, and those
with a poor prognosis may be more likely not to complete the questionnaire at every visit. In
environmental studies, geographic location or environmental factors may influence the re-
sponse. Examples of nonignorable missingness can also be found in longitudinal psychiatric
studies (Molenberghs et al, 1997; Little and Wang, 1996).

Estimating parameters with nonignorable missing data is complex. Likelihood-based
methods require specification of the joint distribution of the data and the missing data
mechanism. This specification can be further classified into three types of models: selec-
tion, pattern-mixture, and shared-parameter models (Little, 1995). The selection approach
models the hypothetical complete data together with the missing data process conditional
on the hypothetical complete data. The pattern-mixture approach models the distribution of
the data conditional on the missing data pattern. Both of these approaches will be discussed
in this paper. The third approach, shared-parameter models, accounts for the dependence
between the measurement and missingness processes by means of latent variables such as
random effects (Wu and Bailey, 1988, 1989; Wu and Carroll, 1988; Creemers et al, 2009).

There is an enormous literature on literature missing data methods in longitudinal stud-
ies. We refer the reader to the excellent books by Diggle, Heagerty, Liang, Zeger (2002),
Fitzmaurice et al (2004), Verbeke and Molenberghs (2000), Molenberghs and Verbeke (2005),
Molenberghs and Verbeke (2005), Molenberghs and Kenward (2007), Daniels and Hogan
(2008), Fitzmaurice, Davidian, Verbeke, Molenberghs (2008), and the many references therein.
Most of the literature focuses on maximum likelihood methods of estimation with non-
ignorable missing longitudinal data, predominantly focusing on mixed-effects models and
normally distributed outcomes. A substantial part of the literature also assumes monotone
patterns of missingness, where sequences of measurements on some subjects simply termi-
nate prematurely. Approaches using selection models include Diggle and Kenward (1994),
Little (1995) and Ibrahim, Chen, Lipsitz (2001). Approaches based on pattern-mixture mod-
els include Little (1995), Little and Wang (1996), Hogan and Laird (1997), and Thijs et al
(2002). Troxel, Harrington and Lipsitz (1998) and Troxel, Lipsitz and Harrington (1998)
propose a selection model which is valid for nonmonotone missing data, but is intractable
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for more than three time points. There is less literature, however, on estimating parameters
for the class of generalized linear mixed models (GLMM) with nonignorable missing data.
Follman and Wu (1995) consider an extension of the conditional linear model to general-
ized linear models. Molenberghs, Kenward and Lesaffre (1997) propose a selection model
for longitudinal ordinal data with nonrandom dropout. Ekholm and Skinner (1998) discuss
a pattern-mixture model for a longitudinal binary, partially incomplete data set. Ibrahim,
Chen, Lipsitz (2001) propose a method for estimating parameters in the GLMM using a se-
lection model with nonignorable missing response data, while Fitzmaurice and Laird (2000)
propose a method based on generalized estimating equations for estimating parameters in
the GLMM using a mixture model with nonignorable dropouts.

While other methods of estimation with nonignorable nonresponse will be considered
briefly, likelihood-based frequentist methods using selection and pattern-mixture models
will be the primary focus of this paper. The literature is just too enormous to review all
possible inference paradigms in this paper, such as multiple imputation, Bayesian methods,
and weighted estimating equations, for example. For the class of generalized linear models,
Ibrahim, Chen, Lipsitz, Herring (2005(@) present a detailed overview and comparisons of
the four main paradigms for handling missing covariate data, these being i) maximum likeli-
hood (ML), ii) multiple imputation (MI), iii) Bayesian methods, and iv) weighted estimating
equations (WEE).

The remainder of this section motivates the setting with two real longitudinal data sets
with likely nonignorable missing data. Section 2 discusses types of missing data in longitu-
dinal studies. Section 3 focuses on estimation in the normal random effects model. Section 4
discusses present methods for estimation in the GLMM. Section 5 reviews methods for han-
dling nonignorable missing data in the GLMM. Shared-parameter models are the topic of
Section 6. We give a brief discussion of Bayesian methods in Section 7, and give some
concluding remarks in Section 8.

1.1 Motivating Examples

As previously mentioned, many longitudinal studies call for estimation methods that can
handle nonignorable missing data, since the possibility of such mechanism operation is im-
possible to rule out. This section presents two common examples to illustrate the problem
in more detail.

Example 1: IBCSG Data

Consider a data set concerning the quality of life among breast cancer patients in a clinical
trial comparing four different chemotherapy regimens conducted by the International Breast
Cancer Study Group (IBCSG Trial VI; Ibrahim, Chen, Lipsitz, 2001). The main outcomes
of the trial were time until relapse and death, but patients were also asked to complete qual-
ity of life questionnaires at baseline and at three-month intervals. Some patients did refuse,
on occasion, to complete the questionnaire. However, even when they refused, the patients
were asked to complete an assessment at their next follow-up visit. Thus, the structure of this
trial resulted in nonmonotone patterns of missing data. One longitudinal quality of life out-
come was the patient’s self-assessment of her mood, measured on a continuous scale from 0
(best) to 100 (worst). The three covariates of interest included a dichotomous covariate for
language (Italian or Swedish), a continuous covariate for age, and three dichotomous covari-
ates for the treatment regimen (4 regimens). Data from the first 18 months of the study were
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used, implying that each questionnaire was filled out at most seven times, i.e., at baseline
plus at six follow-up visits.

There are 397 observations in the data set, and mood is missing at least one time for
71% of the cases, resulting in 116 (29%) complete cases. The amount of missing data is
minimal at baseline (2%), and ranges between 24% and 31% at the other six times: 26.2% at
the second, 24.2% at the third, 29% at the fourth, 24.9% at the fifth, 28.2% at the sixth, and
30.5% at the seventh occasion. Table 1 provides a summary of the missing data patterns;
the overall fraction of missing measurements is 23.6%. All patients were alive at the end
of 18 months, so no missingness is due to death. However, it is reasonable to conjecture
that the mood of the patient affected their decision to fill out the questionnaire. In this case,
the missingness would be MNAR, and an analysis that does not include the missing data
mechanism would be biased. In fact, Ibrahim, Chen, Lipsitz (2001) show a slight difference
in the significance of one of the treatment covariates and the age covariate between their
ignorable and nonignorable models.

Table 1 IBCSG Trial VI Patterns of Missingness

Number of Missing
Components of y j

Frequency Percentage

0 116 29.2
1 116 29.2
2 62 15.6
3 35 8.8
4 30 7.6
5 38 9.6

Source: Ibrahim, Chen, Lipsitz (2001)

Example 2: Muscatine Children’s Obesity Data

The Muscatine Coronary Risk Factor Study (MCRFS) was a longitudinal study of coronary
risk factors in school children (Woolson and Clarke, 1984; Ekholm and Skinner, 1998). Five
cohorts of children were measured for height and weight in 1977, 1979, and 1981. Relative
weight was calculated as the ratio of a child’s observed weight to the median weight for
their age-sex-height group. Children with a relative weight greater than 110% of the median
weight for their respective stratum were classified as obese. The analysis of this study in-
volves binary data (1 =obese, 0 =not obese) collected at successive time points. For every
cohort, each of the following seven response patterns occurs: (p, p, p),(p, p,m),(p,m, p),
(m, p, p),(p,m,m),(m, p,m), and (m,m, p), where a p (m) denotes that the child was present
(missing) for the corresponding measurement. The distribution over the patterns is shown in
Table 2.

The statistical problem is to estimate the obesity rate as a function of age and sex. How-
ever, as can be seen in Table 2, many data records are incomplete since many children
participated in only one or two occasions of the survey. Ekholm and Skinner (1998) report
that the two main reasons for nonresponse were: (i) no consent form signed by the parents
was received and (ii) the child was not in school on the day of the examination. If the parent
did not sign the consent form because they did not want their child to be labeled as obese,
or if the child did not attend school the day of the survey because of their weight, then the
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Table 2 MCRFS Patterns of Missingness

Response Pattern Frequencies (%) for the Frequencies (%) for the
following boys’ cohorts: following girls’ cohorts:

B6 B8 B10 B12 B14 G6 G8 G10 G12 G14
(p, p, p) 24 43 43 38 30 23 48 45 39 28
(p, p,m) 4 10 13 13 24 5 8 12 13 26
(p,m, p) 2 5 4 4 2 2 5 3 9 1
(m, p, p) 34 11 9 5 4 37 12 13 5 4
(p,m,m) 8 10 14 22 25 6 11 14 21 25
(m, p,m) 9 7 8 6 12 7 6 7 5 12
(m,m, p) 19 13 9 11 4 19 11 6 7 4

Sum 100 99 100 99 101 99 101 100 99 100
Number of Children 493 522 533 476 472 442 492 492 461 483

Source: Ekholm and Skinner (1998)

missingness would at least be MAR, and likely even MNAR. In the latter case, an analysis
that ignores the missing data mechanism would be biased. However, since the outcome is
binary, these data cannot be modeled using the normal random effects model. Instead, a gen-
eral method for estimating parameters for the class of GLMM’s with nonignorable missing
response data is needed.

2 Missing Data in Longitudinal Studies

We will now formalize the ideas loosely described in the introduction. Methods for han-
dling missing data often depend on the pattern of missingness and the mechanism that gen-
erates the missing values. To illustrate the various missingness patterns and mechanisms
in a regression setting, consider a data set that consists of a univariate vector of responses
yi = (yi1, . . . ,yini)

′ that may contain missing values, and an ni × p matrix Xi = (xi1, . . . ,xini)
′

of completely observed explanatory variables. We first define missing data patterns and then
mechanisms.

2.1 Patterns of Missing Data

Data follow a monotone missing pattern if, once a subject misses a measurement occasion,
s/he is never observed again. Monotone missing data are also termed dropout. For example,
missing values in the vector of responses, yi take the dropout form if, whenever yi j is miss-
ing, so are yik , for all k ≥ j. Likelihood functions are easier to evaluate with monotone
patterns of missing data since they can be factored in terms of conditional densities.

Data follow a nonmonotone missing pattern if at least some subject values are ob-
served again after a missing value occurs. For example, if yi contains missing values, they
are intermittent and yi j may be missing while yik is observed, for some k > j. Likelihoods
are more difficult to evaluate with nonmonotone patterns of missing data since almost al-
ways no simple factorization applies. In the MAR case, however, where ignorability applies,
conventional software tools for longitudinal data models, allowing for unbalanced data, can
be used to satisfaction.
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2.2 Classifications of Missing Data Mechanisms

We present the mechanisms, in accordance with Rubin (1987) and Little and Rubin (2002).
Missing data are missing completely at random if the failure to observe a value does

not depend on any values of yi, either observed or missing, or any other observed values. For
example, suppose that some components of yi are missing while Xi is completely observed.
The missing values of yi are MCAR if the probability of observing yi is independent of
Xi and the values of yi that are observed or would have been observed. Under MCAR, the
observed data is just a random sample of all the data. A complete-case analysis may lose
efficiency, but no bias is introduced. Under MCAR, the missing data mechanism takes the
simple form f (ri|Xi,φ) (where φ is a vector of unknown parameters), i.e., the outcomes do
not intervene in the model for the missing-data indicators Ri = (Ri1, . . . ,Rini)

′, where Ri j = 1
if Yi j is observed and 0 otherwise.

Missing data are missing at random if the failure to observe a value does not depend on
the values of yi which are unobserved, given the observed ones. However, the missingness
may depend on other observed values. For example, suppose, as before, that Xi is completely
observed while some components of yi may be missing. The missing values of yi are MAR
if the probability of observing yi is independent of the values of yi that would have been
observed, but is not necessarily independent of the observed values of yi and Xi. This is a
more realistic assumption than MCAR, but now adjustments must be made because observed
responses are no longer a random sample. A complete-case analysis will be both inefficient
and biased. Clearly, if data is MCAR, then it is MAR. For example, in a clinical trial, if
missingness depends on the treatment allocation only, which has the status of a covariate,
then the mechanism is MCAR and, a fortiori, also MAR. Under MAR, the missing data
mechanism becomes f (ri|Xi,yobs,i,φ), where yobs,i denotes the observed components of yi.

