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Chapter 1 
 

 

Introduction 
 

 

1.1 Motivation 
 

Many real-world optimization problems are multiobjective by nature and the 

objectives are in conflict with each other. Mathematical techniques are available 

to find best-compromise solutions by aggregating multiple objectives into a 

single function. They have their drawbacks as they have difficulty dealing with 

concave and discontinuous Pareto fronts. Stochastic local search algorithms 

(also called metaheuristics) are often used when exact or mathematical methods 

are infeasible to employ and are used to solve difficult optimization problems. 

These algorithms provide approximations to quality solutions based on a 

randomized search process using knowledge from a neighborhood of solutions. 

The more often used metaheuristics are Simulated Annealing, Tabu Search, Ant 

Colony Optimization, and Evolutionary Algorithms.  Evolutionary Algorithms (EA) 

seem particularly suitable to solve multiobjective optimization problems. There is 

a vast collection of published work on multiobjective evolutionary algorithms 

(MOEA) and their applications. An increasing number of research papers report 

comparative findings of several evolutionary algorithms in terms of computing 

speed and Pareto optimality as tested on various multiobjective problem 

instances or applications with known Pareto sets. However, in many cases 

insufficient explanation is given as to why and how an MOEA succeeds or fails in 

terms of the performance of its genetic operators.  
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1.2 Purpose and Significance of the Study 
 

The scientific objective of the dissertation is to improve the understanding of 

how multiobjective evolutionary algorithms work in finding efficient solutions to 

multiobjective optimization problems through experimental research. The 

objective of the study is twofold: (1) to describe the performance of evolutionary 

algorithms in terms of stability, computational complexity, diversity and 

optimality of solutions in different multiobjective optimization problems (MOOP), 

and (2) to describe their strengths and weaknesses in each of the MOOP 

considered in the study and describe how the MOEA succeeded or failed in terms 

of the effect of its genetic operators. 

 

     The stability of an algorithm is concerned with the sensitivity of the results to 

changes in the MOEA parameters settings. Computational complexity refers to 

the solution run-time complexity in terms of the size of the problem. Diversity 

measures the spread of solutions in the nondominated set in order to provide 

the decision maker a true picture of trade-off solutions. Optimality measures the 

proximity of the best nondominated set to the Pareto-optimal set.  

 

     This study is a significant undertaking in promoting the use of evolutionary 

algorithms in multiobjective optimization and will be beneficial to other 

researchers and practitioners when they use evolutionary algorithms in finding 

solutions to different problems related to multiobjective optimization. This 

research provides proposals on how to evaluate the performance of an MOEA in 

terms of its sensitivity to genetic operators and the “goodness” of its solutions in 

terms of diversity and optimality. The strengths and weaknesses of the genetic 

operators of the EAs in multiobjective optimization are determined, which is 

helpful to other researchers and practitioners of EA and multiobjective 

optimization in developing new MOEAs. In addition, the sensitivity analyses of 

the genetic operators are clearly described, which is significant in setting proper 

parameter values for the genetic operators to drive the search for nondominated 

solutions more efficiently. 

 

 

1.3 Methodology 
 

The performance of MOEAs is investigated on several test problems and in some 

cases on problems with precise solutions and known Pareto-optimal sets. Such 
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test problems are used to compare MOEA results with known Pareto-optimal 

solutions and obtain more information on the behavior of MOEAs in terms of 

their proximity to the Pareto-optimal set and the diversity of their efficient 

solutions. In the absence of known Pareto-optimal-solutions, performance 

measures are utilized to describe and compare nondominated sets. Similarly, a 

selection of real-world case studies in multiobjective optimization is investigated. 

Testing MOEAs on application problems is necessary to demonstrate the 

performance and usefulness of MOEAs in practice. In order to study the 

performance of an MOEA, it needs to be tested on different optimization 

problems that require different search spaces, data types, structure of solutions, 

cardinality of solution sets, and distribution of solutions among others (see 

Figure 1.1). 

 

     The research method is for the greater part experimental in nature. The 

experimental activity is structured along four multiobjective optimization 

problems that are classified according to data structure, data representation, 

and search space. The problem sets are specifically selected to evaluate the 

performance and usefulness of MOEAs in different settings. Results are 

compared, when possible, with other standard or other EA algorithms over a 

variety of instances. Sensitivity of results to changes in parameter setting is 

tested and the type of test problems on which the MOEA fails or succeeds is 

investigated. 

 

     The first problem is a bi-objective problem that has a continuous (real-

parameter) search space. A solution is represented as a fixed-length string of 

real-valued decision variables. The cardinality of the set of efficient solutions is 

known to be fixed. The application under study for this problem class is the 

competitive facility location problem. 

 

     The second problem is a combinatorial optimization problem that has a 

discrete search space. A solution is coded as a fixed-length string of discrete 

decision variables and the cardinality of the search space is exponential. The 

application for this problem class is the container storage location problem. 

 

     The third problem is an NP-complete problem and has a discrete search 

space. A solution is represented as a variable-length string of discrete decision 

variables. The cardinality of the solution set is exponential to the number of 

vertices in the network. The application under study for this problem class is the 

shortest path problem. 
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     The fourth problem is an NP-hard problem and has a continuous search 

space. A solution is a tree structure with each node representing a string of 

continuous decision variables. The cardinality of the set of efficient solutions is 

exponential to the size of the tree. The application for this problem class is 

applied on decision trees or classification trees. 

 

 
Figure 1.1 Conceptual Framework 

 

Chapter 2 presents an introduction and literature review of multiobjective 

optimization methods, evolutionary algorithms, and multiobjective evolutionary 

algorithms.  Chapters 3, 4, 5, and 6 discuss the application of MOEAs on 

different test problems. The literature review, the design of the genetic 

operators, the experiments, and the sensitivity analysis are discussed in each 

application chapter. Chapter 7 presents a multicriteria performance analysis for 

the solution sets generated in the application chapters. Finally, Chapter 8 

presents the conclusions and future research directions. 

MOEA 
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Chapter 2 
 

 

Literature Review on 
Multiobjective Optimization 
and Evolutionary 
Algorithms 
 

 

A number of books have been published over the years that present and analyze 

multiobjective optimization methods. Ehrgott (2005) provides the necessary 

mathematical foundation of multicriteria optimization to solve nonlinear, linear 

and combinatorial problems with multiple criteria. Miettinen (1998) provides an 

extensive survey and review of literature of the theories and methods in 

nonlinear (deterministic) multiobjective optimization. Collette and Siarry (2003) 

systematically present a comprehensive analysis of multiobjective optimization 

methods from scalar methods to metaheuristics. Deb (2001) introduces the use 

of evolutionary algorithms in multiobjective optimization. Other books that 

provide a comprehensive treatment on the design of multiobjective evolutionary 

algorithms and their applications are by Tan et al. (2005), Abraham et al. 

(2005), and Coello et al. (2002). 

 

     Chapter 2 does not present a detailed theoretical enumeration and analysis 

of all multiobjective optimization methods but instead presents an overview of 

multiobjective optimization and a discussion of well-known deterministic 

methods and heuristic techniques. Section 2.1 presents the basic concepts of 

multiobjective optimization in terms of Pareto-optimality and an overview of 
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scalarization and non-scalarization techniques. Section 2.1.2 presents various 

scalarization techniques, three deterministic methods are presented namely, the 

weighted sum, the ε-constraint, and the goal attainment and two metaheuristics 

namely simulated annealing and tabu search. The advantages and 

disadvantages of these methods are also discussed. Other scalarization methods 

such as the hybrid method (Guddat et al. 1985), the elastic constraint method 

(Ehrgott and Ryan 2002) and Benson’s method (Benson 1985) are not discussed 

in this chapter since these are derivatives of other techniques.  The hybrid 

method combines the weighted-sum and the ε-constraint methods.  The elastic 

constraint method relaxes the ε-constraints by using penalty functions. Engau 

and Wiecek (2007) derived that the Benson method can be considered a special 

case of the hybrid method. The details and theoretical discussion of scalarization 

techniques and similar methods are found in Ehrgott (2005) and in Deb (2001). 

Section 2.1.2 briefly presents lexicographic ordering as a non-scalarization 

method.   

 

     Section 2.2 introduces the fundamentals of an evolutionary algorithm, its 

framework, its operators, its models and the implementation guidelines for its 

proper use. Section 2.3 enumerates several multiobjective evolutionary 

algorithms from their early implementations to the modern and shows the 

advantages and disadvantages of each algorithm. The section provides a review 

of comparative studies of modern MOEAs to show where each MOEA performs 

best in relation to multiobjective optimization. 

 

 

2.1  Multiobjective Optimization 
 

2.1.1 Problem Definition 
 

Multiobjective optimization is concerned with the minimization or maximization 

of a vector of objectives f(x), where f(x) = (f1(x), f2(x), f3(x)… fm(x)), f(x) ∈ ℜℜℜℜm. 

Its general form can be stated as follows: 

 

 

Minimize/Maximize    f(x)      

 subject to 
gj(x) = 0     j   = 1, …, J                   (2.1) 

    hk(x) ≥ 0    k   = 1, …, K 

     xl  ≤ x ≤ xu 
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Note that there are m objective functions to be maximized or minimized and x is 

a vector of n decision variables with J equality and K inequality constraints. The 

constraints xl  ≤ x ≤ xu are upper and lower bounds on the decision variable x. If 

any of the objectives of f(x) are conflicting, no single solution to the problem 

exists. Instead, the outcome is a set of solutions and the concept of 

nondomination or Pareto optimality must be used to characterize the objectives. 

A nondominated solution is one in which an improvement in one objective 

requires a decline in another. To explain this further, consider a feasible region, 

the decision space DDDD , in the parameter space x ∈ ℜℜℜℜn and the objective space 

ZZZZ={y ∈ ℜℜℜℜm} wherein y = f(x) subject to x ∈ DDDD, the multiple objective function,  

fm(x) maps the decision space into an objective function space as shown in 

Figure 2.1. 

 

 

 
Figure 2.1 Decision space maps to objective space  

 

In a two-dimensional representation of a minimization problem, an objective 

space and a feasible region are shown in Figure 2.2.  The set of nondominated 

solutions lies on the bold curve (Pareto-optimal front). Points A and B represent 

specific nondominated points. The points A and B are nondominated solution 

points because an increase in one objective f1 requires a decline in the other 

objective f2.  