The missing data mechanism is said to be missing not at random if the failure to ob-
serve a value depends on the value that would have been observed. For example, suppose
some components of yi are missing, but that Xi is completely observed. The missing values
of yi are MNAR if the probability that yi is missing depends on the missing values of yi,
regardless of whether it depends on the observed values of yi or Xi. MNAR is the most gen-
eral situation and is frequently encountered in longitudinal studies with repeated measures.
Valid inferences generally require either specifying the correct model for the missing data
mechanism, or distributional assumptions for yi, or both. The resulting estimators and tests
are typically sensitive to these assumptions. Therefore, the mechanism should play a cen-
tral role within so-called sensitivity analyses (Section 5.1). Under MNAR, the missing data
mechanism is fully general: f (ri|Xi,yobs,i,ymis,i,φ).

Within the likelihood or Bayesian inferential frameworks, and when the parameters gov-
erning the measurement and missingness process are functionally independent, then MCAR
and MAR mechanisms are ignorable. However, the frequentist framework generally requires
the mechanism to be MCAR for ignorability to apply (Rubin, 1976).

3 The Normal Random-effects Model

The normal random-effects model, also known as the Laird-Ware model (Laird and Ware,
1982), is a special case of the generalized linear mixed model, which is the subject of the next
section. The model is intended for continuous, normally distributed outcomes. Precisely, for
a given individual i with ni repeated measurements, the Laird-Ware model for outcome
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vector yi can be written as

yi = Xiβ +Zibi + ei , i = 1, . . . ,N , (1)

where yi is ni ×1, Xi is an ni× p known matrix of fixed-effects covariates, β is a p×1 vector
of unknown regression parameters, commonly referred to as fixed effects, Zi is a known
ni ×q matrix of covariates for the q×1 vector of random effects bi, and ei is an ni ×1 vector
of errors. The columns of Zi are usually a subset of Xi, allowing for fixed effects as well
as random intercepts and/or slopes. It is typically assumed that the ei’s are independent, the
bi’s are i.i.d., the bi’s are independent of the ei’s, and

ei ∼ Nni(0,σ 2Ini) , bi ∼ Nq(0,D) ,

where Ini is the ni ×ni identity matrix and Nq(µ ,Σ) denotes the q-dimensional multivariate
normal distribution with mean µ and covariance matrix Σ . The positive definite matrix D is
the covariance matrix of the random effects and is typically assumed to be unstructured and
unknown. Under these assumptions, the so-called conditional model, where conditioning
refers to the random effects, takes the form

yi|β ,σ 2,bi ∼ Nni(Xiβ +Zibi,σ 2Ini) . (2)

The model in (2) assumes a distinct set of regression coefficients for each individual once the
random effects are known. Upon integration over the random effects, the so-called marginal
distribution of yi is

yi|β ,σ 2,D ∼ Nni(Xiβ ,ZiDZ′
i +σ 2Ini) . (3)

3.1 Complete-data Estimation

Maximum likelihood (ML) estimation has been extensively considered for the normal ran-
dom effects model (see, for example, Laird and Ware, 1982; Jennrich and Schluchter, 1986).
The standard approach is to take the first and second derivatives of the log-likelihood based
on the marginal distribution of yi and use Newton-Raphson (based on the observed infor-
mation) or Fisher scoring (based on the expected information) methods as the basis for
iteratively obtaining the maximum likelihood estimates. Often, a hybrid approach to this
iterative method is taken, where the updated value of β̂ is used to calculate θ̂ = (σ̂ 2, D̂).

The method described here uses the expectation-maximization (EM) algorithm (Demp-
ster, Laird and Rubin, 1977) for computing ML estimates. The EM algorithm is advan-
tageous over the Newton-Raphson or Fisher scoring algorithms when formulating models
with large numbers of covariance parameters. The procedure consists of two steps. The
first step uses weighted least squares ideas to update β̂ , which is equivalent to maximiz-
ing the likelihood with respect to β while holding the covariance parameters θ = (σ 2,D)

fixed. In the second step, θ̂ is updated using Y = (y1, . . . ,yN) as the observed data and
V = (y1,b1, . . . ,yN ,bN) as the complete data.

Starting out with the first step, the log-likelihood based on the observed data, Y , is

`(β ,σ 2,D) = log

[
N

∏
i=1

f (yi|β ,σ 2,D)

]

=
N

∑
i=1

−
ni

2
log (2π)−

1
2

N

∑
i=1

log |Σi|−
1
2

N

∑
i=1

(yi −Xiβ )′Σ−1
i (yi −Xiβ ) ,
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where Σi = ZiDZ′
i +σ 2Ini . The score equation for β is given by

d`

dβ
=

N

∑
i=1

X ′
i Σ−1

i yi −
N

∑
i=1

X ′
i Σ−1

i Xiβ .

Setting this first derivative equal to zero and solving for β produces the ML estimate,

β̂ =

(
N

∑
i=1

X ′
i Σ−1

i Xi

)−1 N

∑
i=1

X ′
i Σ−1

i yi .

The second step uses the complete data log-likelihood given by

`(β ,σ 2,D)

= log

[
N

∏
i=1

f (yi,bi|β ,σ 2,D)

]
=

N

∑
i=1

log [ f (yi|β ,σ 2,bi)]+
N

∑
i=1

log [ f (bi|D)]

=
N

∑
i=1

(
−

ni

2
log (2π)−

ni

2
log (σ 2)−

1
2σ 2 (yi −Xiβ −Zibi)

′(yi −Xiβ −Zibi)

)

+
N

∑
i=1

(
−

q
2

log (2π)−
1
2

log |D|−
1
2

b′iD
−1bi

)
.

This expression establishes that ∑N
i=1(yi − Xiβ − Zibi)

′(yi − Xiβ − Zibi) ≡ ∑N
i=1 e′iei and

∑N
i=1 bib′i are the complete data sufficient statistics for σ 2 and D, respectively. The M-step is

then given by

σ̂ 2 =
∑N

i=1 e′iei

∑N
i=1 ni

, D̂ =
N

∑
i=1

bib′i
N

and thus
Σ̂i = ZiD̂Z′

i + σ̂ 2Ini .

The E-step consists of calculating the expected value of the sufficient statistics given the
observed data and the current parameter estimates:

E(bib
′
i|yi, β̂ , σ̂ 2, D̂) = E(bi|yi, β̂ , σ̂ 2, D̂)E(b′i|yi, β̂ , σ̂ 2, D̂)+Var(bi|yi, β̂ , σ̂ 2, D̂)

= D̂Z′
i Σ̂−1

i (yi −Xiβ̂ )(yi −Xiβ̂ )′Σ̂−1
i ZiD̂+ D̂− D̂Z′

i Σ̂−1
i ZiD̂ ,

E(e′iei|yi, β̂ , σ̂ 2, D̂) = tr(E(eie
′
i|yi, β̂ , σ̂ 2, D̂))

= tr(E(ei|yi, β̂ , σ̂ 2, D̂)E(e′i|yi, β̂ , σ̂ 2, D̂)+Var(ei|yi, β̂ , σ̂ 2, D̂))

= tr(σ̂ 4Σ̂−1
i (yi −Xiβ̂ )(yi −Xiβ̂ )′Σ̂−1

i + σ̂ 2Ini − σ̂ 4Σ̂−1
i ) ,

where ei = yi −Xiβ −Zibi. One iterates between both steps until convergence.
Note that the EM algorithm converges linearly, in contrast to super-linear convergence

of Fisher scoring and even quadratic convergence of Newton-Raphson. However, key advan-
tages of the EM algorithm are that (1) implementation is frequently more straightforward
and intuitive and (2) there is a much lower risk for divergence. Sometimes, hybrid algorithms
can be used, setting out with EM and then switching to Fisher-scoring or Newton-Raphson.
Alternatively, EM-acceleration methods can be used (Louis, 1982; Meilijson, 1989). Such
methods are also useful when determining measures of precision.
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3.2 Estimation With Nonignorable Missingness

When the missing data mechanism is MNAR, one needs to specify a (parametric) model for
missingness alongside the aforementioned model for the outcomes and incorporate it into
the complete data log-likelihood. The missing data mechanism is defined as the distribution
of the ni × 1 random vector Ri, whose jth component, ri j = 1 if yi j is missing and 0 other-
wise. The distribution of Ri is indexed by the parameter vector φ and takes a multinomial
form with 2ni cell probabilities. Under the normal mixed model, the complete data density
of (yi,bi,ri) for subject i is then given by f (yi,bi,ri|β ,σ 2,D,φ). Little (1993, 1995) iden-
tified two ways of factoring this joint distribution. Selection models decompose the joint
distribution as (with covariates suppressed from notation)

f (yi,bi,ri|β ,σ 2,D,φ) = f (yi|β ,σ 2,bi) f (bi|D) f (ri|φ ,yi) ,

whereas pattern-mixture models employ the reverse factorization

f (yi,bi,ri|β ,σ 2,D,φ) = f (yi|β ,σ 2,bi,ri) f (bi|D) f (ri|φ) .

The term “pattern-mixture” emphasizes that the marginal distribution of y = (y′1, . . . ,y
′
N)′ is

a mixture of pattern-specific distributions. Most estimation methods assume that the distri-
bution of ri depends on (yi,Xi,Zi), but not on bi. This assumption will be addressed in the
discussion of models for the missing data mechanism.

3.2.1 Selection Models

Estimation The complete data log-likelihood for the selection model is

`(γ) = log

[
N

∏
i=1

f (yi,bi,ri|β ,σ 2,D,φ)

]
(4)

=
N

∑
i=1

l(γ ;yi,bi,ri)

=
N

∑
i=1

log [ f (yi|β ,σ 2,bi)]+
N

∑
i=1

log [ f (bi|D)]+
N

∑
i=1

log [ f (ri|φ ,yi)] , (5)

where γ = (β ,σ 2,D,φ). Estimation of (β ,σ 2,D) is usually of interest, with often, but not al-
ways, both the random effects as well as φ being viewed as nuisance parameters. Diggle and
Kenward (1994) discuss estimation methods for selection models assuming monotone miss-
ing data. However, these methods are not easily extended to the analysis of nonmonotone
missing data, where a subject may be observed after a missing value occurs. The method de-
scribed next, based on the so-called EM by Method of Weights (Ibrahim, 1990), is general
in that it applies to both monotone and nonmonotone missing data.

For ease of exposition, write yi = (ymis,i,yobs,i), where ymis,i is the si×1 vector of missing
components of yi. The Monte Carlo EM (MCEM) algorithm has been used for parametric
estimation in selection models with nonignorable missing response data (Ibrahim, Chen,
Lipsitz, 2001). The E-step consists of calculating the expected value of the complete data
log-likelihood given the observed data and current parameter estimates. Since both bi and
ymis,i are unobserved, they must be integrated over. Thus, the E-step for the ith observation
at the (t +1)st iteration is

Qi(γ |γ (t)) = E(l(γ ;yi,bi,ri)|yobs,i,ri,γ (t))
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=

∫ ∫
log [ f (yi|β ,σ 2,bi)] f (ymis,i,bi|yobs,i,ri,γ (t)) dbi dymis,i

+

∫ ∫
log [ f (bi|D)] f (ymis,i,bi|yobs,i,ri,γ (t)) dbi dymis,i

+

∫ ∫
log [ f (ri|φ ,yi)] f (ymis,i,bi|yobs,i,ri,γ (t)) dbi dymis,i

≡ I1 + I2 + I3 , (6)

where γ (t) = (β (t),σ 2(t),D(t),φ (t)) and f (ymis,i,bi|yobs,i,ri,γ (t)) represents the conditional
distribution of the data considered “missing,” (ymis,i,bi), given the observed data.

To integrate out bi from I1 and I2, write

f (ymis,i,bi|yobs,i,ri,γ (t)) = f (bi|yi,γ (t)) f (ymis,i|yobs,i,ri,γ (t)) ,

and note that standard conditional distribution calculations yield

(bi|yi,γ (t)) ∼ Nq(b
(t)
i ,Σ (t)

i ) ,

where

b(t)
i = D(t)Z′

i(ZiD
(t)Z′

i +σ 2(t)Ini)
−1(yi −Xiβ (t))

= Σ (t)
i Z′

i(yi −Xiβ (t))/σ 2(t) ,

and

Σ (t)
i = D(t)−D(t)Z′

i(ZiD
(t)Z′

i +σ 2(t)Ini)
−1ZiD

(t)

=

[
σ−2(t)Z′

iZi +
(

D(t)
)−1

]−1

.

Now, I1 can be written as

I1 =
∫ ∫

log [ f (yi|β ,σ 2,bi)] f (ymis,i,bi|yobs,i,ri,γ (t)) dbi dymis,i

= −
ni

2
log (2π)−

ni

2
log (σ 2)

−

∫
1

2σ 2

(∫
(yi −Xiβ −Zibi)

′(yi −Xiβ −Zibi) f (bi|yi,γ (t)) dbi

)

× f (ymis,i|yobs,i,ri,γ (t)) dymis,i . (7)

To evaluate the integral with respect to bi in (7), note that

(yi −Xiβ −Zibi)
′(yi −Xiβ −Zibi)

= (yi −Xiβ −Zib
(t)
i )′(yi −Xiβ −Zib

(t)
i )−2(yi −Xiβ −Zib

(t)
i )′Zi(bi −b(t)

i )

+(bi −b(t)
i )′(Z′

iZi)(bi −b(t)
i ) . (8)

Substituting (8) into (7), we have

I1 = −
ni

2
log (2π)−

ni

2
log (σ 2)−

1
2σ 2

(
tr(Z′

iZiΣ
(t)
i )
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+

∫
(yi −Xiβ −Zib

(t)
i )′(yi −Xiβ −Zib

(t)
i )× f (ymis,i|yobs,i,ri,γ (t)) dymis,i

)
. (9)

Following similar logic and upon noting that bi ∼ Nq(0,D), I2 can be written as

I2 = −
q
2

log (2π)−
1
2

log (|D|)−
1
2

tr (D−1Σ (t)
i )

−
1
2

∫
(b(t)′

i D−1b(t)
i ) f (ymis,i|yobs,i,ri,γ (t)) dymis,i . (10)

Finally, for I3, bi can be easily integrated out since log [ f (ri|φ ,yi)] does not depend on bi.
Therefore, I3 can be written simply as

I3 =

∫
log [ f (ri|φ ,yi)] f (ymis,i|yobs,i,ri,γ (t)) dymis,i . (11)

The E-step, expressed via (9), (10), and (11) does not involve bi. Thus, to complete the E-
step, we merely need to sample from [ymis,i|yobs,i,ri,γ (t)]. This distribution can be written,
up to a constant of proportionality, as

f (ymis,i|yobs,i,ri,γ (t))

∝ exp

(
−

1
2

(yi −Xiβ (t))′(ZiD
(t)Z′

i +σ 2(t)Ini)
−1(yi −Xiβ (t))

)

× f (ri|ymis,i,yobs,i,γ (t)) , (12)

which has the form of a normal density times a logistic regression for the ri’s. Thus, the
distribution is from the class of concave log-densities, and Gibbs sampling from (12) is
straightforward, using the adaptive rejection algorithm of Gilks and Wild (1992).

Precisely, the procedure is as follows. Let ui1, . . . ,uimi be a sample of size mi from
[ymis,i|yobs,i,ri,γ (t)], obtained via the Gibbs sampler along with the adaptive rejection al-

gorithm of Gilks and Wild (1992). Also, let y(k)
i = (u′ik,y

′
obs,i)

′ and

b(tk)
i = Σ (t)

i Z′
i(y

(k)
i −Xiβ (t))/σ 2(t) .

Then, the E-step for the ith observation at the (t +1)th iteration takes the form

Qi(γ |γ (t))

= −
ni

2
log (2π)−

ni

2
log (σ 2)

−
1

2σ 2

(
tr(Z′

iZiΣ
(t)
i )+

1
mi

mi

∑
k=1

(y(k)
i −Xiβ −Zib

(tk)
i )′(y(k)

i −Xiβ −Zib
(tk)
i )

)

−
q
2

log (2π)−
1
2

log (|D|)−
1
2

tr(D−1Σ (t)
i )−

1
2mi

mi

∑
k=1

b(tk)′

i D−1b(tk)
i

+
1
mi

mi

∑
k=1

log [ f (ri|φ ,y(k)
i )] .

Obviously, the E-step for all N observations is given by

Q(γ |γ (t)) =
N

∑
i=1

Qi(γ |γ (t)) .
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Stubbendick and Ibrahim (2003) extend this approach to the problem of nonignorable miss-
ing covariates and/or responses in the normal mixed model. Similar MCEM algorithms have
been developed for other types of models, such as generalized linear models and survival
models by Ibrahim, Lipsitz, Chen (1999a), Ibrahim, Chen, Lipsitz (1999b), Ibrahim, Lipsitz,
Chen (1999a), Chen and Ibrahim (2001), Herring and Ibrahim (2001), Herring and Ibrahim
(2002), Herring et al (2002), Herring, Ibrahim, Lipsitz (2004), Chen and Ibrahim (2001),
Chen and Ibrahim (2006), and Chen, Zeng, Ibrahim (2007).

Let us turn to the M-step, which maximizes Q(γ |γ (t)), and closed forms are available for
(β ,σ 2,D). The procedure for the M-step is as follows:

(i) Find φ (t+1) to maximize

Qφ =
N

∑
i=1

1
mi

mi

∑
k=1

log [ f (ri|φ ,y(k)
i )] . (13)

(ii) Find D(t+1) to maximize

QD = −
N
2

log (|D|)−
1
2

tr(D−1
N

∑
i=1

Σ (t)
i )−

1
2

N

∑
i=1

1
mi

mi

∑
k=1

b(tk)′

i D−1b(tk)
i (14)

which yields

D(t+1) =
1
N

N

∑
i=1

[
1
mi

mi

∑
k=1

b(tk)
i b(tk)′

i +Σ (t)
i

]
.

(iii) Find β (t+1) to minimize

Qβ =
N

∑
i=1

1
mi

mi

∑
k=1

(y(k)
i −Xiβ −Zib

(tk)
i )′(y(k)

i −Xiβ −Zib
(tk)
i ) , (15)

which yields

β (t+1) =

(
N

∑
i=1

X ′
i Xi

)−1 N

∑
i=1

(
X ′

i
1
mi

mi

∑
k=1

(y(k)
i −Zib

(tk)
i )

)
.

(iv) Find σ 2(t+1) to minimize

Qσ2 =
n
2

log (σ 2)+
1

2σ 2

N

∑
i=1

tr(Z′
iZiΣ

(t)
i )+

1
2σ 2

(
N

∑
i=1

1
mi

mi

∑
k=1

(y(k)
i −Xiβ (t+1) −Zib

(tk)
i )′(y(k)

i −Xiβ (t+1)−Zib
(tk)
i )

)
, (16)

which leads to

σ 2(t+1) =
1
n

N

∑
i=1

(
1
mi

mi

∑
k=1

(y(k)
i −Xiβ (t+1) −Zib

(tk)
i )′(y(k)

i −Xiβ (t+1) −Zib
(tk)
i )

+ tr(Z′
iZiΣ

(t)
i )
)

,

where n = ∑N
i=1 ni.
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Models for the Missing Data Mechanism Diggle and Kenward (1994) proposed a binomial
model for the missing data mechanism under the selection modeling approach, i.e.,

f (r|φ ,y) =
N

∏
i=1

ni

∏
j=1

[P(ri j = 1|φ)]ri j [(1−P(ri j = 1|φ)]1−ri j ,

where P(ri j = 1|φ) is modeled via a logistic regression involving all of the previous out-
comes as well as the current outcome. This model takes the form

logit
(

P(ri j = 1|φ)
)
≡ log

[
P(ri j = 1|φ)

1−P(ri j = 1|φ)

]
= φ0 +φ1yi j +

j

∑
k=2

φky j+1−k ,

for i = 1, . . . ,N, and j = 1, . . . ,ni. The model can be extended to permit possible relationships
between the missing data process and covariates, including time, by making φ0 a function
of the covariates xq j at time t j. A linear function in the covariates could be written as

φ0 =
r

∑
q=1

φq0xq j . (17)

For example, for the IBCSG data, consider a logistic regression model that includes the
previous and current outcome as well as treatment covariates. Such a choice would specialize
(17) to

logit
(

P(ri j = 1|φ)
)

= φ0 +φ1yi, j−1 +φ2yi j +φ3trtAi +φ4trtBi +φ5trtCi,

for i = 1, . . . ,N, j = 1, . . . ,ni, and trtTi an indicator variable for whether subject i receives
treatment T = A,B,C. Note that these models assume independence between the ri j’s, in
line with their conditional interpretation as probabilities of dropout given one is still at risk
for dropping out.

A more general multinomial missing data model which incorporates a general corre-
lation structure can be constructed by specifying the joint distribution of ri = (ri1, . . . ,rini)
through a sequence of one-dimensional conditional distributions (Ibrahim, Chen, Lipsitz,
2001). Consider

f (ri1, . . . ,rini |φ ,yi)

= f (rini |φni ,ri1, . . . ,ri(ni−1),yi) . f (ri(ni−1)|φni−1 ,ri1, . . . ,ri(ni−2),yi) . . .

. . . f (ri2|φn2 ,ri1,yi) . f (ri1|φn1 ,yi) , (18)

where φa is a vector of indexing parameters for the ath conditional distribution and φ =
(φ ′

n1
, . . . ,φ ′

nN
)′. Thus,

f (r|φ ,y) =
N

∏
i=1

f (ri1, . . . ,rini |φ ,yi) ,

where f (ri1, . . . ,rini |φ ,yi) is given in (18). Since ri j is binary, a sequence of logistic regres-
sions can be used for (18). This modeling strategy has the potential of reducing the number
of nuisance parameters that have to be specified for the missing data mechanism, yields gen-
eral correlation structures between the ri j’s, and allows more flexibility in the specification
of the missing data model. It also accommodates nonmonotone patterns of missing data and
provides a natural way to specify the joint distribution of the missing data indicators when
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knowledge about the missingness of one response affects the probability of missingness
of another. One must be careful not to build too large a model for the missing data mecha-
nism, since the model can easily become unidentifiable. Thus, caution should be taken when
adding interaction terms or other higher-order terms. It is not clear how to characterize the
set of all estimable parameters for this class of models given a certain choice of variables in
the missing data mechanism. The parametric form of the assumed missing data mechanism
is not testable from the data. Therefore, although a model may pass the tests for a certain
missing data mechanism, this does not mean that one has captured the correct, and perhaps
more complicated, missing data mechanism.

Also, it has been assumed throughout that [ri|φ ,yi] does not depend on bi. This is a
reasonable assumption in practice since autoregressive models for [ri|φ ,yi] can closely ap-
proximate models for the missing data mechanism that include the random effect bi. In other
words, conditional on the outcome vector yi, which contains information on the trajectory of
the outcome over time, ri is independent of bi. In addition, the inclusion of a random effect
in the missing data model induces a correlation structure across subjects in the marginal
model [ri|φ ,yi]. Note, however, that the correlation structure induced via a sequence of con-
ditional distributions for [ri|φ ,yi] as in (18) would also provide a suitable approximation to a
correlation structure induced from a random effects model for the missing data mechanism.
Little (1995) suggests using a model where missingness depends on the values of the ran-
dom coefficients when the probability of missingness depends on current and past values of
some latent variable that the outcome variable is measuring with error. However, including
a random effect in [ri|φ ,yi] makes the E-step substantially more computationally intensive
and all closed forms would be lost. A plausible alternative to the assumption, as suggested
by Little (1995), is to model the missing data mechanism using the expected values of yi,
rather than the actual values. In this case, (18) would then be written as

f (ri1, . . . ,rini |φ ,β ,σ 2,bi) = f (rini |φni ,ri1, . . . ,ri(ni−1),E(yi|β ,σ 2,bi))

× f (ri(ni−1)|φni−1 ,ri1, . . . ,ri(ni−2),E(yi|β ,σ 2,bi)) . . .

. . . f (ri2|φn2 ,ri1,E(yi|β ,σ 2,bi)) f (ri1|φn1 ,E(yi|β ,σ 2,bi)) .

Other innovations for the normal mixed model include Lipsitz et al (2000) who con-
sider Box-Cox transformations on the response variable in the presence of missing data and
Lipsitz et al (2002) who consider missing data mechanisms based on outcome dependent
follow-up.

3.2.2 Pattern-mixture Models

Pattern-mixture models are based on an alternative factorization of f (yi,bi,ri|β ,σ 2,D,φ).
The complete data log-likelihood for the pattern-mixture model is

`(γ) = log

[
N

∏
i=1

f (yi,bi,ri|β ,σ 2,D,φ)

]

=
N

∑
i=1

l(γ ;yi,bi,ri)

=
N

∑
i=1

log [ f (yi|β ,σ 2,bi,ri)]+
N

∑
i=1

log [ f (bi|D)]+
N

∑
i=1

log [ f (ri|φ)] ,
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where γ = (β ,σ 2,D,φ). Since the distribution of yi depends on ri, a model based on this
factorization implies that the marginal distribution of yi is a mixture of normal distributions
rather than a single normal distribution as in the selection model. By conditioning on ri,
this approach essentially stratifies the sample by the observed pattern of missing data and
then models different distributions of yi over these patterns. Stratifying on the pattern is
not always the most obvious way to go forward, as substantive interest usually concerns
the mean and covariance matrix of yi averaged over pattern. However, it will be shown that
inference for such parameters is not precluded in pattern-mixture models.