 

 

 

 

Decision Space  DDDD    

  

f2 

x2 

x3 

x1 

x 

 

f1 

y 

Objective Space ZZZZ    
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The concepts can be formalized as follows (Bosman and Thierens 2003): 

  

1) Pareto dominance:  

A solution x
1
 is said to dominate a solution x2 (denoted by 21 xx p )  if 

and only if   

)))()(|())()(|(( 2121 xxMxxM iiii ffiffi <∈∧≤∈ ∃∀  

where M={1,2,…,m} 

 

2) Pareto-optimality:  

 A solution x
1
 is said to be Pareto-optimal if and only if 122

xxx p:∃¬  

 

3) Pareto-optimal set:  

The set PS of all Pareto-optimal solutions:  PS = { 1221
xxxx p:|∃ } 

 

4) Pareto-optimal front: The set of all objective function values 

corresponding to the solutions in PS :  
PF ={ f(x) = (f1(x), f2(x), f3(x)… fm(x)):  x∈PS} 

 

 

 
Figure 2.2 Nondominated solutions 

 

Konak et al. (2006) state that a practical approach to multiobjective 

optimization is to investigate a set of solutions (the best-known Pareto set) that 

Nondominated 
solutions 

f2 

f1 

A 

B 

f1A 

f1B 

f2A f2B 

ZZZZ    
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represent the Pareto-optimal set as much as possible. A multiobjective 

optimization approach should achieve the following three conflicting goals: 

 

1.  The best-known nondominated front should be as close possible as to the 

Pareto-optimal front. Ideally, the best-known nondominated set should 

be a subset of the Pareto-optimal set. 

2. Solutions in the best-known nondominated set should be uniformly 

distributed and diverse over of the Pareto front in order to provide the 

decision maker a true picture of trade-offs. 

3. In addition, the best-known nondominated front should capture the 

whole spectrum of the Pareto-optimal front. This requires investigating 

solutions at the extreme ends of the objective function space (ends of 

the bold line as shown in Figure 2.2).   

 

 

2.1.2 Scalarization methods 
 

Optimization methods are termed traditional or classical in the sense that these 

algorithms combine multiple objectives into a single function. They are more 

commonly known as aggregating functions. They are easy to implement by 

transforming the multiobjective problem into a single-objective nonlinear 

programming problem or into a multiobjective goal-programming problem. 

However, several disadvantages have been noted: (1) these methods may miss 

some optimal solutions; (2) they are influenced by the shape of search spaces; 

and (3) they are time-consuming methods because they should be performed in 

a series of separate runs to obtain the Pareto-optimal solutions (Das and Dennis 

1997). Three scalarizing strategies namely, weighted sum, ε-constraint, and 

goal attainment are presented to show how aggregating functions work as 

applied to multiobjective optimization.   In addition to the traditional methods, 

this section presents two global optimization algorithms namely, simulated 

annealing and tabu search. Although they are considered global optimization 

techniques, they search for solutions using scalarized functions as the traditional 

methods. The following sections present the mechanics of each method and 

their specific disadvantages in finding Pareto-optimal solutions. 
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WEIGHTED SUM STRATEGY 
 

The weighted sum strategy converts the multiobjective problem f(x) into a scalar 

problem by constructing a weighted sum of all the objectives. This means that 

the multiobjective optimization problem is transformed into a scalar optimization 

problem of the form 

)()(
1

xx i

m

i

i
Dx

fwfmin ∑
=∈

=        (2.2) 

where wi ≥ 0 are the weighting coefficients representing the relative importance 

of the objectives. The weighting coefficients usually correspond to the relative 

importance of the objectives but this is not always necessary. The problem 

reduces to determining the weight coefficients for each objective.  

 

     As an illustration, consider the bi-objective case as shown in Figure 2.3. A 

line S is drawn below the objective function space. The optimization finds the 

value of B for which S touches the boundary of ZZZZ as it proceeds outwards from 

the origin. The weights w1 and w2 define the slope of S, which leads to the 

solution point B where S touches the boundary of ZZZZ.   

 

 
Figure 2.3 Weighted Sum Method 

 

This approach is the simplest way to solve problems with convex Pareto-optimal 

fronts but a uniform spread of the vector of weights w={w1,w2, …,wm} does not 

S 

f1 

f2 

ZZZZ    

B 
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produce a uniform spread of points on the Pareto curve. If the Pareto curve is 

not convex, no w exists for which the solution S lies in the non-convex part. 

Figure 2.4 illustrates a non-convex objective space and shows why the weighted 

sum approach cannot capture the set of Pareto-optimal solutions in a non-

convex objective space. 

 

 

Figure 2.4 Non-convex problem 
 

 

ε-CONSTRAINT METHOD   
 
The ε-Constraint Method is based on minimizing one (primary) objective 

function, by treating the other objectives as constraints bounded by some 

acceptable levels ε (Haimes et al. 1971). A single objective minimization is 

carried out for the most relevant objective function fp subject to additional 

constraints on the other objective functions. The ε-constraint method 

reformulates the multiobjective problem by keeping a primary objective, fp, and 

expressing the other objectives in the form of inequality constraints 
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Figure 2.5 illustrates the ε-constraint method for a bi-objective problem where f1 

is treated as the primary objective and f2 as a constraint such that f2(x) ≤ ε2. 

The value ε2 divides the feasible objective space into two parts and the left 

portion becomes the feasible region. This approach then tries to find the solution 

that reduces or minimizes the new feasible region, in the above example, at the 

solution point   f1 = f1s and f2 = ε2.   

 

 
Figure 2.5 ε-Constraint Method 

 
     This method faces the problem that the new feasible region depends on the 

value of ε and finding a suitable value of ε to ensure a feasible solution is not 

straightforward. A further disadvantage of this approach is it requires more 

information from the user as the number of objectives increases. The obvious 

drawback is that it is time consuming, and the coding of the objective functions 

may be difficult or even impossible for problems with too many objectives 

(Coello 2000).   

 

 

GOAL-ATTAINMENT METHOD 
 

The goal attainment method is a variation of goal programming wherein targets 

or goals are assigned for each objective and the objective function minimizes the 

sum of the absolute value of differences between target values and computed 

values. Although the method works on vectors, it is still considered an 

f2 
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aggregating approach. The method requires the user to assign a vector of 

weighting coefficients, w={w1,w2, …,wm} relative to the degree of under- or 

over- achievement of the objectives. This involves expressing a set of design 

goals, p = {p1,p2,…,pm} that is associated with a set of objectives,  f(x) = (f1(x), 

f2(x), f3(x)… fm(x)). The optimization problem is to find a solution x* by 

minimizing a scalar α and is formulated as  

 
αmin

Dx
,α

∉
ℜ∈

                (2.4) 

subject to     fi(x) –wiα  ≤  pi ; i = 1, 2, …,m 

 

The term wiα introduces an element of “slackness” or soft constraints into the 
problem. The slack variable α is an argument that simultaneously minimizes the 
vector of objectives f(x). The goal-attainment method provides a convenient 

intuitive interpretation of the design problem that is solvable using standard 

optimization procedures such as nonlinear programming. The goal attainment 

method is represented geometrically for the two-dimensional problem in Figure 

2.6. 

 

 
Figure 2.6 Goal Attainment method 

 

The weighting vector w defines the direction of search from p to the feasible 

function space, ZZZZ(α). Specification of the goals p1 and p2 defines the goal point, 
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p. The term α, which changes the size of the feasible region is altered during the 
optimization. The optimal solution is the first point where the vector p + wα 
intersects the feasible region ZZZZ(α). This intersection is the unique solution point  
(f1s, f2s). The main problem with the method is that it requires some problem 

knowledge from the decision maker, such as setting logical goals and target 

values for each objective, and finding a suitable  weight vector w. Improper 

values may mislead  the search direction towards non-optimal solutions.   

 

     Other classical methods that aggregate a multiobjective optimization 

problem into a scalar optimization problem exist similarly suffer from the 

difficulties stated above, that is, all algorithms require some problem knowledge 

to find suitable parameters such as weights, value functions or user-specified 

targets or goals to find a single Pareto-optimal solution. Deb (1999) explicitly 

points out the limitations of the classical approaches. 

 

 

SIMULATED ANNEALING  
 

Figure 2.7 shows a pseudocode for simulated annealing. Simulated annealing 

was originally intended for combinatorial optimization. The basic idea in 

simulated annealing is to reduce the possibility of getting trapped in local optima 

by allowing local search moves from a current solution to its inferior neighbors. 

The algorithm generates local movement in the neighborhood of the current 

state and accepts a new state based on a function depending on temperature t. 

The temperature t changes as the search progresses.  

 

      Serafini (1994) developed a multiobjective simulated annealing algorithm 

(MOSA) for solving multiobjective combinatorial problems. Serafini’s MOSA is a 

single-point method that optimizes one weighted scalarizing function at each 

step. Ulungu et al. (1999) suggested a population-based MOSA, which optimizes 

multiple scalarizing functions separately. Each of them is optimized by a single 

simulated annealing run. To maintain the diversity of resultant nondominated 

solutions, a set of fixed evenly-distributed weight vectors are used. Unlike 

Serafini’s MOSA, Ulungu’s MOSA has the equal chance to optimize each 

weighted scalarizing function. Czyzak et al. (1998) proposed a MOSA with 

adaptive search directions. It also uses a population of solutions to optimize 

multiple weighted scalarizing functions at the same time. To find the solutions in 

the unexplored area of the Pareto-optimal front, this approach adaptively tunes 

the weight vector of each solution during the search according to the closeness 
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to its neighbors. There are many variations of MOSA in literature and a 

comprehensive survey can be found in Coello et al. (2002). 

 

     Simulated annealing is a robust technique that can handle arbitrary cost 

functions, is a good option when heuristics are unavailable, and is easy to code.  

However, repeatedly annealing with a schedule is very slow, especially if the 

cost function is expensive to compute.  Since it uses scalarized functions to find 

optimal solutions, it also suffers from the disadvantages of scalarization 

techniques.  

 

 

Figure 2.7 Simulated annealing pseudocode. 

    

 

TABU SEARCH 
 

The general algorithm of tabu search (Glover 1989) is shown in Figure 2.8. The 

basic idea of tabu search is to create a subset T from N whose elements are 

called tabu moves form historical information of the search process.  

Membership in T is awarded either by a historical list of moves detected as 

unproductive or by a set of tabu conditions. The subset T limits the search and 

Simulated_Annealing{ 
x0 = initial solution 
t0 = initial temperature (>0) 
while( t > 0 ){ 

x’ = pick a random neighbor to x  derive a new solution x’ by  
randomly changing current  
solution 

c= f(x) – f(x’)      difference of acceptance 
function 

if( c > 0 ) x = x’    keep the better solution 
else { 

r = random number in range [0…1] 
m = exp(-c/t ) 
if( r < m ) x = x’     take the worse 

solution  
to avoid local optimum. 

}       
t = reduced (t);     decrease the temperature 

} 
} 
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keeps tabu search from becoming a simple hillclimber. At each step of the 

algorithm, a best movement defined by the function opt() is chosen.  

 

     Hansen (1997) proposed a multiobjective tabu search (MOTS*) that 

generates random solutions as starting points of the algorithm.  A weight vector 

is determined for each of these solutions based on a weighted metric that 

distributes the solutions uniformly along the Pareto front. Gandibleux et al. 

(1997) proposed a MOTS based on the use of a utopian reference point. The 

utopian point used is the best objective function value for each objective from 

the solution in the neighborhood of current solutions.  Weights are used in the 

aggregating function and are changed periodically to promote diversity.  