Recall the Laird-Ware model for the outcome vector yi in (1). If yi contains nonignorable
missing data, model (2) becomes

(yi|β ,σ 2,bi,ri = k) ∼ Nni(Xiβ (k) +Zibi,σ 2(k)Ini)

under the pattern-mixture factorization. The specification of distinct fixed parameters, (β (k),
σ 2(k)), for each pattern creates major identification problems because not all parameters of
the complete data distribution of yi are estimable from incomplete pattern data. However,
assumptions about the missing data mechanism can yield additional restrictions that help
to identify the models, while avoiding explicit specification of the mechanism’s parametric
form, such as required in the selection model approach. See also Verbeke and Molenberghs
(2000) and Molenberghs and Verbeke (2005) for reviews.

To illustrate this idea, consider the analysis presented in Little and Wang (1996), in
which pattern-mixture models are developed for a multivariate multiple regression. Suppose
we have a sample of N independent observations on p continuous outcome variables and q
covariates, so that yi = (y1, . . . ,yp)

′ and xi = (x1, . . . ,xq)
′. Assume xi and a subset of p1 rows

of yi, denoted by y(1)i = (y1, . . . ,yp1)
′, are observed for all N cases and that the remaining

p2 = (p− p1) rows of yi, denoted y(2)i = (yp1+1, . . . ,yp)
′, are observed for N0 cases and are

missing for N1 = N−N0 cases. The indicator variable r is defined for observation i as ri = 0
if y(2)i is observed and ri = 1 if y(2)i is missing. Thus, we have a monotone missing data
structure which can be found in longitudinal studies where subjects are lost to follow-up at
the same time point. Now, pattern-mixture models are developed for this type of data using
the model

(yi|β ,Σ ,ri = k) ∼ Np(β (k)xi,Σ (k)) ,k = 0,1 ; (19)

ri|φ ∼ Bernoulli

(
eφ ′xi

1+ eφ ′xi

)
⇒ logit [P(ri = 1|φ)] = φ ′xi ,

where yi is p×1, xi is a q×1 vector of known covariates, β (k) is a p×q coefficient matrix
of unknown regression parameters for pattern k, Σ (k) is a p× p unknown covariance matrix
for pattern k, ri is an indicator variable for missingness, and φ is a q×1 vector of unknown
logistic regression parameters. Therefore, the total number of parameters to be estimated is
2pq + p(p + 1) + q. If we let θ (k) = (β (k),Σ (k)), k = 0,1, and θ = (θ (0),θ (1)), then φ is
distinct from θ and is estimated by standard methods for logistic regression of ri on xi. Note
that the parameters of θ (1) cannot be directly estimated due to the missing data. However,
these parameters can be identified by exploiting assumptions about the missing data mech-
anism. It should be noted that this model is more restrictive than the normal random-effects
model of Laird and Ware (1982), which permits a distinct design matrix for each response
and can incorporate random effects. It only encompasses models for repeated-measures data
where the means are modeled as functions of between-subject covariates. Little (1995) con-
siders random-effects models, but does not give any details as to how pattern-mixture models
would be developed.
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The important step in developing pattern-mixture models is in making an assumption
about the missing data mechanism. Suppose that

P(ri = 1|y(1)i,y(2)i,xi) = g(y(2)i,xi) , (20)

where g is an arbitrary function of y(2)i and xi. Since missingness depends on the value of
the missing variable, y(2)i, this is a nonignorable missing data mechanism. This assumption
can then be converted into constraints on the parameters by factorizing the distribution of
yi = (y(1)i,y(2)i) in pattern k as

f (y(1)i,y(2)i|θ (k),xi,ri = k) = f (y(2)i|θ
(k)
2 ,xi,ri = k) f (y(1)i|θ

(k)
1·2 ,y(2)i,xi,ri = k) ,

where θ (k)
2 = (β (k)

x:2·x,Σ
(k)
22·x) consists of the (p2 × q) regression coefficient matrix and (p2 ×

p2) residual covariance matrix for the regression of y(2)i on xi within pattern k, and θ (k)
1·2 =

(β (k)
2:1·2x,β

(k)
x:1·2x,Σ

(k)
11·2x) consists of the (p1 × p2) and (p1 ×q) regression coefficient matrices

and (p1 × p1) residual covariance matrix for the regression of y(1)i on y(2)i and xi within
pattern k.

Note that assumption (20) states that [ri|y(1)i,y(2)i,xi] ⊥ y(1)i, which implies in turn that
[y(1)i|y(2)i,xi,ri] ⊥ ri, where ⊥ indicates independence. In other words, the conditional dis-
tribution of y(1)i given y(2)i and xi is the same for both patterns so that

θ (0)
1·2 = θ (1)

1·2 = θ1·2 . (21)

This yields p1(p2 +q)+ p1(p1+1)
2 restrictions that help to identify the model, and likelihood

inference now depends on the relative sizes of p1 and p2.
The log-likelihood of θ for the model in (19) is

`(θ (0),θ (1)) = log

[
N

∏
i=1

f (yi|β ,Σ ,ri = k)

]

= −
N0 p1

2
log(2π)−

N0

2
log |Σ (0)

11·x|

−
1
2

N0

∑
i=1

(y(1)i −β (0)
x:1·xxi)

′Σ (0)−1
11·x (y(1)i −β (0)

x:1·xxi)

−
N1 p1

2
log(2π)−

N1

2
log |Σ (1)

11·x|

−
1
2

N1

∑
i=1

(y(1)i −β (1)
x:1·xxi)

′Σ (1)−1
11·x (y(1)i −β (1)

x:1·xxi)

−
N0 p2

2
log(2π)−

N0

2
log |Σ (0)

22·1x|

−
1
2

N0

∑
i=1

(y(2)i −β (0)
1:2·1xy(1)i −β (0)

x:2·1xxi)
′Σ (0)−1

22·1x (y(2)i −β (0)
1:2·1xy(1)i −β (0)

x:2·1xxi) .

The model has 2p1q+ p1(p1 +1)+2p2(p1 +q)+ p2(p2 +1) parameters, but only 2p1q+

p1(p1 +1)+ p2(p1 +q)+
p2(p2+1)

2 can be identified from the data, namely

θid = (β (0)
x:1·x,Σ

(0)
11·x,β

(1)
x:1·x,Σ

(1)
11·x,β

(0)
1:2·1x,β

(0)
x:2·1x,Σ

(0)
22·1x) .
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If p1=p2, then the number of restrictions in (21) equals the number of unidentified parame-
ters and the model is just identified. Maximum likelihood (ML) estimates for the identified
parameters are obtained by standard complete data methods, namely two multivariate re-
gressions of y(1) on x and one multivariate regression of y(2) on y(1) and x. For example,

β̂ (0)
x:1·x = (X ′X)−1X ′Y ,

Σ̂ (0)
11·x =

1
N0

(Y −X β̂ (0)
x:1·x)

′(Y −X β̂ (0)
x:1·x) ,

where Y is an N0 × p1 matrix of responses and X is an N0 × q matrix of covariates. The
estimates of interest, however, are from [y(1)i,y(2)i|xi], averaged over patterns, (βx:1·x,Σ11·x,
βx:2·x,Σ22·x,Σ21·x). These can be expressed as functions of the identified parameters and φ
by applying the identifying restrictions. The following ML estimates are then obtained by
substituting the ML estimates of the identified parameters and φ into these functions,

β̂x:1·x = (1− p̂x)β̂
(0)
x:1·x + p̂xβ̂ (1)

x:1·x ,

Σ̂11·x = (1− p̂x)Σ̂
(0)
11·x + p̂xΣ̂ (1)

11·x + p̂x(1− p̂x)(β̂
(0)
x:1·x − β̂ (1)

x:1·x)xx′(β̂ (0)
x:1·x − β̂ (1)

x:1·x)
′ ,

β̂x:2·x = β̂ (0)
x:2·x +(β̂ (0)

2:1·2x)
−1(β̂x:1·x − β̂ (0)

x:1·x) ,

Σ̂22·x = Σ̂ (0)
22·x +(β̂ (0)

2:1·2x)
−1(Σ̂11·x − Σ̂ (0)

11·x)(β̂
(0)′

2:1·2x)
−1 ,

Σ̂21·x = Σ̂ (0)
21·x +(β̂ (0)

2:1·2x)
−1(Σ̂11·x − Σ̂ (0)

11·x) ,

where p̂x = P(ri = 1|φ̂ ,xi). A modification of these equations is required if the resulting

covariance matrices are not positive semidefinite. Specifically, if (Σ̂11·x − Σ̂ (0)
11·x) is not pos-

itive semidefinite, it is replaced by PQP′ where P is the orthogonal matrix of eigenvectors

of (Σ̂11·x − Σ̂ (0)
11·x) and Q is the diagonal matrix of eigenvalues of (Σ̂11·x − Σ̂ (0)

11·x) with the
negative elements replaced by zero.

If p1 > p2, then the number of restrictions in (21) exceeds the number of unidentified
parameters and the model is overidentified. Explicit ML estimates cannot be obtained, and
an iterative method such as the EM algorithm is required. The complete data log-likelihood
of θ is

l(θ (0),θ (1)) = log

[
N

∏
i=1

f (yi|β ,Σ ,ri = k)

]

= −
N0 p1

2
log(2π)−

N0

2
log |Σ (0)

11·x|

−
1
2

N0

∑
i=1

(y(1)i −β (0)
x:1·xxi)

′Σ (0)−1
11·x (y(1)i −β (0)

x:1·xxi)

−
N1 p1

2
log(2π)−

N1

2
log |Σ (1)

11·x|

−
1
2

N1

∑
i=1

(y(1)i −β (1)
x:1·xxi)

′Σ (1)−1
11·x (y(1)i −β (1)

x:1·xxi)

−
N0 p2

2
log(2π)−

N0

2
log |Σ (0)

22·1x|
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−
1
2

N0

∑
i=1

(y(2)i −β (0)
1:2·1xy(1)i −β (0)

x:2·1xxi)
′Σ (0)−1

22·1x (y(2)i −β (0)
1:2·1xy(1)i −β (0)

x:2·1xxi)

−
N1 p2

2
log(2π)−

N1

2
log |Σ (1)

22·1x|

−
1
2

N1

∑
i=1

(y(2)i −β (1)
1:2·1xy(1)i −β (1)

x:2·1xxi)
′Σ (1)−1

22·1x (y(2)i −β (1)
1:2·1xy(1)i −β (1)

x:2·1xxi) .

From this it can be seen that the complete data sufficient statistics involving missing data
are

S(1)
12 =

N1

∑
i=1

y(1)iy
′
(2)i , S(1)

x2 =
N1

∑
i=1

xiy
′
(2)i , S(1)

22 =
N1

∑
i=1

y(2)iy
′
(2)i .

The E-step at each iteration replaces these statistics by their expected values given the ob-
served data and current parameter estimates, which can be calculated from the first and
second moments of y(2)i:

E(y(2)i|β̂ , Σ̂ ,y(1)i,xi,ri = 1) = β̂ (1)
1:2·1xy(1)i + β̂ (1)

x:2·1xxi ,

Var(y(2)i|β̂ , Σ̂ ,y(1)i,xi,ri = 1) = Σ̂ (1)
22·1x .

The M-step computes new parameter estimates by a complete-data maximization subject to
the constraints induced by the missing data assumption. Therefore, for the restrictions of
(21), the likelihood function for the complete data is rewritten as

`(θ (0),θ (1)) (22)

= log

[
N

∏
i=1

f (yi|β ,Σ ,ri = k)

]

= −
N0 p1

2
log(2π)−

N0

2
log |Σ11·2x|

−
1
2

N0

∑
i=1

(y(1)i −β2:1·2xy(2)i −βx:1·2xxi)
′Σ−1

11·2x(y(1)i −β2:1·2xy(2)i −βx:1·2xxi)

−
N0 p2

2
log(2π)−

N0

2
log |Σ (0)

22·x|−
1
2

N0

∑
i=1

(y(2)i −β (0)
x:2·xxi)

′Σ (0)−1
22·x (y(2)i −β (0)

x:2·xxi)

−
N1 p2

2
log(2π)−

N1

2
log |Σ (1)

22·x|−
1
2

N1

∑
i=1

(y(2)i −β (1)
x:2·xxi)

′Σ (1)−1
22·x (y(2)i −β (1)

x:2·xxi).

Note that the E-step requires the regression of y(2)i on y(1)i and xi for the pattern with missing
data, whereas the M-step requires the regression of y(2)i on xi for each pattern and y(1)i on
y(2)i and xi pooled over patterns. The sweep operator (Little and Rubin, 2002, Chap. 6)
facilitates the switching of the regressions needed for the E- and M-steps. Specifically,

θ (1)
2·1 = (β (1)

1:2·1x,β
(1)
x:2·1x,Σ

(1)
22·1x) are obtained by sweeping on the second and third blocks of

the matrix

D =




D−1
11 β ′

x:1·2x D−1
12

βx:1·2x Σ11·2x β2:1·2x

D−1
12 β ′

2:1·2x D−1
22



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where
[

D11 D12

D21 D22

]
= −N1

[
S(1)

xx S(1)′

x2

S(1)
2x S(1)

22

]−1

.

Note that the elements of D are calculated using the parameter estimates from the previous
M-step. Once the E-step is completed, the missing parts of the following matrix, A1, can be
filled in, leading to

A1 =
1

N1




S(1)
xx S(1)

x1 S(1)
x2

S(1)′

x1 S(1)
11 S(1)′

21

S(1)′

x2 S(1)
12 S(1)

22


 .

If we let

A0 =
1

N0




S(0)
xx S(0)

x1 S(0)
x2

S(0)′

x1 S(0)
11 S(0)′

21

S(0)′

x2 S(0)
12 S(0)

22




and A = (N0A0 +N1A1)/N, then the M-step is completed by sweeping on the first block of

A0 and A1 to obtain θ (0)
2 = (β (0)

x:2·x,Σ
(0)
22·x) and θ (1)

2 = (β (1)
x:2·x,Σ

(1)
22·x), respectively. The values

of θ1·2 = (β2:1·2x,βx:1·2x,Σ11·2x) are obtained by sweeping on the first and third blocks of A.

Notice that θ (0)
2 is not affected by the E-step and so does not need iteration. This process

yields ML estimates of (β (0)
x:2·x,Σ

(0)
22·x,β

(1)
x:2·x,Σ

(1)
22·x). ML estimates of (β (0)

x:1·x,Σ
(0)
11·x,β

(1)
x:1·x,Σ

(1)
11·x)

can be obtained from the regression of y(1)i on xi for each pattern, and ML estimates of φ
can be obtained from a logistic regression of ri on xi. The following functions of these ML
estimates yield ML estimates of the parameters of interest:

β̂x:1·x = (1− p̂x)β̂
(0)
x:1·x + p̂xβ̂ (1)

x:1·x ,

Σ̂11·x = (1− p̂x)Σ̂
(0)
11·x + p̂xΣ̂ (1)

11·x + p̂x(1− p̂x)(β̂
(0)
x:1·x − β̂ (1)

x:1·x)xx′(β̂ (0)
x:1·x − β̂ (1)

x:1·x)
′ ,

β̂x:2·x = (1− p̂x)β̂
(0)
x:2·x + p̂xβ̂ (1)

x:2·x ,

Σ̂22·x = (1− p̂x)Σ̂
(0)
22·x + p̂xΣ̂ (1)

22·x + p̂x(1− p̂x)(β̂
(0)
x:2·x − β̂ (1)

x:2·x)xx′(β̂ (0)
x:2·x − β̂ (1)

x:2·x)
′ ,

Σ̂21·x = (1− p̂x)Σ̂
(0)
21·x + p̂xΣ̂ (1)

21·x + p̂x(1− p̂x)(β̂
(0)
x:1·x − β̂ (1)

x:1·x)xx′(β̂ (0)
x:2·x − β̂ (1)

x:2·x)
′ ,

where p̂x = P(ri = 1|φ̂ ,xi).
If p1 < p2, then the model remains underidentified and additional restrictive assumptions

are needed to identify the model parameters. Little and Wang (1996) suggest assuming

P(ri = 1|y(1)i,y(2)i,xi) = g(y(2s)i,xi) ,

where y(2s)i is a subset of the variables y(2)i with dimension p(2s) ≤ p1. Using this approach,
inference follows directly from the two scenarios previously described (p1 = p2 case when
p1 = p(2s) and p1 > p2 case when p1 > p(2s)). The choice of subset variables is important
to the success of the model and reasons for dropout should be determined.
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3.2.3 Discussion of Selection and Pattern-Mixture Models

All likelihood-based methods for handling nonignorable missing data must make some un-
verifiable assumptions, since the missing data mechanism included in the model depends
on unobserved responses. Such a model is essentially nonidentifiable unless some unverifi-
able constraints are imposed. Inferences are only possible once these assumptions have been
made, and the following aspects of the model need to be carefully considered: the bias and
efficiency of parameter estimates, sensitivity to model specification, computational expense,
and ease of implementation and interpretation. Selection and pattern-mixture models repre-
sent two different methods for handling nonignorable missing longitudinal data; each has its
advantages and disadvantages.

Selection models directly model the distribution of primary interest, that is, the marginal
distribution of the longitudinal outcomes. Thus, this method is more intuitive to most inves-
tigators. Selection models allow for a more natural way to model the missing data process,
and since the missing data mechanism is modeled conditional on the repeated outcomes, it
is very easy to formulate hypotheses about the missing data mechanism. However, to ensure
identifiability, the set of outcomes is usually restricted in some way and arbitrary constraints
must be applied to the missing data model. It is unclear how these restrictions on the miss-
ing data mechanism translate into assumptions about the distribution of the unobserved out-
comes. Sensitivity of parameter estimates to model assumptions need to be considered, as
well as the complexity of the computational algorithms required to fit the models.

Pattern-mixture models make specific assumptions about the distribution of the unob-
served outcomes, and therefore, it may be easier to explore the sensitivity of results to
model specification. By modeling the outcomes separately for each pattern, problems of
identifiability are made explicit. Model identifiability is more obscure in the selection mod-
eling approach, and in this case, one needs to characterize identifiability theoretically. Chen,
Ibrahim, Shao (2004), Chen, Ibrahim, Shao (2006), and Chen, Ibrahim, Shao (2009) have
carried out such investigations. The main drawback of pattern-mixture models is that the
parameters of interest are not immediately available. The primary focus of inference is on
the marginal distribution of the outcomes, which can only be obtained by averaging over
patterns. Hence, one cannot examine the effects of the individual covariates on the marginal
distribution of the outcomes in terms of the regression coefficients. Also, as shown in the
previous section, the computations needed for a simple multivariate multiple regression with
just one pattern of missing data are complex. It is possible that pattern-mixture models may
be computationally intractable for random-effects models or more general patterns of in-
complete data.

3.2.4 Conditional Linear Models

Several methods have been proposed for dealing with series of measurements that may be
right censored due to death or withdrawal. The right censoring is termed informative if the
censoring probabilities depend on an individual subject’s underlying rate of change (slope)
of the outcome variable. Thus, informative censoring is a special type of nonignorable miss-
ing data, and the class of joint models for longitudinal data and a nonignorable censoring
process represent a specific case of the selection model. Wu and Carroll (1988) combine
the normal random effects model with a probit model for the censoring process. They de-
rive pseudo-maximum likelihood estimates and refer to their procedure as probit pseudo-
maximum likelihood estimation (PPMLE). Wu and Bailey (1989) prove that under the pro-
bit model, the expectation of the slope for subject i is a monotonic increasing (decreasing)
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function of the censoring time, and instead of modeling the censoring process, they propose
a conditional linear model for the individual least squares estimated slope. This method
can be described as an approximation to account for the informative right censoring when
estimating and comparing changes of a continuous outcome variable.

Consider the following general framework. Assume that in a longitudinal study, n mea-
surements on the outcome variable are planned to be made for each participant and that the
participants are to be allocated into two equal sized treatment groups. Let yi = (yi1, . . . ,yi ji)
be the observed outcome vector of serial measurements for subject i, where ji ≤ n. The
repeated measurements of yi are assumed to follow linear functions of time with normally
distributed errors. Let βi = (βi0,βi1)

′ be the unobserved vector representing the true inter-
cept and slope of the outcome variable for the ith subject, and let (β̂i| ji) = β̂i be the usual
least squares estimate of βi based on the ji observations. Furthermore, assume that when the
ith subject belongs to the kth group, k = 1,2, β̂i follows a bivariate normal distribution. Thus

yi = Xiβi + ei ,

where
ei ∼ Nni(0,σ 2I ji) , βi ∼ N2(βk,D) ,

and
β̂i| ji = (X ′

i Xi)
−1X ′

i yi ,

where

X ′
i =

[
1 , . . . , 1
t1 , . . . , t ji

]
.

The conditional linear model approach writes the slope as a linear function of the censoring
time with normal errors. Specifically,

(β̂i1| ji = j) = γ0k + γ1t j + ek j , (23)

where E(ek j) = 0 and Var(ek j) = σ 2
k j. Two methods to estimate the expected slopes, βk1,

were proposed by Wu and Bailey (1988, 1989). The linear minimum variance unbiased
(LMVUB) procedure estimates γ0k and γ1 by weighted least squares so that

LMVUB(βk1) = γ̂0k + γ̂1Eik(t ji) ,

where Eik(t ji) is the expected value of the censoring time for the kth group (i.e., the sample
mean for the kth group). The linear minimum mean squared error (LMMSE) estimate is
a linear combination of the individual least squares slope estimates with the weights, Wk j,
chosen to minimize the mean squared error under the linear model of (23) so that

LMMSE(βk1) =
n

∑
j=2

Wk j(β̂ k1) ,

where

β̂ k1 =
∑iεk(β̂i| ji = j)

nk j

with nk j denoting the number of subjects censored after j measurements were taken in the
kth group. Wu and Bailey (1988) review PPMLE, LMVUB, and LMMSE, and compare
these approaches together with the weighted and unweighted least squares estimates in the
presence of informative censoring. Schluchter (1992) proposes a log-normal survival model
which is a generalization of the conditional linear model that allows staggered patient entry
and uses the exact censoring times of each individual.
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4 Generalized Linear Mixed Models

The generalized linear mixed model (GLMM) is the generalized linear model (GLM) ex-
tension of the normal linear random effects model. It is defined as follows. Suppose the
sampling distribution of yi j , j = 1, . . . ,ni, i = 1, . . . ,N, is from an exponential family, so that

f (yi j|θi j,τ) = exp{τ [yi jθi j −a(θi j)]+ c(yi j,τ)} , (24)

where τ is a scalar dispersion parameter. Except for the normal random effects model, it will
be assumed that τ = τ0, where τ0 is known, since τ0 = 1 in the logistic and Poisson regression
models. The yi j’s are assumed to be independent given the random effects, and each yi j has
canonical parameter θi j, which is related to the covariates by θ(ηi j), where ηi j = x′i jβ +z′i jbi

and x′i j is a 1× p vector denoting the jth row of Xi while z′i j is a 1×q vector denoting the jth
row of Zi. The link function, θ(·), is a monotonic differentiable function. When θi j = ηi j,
the link is said to be canonical. Note that the GLMM has similarity with the normal random
effects model in that we assume that conditional on the random effects, bi, the repeated
observations on subject i are independent. Letting y = (y11, . . . ,yNnN )′, X = (X ′

1, . . . ,X
′
N)′,

Z = diag(Z1, . . . ,ZN), and b = (b′1, . . . ,b
′
N)′, the full likelihood based on N subjects for the

GLMM is given by

f (y,b|β ,D) =
N

∏
i=1

ni

∏
j=1

f (yi j|β ,bi) f (bi|D) ,

where f (bi|D) is the distribution of bi. As usual, it is assumed that bi ∼ Nq(0,D), so that

f (bi|D) = (2π)−q/2|D|−1/2 exp{−
1
2

b′iD
−1bi} .

To induce a correlation structure on the responses, inference is based on the marginal likeli-
hood of β and D with the random effects integrated out. This is given by

f (y|β ,D) =

∫

RNq
f (y,b|β ,D) db , (25)

where RNq denotes the Nq dimensional Euclidean space.

4.1 Complete-data Estimation

If y is completely observed, then the likelihood function based on the observed data is given
by (25). Note that

f (y|β ,D) =
∫

RNq
f (y,b|β ,D) db

=

∫

Rq
. . .