 

 
Figure 2.8 Tabu search pseudocode 

 

Two tabu lists are used: (1) a list of normal attributes considered tabu that 

prevents the algorithm from returning to visited solutions, and (2) a list to 

variate the weights. Other authors have proposed hybrids of the basic tabu 

search that combine tabu search with other search methods such as hillclimbing, 

simulated annealing, and population-based methods to find solutions to MOOPs. 

Tabu_Search { 

1: x0 = initial solution  

2: x* = x      x* is the best solution 

3:  c = 0       initialize iteration counter 

4: T = ∅       T is the set of tabu moves 

 if (N (x) – T = ∅)  goto step 4  N(x) is the neighborhood 

        function 

 else {c= c+1 

           Select nc ∈ N(x) – T  such that 
      nc(x)= opt(n(x): n ∈ N(x) – T ) opt() is a user-defined 

       evaluation function 

 } 

 x = nc(x) 

if (f(x) < f(x*) then x* = x   

if (stop) N(x) – T = ∅   check stopping condition 

else  {update T  

        goto step 4 

 } 

} 
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A survey of MOTS algorithms and their performance comparisons can be found 

in Coello et al. (2002). Tabu search has been widely used in combinatorial 

optimization but its use in continuous search spaces is not extensive. The basic 

problem with tabu search with multiple objectives is how to generate diverse 

solutions. In addition, if other search techniques are used for exploration such as 

EAs, extra computational cost is added to the algorithm. Since tabu search uses 

weights to find optimal solutions, it also suffers from the disadvantages of 

scalarization techniques. 

 

 

2.1.3 Non-scalarization  Methods 
 

LEXICOGRAPHIC ORDERING 
 

In lexicographic ordering the decision maker must arrange the objective 

functions according to their absolute importance.  This ordering means that a 

more important objective is infinitely more important than a less important 

objective. After ordering the most important objective function is minimized 

subject to original constraints. An optimal solution x* in lexicographic ordering is 

called lexicographically optimal and f(x*) is a lexicographically a minimal vector 

in the objective space. The lexicographic optimization problem can be written as  

 
( ))()()(lexmin 21 xxx m

Xx

f,...,f,f
∈

    (2.5) 

 

The objective functions are arranged according to lexicographic order from the 

most important f1 to the least important fm.   A feasible solution x ∈ X is 

lexicographically optimal if there is no x’ ∈ X such that f(x) <lex f(x). Miettinen 

(1998) proves that the solution to the lexicographic problem (2.5) is Pareto-

optimal.  The advantage of lexicographic ordering is its simplicity but the 

decision maker may have difficulties in ranking the objectives in terms of their 

importance. In addition to its drawbacks, the priority ranking implies the 

absence of tradeoffs between criteria (Ehrgott 2005). 

 

 

2.2 Evolutionary Algorithms 
 

Different strategies can be used for solving multiobjective optimization 

problems. On one hand, the decision-making is reduced to a single-objective 
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function and scalar optimization is used to find the corresponding solution. This 

approach often requires knowledge of the optimization problem in order to 

assign proper weights for each criterion. Such approach entails repetition of the 

optimization procedure until a satisfactory solution is found. On another hand, 

the decision-making is applied at the end of the optimization to avoid repetition, 

in which an optimization run generates a set of solutions. The optimal solution in 

this case is the Pareto-optimal set. However, the size of the Pareto-optimal set 

may be infinite in some instances and is impossible to find with a finite number 

of solutions. In such a case, the preferred result is a subset of the Pareto-

optimal set and such a subset of solutions can be generated using evolutionary 

algorithms. Bosman and Thierens (2003) state that searching a space by 

maintaining a finite population of solutions is characteristic of EAs, which makes 

them natural candidates for multiobjective optimization aiming to find a good 

approximation to the Pareto-optimal front.  

 

Evolutionary algorithms (EA) represent a subset of generic population-based 

metaheuristic optimization algorithms in Artificial Intelligence. They are 

stochastic methods that use techniques motivated by natural evolution such as, 

random variation, recombination, selection, and competition of individuals in a 

population. Genetic algorithms, Evolutionary Programming, and Evolution 

Strategies are the mainstream computational models of EA whereas Genetic 

Programming and Learning Classifier Systems are related evolutionary 

techniques.  

 

     Evolutionary algorithms work on a population of solutions. With the 

application of evolutionary or genetic operators, they produce improving 

approximations of solutions to a problem as the generation progresses. The 

candidate solutions in a population are referred to as chromosomes or 

individuals and depending on the EA model, individuals are coded as bit strings, 

real-valued vectors, trees, graphs, or matrices. A new set of chromosomes is 

created by selecting individuals according to their level of fitness in the problem 

domain. The fitness of an individual is a computed measure that is a function of 

the objective value, i.e. if the problem is to minimize an objective function value 

the individual with the smaller fitness value is the better solution. At each 

generation, the genetic operators lead to the creation of a population of new 

individuals that are fitter than their parents. The process of reproduction and 

selection continues until the algorithm satisfies a termination criterion. Figure 

2.7 shows a template of a general evolutionary algorithm. 
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     At the start of the procedure, a number of individuals (the population Pt; 

t=0) are randomly initialized or may be seeded. Then the objective function is 

evaluated for these individuals. If the optimization criteria are not met 

(termination condition), creation of a new generation starts. Individuals are 

selected according to their fitness for the production of offspring. Parents are 

recombined and/or mutated with a certain probability to produce offspring. The 

fitness of the offspring is then computed. Competent offspring are inserted into 

the population replacing the parents, producing a new generation Pt+1. The loop 

is repeated until the termination criteria are met. 

 

procedure EA; { 

t = 0; 

initialize population Pt 

evaluate Pt 

while (termination condition not satisfied) 

{ 

select parent Pt 

variate Pt 

evaluate Pt 

select environment Pt+1 

} 

  } 

Figure 2.9 Evolutionary algorithm template 

 

An object or an individual that forms a solution in the solution space (phenotype 

space) of the problem is called a phenotype or a candidate solution, whereas an 

individual in the EA search space is called a genotype or chromosome and the 

search space as the search space (genotype space). A chromosome is composed 

of genes and the location of a particular gene in a chromosome is referred to as 

the locus. A gene may assume different values and each value of a gene is 

called an allele. The terms ‘chromosome’, ‘individual’, and ‘solution’ are treated 

the same since a chromosome represents only a single solution. 

 

     The following sections introduce the significant elements and genetic 

operators used in evolutionary algorithms. The last subsection section presents a 

discussion of the interaction between the genetic operators and other important 

issues in implementing evolutionary algorithms to solve problems of varying 

levels of difficulty. 
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2.2.1 Representation 
 

An EA solves a particular problem by first creating an encoding function from the 

solution space of the problem (phenotype space) to the search space of the EA 

(genotype space). For instance, if the solution space is composed of integers, an 

EA may encode the integers by their binary equivalent, which makes the search 

space binary coded. Apparently, the search process is done in the genotype 

space and as such may be very different from the problem’s solution space. A 

solution is obtained by decoding the fittest chromosomes after the EA has 

terminated. However, there are problems wherein the use of binary encoding is 

not feasible, specifically in optimization problems that have decision variables 

that take continuous values. In such a case, real-valued or real-parameter 

encoding is necessary – each solution is represented as a real-valued vector. 

Intuitively, the phenotype space is the same as the genotype space.   

 

     It is important to understand the strength of an evolutionary algorithm 

depends on a robust encoding or representation scheme. The representation 

scheme also dictates the type of variation operators, which controls the 

exploitation and exploration of the search space. Discussion on this is presented 

in Section 2.2.3.   

 

 

2.2.2 Population size and its initialization 
 

The basic issues that arise initially in the use of evolutionary algorithms are 

determining the size of the population and the manner of inserting individuals in 

the initial population. The choice of the population size has been studied in 

different perspectives and it seems natural that the population size can be 

determined in terms of string length. Goldberg (1985), through a schemata 

paradigm for binary strings, shows that the population size increases as an 

exponential function of the string length. A later study (Goldberg et al. 1992) 

shows a linear dependence of population size on string length is adequate. 

Reeves (1993) derives an expression to determine population size from q-ary 

alphabets on different confidence levels on the assumption that the initial 

population is generated by a random sample with replacement and that at least 

one allele is present at each locus can be found.  
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     In multiobjective optimization, it is known that the population size of 

solutions increases exponentially with the number of objectives (Deb 2001). 

There are two common options to respond to this problem: (1) use a large 

population or (2) integrate a dynamic population sizing procedure in the GA. 

Implementations for single-objective EAs has shown promising results, but 

dynamic sizing has remained a challenge to multiobjective optimization. Hence, 

there is no better alternative but to estimate the size of the initial population as 

a function of the number of objectives. Deb (2001) provides an approximation 

chart for finding the minimum population size as a function of the number of 

objectives. 

  

     The second problem is in the choice of a method by which the initial 

population is to be filled up. Usually the population is initialized randomly but 

this does not necessarily envelop the search space uniformly. Seeding the initial 

population with a known solution from other heuristics can facilitate an EA to 

find better solutions but on the contrary, the study by Surry and Radcliffe 

(1996) find that seeding the initial population may reduce the quality of 

solutions found.  

 

 

2.2.3 Variation of the population 
 
The purpose of variation operators is to improve the diversity of the population 

by applying recombination and mutation to selected chromosomes of the 

preceding generation. Variation in the genotype space similarly finds new 

candidate solutions in the phenotype space. The recombination operator creates 

new individuals by combining genes of two or more parents whereas mutation 

creates new individuals by variation of a single parent. In a binary-coded EA, the 

crossover operator is mainly responsible for the search aspect, whereas 

mutation introduces variability and keeps diversity in the population. Variation 

methods are grouped into two types: binary-coded variation and real-valued 

variation operators.   

 

 

BINARY RECOMBINATION 
 

This section describes recombination methods for individuals with binary 

variables or binary strings. Commonly, these methods are called crossover. 
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During the recombination of binary variables, only parts of the parents are 

exchanged between them depending on the number of parts (the number of 

crossover points) the individuals are partitioned before the genes are swapped. 

Crossover replaces some of the alleles in one parent by alleles of the 

corresponding genes of the other. 

 

 

Single/Multipoint Crossover 
 

In a single-point crossover, one crossover position is selected uniformly at 

random and the genes exchanged between the individuals about this point 

produces two new offspring as shown in Figure 2.8. In a double-point crossover, 

two crossover positions are selected uniformly at random and genes are 

exchanged between the individuals between these points, produce two new 

offspring. 

 
Figure 2.10 Single-point crossover 

 

For a multipoint crossover, m crossover positions are chosen at random with no 

duplicates and then are sorted in ascending order. The genes between 

successive crossover points are exchanged from both parents and produce two 

new offspring. The genes before the first crossover point are not exchanged 

between the parents as shown in Figure 2.9. Single and multipoint crossover 

techniques define cross points as places between loci where an individual can be 

split. Uniform crossover generalizes this scheme to make every locus a potential 

crossover point. An offspring is created by choosing every gene with a 

probability p (usually equal to 0.5) from either parent. 