∫

Rq

[
N

∏
i=1

ni

∏
j=1

f (yi j|β ,bi) f (bi|D) dbi

]

=
N

∏
i=1

[∫

Rq

ni

∏
j=1

f (yi j|β ,bi) f (bi|D) dbi

]
. (26)

Thus, the marginal likelihood involves evaluating N q-dimensional integrals. For the general
class of GLMM’s, these integrals do not have a closed form and are very difficult to evaluate.
This problem led to the development of quasi-likelihood based methods. Quasi-likelihood
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was first introduced for the generalized linear model by Wedderburn (1974) who defined the
quasi-likelihood function as follows. Suppose yi, i = 1, . . . ,N, is a set of observations with
expectation E(yi|β ) = µi and variance Var(yi|β ) = a(τ)V(µi), where V (µi) is some known
function. The quasi-likelihood function, Q(yi,µi), is defined by the relation

∂ Q(yi,µi)

∂ µi
=

yi −µi

V (µi)
.

The log-likelihood is a special case of the quasi-likelihood function, but Wedderburn (1974)
showed that one can use any function Q(yi,µi) that satisfies the above definition as a basis
for defining a GLM and obtaining estimates of the β ’s. In other words, GLM’s can be used
for any random variable as long as the mean, the mean function, the variance function, and
the scale parameter are known.

In the GLMM, the conditional distribution of [y|β ,b] plays the same role as the distribu-
tion of [y|β ] in the fixed-effects GLM, and the joint quasi-likelihood function is the sum
of the quasi-likelihoods of [y|β ,b] and [b|D]. Since inference is based on the marginal like-
lihood of β and D with the random effects integrated out, an integrated quasi-likelihood
function is used to estimate θ = (β ,D). This is defined by

exp(Q(y,µ |b)) ∝ |IN ⊗D|−1
∫

exp

{(
−

1
2

N

∑
i=1

devi

)
−

1
2

b′(IN ⊗D)−1b

}
db ,

where devi denotes the deviance measure of fit for subject i, b is the Nq× 1 vector of the
bi’s, IN ⊗D is the Nq×Nq covariance matrix of b, and the scalar dispersion parameter is
assumed to equal one. Breslow and Clayton (1993) apply Laplace’s method to approximate
this function and show that

Q(y,µ |b)≈ [y′θ(η)− J′a(θ(η))]−
1
2

b′(IN ⊗D)−1b ,

where y is the n×1 (n = ∑N
i=1 ni) vector of the yi j’s, θ(η) is the n×1 vector of the θ(ηi j)’s, J

is a column vector of ones, and a(θ(η)) is the n×1 vector of the a(θ(ηi j))’s. Differentiation
with respect to β and b leads to score equations for these parameters and solutions can be
obtained via Fisher scoring by iteratively solving

[
X ′W X X ′W Z
Z′W X Z′W Z +(IN ⊗D)−1

] [
β
b

]
=

[
X ′WY ∗

Z′WY ∗

]
,

where W = GR−1G, Y ∗ = η̂ +(y− µ̂)G−1, G = dµ
dη , and R = Var(y|β ,b). Substitution of

β̂ and b̂ into the approximated quasi-likelihood function and evaluation of W at β̂ and b̂
generates an approximate profile quasi-likelihood function for inference on D. Breslow and
Clayton (1993) show that differentiating a REML version of this function with respect to
the components of D yields the following estimating equations for the variance parameters:

−
1
2

[
(Y ∗−Xβ )′V−1 ∂V

∂ Di j
V−1(Y ∗−Xβ )− tr(P

∂V
∂ Di j

)

]
= 0 ,

where V = W−1 + Z(IN ⊗ D)Z′ and P = V−1 −V−1X [(X ′V−1X)−1X ′V−1]. Breslow and
Clayton (1993) call their procedure penalized quasi-likelihood (PQL) and assume that the
scale parameter τ , equals one. Wolfinger and O’Connell (1993) developed a refinement of
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PQL called pseudo-likelihood (PL) which assumes τ is unknown, and PQL is simply a spe-
cial case of PL when τ = 1. The method is implemented in the SAS procedure GLIMMIX,
which recently has been augmented with Laplace approximation and numerical quadrature
as well. Other software packages, such as R and MLwiN, have functions and procedures for
PQL estimation, too, such as the R function glmmPQL. Note that MLwiN allows for second-
order PQL.

Alternatively, indeed, numerical integration methods have been proposed, based on so-
called non-adaptive or adaptive Gaussian quadrature. The first of these methods implements
a conventional quadrature rule. The second one makes use of the bell-shaped form of the
conditional likelihood function, focusing attention on the portion with highest mass. While
more accurate than the PQL and PL methods, numerical integration can be computationally
intensive and very sensitive to starting values. It has been implemented in the SAS proce-
dures GLIMMIX and NLMIXED.

4.2 Estimation with Nonignorable Missing Data

When some components of y are nonignorably missing, the estimation problem based on the
observed data likelihood in (26) becomes more complicated since another integral over the
missing data and the missing data mechanism would be introduced. Ibrahim, Chen, Lipsitz
(2001) have developed a Monte Carlo EM algorithm for the selection model that facilitates
straightforward estimation of β and D. Less work has been done in estimating parameters
for the GLMM with nonignorable missing data using a pattern-mixture modeling approach.
Fitzmaurice and Laird (2000) propose a method based on generalized estimating equations
(Liang and Zeger, 1986), but theirs rather is an extension of Wu and Bailey’s conditional
linear model (1988; 1989) than a pattern-mixture model as described by Little (1993, 1995).

4.2.1 Selection Models

Recall that the complete data log-likelihood for the selection model is given by (5), where
now f (yi|β ,bi) is the GLMM given in (24). Assume yi contains arbitrary and nonmono-
tone patterns of missingness so that some permutation of the indices of yi can be written
as yi = (ymis,i,yobs,i). Ibrahim, Chen, Lipsitz (2001) use the Monte Carlo version of the EM
algorithm for parameter estimation in the GLMM selection model with nonignorable miss-
ing response data. They write the E-step for an arbitrary GLMM in a weighted complete
data form by using the general form of the EM by the Method of Weights (Ibrahim, 1990).
Recall further that the E-step for the ith observation at the (t + 1)st iteration can be written
as (6), where γ (t) = (β (t),D(t),φ (t)) and f (ymis,i,bi|yobs,i,ri,γ (t)) represents the conditional
distribution of the “missing” data, (ymis,i,bi), given the observed data. The Monte Carlo EM
algorithm given by Wei and Tanner (1990) requires generating a sample from

[ymis,i,bi|yobs,i,ri,γ (t)]

for each i. This can be done via the Gibbs sampler by sampling from the complete condi-
tionals [ymis,i|yobs,i,bi,ri,γ (t)] and [bi|ymis,i,yobs,i,ri,γ (t)]. Note that

f (ymis,i|yobs,i,bi,ri,γ (t)) ∝ f (yi|bi,γ (t)) f (ri|yi,γ (t)), (27)

and
f (bi|ymis,i,yobs,i,ri,γ (t)) ∝ f (yi|bi,γ (t)) f (bi|γ (t)) . (28)
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The products on the right side of (27) and (28) are log-concave for the class of GLMM’s in
(24). This is true since f (yi|bi,γ (t)) is log-concave in the components of yi and f (ri|yi,γ (t))
will be log-concave in the yi’s if each [ri|yi,γ (t)] is taken to be a logistic regression model.
Also, f (yi|bi,γ (t)) and f (bi|γ (t)) are both log-concave in the components of bi. Since the
sum of the logarithms of log-concave densities is a concave function, the Gibbs sampler
along with the adaptive rejection algorithm of Gilks and Wild (1992) can be used to sample
from

f (ymis,i`|ymis,i j, j 6= `,yobs,i,bi,ri,γ (t)) (29)

and
f (bi`|bi j, j 6= `,ymis,i,yobs,i,ri,γ (t)) , (30)

where ymis,i` denotes the `th component of ymis,i (si ×1), and bi` denotes the `th component
of bi (q×1).

Suppose for the ith observation, a sample of size mi, vi1, . . . ,vimi , is taken from the joint
distribution of [ymis,i,bi|yobs,i,ri,γ (t)] via the Gibbs sampler described by (29) and (30) in
conjunction with the adaptive rejection algorithm as discussed above. Note that each vik will
be an (si +q)×1 vector for k = 1, . . . ,mi and that each vik depends on the iteration number
which is suppressed. The E-step for the ith observation at the (t +1)st iteration can now be
written as

Qi(γ |γ (t)) =
1
mi

mi

∑
k=1

l(γ ;yobs,i,vik,ri) (31)

=
1
mi

mi

∑
k=1

f (yi|β ,bi)+
1
mi

mi

∑
k=1

f (bi|D)+
1
mi

mi

∑
k=1

f (ri|φ ,yi) .

Note, this E-step takes a complete data weighted form in which each (ymis,i,bi) gets filled in
by a set of mi values, each contributing a weight of 1/mi. The E-step for all of the observa-
tions is given by

Q(γ |γ (t)) =
N

∑
i=1

mi

∑
k=1

1
mi

l(γ ;yobs,i,vik,ri) .

The resulting M-step is like one of complete data for the the GLMM and can be obtained as
follows. Let

Q̇(γ | γ (t)) =
(

Q̇(1)(β | γ (t)), Q̇(2)(D | γ (t)), Q̇(3)(φ |γ (t))
)′

denote the score vector of Q(γ |γ (t)) so that

Q̇(γ | γ (t)) ≡
N

∑
i=1

Q̇i(γ | γ (t)) =
N

∑
i=1

mi

∑
k=1

1
mi

∂ l(γ ;yobs,i,vik,ri)

∂ γ
.

Also, let

Q̈(γ | γ (t)) ≡
∂ 2Q(γ |γ (t))

∂ γ∂ γ ′

denote the Hessian matrix. Since β , D, and φ are distinct, derivatives of l(γ ;yobs,i,vik,ri) are
straightforward to compute and Q̈(γ | γ (t)) is block diagonal in β , D, and φ . Computation
of the asymptotic covariance matrix of γ̂ can be done using Louis’s (1982) method. The
estimated observed information matrix of γ based on the observed data is given by

I (γ̂) = −Q̈(γ̂ |γ̂)−

{[
N

∑
i=1

mi

∑
k=1

1
mi

Si(γ̂ ;yobs,i,vik,ri)Si(γ̂ ; ,yobs,i,vik,ri)
′

]
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−
N

∑
i=1

Q̇i(γ̂|γ̂) Q̇i(γ̂ | γ̂)′

}
, (32)

where γ̂ is the estimate of γ at EM convergence and

Si(γ̂ ;yobs,i,vik,ri) =

[
∂ l(γ ;yobs,i,vik,ri)

∂ γ

]

γ=γ̂
.

The quantities in (32) are easily computed since both Q̈(γ̂ |γ̂) and Q̇i(γ̂ | γ̂) are obtained from
the M-step and Si(γ̂;yobs,i,vik,ri) is easily obtained outside of the EM algorithm.

The method described here is valid for arbitrary patterns of missing data in the response
variable. The complexity of the estimate of D in the M-step depends on the structure of D.
In any case, the estimation of D corresponds to estimation from a problem of complete data,
and one can use any existing complete data software to estimate D. Also, note that models
for the missing data mechanism in GLMM’s do not change from the normal random-effects
model.

4.2.2 Pattern-mixture Models

Recall that pattern-mixture models stratify the incomplete data by the pattern of missing
values and formulate distinct models within each stratum. Thus, the complete data log-
likelihood is written as

l(γ) =
N

∑
i=1

log [ f (yi|β ,bi,ri)]+
N

∑
i=1

log [ f (bi|D)]+
N

∑
i=1

log [ f (ri|φ)] .

Little work has been done using pattern-mixture models for GLMM’s with nonignorable
missing data. Ekholm and Skinner (1998) analyze longitudinal binary data using a pattern-
mixture model, but do not generalize their method to the GLMM. Fitzmaurice and Laird
(2000) develop a model for the GLMM with nonignorable dropout which they consider to
be a mixture model based on Wu and Bailey’s conditional linear model (1988; 1989), since
dropout time is used as a covariate. This is the method that will be described here.

Consider the following notation. Assume that N subjects are to be observed at the same
set of n occasions, {t1, . . . , tn}. Let yc

i = (yi1, . . . ,yin)
′ denote the complete response vector

for subject i, and let Xi denote the n× p matrix of covariates for yc
i . Each subject also has

an event time, ri, denoting the dropout time, which is thought to be related to yc
i . Note that

dropout implies that no subsequent repeated measures are made, so if ri ≤ tn, then the ith
subject is a dropout. ri is considered to be discrete and occurring at t j+1 if the response at
t j+1 is not observed. Let φi j = P(ri = t j) and assume that φi1 = 0 for all i. An additional
category, φi(n+1), is included for the completers. The observed data for each subject consists
of (yi,Xi,ri).