 
     Eshelman et al. (1989) state that the single-point crossover has considerable 

positional bias. It favors substrings of contiguous bits of a chromosome without 

being sure if the chromosome is moving towards a good solution. The idea 

Parents Offspring 
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behind the multipoint crossover  and many of the variants of the crossover 

operator is that parts of the chromosome that contribute most to the 

performance of the chromosome may not necessarily be located in adjacent 

substrings. Multipoint crossover appears to encourage the exploration of the 

search space, which makes the search more robust rather than favoring the 

convergence to fit individuals early in the search.   

 

 
Figure 2.11 Multipoint crossover 

 

     

REAL-VALUED RECOMBINATION 
 

The crossover operator with one or more crossover points is easy to apply on 

binary strings but is not suitable for real-valued vectors. The main task in real-

valued recombination is how to create new offspring in a logical manner. 

Recombination cannot perform search in real-valued variables with respect to 

each gene. Hence, it is necessary to practice caution in the usage of 

recombination in real-parameter optimization. Many different real-valued 

crossover operators exist and the issue of which crossover operator is better is 

context-dependent or problem-specific. Three of the many real-valued crossover 

operators are presented below and these are discrete recombination, 

intermediate recombination, and line recombination. 

 

 

Discrete Recombination 
 

Discrete recombination is analogous to uniform crossover with binary encoding. 

For each position, the parent who contributes its genes to the offspring is chosen 

randomly with equal probability. Discrete recombination can be used with any 

data type variable (binary, integer, real or symbols). In a two-dimensional real-

Parents Offspring 
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search space, the offspring can be either the parents themselves or the other 

two diagonal solutions as shown in Figure 2.10. This crossover operator has 

insufficient search power since the locations of new offspring are limited to the 

variable boundaries. 

 

 
Figure 2.12 Discrete recombination 

 

 

Intermediate recombination 
 

Intermediate recombination is a method only applicable to real variables and not 

to binary variables. The genes of the offspring are chosen somewhere around 

and between the genes values of the parents. Intermediate recombination is 

capable of producing any point within a hypercube slightly larger than that 

defined by the parents. Figure 2.11 shows the possible area of offspring after 

intermediate recombination.  

 

     The gene of an offspring at position i is produced according to the rule 

(Dumitrescu et al. 2000):  

zi = xiαi + yi(1 - αi)      (2.6) 

 

where α is a scaling factor chosen uniformly at random over an interval [-d, 

1+d]. In intermediate recombination d=0, for extended intermediate 

recombination d > 0. A good choice is d=0.25. Each variable in the offspring is 

the result of combining the variables according to the above expression with a 

new α chosen for each variable.   
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Figure 2.13 Intermediate recombination 

 

 
Line recombination 
 

Line recombination is similar to intermediate recombination except that one 

value of α is used for all the genes. Line recombination can generate any point 

on the line defined by the parents as shown in Figure 2.12.  The line 

recombination operator and its variants possess a feature that may constitute an 

adaptive search.  

 

 
Figure 2.14 Line recombination 

 

Consider Figures 2.11 and 2.12, if the difference between the parent solutions is 

small, the difference between offspring solutions is also small, and if the 

difference between the parent solutions is large, the difference between 

offspring solutions is large. If the initial population is randomly chosen over the 
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entire search space, the intermediate recombination operator at the early stages 

of the EA allows search of the entire search space and continues to converge to 

solutions in some region as the generation progresses.  Beyer and Deb (2000) 

found similarity in the different real-parameter crossover operators and they 

postulate that the crossover operator should (1) keep the mean objective values 

of the offspring population the same, and (2) increase the population diversity in 

general. 

 

 

MUTATION 
 

For binary valued individuals mutation means the flipping of gene values, 

because every gene has only two states. Thus, the size of the mutation step is 

always one.  

 

 
Figure 2.15 Binary mutation 

 

Mutation of real variables means that randomly generated values are added to 

the variables with a low probability. The probability of mutating a variable is 

inversely proportional to the number of genes. The more genes one individual 

has, the smaller is the mutation probability. Mühlenbein and Schlierkamp-

Voosen (1993) write that a mutation rate of 1/n (n: number of genes of an 

individual) produces good results for a wide variety of test functions. This means 

that per mutation only one variable per individual is mutated. Thus, the 

mutation rate is independent of the size of the population. 

 

     The size of the mutation step is usually difficult to choose. The optimal step-

size depends on the problem considered and may even vary during the 

optimization process. It is known that small steps are often successful, 

especially when the individual is already well adapted. However, larger changes 

can produce good results much faster. Thus, a good mutation operator should 

Before mutation 

After mutation 

0  1  1  1  1  0  0  1  1  1  0  0 

0  1  1  1  1  0  0  0  1  1  0  0 
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often produce small step-sizes with a high mutation probability and large step-

sizes with a low probability. 

 

     The proper choice of the recombination and mutation operators is crucial in 

the current study since the individuals in the study’s problem classes can only be 

represented as either real or discrete numbers.  The MOOP in Chapters 3 and 6 

require a real-parameter representation whereas the MOOP in Chapters 4 and 5 

are combinatorial problems and require a discrete-parameter representation. 

Consequently the recombination and mutation operators became dependent on 

the coding or representation of an individual in each problem class. 

 

 

2.2.4 Evaluation of an individual 
 
Associated with the selection operation is the evaluation function, more 

commonly known as the fitness function. The evaluation function is the basis of 

control of the search progress and forms the foundation for the selection 

operator. Its task is to assign a quality measure to evaluate the relevance of 

each chromosome. The quality measure may be derived from the objective 

function of the optimization problem through some transformation or in some 

cases, the fitness function may be identical to the objective function. For most 

numerical and combinatorial optimization problems, the fitness function 

corresponds to the problem’s objective function.  For example, in a minimization 

problem the selection operator chooses individuals with the lowest fitness values 

whereas in a maximization problem the selector chooses the highest fitness 

values. 

 
     In addition to the computation of the fitness of a chromosome, it may be 

relevant for most decision-makers to have knowledge about the fitness 

landscape generated by the fitness function. The fitness landscape shows the 

surface created by the chromosomes and may help the decision-maker to 

visualize the search progress of the EA.  

 
 
2.2.5 Selection  
 
The aim of selection is to focus the search process on the most promising 

regions of the search space. It is based on the quality of the individuals as 
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defined by their fitness. Selection involves two tasks: (1) the selection of 

individuals for variation (parent selection) and, (2) the selection for replacement 

(environmental selection) which selects new individuals and parents to be kept 

in the population. The selection of individuals for variation promotes high 

reproductive probability of the fittest individuals and preserves the diversity of 

solutions in the population whereas the selection for replacement forms the 

population of the fittest individual for the next generation. 

 

     Selection techniques are grouped into three schemes: proportional selection, 

scaling, ranking procedures, and tournament selection. Proportional selection is 

commonly known as the Monte Carlo selection or roulette wheel selection. 

Variants of proportional selection include stochastic sampling with replacement, 

stochastic universal sampling, and truncation selection. In proportional selection 

schemes, the fittest individuals will dominate parent selection and may mislead 

the search process. Scaling and ranking mechanisms avoid the problems of 

proportional selection by reducing the domination of fittest individuals in parent 

selection (Dumitrescu et al. 2000).   

  

 

SELECTION PRESSURE 
 

Selection pressure is defined as the degree to which highly fit individuals are 

allowed to produce offspring in the next generation. It may also be defined as 

the ratio of the probability of selecting the fittest individual and the probability of 

selecting an average individual. High values of the selection pressure strongly 

favor the best individuals in the population. In effect, this drives the parent 

selection to just a few individuals making it more elitist. To avoid such a 

phenomenon, higher recombination and mutation probabilities need to be 

introduced to the EA (Dumitrescu et al. 2000).   

 

 

SCALING 
 

In most EAs, using the objective function scores in selection as in proportional 

selection may be insufficient because the scale wherein a chromosome is 

measured is important. Fitness scaling is a method that converts the raw fitness 

scores computed by the fitness function to values in a range that is suitable for 

the selection function. The selection function uses the scaled fitness values to 

select the parents of the next generation. The selection function assigns a higher 
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probability of selection to individuals with higher scaled values. The 

transformation may either be static (independent of time) or dynamic. Common 

static scaling procedures include linear scaling, logarithmic scaling, and power 

law scaling. It has been shown that the use of static scaling may force the EA to 

rapidly converge to a local domain and therefore it limits the exploration of the 

search space. Dynamic scaling alleviates this problem by changing the scaling 

transformation at each generation. The method is cumbersome due to the 

repetitive rescaling of the fitness values. The ranking method and tournament 

selection are alternative techniques among dynamic scaling that provide better 

solutions (Reeves and Rowe 2003). 

 

 

THE RANKING METHOD 
 

The ranking method ranks the individuals in the population according to their 

fitness and the selection probability of an individual is defined as function of its 

rank, usually a linear function. Ranking is simple and more efficient than scaling 

and avoids premature convergence. However, computing the ranks of each 

individual, which is computationally more expensive than linear scaling, requires 

sorting the whole population according to their rank. An elegant property of 

ranking is that it maintains a constant selection pressure without rescaling at 

each generation. In the ranking method, the worst fit individuals have the 

lowest reproduction rate and the best-fit individuals have the highest 

reproduction rate (Blicke and Thiele, 1995)  

 

 

TOURNAMENT SELECTION 
 
Tournament selection is similar to linear ranking in the sense that it reduces 

selection pressure. Binary tournament selection is the most commonly used 

procedure under this scheme. This type of selection chooses two chromosomes 

at random for which the fitness is calculated. The fitter individual is selected to 

become a parent in the next generation. The procedures iterates until the 

population of parents (mating pool) is filled up. The q-tournament selection is a 

generalization of the binary tournament selection where q, the tournament size, 

defines the number of chromosomes that compete in the tournament. There 

exist several variants of tournament selection, like probabilistic tournament, 

Boltzmann tournament, and score-based tournament. The potential advantage 

of tournament selection over the other schemes is that it does not require a 
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global fitness comparison in a population. It only needs a preference ordering 

between a set of individuals (Reeves and Rowe 2003). 

 

 

SELECTION FOR REPLACEMENT 
 

The discussion above is focused on parent selection. The issue of selection of 

offspring for the next generation remains to be addressed. It answers the 

question whether the EA allows all offspring to replace the parents. The 

environmental selection distinguishes the survivors among the parents and their 

offspring. The selection strategies discussed previously may be applied to the 

environmental selection phase. The only difference between parent selection and 

environmental selection is the phase wherein they are evaluated in the 

evolutionary cycle. The question that remains to be answered is the number of 

offspring and parents to be kept in the new generation. 

 

     In a generational model, a new population of offspring replaces the whole 

parent population, which means that selection is for mating only. A variant of 

this type is the generational elitist strategy – it keeps the best individuals of a 

generation and allows it to survive in the succeeding generation. The elitist 

strategy preserves good individuals to stay for more than one generation unless 

it is not chosen for mating and variation. Elitist strategies increase the speed of 

convergence of an evolutionary algorithm. An alternative to the generational 

model is the steady-state model wherein a number of parents (µ) are selected 
based on their fitness and a number of offspring (λ) are generated through 
variation functions. All of the offspring are inserted into the new population and 

µ parents are discarded by fitness ranking selection or tournament selection. The 
concept of generation in its strictest sense is no longer clear  since the new 

population is composed of both parents and offspring. 