Consider models for yi, conditional of the time of dropout, that are of the following
general form:

g(E(yi j|β ,ri)) = z′i jβ , (33)

where g(·) is a known link function and the design vector, zi j , includes the dropout time, the
covariates, and their interactions. The parameters in this model have an unappealing inter-
pretation due to the stratification by pattern of dropout, which may depend on the outcome.



27

Therefore, the parameter of interest is not β , but the marginal expectation of the repeated
outcome averaged over the distribution of dropout times,

E(yi j|β ) = µi j =
n+1

∑
l=2

φil g−1(z′i jβ ) ,

where zi j includes the dropout time and xi j and φil depends on Xi. Since this estimate has
been averaged over the distribution of the dropout times, the marginal mean will not, in gen-
eral, follow the link function model assumed in (33). Therefore, the zi j should be saturated
in any covariate effects of interest so that comparisons can be made in terms of the marginal
means.

Unlike the normal random effects model, it is difficult to account for the covariance
among the repeated outcomes when the response variable is categorical, ordinal, or count
data. Generalized estimating equations (GEE’s) (see Liang and Zeger, 1986; Zeger and
Liang, 1986) represent a general method for incorporating within-subject correlation in the
GLM without having to completely specify the joint distribution of yi. Only the forms of the
first and second moments are required. Note that the GEE approach can accommodate any
intermediate MCAR missingness in the outcome since each subject is allowed a distinct set
of measurement times. The estimating equations for β with nonignorable missing data are
given by

U(β ) =
N

∑
i=1

G′
iV

−1
i [yi −E(yi|β ,ri)] = 0 ,

where yi is the ni × 1 vector of observed responses, Gi = ∂E(yi|β ,ri)
∂β , and Vi is the ni × ni

working covariance matrix of yi. Note that Vi depends on the marginal means, E(yi j|β ,ri),
and a set of association parameters, ρ . Typically ρ is unknown and can be estimated with
another set of estimating equations. It can be shown that N1/2(β̂ − β ) has an asymptotic
normal distribution with mean 0 and covariance matrix

Vβ̂ = lim
N→∞

N

[
N

∑
i=1

G′
iV

−1
i Gi

]−1 [ N

∑
i=1

G′
iV

−1
i cov(Yi)V

−1
i Gi

][
N

∑
i=1

G′
iV

−1
i Gi

]−1

.

Estimation of the dropout probabilities also needs to be considered. With a small number of
discrete covariates, the dropout probabilities, φi j , can be estimated as the sample proportion
with each dropout time stratified by covariate pattern. The asymptotic covariance matrix of
N1/2(φ̂ −φ) is then given by

Vφ̂ = diag(φ)−φφ ′ .

When the number of dropout times or covariates is large, then parametric models such as a
multinomial log-linear regression model can be used to estimate φ .

The appealing aspect of the mixture model presented above is that the SAS procedure
GENMOD, or any other statistical software for GEE’s, can be used to estimate β . The
dropout times and their interactions with the other covariates are simply included as addi-
tional covariates in the model. The marginal means at times t j can then be estimated by

µ̂i j =
n+1

∑
l=2

φ̂il g−1(z′i jβ̂ ) .
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4.2.3 Semiparametric Methods

Robins, Rotnitzky and Zhao (1995) develop a class of estimators for generalized linear
mixed models that are based on inverse probability weighted estimating equations when
the data are MAR. Rotnitzky, Robins and Scharfstein (1998) extend this methodology to
account for nonignorable nonresponse in the outcomes. Their conditional mean model of
yit , t = 1, . . . ,T , given the T × p covariate matrix Xi follows the regression model

E(yit |Xi) = kt(Xi;β ) ,

where kt(Xi;β ) is a known smooth function of β , t = 1, . . . ,T , and β is a p× 1 vector of
unknown parameters on which inferences are to be made. Note that this model places no
restrictions on the conditional mean of yit given Xi at any time t and so is referred to as
nonparametric.

Consider the following notation. Let vit be a vector of time-dependent covariates that are not
of interest. Define wit = (v′it ,yit)

′, t = 1, . . . ,T , wi0 = (x′i0,v
′
i0,yi0)

′, wi = (w′
i0,w

′
i1, . . . ,w

′
iT )′,

and let rit be an indicator variable for time t, t = 1, . . . ,T , that takes the value 1 if wit is
observed and 0 otherwise. Let πi(1) = P(ri = 1′|wi) be the conditional probability of ob-
serving the full data, wi, for the ith subject given wi. In addition, suppose given wi, ri is
a vector of possibly correlated binary variables taking values in the set {r = (r1, . . . ,rT )′ :
r = 0 or 1,1 ≤ t ≤ T}. Letting r̄it = (ri1, . . . ,ri(t−1))

′ and defining r̄i1 = 1, the conditional
distribution of ri given wi is

P(ri = r|wi) =
T

∏
t=1

P(rit = 1| r̄it ,wi)
rt P(rit = 0| r̄it ,wi)

1−rt = πi(r) ,

where P(rit = 1| r̄it ,wi) follow parametric models known up to a q× 1 parameter vector α .
That is, letting λit = P(rit = 1| r̄it ,wi), assume that

λit = λit(α) ,

where
logit λit(α) = ht( r̄it ,wi;α) ,

and ht( r̄it ,wi;α) are known functions. This definition implies that πi(1) = πi(1;α) and that
πi(r) = πi(r;α).

In the complete data case, parameter estimates β̂ are found by solving the estimating equa-
tions

N

∑
i=1

d(Xi;β )[yi −g(Xi;β )] = 0 ,

where d(Xi;β ) is a p×T matrix of fixed functions of Xi and β and

E(d(Xi;β )[yi −g(Xi;β )]) = 0.

In the incomplete data case with unknown response probabilities, the parameters β and α
can be jointly estimated from solutions to a simultaneous set of p+q estimating equations,

N

∑
i=1

I(ri = 1′)
πi(1;α)

[
d(1)(Xi;β )

d(2)(Xi;β )

]
[yi −g(Xi;β )]−

[
A(1)

i (α)

A(2)
i (α)

]
,
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where d(1)(Xi;β ) and d(2)(Xi;β ) are p×T and q×T fixed functions of Xi and β , and A(1)
i (α)

and A(2)
i (α) are defined as

A( j)
i (α) = ∑

r 6=1

[
I(ri = r)−

I(ri = 1′)
πi(1;α)

πi(r;α)

]
f ( j)
r (wri),

such that
N

∑
i=1

A( j)
i (α) = 0 .

Rotnitzky, Robins and Scharfstein (1998) show that the solution β̂ to these equations is con-
sistent and asymptotically normally distributed, provided that the conditional mean model
and the model for the response probabilities are correctly specified. The variance of β̂ de-

pends on the choice of functions d( j)(Xi;β ) and f ( j)
r (wri), and optimal choices for these

functions are discussed in the paper. This approach is extended to semiparametric models
for the dropout mechanism by Scharfstein, Rotnitzky and Robins (1999).

5 Nonignorable Missing Covariates and Responses in the GLMM

Lipsitz, Ibrahim, Fitzmaurice (1999) consider maximum likelihood estimation for the spe-
cial case of nonignorable missing responses and MAR categorical covariates in longitudinal
binary data. More generally, the work of Ibrahim, Chen, Lipsitz (2001) involving miss-
ing nonignorable responses in GLMM’s was extended to include both nonignorable miss-
ing responses and/or covariates for the normal mixed model in Stubbendick and Ibrahim
(2003) and for the multivariate probit model by Stubbendick and Ibrahim (2006). Following
Stubbendick and Ibrahim (2003), the E-step for the ith observation at the (t+1)st iteration for
the normal mixed model is

Qi(γ |γ (t))

= E(l(γ ;yi,Xi,bi,ri)|yobs,i,Xobs,i,ri,γ (t))

=

∫ ∫ ∫
log [ f (yi|β ,σ 2,Xi,bi)] f (ymis,i,Xmis,i,bi|yobs,i,Xobs,i,ri,γ (t)) dbi dXmis,i dymis,i

+

∫ ∫ ∫
log [ f (Xi|α)] f (ymis,i,Xmis,i,bi|yobs,i,Xobs,i,ri,γ (t)) dbi dXmis,i dymis,i

+
∫ ∫ ∫

log [ f (bi|D)] f (ymis,i,Xmis,i,bi|yobs,i,Xobs,i,ri,γ (t)) dbi dXmis,i dymis,i

+
∫ ∫ ∫

log [ f (ri|φ ,yi,Xi)] f (ymis,i,Xmis,i,bi|yobs,i,Xobs,i,ri,γ (t)) dbi dXmis,i dymis,i

≡ I1 + I2 + I3 + I4 ,

where γ (t) = (β (t),σ 2(t),D(t),φ (t)) and f (ymis,i,Xmis,i,bi|yobs,i,Xobs,i,ri,γ (t)) represents the
conditional distribution of the “missing” data, (ymis,i,Xmis,i,bi), given the observed data.

To integrate out bi from I1 and I3, write

f (ymis,i,Xmis,i,bi|yobs,i,Xobs,i,ri,γ (t)) = f (bi|yi,γ (t)) f (ymis,i,Xmis,i|yobs,i,Xobs,i,ri,γ (t)) ,
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where

(bi|yi,γ (t)) ∼ Nq

(
Σ (t)

i Z′
i(yi −Xiβ (t))/σ 2(t),

[
σ−2(t)Z′

iZi +
(

D(t)
)−1

]−1
)

.

Then, to complete the E-step, samples only need to be taken from

[ymis,i,Xmis,i|yobs,i,Xobs,i,ri,γ (t)].

This distribution can be written up to a constant of proportionality as

f (ymis,i,Xmis,i|yobs,i,Xobs,i,ri,γ (t))

∝ exp

(
−

1
2

(yi −Xiβ (t))′(ZiD
(t)Z′

i +σ 2(t)Ini)
−1(yi −Xiβ (t))

)

× f (ri|ymis,i,yobs,i,Xmis,i,Xobs,i,γ (t)) f (Xmis,i|Xobs,i,γ (t)) , (34)

which has the form of a normal density times a logistic regression for the ri’s times some sort
of regression for the Xmis,i’s. If this distribution is from the class of concave log-densities,
then Gibbs sampling from (34) is straightforward using the adaptive rejection algorithm of
Gilks and Wild (1992).

This methodology has been extended to the GLMM by Stubbendick and Ibrahim (2006).
Thus, an MCEM sample must be generated from [ymis,i,Xmis,i,bi|yobs,i,Xobs,i,ri,γ (t)] for each
i. This can be done using the Gibbs sampler by sampling from the complete conditionals,
[ymis,i|yobs,i,Xmis,i,Xobs,i,bi,ri,γ (t)], [Xmis,i|ymis,i, yobs,i,Xobs,i,bi,ri,γ (t)], and [bi|ymis,i,yobs,i,Xmis,i,Xobs,i,ri,γ (t)].
Note that

f (ymis,i|yobs,i,Xmis,i,Xobs,i,bi,ri,γ (t))

∝ f (yi|Xi,bi,γ (t)) f (ri|yi,Xi,γ (t)) , (35)

f (Xmis,i|ymis,i,yobs,i,Xobs,i,bi,ri,γ (t))

∝ f (yi|Xi,bi,γ (t)) f (ri|yi,Xi,γ (t)) f (Xmis,i|Xobs,i,γ (t)) , (36)

f (bi|ymis,i,yobs,i,Xmis,i,Xobs,i,ri,γ (t))

∝ f (yi|Xi,bi,γ (t)) f (bi|γ (t)) . (37)

When the products on the right hand side of (35)–(37) are log-concave for the class of
GLMM’s, then the Gibbs sampler along with adaptive rejection algorithm of Gilks and Wild
(1992) can be used to sample from the complete conditionals.

Allowing for nonignorable missing responses and covariates presents several additional
modeling and computational challenges compared to just te missing response situation.
First, a covariate distribution needs to be specified and its parameters estimated. This is
done by specifying the covariate distribution via a sequence of one-dimensional conditional
distributions as

f (xi j1, . . . ,xi jp|α) = f (xi jp|xi j1, . . . ,xi j(p−1),αp)

× f (xi j(p−1)|xi j1, . . . ,xi j(p−2),α(p−1))

×·· ·
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× f (xi j2|xi j1,α2) f (xi j1|α1) , (38)

where xi jm is the mth covariate for individual i at time j, αk is a vector of indexing parameters
for the kth conditional distribution, α = (α ′

1, . . . ,α ′
p)

′, and the αk’s are distinct. Note that
(38) only needs to be specified for those covariates that are missing. Second, identifiability
of the model needs to be carefully considered. Third, efficient computational strategies are
needed since this model can be computationally intensive in general.