 

     There are other replacement strategies but it is suggested that generational 

and elitist strategies work better than pure generational strategies in the context 

of the better usage of solutions and convergence to an optimum solution. The 

reader is referred to Dumitrescu et al. (2000) and Deb (2001) for further 

reading on other replacement strategies.   
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2.2.6 Models of evolutionary algorithms  
 
 
GENETIC ALGORITHMS 
 

The genetic algorithm (GA) was developed by Holland in the early 1960’s in his 

work on natural and adaptive systems. Genetic algorithms are instrumental in 

defining the fundamental concepts of evolutionary algorithms and they embody 

the main paradigm of evolutionary computation (see the above discussion on EA 

concepts). 

 

     The traditional representation of a chromosome is a binary string of fixed 

length, but arrays of other data types and structures can be used similarly in the 

same way. The search and variation operators are typically mutation and 

recombination but recombination is deemed more important in searching for 

solutions. Mutation on the other hand is used to induce variability and prevent 

premature convergence. However, in recent literature, there is no reason to 

presume that recombination must be more important that mutation. A strategy 

of recombination-and-mutation is not always necessary. It is also possible to use 

recombination-or-mutation (Deb and Agrawal, 1999b).  

 

 
EVOLUTIONARY STRATEGIES 
 

The method of Evolutionary Strategies (ES) is due to Ingo Rechenberg (1973). 

Evolutionary strategies use real-valued vectors to represent individuals and use 

mutation as the primary search operator. An individual is usually represented as 

a pair, a vector x that corresponds to a point in the search space, and N(0, σ), 

the standard deviation vector, is a vector of instances created using a zero-

mean normal distribution with a standard deviation σ. 

 

     The replacement strategy is deterministic and is based on the fitness 

rankings, not on the actual fitness values. The first and simplest model, the 

(1+1)-ES, operates on the current individual xt (parent) and its descendant xt+1. 

The better of xt and xt+1 is selected to become parent of the next generation, 

whereas the lesser is discarded. In the (µ+1) –ES, µ parents may generate one 
descendant at a time and the least fit individual is discarded. The (µ+λ)-ES and 

(µ, λ)-ES  where λ ≥ µ, use multiple populations of parents and descendants to 
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increase the population sizes. This process increases the convergence rate. In 

the (µ+λ)-ES, a number of parents µ  are used to generate λ descendants and 

all the µ+λ individuals compete for survival in the intermediate generation. In 

the (µ, λ)-ES, the entire parent population is replaced by survivors of λ 

descendant. This makes the lifespan of a solution to be limited to only one 

generation. This strategy is well suited in cases where the search is affected by 

noise. 

 

     The simplest mutation is performed by adding a normally distributed random 

value to each vector component – the amplitude given by the standard deviation 

vector. The mutation step size or mutation strength is often governed by self-

adaptation depending on the strategy used. In the (1+1)-ES, the mutation step 

size is equal to the standard deviation. In the other strategies, the individual 

step sizes for each point or correlations between points are governed either by 

standard self-adaptation or by correlated adaptation (Dumitrescu et al. 2000).  

 

 

EVOLUTIONARY PROGRAMMING 
 

The method was introduced by Fogel in the 1960’s in his work on artificial 

intelligence – generation of intelligent behavior in a machine as regards to 

prediction of the environment. Intelligent behavior in evolutionary programming 

(EP) is generated and described by deterministic finite-state machines. Mutation 

is the only search and variation operator since recombination of two finite-state 

machines or automata does not seem to be useful in exploring solutions. EP is a 

mutation-based EA applied to discrete search spaces. In real-valued problems, 

evolutionary programming is very similar to evolutionary strategies in the sense 

that distributed mutations are performed on each decision variable and a self- 

adapting rule is used to update the mutation strengths. Variants and extensions 

of EP were suggested by Fogel (1992). 

 
     Two main differences can be identified between EP and ES. EP typically uses 

stochastic selection via a tournament in which selection eliminates those 

solutions with the least wins, whereas ES typically uses deterministic selection in 

which the worst solution are purged from the population depending on their 

function evaluation. In EP, no recombination is used whereas ES variants 

introduce recombination operators. 
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GENETIC PROGRAMMING 
 

The genetic programming (GP) model was introduced by Koza (1989) and deals 

with automatic programming. It is a technique used to optimize a population of 

computer programs according to a fitness function with respect to a given 

problem. The GP searches for the fittest computer program. The fundamental 

structures considered for evolution are tree structures, graph structures, and 

linear structures. GP favors the use of programming languages that naturally 

embody tree structures since trees can easily represent mathematical structures 

that can be evaluated in a recursive manner.  

 

     In a tree-based representation, crossover is applied on an individual by 

simply switching a subtree with another subtree from another individual in the 

population. The expressions resulting from crossover are very much different 

from their initial parents. Several mutation techniques can be applied within 

genetic programming. In a tree structure, mutation can replace a node of an 

individual and its subtree (macromutation) or replace just the node's information 

(micromutation). Mutation and crossover are applied separately. In other words, 

either crossover, mutation, or neither is applied to each individual. Both 

crossover and mutation are not applied to the same individual. 

 

     GP does not require a special replacement strategy and a parent-selection 

operator but tournament selection is preferred for large problem classes 

(Dumitrescu et al. 2000 ). 

 

 

LEARNING CLASSIFIER SYSTEM 
 
A Learning Classifier System (LCS), is a machine learning system that evolves 

rules to adapt to a given classifier system – a learning system using 

evolutionary algorithms for rule discovery. It consists of a population of binary 

rules on which an evolutionary algorithm is utilized to generate the best rules. 

Learning classifier systems process rules in parallel and are grouped into two 

types depending upon the learning standpoint. Classifiers or rules consist of a 

pair of attributes, a condition, and an action, and are usually binary-coded. Two 

approaches exist: the Pittsburgh approach, and the Michigan approach. A 

Pittsburgh-type LCS has a population of separate rule sets, where the 

evolutionary algorithm evolves a population of rule bases and finds the best rule 

set. In a Michigan-type LCS, there is a single population of rules and the 
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algorithm focuses on selecting the best set of rules in the population. The 

Pittsburgh approach can be implemented with minimal modifications to an 

evolutionary algorithm whereas the Michigan approach requires reinforcement 

and  learning procedures to determine the fitness of rules, to discover new rules, 

and to show how rules interact with other rules.   

 

     The Michigan approach introduced by Holland (1976) learns by interacting 

with an environment from which it receives feedback in the form of a numerical 

reward. Learning is achieved by trying to maximize the amount of reward 

received. There are many models of LCSs and many ways of defining what a 

learning classifier system is. Most LCS models consist of four main components. 

First, a finite population of condition-action rules (classifiers)that represent the 

current knowledge about the system. Second, a performance component that 

governs interaction in the environment. Third, a distribution component that 

distributes the reward received from the environment to the classifiers 

responsible for the rewards obtained. Fourth, a discovery component that is 

responsible for discovering of better rules and improving existing ones through a 

genetic algorithm. 

 

 
2.2.7 Interaction among genetic operators 
 

The balance between exploitation and exploration is an important issue in the 

usage of GAs. If the selection operator, which exploits fit individuals, applies 

excessive selection pressure, the population loses its diversity rapidly. In order 

to maintain the diversity of solutions, the use the recombination and mutation 

operators should be high. The variation operators must generate offspring that 

are reasonably different from the parent solutions. Otherwise, the population 

may converge to a suboptimal solution. On the contrary, if the selection 

pressure is insufficient and does not exploit good solutions, the GA’s search 

process behaves like random search.  

 

     The balance of exploitation and exploration issues was studied by Goldberg 

et al. (1993). Goldberg and Deb (1991) calculated the takeover time of a 

number of selection operators. The takeover time is defined as the number of 

generations required for the best solution to occupy all of the population slots by 

repetitive application of the selection operator only. The takeover time provides 

information about the speed of how the best solution in a population is 

emphasized. They observed that binary tournament selection and linear ranking 
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selection have the same takeover times and that proportionate selection is much 

slower than tournament selection. 

 

     Deb and Agrawal (1999) evaluated a series of experiments with different 

operators and parameter setting as applied to problems of different difficulties 

and concluded the following: 

 

1)  For simple problems such as uni-modal and linear problems, a genetic 

algorithm with a selection and a crossover or mutation operator, or a 

combination of crossover and mutation operators, can all work satisfactorily. 

For a selector-mutation combination GA, a small population size provides the 

optimum performance. Since the mutation operator behaves similar to local 

search, it may require more iterations. For a selector-crossover GA without a 

mutation operator, the population requirement is high but the number of 

generations required may be smaller. 

 

2)  For difficult problems with multimodality and  high dimensionality of the 

search space, selector-mutation GAs do not work successfully in finding the 

optimum solution whereas selector-crossover GAs with adequate population 

sizes find the correct optimum. 

 

     While there is a vast collection of empirical and theoretical studies on GAs 

there is no singular formula for setting the parameters of a GA. Reeves and 

Rowe (2003) tentatively suggest the following recommendation in implementing 

a GA: 

 

1)  An initial population of about 50 should contain sufficient alleles for the GA to 

make successful progress 

2) Prior knowledge should be used along with randomization in choosing the 

initial chromosomes. 

3) Tournament selection is more efficient than roulette wheel selection. Two-

point or uniform crossover have less positional bias the one-point crossover. 

4) For a guarantee that an algorithm will eventually converge to the optimum, 

incremental reproduction and replacement usually make better use of 

resources than the generational approach.  

5) The role of crossover is still not well understood. Although the crossover 

operator can jump over certain gaps in the search space or speed up search, 

design of good recombination operators is difficult unless there is sufficient 

knowledge of which properties are being preserved during the process.  



36  

6) An adaptive mutation rate appropriate to the application should be used, but 

if in doubt, a fixed rate of 1/L is a reasonable choice; where L is the length 

of the chromosome. 

7) Diversity maintenance should be prominent in any implementation. 

8) Hybridization should be used wherever possible.  

9) GAs are stochastic by nature; several replicate runs are required for 

application.  

 

     The recommendations above are from single-objective studies.  The current 

study investigates the effect of different parameter settings on MOEAs in 

multiobjective optimization problems through sensitivity analysis.  The 

sensitivity analysis will verify whether the recommended values given above are 

applicable to multiobjective optimization problems. 

 

 
2.3 Multiobjective evolutionary algorithms 
 
The remarkable property of an EA is that it processes a population of solutions in 

one simulation run whereas classical methods process only a single solution in 

one optimization run. This feature of maintaining a finite population of solutions, 

which aims to find a good approximation of the Pareto-optimal front makes an 

EA an appropriate solution method for multiobjective optimization (Bosman and 

Thierens 2003). Classical methods require some knowledge in the assignment of 

weight vectors, target values, and ε-vectors to transform a multiobjective 
problem into a single-objective optimization problem. EAs eliminate such 

requirement or transformation since they generate and work on a population of 

solutions.  There is a huge amount of literature on MOEA methods and similarly 

their application to real-word problems is also numerous. For example Pangilinan 

and Janssens (2007b) introduce MOEAs and its application to two optimization 

problems of differing search spaces.  A list of references can be found at 

http://www.lania.mx/~ccoello/EMOO/EMOObib.html.  

 

     Section 2.2 described the important elements and operators of an EA. The 

discussion on the selection of fit individuals was limited to the fitness evaluation 

of individuals based on a single-objective problem. In order for a basic 

evolutionary algorithm to work and find Pareto-optimal solutions to 

multiobjective optimization problems (MOOP), modifications in its evolutionary 

operators are necessary. Section 2.3.1 describes early modifications to the basic 

EA and Section 2.3.2 describes improved MOEAs that use elite-preserving 



 

 

37 

mechanisms (elitist MOEAs). Finally Section 2.3.3 presents recent comparative 

studies of modern MOEAs that are known to obtain good approximations of the 

Pareto-optimal front.   

 

 
2.3.1 Early implementations of an MOEA 
 
 
VECTOR EVALUATED GENETIC ALGORITHM 
 
The first implementation of an MOEA was suggested by Schaffer (1984). 

Schaffer’s vector evaluated GA (VEGA) extends the basic GA to a multiobjective 

optimization method by dividing the population of size N into m equal 

subpopulations randomly. Each subpopulation is assigned a fitness based on a 

different objective function. The variable m denotes the number of objective 

functions. The advantage of VEGA is that it is easy to implement, only minor 

changes are needed to convert the basic GA algorithm into a multiobjective GA. 

The translation does not change the computational complexity of a simple GA, 

which is O(N). 

 

VEGA selection procedure 

 

Input:   Pt    (population of N individuals) 

Output:  F    (fitness value)  

P’   (mating pool) 

 

Step 1:  Set the objective counter i = 1 and mating pool P’ =∅. 

Step 2:  For each individual x ∈  Pt the fitness is computed as   

 F(x) = fi(g(x))⋅g(x) is a mapping function. 

Step 3:  For j=1 to (N/m) select individual x from Pt using proportionate 

selection and copy it to the mating pool  P’ = P’ + { x }. 

Step 4:  Set i = i+ 1. If i ≤ m go to Step 2 else stop. 

 

 VEGA fitness results correspond to a linear combination of the objectives where 

the weights depend on the distribution of the population at each generation. This 

means that VEGA tends to find solutions near the best solution of each objective 

(champion solutions). It was shown that certain points in a concave surface 

would not be found by this optimization algorithm (Richardson et al. 1989). 
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Schaffer (1984) also observed that the crossover between champion solutions 

could not find diverse solutions even in a convex search space. 

 

 

WEIGHT-BASED GENETIC ALGORITHM 
 

The weight-based genetic algorithm (WBGA) combines the weighted sum 

approach and the population feature of genetic algorithms. Hajela and Lin 

(1992) proposed that each individual in a population is assigned a different 

weight vector in order to find several Pareto-optimal solutions in one 

optimization run instead of only one Pareto-optimal solution that is associated to 

only one particular weight vector. Hence, an individual is represented as a string 

of all decision variables xi with their corresponding weights wi and each objective 

function fi is multiplied by the weight wi. The fitness of a solution is computed as 
the sum of its weighted objective functions. To maintain diversity of weight 

combinations, the WBGA uses fitness sharing in the objective space by a niching 

method applied to the substring of the weight vector. The computational 

complexity of WBGA is O(mN 2). 

 

WBGA fitness assignment 

 

Input:   Pt    (population) 

Output:  F     (fitness value) 

 

Step 1:    For each individual x ∈  Pt do 

    Extract weights wi(i = 1,2, …, m) from x 

      Set F(x) = w1 ⋅ f1(g(x)) + w2 ⋅ f2(g(x)) …+wm ⋅ fm(g(x)) 

 

     The advantage of this method is its simplicity in implementation. However, it 

is inherently biased towards convex portions of the Pareto-optimal front. It may 

create a very high selection pressure if certain combinations of weights are 

produced at early stages of the search (Coello 1996). As in any weight-based 

approach, the WBGA fails to find solutions in non-convex Pareto-optimal regions.  

 

 

MULTIOBJECTIVE GENETIC ALGORITHM 
 

Fonseca and Fleming (1993) are the first researchers to propose a 

multiobjective genetic algorithm (MOGA) that uses Pareto-based ranking to find 
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nondominated solutions. It uses a niching strategy to maintain the diversity of 

solutions while finding nondominated solutions. For a solution x, the rank is 

computed as one plus the number of solutions y that dominate it. After ranking 

is performed, each solution is assigned a raw fitness according to its rank and 

afterwards the raw fitness of all solutions for each rank is averaged. This 

average fitness is then assigned to each solution of the rank so that each 

solution is sampled at the same rate. The averaging procedure ensures that 

solutions with higher ranks have higher assigned fitness in the population. 

Diversity of solutions in MOGA is maintained by following a niching strategy and 

a sharing function σshare. The shared fitness value of a solution is computed by 

dividing its assigned fitness by its niche count. It follows that the solutions in 

lesser-crowded regions will have better shared fitness. This means that solutions 

in such regions will have a higher selection pressure. The computational 

complexity of MOGA is O(mN2). 

 

MOGA fitness assignment  

 

Input:   Pt    (population of N individuals) 

Output:  F  (fitness value) 

 

Step 1:  For each x ∈  Pt calculate its rank by counting the number of 

solutions that dominates x: r(x) = 1 + |{y| y ∈ Pt ∧ y p x}|. The 

symbol | | denotes the cardinality of a set and p denotes the 

Pareto dominance relation. In this case, yp x means y dominates 

x. 

Step 2: Sort a population according to the ranking. Assign each x∈ Pt a 

raw fitness F’(x) by interpolating from the best (r(x)=1) to the 

worst individual (r(x) ≤ N); linear ranking is used. 

Step 3: Calculate fitness values F(x) by averaging and sharing the raw 

fitness values F’(x) among individuals x ∈ Pt having identical 

ranks r(x)  

 

MOGA is a good approach, efficient and relatively easy to implement but is 

highly dependent on an appropriate selection of σshare (Coello 2000). Fitness 

sharing and niching are performed in the objective space, which makes the 

MOGA applicable to other optimization problems such as combinatorial 

optimization problems but the shared fitness computation does not assure that a 

solution in a poorer rank will always have a worse scaled fitness than every 

solution in a higher rank (Deb 2001). This may introduce bias towards solutions 
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that may evolve from only one region of the trade-off surface. This may slow 

down convergence to the Pareto-optimal front in higher rank solutions. 

 

  

NONDOMINATED SORTING ALGORITHM 
 

Srinivas and Deb (1994) implemented Goldberg’s (1989) idea of a 

nondominated sorting genetic algorithm (NSGA) that favors diverse 

nondominated solutions by using a sharing strategy similar to MOGA. The  

advantage of  NSGA over MOGA is that it avoids the problem of slow 

convergence and poor spread of better ranked solutions in the trade-off front by 

assigning values front-wise i.e. solutions in a better front are assigned  larger 

shared fitness values. The first step in NSGA is to sort the population Pt 

according to nondomination, which produces several mutually exclusive 

nondominated sets or classes. The fitness assignment begins from the first class 

(best nondominated set) and proceeds to the other dominated sets. The 

individuals of the first class are assigned fitness values equal to N and 

subsequently their shared fitness values are computed. The minimum shared 

fitness value is then used to compute the shared fitness values of the next 

dominated set and this process continues until all fitness values of the remaining 

dominates have been calculated. The computational complexity of NSGA is 

O(mN2). 

 

NSGA selection 

Input:   Pt    (population of N individuals) 

  σshare (niche radius) 

Output:  Ps (nondominated set) 

 

Step 1: Set an initial population Pr =  Pt  and initialize the minimum 

fitness value Fmin= N. Set s = 1. 

Step 2: Determine the set Ps of individuals in Pr whose decision vectors 

are nondominated regarding g(Pr). Remove the members of Ps 

from Pr i.e. Pr= Pr – Ps     (multiset subtraction). 

Step 3: Set the raw fitness of individuals in Ps to Fmin and perform fitness 

sharing in the decision space within Ps only. 

Step 4: Decrease the minimum fitness value Fmin such that it is lower 

than the smallest shared fitness in Ps:0<F min <min{F(x) | x∈Ps}. 

Set s = s + 1. 

Step 5: If  Pr ≠ ∅ then  go to step 2 else stop. 
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The sharing in NSGA is done in the decision values and not in the objective 

values, which ensures a better distribution of solutions in the trade-off front. 

However, this technique is less efficient (computationally) than MOGA, and is 

more sensitive to the sharing function σshare (Srinivas and Deb 1994). 

 

 

NICHED PARETO GENETIC ALGORITHM 
 

Horn and Nafpliotis (1993) introduced the niched Pareto genetic algorithm 

(NPGA) that differed from previous Pareto-dominance methods by using binary 

tournament selection rather than proportionate selection. In a NPGA, there is no 

need to compute a fitness value for each solution. The selection procedure 

favors nondominated solutions (Pdom) and if dominance cannot be established, 

niching and fitness sharing is performed. Solutions with lower niche counts win, 

which means that parents in less crowded regions are chosen in the offspring 

population. The computational complexity of NPGA is O(mN2). 

 

NPGA selection 

 

Input:   Pt    (population of N individuals) 

        Pdom (subpopulation tdom individuals) 

    tdom is the domination pressure 

Output:  P’  (mating pool) 

 

Step 1: Set i = 1 and mating pool P’ = ∅. 

Step 2: Select two competitors x, y ∈ Pt and a comparison set Pdom ⊆ Pt  

of tdom individuals at random without replacement. 

Step 3: If g(x) is nondominated regarding g(Pdom) and g(y) is dominated, 

then x is the winner of the tournament: P’= P’+{x}. Else if g(y) 

is nondominated regarding g(Pdom) and  g(x)  is dominated then 

y is the winner of the tournament: P’= P’+{y}. 

Step 4: Else decide tournament by fitness sharing: calculate the number 

of individuals in the partially filled mating pool that are in σshare-

distance to x: n(x)=|{k| k∈P’∧ d(x,  k) < σshare }|.  

            Do the same for y. 

If (n(x) < n(y)) then P’= P’ +{x} else P’= P’+{y}. 

Step 5: Set i = i +1. If (i  ≤ N) then go to Step 2 else stop. 
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The basic advantage of this approach is it does not require any fitness 

assignment, which removes any bias in the fitness assignment procedure. Since 

this approach does not apply Pareto selection to the entire population but to a 

subpopulation in each run, the technique is very fast and produces good 

nondominated runs that can be kept for a large number of generations. 