5.1 Model Assessment and Sensitivity

Unfortunately, the parametric forms of the assumed missing data mechanism and the co-
variate model are not testable from the data. Many models need to be evaluated owing to
the numerous possibilities for the missing data mechanism and/or the covariate distribution
and for carrying out sensitivity analyses. In addition, issues related to bias, efficiency, and
model fit need to be addressed. In the presence of missing data, Lipsitz et al (2001) exam-
ine and Fitzmaurice et al (2001) examine bias issues in longitudinal data. Chen, Ibrahim,
Chen, Senchaudhuri (2008) examine bias and efficiency issues in regression models with
missing responses and/or missing covariates. To address general issues regarding model
fit and assessment in the presence of missing data, new methods are needed for defining
residuals, diagnostic measures, assessing model fit, and assessing the influence of model
perturbations for all types of models, such as GLMs, survival models, and models for longi-
tudinal data. This is a currently a growing, active and open research area. AIC and BIC are
common model assessment tools under the frequentist paradigm. In the presence of miss-
ing data, the definition of the AIC/BIC criterion is not clear. Ibrahim (Zhu) define AIC as
AIC=−2Q(γ̂ |γ̂)+ 2d, where d is the total number of parameters in the models and Q(γ̂|γ̂)
is the Q function from the EM algorithm at convergence. Similarly, they define BIC as
BIC=−2Q(γ̂ |γ̂)+ log(N)d. Such measures can be used to assess fit in models for longitudi-
nal data.

A more general framework for model assessment in complete data problems is given
in Cook (1986), where he describes a method for assessing the local influence of minor
perturbations of a statistical model. His method uses the geometric normal curvature to
characterize the behavior of an influence graph based on a well-behaved likelihood func-
tion. In the context of the linear mixed model with complete data, Beckman, Nachtsheim
and Cook (1987) use local influence to assess the effect of perturbing the error variances,
the random-effects variances, and the response vector. Lesaffre and Verbeke (1998) show
that the local influence approach is also useful for the detection of influential subjects in a
longitudinal data analysis. Zhu and Lee (2001) apply Cook’s approach to the conditional
expectation of the complete data log-likelihood function in the EM algorithm instead of the
more complicated observed data log-likelihood function. Their Q-displacement function,
2[Q(γ̂ |γ̂)−Q(γ̂(ω)|γ̂)], will be explored as a method of assessing the local influence of per-
turbations of selection models with nonignorable missing data. Zhu, Ibrahim, Shi (2009)
examine residuals, diagnostic measures and goodness of fit statistics for GLMs with miss-
ing covariate data. Shi, Zhu, Ibrahim (2009) examines local influence approaches for GLMs
with missing covariate data, and Garcia, Ibrahim, Zhu (2009) investigates variable selection
in GLMs with missing covariate data using penalized likelihood approaches. These proce-
dures are currently being extended to longitudinal data.
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6 Shared-parameter Models

Interest in methods for joint modelling of longitudinal and survival time data has developed
considerably in recent years (see, e.g., Pawitan and Self, 1993; DeGruttola and Tu, 1994;
Taylor, Cumberland, and Sy, 1994; Faucett and Thomas, 1996; Lavalley and DeGruttola,
1996; Hogan and Laird, 1997, 1998; Henderson, Diggle and Dobson, 2000; Xu and Zeger,
2001; Brown and Ibrahim, 2003a,b; Ibrahim, Chen, Sinha, 2004; Chen, Ibrahim, Shao, 2004;
Brown, Ibrahim, DeGruttola, 2005; Chi and Ibrahim, 2006, 2007).

Broadly speaking, there are three main reasons to consider such models. First, a time-to-
event outcome may be measured alongside a longitudinal covariate. Such a joint model then
allows, in a natural way, for incorporation of measurement error present in the longitudinal
covariate into the model. Second, a number of researchers have used joint modeling methods
to exploit longitudinal markers as surrogates for survival. Tsiatis, DeGruttola and Wulfsohn
(1995), for instance, propose a model for the relationship of survival to longitudinal data
measured with error and, using Prentice’s (1989) criteria, examine whether CD4 counts may
serve as a useful surrogate marker for survival in patients with AIDS. Xu and Zeger (2001)
investigate the issue of evaluating multiple surrogate endpoints and discuss a joint latent
model for a time to clinical event and for repeated measures over time on multiple biomark-
ers that are potential surrogates. In addition, they propose two complementary measures to
assess the relative benefit of using multiple surrogates as opposed to a single one. Another
aspect of the problem, discussed by Henderson, Diggle and Dobson (2000), Brown and
Ibrahim (2003a), Brown and Ibrahim (2003b), Ibrahim, Chen, Sinha (2004), Chen, Ibrahim,
Sinha (2004(@), Brown, Ibrahim, DeGruttola (2005), Chi and Ibrahim (2006), and Chi and
Ibrahim (2007), is the identification of longitudinal markers for survival. These authors fo-
cus on the use of longitudinal marker trajectories to investigate the association between a
longitudinal marker and survival. Renard et al (2002) used a joint model to explore the
usefulness of prostate-specific antigen as a marker for prostate cancer.

Third, and most relevant for us here, such joint models can be used when incomplete
longitudinal data are collected. Whenever data are incomplete, one should a priori consider
the joint distribution of responses and missing data process. In this sense, selection models
and pattern-mixture models are merely convenient ways to decompose this joint distribution.
In a number of applications, it may be attractive to write this joint distribution in terms of
latent variables, latent classes, or random effects. This leads to so-called shared-parameter
models. In principle, one can augment the full-data distribution with random effects

f (yi,ri,bi|Xi,Wi,Zi,θ ,ψ,ξ ), (39)

and then still consider the selection-model factorization

f (yi,ri,bi|Xi,Wi,Zi,θ ,ψ)

= f (yi|Xi,bi,θ) f (ri|yi,bi,Wi,ψ) f (bi|Zi,ξ ) (40)

and the pattern-mixture model factorization

f (yi,ri,bi|Xi,Wi,Zi,θ ,ψ,ξ )

= f (yi|ri,bi,Xi,θ) f (ri|bi,Wi,ψ) f (bi|Zi,ξ). (41)

Here, Zi and ξ are covariates and parameters, respectively, describing the random-effects
distribution. Little (1995) refers to such decompositions as random-coefficient selection and
pattern-mixture models, respectively.
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Important early references to such models are Wu and Carroll (1988) and Wu and Bailey
(1988, 1989). Wu and Carroll (1988) proposed this kind of model for what they termed
informative right censoring. For a continuous response, Wu and Carroll suggested using a
conventional Gaussian random-coefficient model combined with an appropriate model for
time to dropout, such as proportional hazards, logistic or probit regression. The combination
of probit and Gaussian response allows explicit solution of the integral and was used in their
application.

In a slightly different approach to modeling dropout time as a continuous variable in
the latent variable setting, Schluchter (1992) and DeGruttola and Tu (1994) proposed joint
multivariate Gaussian distributions for the latent variable(s) of the response process and a
variable representing time to dropout. The correlation between these variables induces de-
pendence between dropout and response. To permit more realistic distributions for dropout
time, Schluchter proposed that dropout time itself should be some monotone transforma-
tion of the corresponding Gaussian variable. The use of a joint Gaussian representation does
simplify computational problems associated with the likelihood. There are clear links here
with the Tobit model and this is made explicit by Cowles, Carlin and Connett (1996) who
use a number of correlated latent variables to represent various aspects of an individual’s be-
haviour, such as compliance and attendance at scheduled visits. Models of this type handle
non-monotone missingness quite conveniently. There are many ways in which such models
can be extended and generalized.

An important simplification arises when Y i and Ri are assumed independent, given the
random effects. We then obtain shared-parameter decomposition:

f (yi,ri,bi|Xi,Wi,Zi,θ ,ψ,ξ )

= f (yi|Xi,bi,θ) f (ri|Wi,bi,ψ) f (bi|Zi,ξ ). (42)

This route was followed by Follman and Wu (1995). Note that, when bi is assumed to be
discrete, a latent-class or mixture model follows. Rizopoulos, Verbeke and Molenberghs
(2008) study the impact of random-effects misspecification in a shared parameter model.
Beunckens et al (2008) combine continuous random effects with latent classes, leading to
the simultaneous use of mixture and mixed-effects models ideas. It is very natural to handle
random-coefficient models, and in particular shared-parameter models, in a Bayesian frame-
work. Examples in the missing data setting are provided by Best et al (1996) and Carpenter,
Pocock and Lamm (2002).

7 Bayesian Methods

Daniels and Hogan (2008) provide a comprehensive survey of Bayesian methods for longi-
tudinal models with missing data. We refer the reader to their book and the many references
therein. Here, we only provide a brief discussion of implementational and methodologic
issues for the Bayesian paradigm in the presence of missing data. Fully Bayesian methods
require specifying priors all of the parameters as well as specifying distributions for the
missing covariates and/or missing data mechanisms, along with the sampling distribution of
the response variable. We note here that Bayesian methods for any missing data problem,
are in principal, quite straightforward to implement compared to the no missing data situ-
ation. This is due to the fact that all one needs to do in the Bayesian paradigm is to add
additional steps to the Gibbs sampler, for example, to sample from the full conditional dis-
tributions of the missing data. Such steps can be easily incoporated into an existing Gibbs
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sampler for a no missing data problem, and will be generally easier to implement than the
MCEM algorithm discussed earlier. These fully Bayesian procedures can be easily imple-
mented in WinBUGS or PROC MCMC in SAS for all types of models including models for
longitudinal data.

However, new issues arise in fitting Bayesian models with missing data that do not arise
in the frequentist development. First, one has to ensure that the posterior distribution is
proper when using improper priors, as it is very easy for the posterrior to be improper es-
pecially in nonignorable missing data settings. These issues as well as other modeling and
elicitation issues are discussed in Ibrahim et al (2001) (Chapter 8), [Ibrahim et al (2002),
Chen et al (2002), Chen, Ibrahim, Shao (2004), Chen, Ibrahim, Shao (2006), and Ibrahim
Chen, Kim (2008). Second, even when using proper priors, if the model is weakly identi-
fiable, which is often the case in many nonignorable missing data problems, the inferences
may be quite sensitive to the choices of the hyperparameters, and one needs clever strate-
gies for specifying informative priors that do not dominate the likelihood. Such strategies
are outlined in Huang, Chen, Ibrahim (2005) for GLMs that can be easily extended to mod-
els for longitudinal data. Thirdly, it is conceivable that fully Bayesian methods may be more
computationally intensive than their frequentist counterparts and Markov chain Monte Carlo
convergence may not be easily achieved.

8 Concluding Remarks

Problems associated with incompletely gathered data, especially in longitudinal and clinical
studies, have received considerable attention in recent times (Verbeke and Molenberghs,
2000; Fitzmaurice et al, 2004; Molenberghs and Verbeke, 2005; Molenberghs and Kenward,
2007; Daniels and Hogan, 2008; Fitzmaurice, Davidian, Verbeke, Molenberghs, 2008).

To efficiently describe these issues, a formal taxonomy, as laid out in this paper, is called
for. We have placed emphasis on: (1) missing data patterns (monotone, non-monotone);
(2) missing data mechanisms (MCAR, MAR, MNAR); (3) modeling frameworks (selec-
tion, pattern-mixture, and shared-parameter models); (4) inferential paradigms (likelihood,
Bayesian, frequentist); (5) ignorability; and (6) outcomes types (continuous/linear, non-
continuous/generalized linear). Finally, some attention has been devoted to sensitivity anal-
ysis frameworks.

Thanks to advances in terms of both available methodology and efficient implementa-
tions thereof, not in the least in generally available statistical software tools, such as SAS,
SPSS, SPlus, and R, quite advanced analyses are within reach and there no longer is a need
to focus on such simplistic methods as complete-case analysis or last observation carried
forward, to name but a few. At the same time, all methods, no matter how sophisticated, rest
to some extent on unverifiable assumptions, owing to the simple fact that the missing data
are. . . unobserved. Therefore, rather than placing belief in a single such model, it should be
supplemented with appropriate forms of sensitivity analysis.
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