However, the approach requires an appropriate value for the sharing factor σshare 

and  a good choice of the value tdom in order to perform well. The dependence of 

NPGA to the two variables σshare and tdom complicates its appropriate use in 

practice (Coello 2000).   

 

 

2.3.2 Modern implementations of an MOEA 
 
STRENGTH PARETO EVOLUTIONARY ALGORITHM 
 

Zitzler et al. (2002) introduced the Strength Pareto Evolutionary Algorithm 2 

(SPEA2), which is an extension and improvement of the original work by Zitzler 

and Thiele (1999). SPEA2 integrates a fitness assignment strategy, which 

considers the number of individuals that an individual dominates and the 

number of its dominators. It uses a nearest-neighbor density estimation 

technique that guides the search more efficiently and avoids the formation of 

new solutions in only a few clusters in the search space. SPEA2 has a truncation 

procedure that preserves the best solutions when the number of nondominated 

individuals exceeds the external population size.    

      

     SPEA2 first assigns a strength value S(x), to each individual x from the 

archive ( N ) and population size (N) representing the number of solutions x 

dominates. Then the raw fitness R(x), which measures the strength of x’s 

dominators of each solution x, is calculated. The raw fitness acts as a niching 

mechanism but poorly performs when most paths in N+N  are nondominated, 

i.e. the population forms new solutions in only a few clusters, in effect 

compromising exploration of the search space. Genetic drift is the term for this 

phenomenon. SPEA2 introduces a density estimator, a fitness sharing 

mechanism to avoid genetic drift. The density estimator is the inverse of the 

distance of an individual in objective space to the k-th nearest neighbor. The 

density value and the raw fitness value are combined to give the final fitness 

function. SPEA2 offers two selection procedures: environmental and mating 

selection.  
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     The environmental selection is concerned with choosing individuals that will 

have to move on to the next generation archive from the current archive tP  

and population Pt. SPEA2 maintains an archive tP  in each generation and is 

composed of the “best” individuals of a fixed size N , which is equal to the 

population size N. Two usual situations may occur in selection. First, the number 

of nondominated solutions in 1+tP is less thanN . SPEA2 resolves this by adding 

the “best” dominated individuals from tP + Pt to 1+tP . Second, the number of 

nondominated solutions for the next generation is greater than N . SPEA2 uses 

a truncation procedure whereby the individual with the minimum distance to 

another individual is truncated until | 1+tP |= N . SPEA2 implements binary 

tournament selection with replacement to fill in the mating pool. This type of 

mating selects two solutions at a time in each tournament. Their fitness values 

are evaluated and the better solution is placed in the mating pool. The runtime 

complexity of SPEA2 is O(mN2logN).  

 

SPEA2 fitness assignment 

 

 Input:   Pt    (population with N individuals) 

      Output:  F  (fitness values) 

 

Step 1: Calculate the strength values of individuals in Pt and tP . The 

strength of individual x is computed as  

|| tt|S }{)( yxPPyyx p∧+∈=  

Where the symbol   denotes the cardinality of a set, + stands 

for multiset union and the symbol p corresponds to the Pareto 

dominance relation extended to individuals i.e., the term x p y 

means x dominates y. 

 Step 2: Compute the raw fitness 
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For each individual x the distances (in objective space) to all 

individuals y in archive and population are calculated and stored 

in a list. After sorting the list in increasing order, the k-th 

element gives the distance sought, denoted as k
xσ . 

Step 3: Compute the density of each individual x 
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Step 4: Compute the fitness values 
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Since SPEA2 is an elite-preserving evolutionary algorithm, it preserves the good 

solutions of a population by directly carrying them over to the next generation. 

It makes sure that the fitness of the population does not deteriorate by storing 

the best solutions in an archive. It also ensures a good spread of Pareto-optimal 

solutions and prevents boundary solutions from removal in the population by 

introducing an enhanced clustering technique and a truncation method. A more 

detailed discussion of SPEA2 is found in Appendix B. 

 

 

ELITIST NONDOMINATED SORTING GA 
 

Deb et al. (2002) introduced an elitist nondominated genetic algorithm (NSGA-

II) that uses not only an elite-preserving strategy but also an explicit-diversity 

preserving mechanism. Initially, NSGA-II creates a random parent population P0 

sorts the population based on nondomination and assigns each solution a fitness 

value equal to its nondomination level (as in NSGA). Thereafter NSGA-II creates 

an offspring population Q0 of size N by binary tournament selection and 

recombination operators. After the initial populations are created they are 

combined in one population Rt of size 2N. Then, the population is sorted 

according to nondomination - solutions belonging to the best nondominated set 

F1 must be favored more than any other solution in the combined population. If 

the size of F1 is smaller then N, then all members of the set are chosen for the 

new population Pt+1. The new population Pt+1 are then filled with members from 

subsequent nondominated fronts F2, F3,…,Fn in the order of their ranking. This 

procedure continues until no more sets can be accommodated in Pt+1. The new 

population Pt+1 is used for selection, crossover, and mutation to create a new 

offspring population Qt+1 of size N. The selection criterion, which requires both 

the rank and the crowded distance of each solution in the population, is 

dependent on the crowded-comparison operator. The computational complexity 

of NSGA-II is O(mN 2).  

 

NSGA-II selection procedure 

 

Input:   Pt    (population with N individuals) 

      Output:  Qt (offspring population with N individuals) 
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Let the symbol   denote the cardinality of a set, + stands for multiset 

union. 

 

Step 1: Create a new population Rt = Pt + Qt. 

Step 2: Perform nondominated sorting to Rt and generate different 

fronts Fi 

Step 3: Set counter i = 1; the new population Pt+1 = ∅. 

 While Pt+1  + Fi  ≤ N do 

  Pt+1 = Pt+1 + Fi  

i = i + 1 

Step 4: Perform crowding-sort algorithm and include most widely spread 

solutions using crowding distance values in Fi to Pt+1. 

Step 5: Create Qt+1 from Pt+1 by using crowded tournament selection 

and recombination operators 

 
The crowding comparison algorithm of NSGA-II eliminates the need for a niching 

parameter such as σshare by allowing solutions to compete using their crowding 

distances (Deb 2001). Removing the niching parameter also removes the 

problems associated with it such as the proper estimation of its value and its 

influence of the search process.  A more detailed discussion of NSGA-II is found 

in Appendix B. 

 

 

PARETO-ARCHIVED EVOLUTIONARY STRATEGY 
 

Knowles and Corne (2000a) introduced the Pareto-Archived Evolutionary 

Strategy (PAES) using a (1+1)-ES. It comprises of three parts: the candidate 

solution generator, the acceptance function, and the nondominated solutions 

(NDS) archive. Viewed in this way, (1+1)-PAES represents the simplest non-

trivial approach to a multiobjective local search procedure. The candidate 

solution generator is similar to simple random mutation i.e., it maintains a single 

current solution then produces a single new offspring via random mutation. In 

the simple (1+1)-PAES, the test(xt,yt, tP ) function is a density-based procedure 

that determines whether the offspring solution should be  rejected or accepted 

and if it should be archived or not. In the density calculation, each objective is 

divided into 2d divisions where d is a user-defined parameter. The archived 

solutions are placed in (2d)m hypercubes according to their location in the 

objective space and the number of solutions in each hypercube is counted. If the 

offspring is in a less crowded hypercube than its parent then the offspring 
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becomes the parent of the next generation otherwise the parent continues to the 

next generation. Similarly, solutions residing in the least crowded areas get 

preference to the archive. The complexity of (1+1)-PAES is O(mN2).  

 

(1+1) -PAES procedure 

 

Input:    xt (a random solution) 

Output: tP  (nondominated set) 

 

Step 1: Generate an initial random solution xt and add it to the archive 

tP  of size N 

Step 2: Mutate xt to generate an offspring yt 

Step 3: If (xt p yt) discard yt 

else if (yt p xt) then xt = yt and tP = tP +{y} 

else if (zt p yt), ∀z∈ tP , then discard yt 

 else apply test(xt, yt, tP ) to determine which solution becomes 

the current solution or if yt should be added to tP  

Step 4: If the termination criterion is reached then stop 

else t = t + 1 and go to step 2 

 
The (1+1)-PAES serves as a good, simple baseline algorithm for multiobjective 

optimization. Its performance is strong, especially given its low computational 

complexity, even on demanding tasks where one might expect local search 

methods to be at a disadvantage (Knowles and Corne 2000a). However, 

appropriate values for the archive size N and the depth parameter d are 

necessary in order to find a good set of nondominated and well-spread solutions. 

 

     Knowles and Corne (2000a) extended the (1+1)-PAES to a (1+λ)-PAES and 
a (µ+λ)-PAES. In the multimember (1+λ)-PAES, a parent solution is mutated λ 
times and an offspring is created each time. A fitness value is assigned to each 

offspring and  compared to the archive and its hypercube location. The fittest 

among the parent and offspring solutions becomes the parent of the next 

generation. In a multimember (µ+λ)-PAES, each µ parent and each λ offspring 
are compared with the archive and an offspring membership is calculated as in 

(1+1)-PAES. The new parent population is generated based on a dominance 

score from the current µ parent population and λ offspring population. The 
proponents of PAES observed that the multimember versions of PAES do not 

generally perform as well as the (1+1)-PAES since offspring are compared only 
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with the archive and not against other offspring. This means that there is no 

assurance that best offspring solutions are exploited. 

 

     Knowles and Corne (2000b) developed a memetic algorithm for 

multiobjective optimization M-PAES, which uses the local search method of 

(1+1)-PAES, combined it with the use of a population and crossover. The 

usefulness of M-PAES was evaluated on a set of multiobjective 0/1 knapsack 

problems. Their results showed that M-PAES performs better than (1+1)-PAES 

on all problems and, compared with the SPEA, the performance of M-PAES is 

similar with SPEA and gives a near-best performance. 

 

 

PARETO ENVELOPE-BASED SELECTION ALGORITHM 
 

Corne et al. (2000) introduced a Pareto Envelope-based Selection Algorithm 

(PESA) wherein a simple hypercube scheme controls selection and diversity 

maintenance. The selection of a parent in PESA is dependent on the degree of 

crowding in the different regions of the archive. The crowding strategy divides 

the objective space into hypercubes. Each chromosome in the archive is 

assigned a squeeze factor, which is the total number of other chromosomes in 

the archive that are located in the same hyper-box. The lower the squeeze 

factor the higher the fitness of an individual. The squeeze factor is also used to 

update the archive i.e., the individual with the highest squeeze factor is 

removed when the archive exceeds in allowable number of members. The run-

time complexity of PESA is O(mN2). 

 

PESA procedure 

 

Input:   Pt    (population with N individuals) 

      Output:  P*  (Nondominated set) 

 

Step1: Generate and evaluate N solutions in Pt. Divide the normalized 

objective space into n
m hypercubes where n is the number of 

grids along a single objective axis and m is the number of 

objectives. Set tP  = ∅ 

Step 2:  Incorporate the nondominated members of Pt into tP  

Step 3:  If a termination criterion has been reached, P* = tP  and stop  

else Pt = ∅. Do while (Pt is not full) 



48  

with probability pc  

select 2 parents from tP   

generate a single offspring via crossover  

mutate the child and add to Pt+1 

with probability (1- pc) select one parent, mutate it to 

generate a child, 

add child to Pt+1  

Step 4:  go to Step 2  

 

PESA is easy to implement and computationally efficient. However, its 

performance depends on the cell sizes (hyper-box) and prior information is 

needed about the objective space. Corne et al. (2001) described a region-based 

selection procedure (PESA-II). In the selection step, cells are selected instead of 

individuals and a cell that is sparsely occupied has a higher chance to be 

selected than a crowded cell. Once a cell is selected, solutions within the cell are 

randomly chosen to participate to crossover and mutation. Preliminary 

investigations by the researchers (Corne et al. 2001) suggest that the PESA-II 

results are not overly sensitive to the cell size or hyper-box dimension 

parameter, but they state that more investigation is required to determine if this 

is generally the case.  

 

 

2.3.3 Comparative studies of MOEAs 
 

A comprehensive discussion of multiobjective evolutionary algorithms (MOEA) 

can be found in Deb (2001). In addition, Coello (2000) gives a summary of 

current approaches in MOEA and emphasizes the importance of new approaches 

in exploiting the capabilities of evolutionary algorithms in multiobjective 

optimization. Zitzler et al. (1999) performed a comparative analysis of existing 

evolutionary algorithms in multiobjective optimization by means of well-defined 

quantitative performance measures. They show that elitism is an important 

factor in evolutionary multiobjective search. The following discussion presents a 

summary of relevant comparative studies of multiobjective evolutionary 

algorithms published from the year 2000 and onwards. 

 

     Zitzler et al. (2000) compared several multiobjective EAs on six different test 

functions and found the following: (1) multimodality causes the most difficulty 

for evolutionary approaches. However, non-convexity remains a problem for 
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weighted-sum based algorithms; (2) for the chosen test problems and 

parameter settings, a clear hierarchy of algorithms emerges regarding the 

distance to the Pareto-optimal front in descending order of merit:   SPEA, NSGA, 

VEGA, WBGA, NPGA, and MOGA; (3) elitism is an important factor in 

evolutionary multiobjective optimization.  

 

     Zitzler et al. (2002) presented an improved version SPEA2, which uses an 

enhanced fitness assignment strategy and a new technique for archive 

truncation and density-based selection. The study compared SPEA2 with SPEA, 

PESA and NSGA-II on 16 continuous and combinatorial test problems. The 

results of the analysis were: (1) SPEA2 performs better than its predecessor 

SPEA on all problems; (2) PESA has the fastest convergence, which is probably 

due to its higher elitism intensity. However, it has difficulties keeping the 

boundary solutions on some problems; (3) SPEA2 and NSGA-II show the best 

performance overall. (4) SPEA2 seems to have advantages over PESA and 

NSGA-II in higher dimensional objective spaces wherein the number of 

nondominated solutions increases rapidly. 

 

     Deb et al. (2002) tested NSGA-II on nine difficult test problems and found 

that NSGA-II was able to maintain a better spread of solutions and converge 

better in the obtained nondominated front compared to PAES and SPEA. The 

diversity preserving mechanism used in NSGA-II was found to be the best 

among the three approaches. 

 

    Tan and Lee (2002) surveyed existing multiobjective evolutionary algorithms 

according to their performance on four benchmark problems. Besides 

considering the spread of solutions across the Pareto-optimal front and the 

ability to attain the global trade-offs, the uniform distribution of individuals along 

the Pareto-front, the computational effort, the robustness to disturbances, and 

the average best performance of tracking optimal regions in changing 

environments were evaluated. They conclude that no single algorithm excels in 

all performance measures. Furthermore, elitism and a sharing strategy are 

important for good convergence and population distribution along the discovered 

tradeoffs in multiobjective optimization. 

 

     Yen and Lu (2003) proposed a Rank-Density-based algorithm (RDGA) that 

simplifies the problem domain by converting high-dimensional multiple 

objectives into two objectives. Their results showed that RDGA produced 

statistically competitive results with the four state-of-the-art MOEAs, MOGA, 
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PAES, NSGA-II, and SPEA II on four types of multiobjective problems. The 

MOOPs were designed to exploit various complications in finding near-optimal, 

near-complete, and uniformly distributed Pareto-optimal fronts. RDGA was found 

to show better performance in keeping the diversity of the individuals along the 

current tradeoff surface, extending the Pareto front to new areas, and finding a 

well-approximated, nondominated set. However, the paper is far from 

representing a complete MOOP test suite to conclude that RDGA is a better 

algorithm than other modern MOEAs. 

 

     Yen and Lu (2003) proposed a Dynamic Multiobjective Evolutionary 

Algorithm (DMOEA) that simplifies computational complexity by using a cell-

based rank and density- fitness estimation scheme, an objective compression 

strategy, and an adaptive-population size feature. A cell-based ranking scheme 

first divides the objective space into cells or hypercubes (e.g. PAES and RDGA) 

and ranks are given to the cells and not individually to the nondominated 

solutions. An objective compression strategy enhances the cell-based ranking 

scheme by compressing the size of the cells in the objective space. Its effects 

refine the Pareto front and reduce cell density. Their comparative study showed 

that DMOEA produces statistically competitive or even superior results with the 

other modern MOEAs such as PAES, NSGA-II, RDGA, and SPEA II on three 

multiobjective optimization benchmark problems. The problems are designed to 

exploit various complications in finding near-optimal, well-extended, and 

uniformly distributed Pareto-optimal fronts. They conclude that DMOEA can be a 

potential candidate in solving time-critical or on-line MOOPs due to its lower 

computational complexity. However, as in their study of RDGA, the test 

functions do not cover all challenging characteristics of MOOPs. 

 

     Bosman and Thierens (2003) argued that the quest for finding the 

components that result in the best EAs for multiobjective optimization is not 

likely to converge to a single, specific MOEA. They stated that the tradeoff 

between the goals of proximity and diversity preservation plays an important 

role in the exploitation and exploration phases of any MOEA.   

     Deb et al. (2005) introduced an ε-MOEA which was developed using the ε-
dominance criterion by Laumanns et al. (2002). They found that the ε-MOEA 
was successful in finding well-converged and well-distributed solutions with a 

much smaller computational effort than a number of state-of-the-art MOEAs 

including NSGA-II, SPEA2, and PESA on 12 test problems. They suggest the use 

of the ε-MOEA to more complex and real-world problems due to its consistency 
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in achieving convergence and diversity of solutions over multiple simulation runs 

with less computational effort compared to other MOEAs. 

 

     Chaiyaratana et al. (2007) proposed a modified multiobjective diversity 

control oriented genetic algorithm or MODCGA-II, which is an improvement of its 

predecessor MODCGA. Their analysis on six benchmark problems described in 

Deb et al. (2005) indicated that the MODCGA-II produces nondominated 

solutions that are better than NSGA-II and SPEA-II when the number of 

objectives is limited to two but performs worse when the number of objectives 

increases to three. They recommended that their technique is the most suitable 

approach for both single-objective genetic algorithm and multiobjective genetic 

algorithm in case the number of objectives is two.  

 

     Goh and Tan (2007) performed extensive studies to examine the impact of 

noisy environments in evolutionary multiobjective optimization, particularly for 

the population dynamics of fitness and diversity. They introduced three noise-

handling features that include an Experiential Learning Directed Perturbation 

(ELDP) operator that adapts the magnitude and direction of variation according 

to previous experiences for fast convergence, a Gene Adaptation Selection 

Strategy (GASS) that helps the evolutionary search in escaping from local 

optima, and an archiving model based on the concept of possibility and 

necessity measures. The comparative study showed that the basic algorithm 

incorporating the proposed features exhibits competitive or superior 

performance in terms of proximity, diversity, and distribution for both the 

noiseless and noisy benchmark problems. They found that existing MOEAs such 

as SPEA2 and NSGAII enhanced with the proposed features of GASS and ELDP 

are capable of giving better convergence and population diversity along the 

global tradeoff for the benchmark problems with and without the presence of 

noise. 

 

     The studies presented above show a variety of results and no single MOEA 

performs better in the different performance metrics but most of the studies 

compare their algorithms with either NSGA-II or SPEA2 or both. The studies 

above mostly evaluated the performance of the selection operators of each 

MOEA without investigating the effect of the parameter settings on its 

performance.  The current study differs from the researches above.  The current 

study does not create a new selection operator and compare its performance 

with well-known algorithms but investigates the effect of the parameter settings 
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and variation operators on the performance of  NSGA-II and SPEA2 in selected 

multiobjective optimization problems.  
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Chapter 3 
 

 

The Competitive Facility 
Location Problem:  
An optimization problem 
with a fixed-length string of 
continuous variables  
 

  

3.1 Introduction 
 

Facility location is the process of determining a geographic site for operations of 

a company or any organization in general. Managers of both service and 

manufacturing organizations must weigh several factors when assessing the 

desirability of a particular site, including proximity to customers and suppliers, 

labor costs, and transportation costs. Facility location is often determined by one 

critical factor. In the case of plant or warehouse location, economic factors 

usually are dominant.  

 

     A location model is said to be competitive when the problem of locating a 

new facility in the market incorporates the existence of other facilities and that 

the new facility has to compete for its market share (Plastria 2001). A number of 

facilities with known fixed locations exist in the market. That is, Competitive 

Facility Location (CFL) models describe how facilities capture their market share 
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and where a new facility should be located to maximize its market share. The 

models mostly start from a measure of attraction that a customer feels for a 

facility. The attraction is determined by several factors, but most CFL models 

represent market share as a function of the distance between the customer and 

the facility on the one hand, and on the other hand on internal characteristics of 

the facility, which generally can be called the quality of a facility. Various types 

of attraction functions might be formulated, but the study will deal with a 

multiplicative type, which leads to a gravity type attraction, given by the quality 

divided by some strictly positive power of the distance. Anyway, the function 

should be non-increasing with distance and non-decreasing with quality. The 

models take care of two decisions: the location of the facility and its design. The 

location of the site influence the distance part of the objective and the design 

relates to the quality. Quality is determined by a mixture of attributes of the 

facility like floor area, number of check-counters, product mix and price level. 

Raising the level of these attributes of quality involves a higher cost. The main 

objective of the decision is to maximize profit, which can be expressed as a 

function of sales and cost, like sales minus cost or sales divided by cost. The link 

to this chapter is made due to the results obtained by Carrizosa and Plastria 

(1995) who show that profit-maximization with respect to both the location and 

the quality of the new facility can be obtained by inspecting only a finite number 

of solutions. The solutions are obtained after solving a bi-objective optimization 

problem of finding efficient solutions that maximize “captured” consumers, while 

minimizing the quality costs of the new facility. The type of problem is known as 

a maxcovering-minquantile location problem, which arediscussed further on. 

 

 

3.1.1 Problem Definition 
 
The competitive location model involving bi-objective maximization of location 

and quality of a facility is due to Plastria and Carrizosa (2004). They present a 

general profit maximizing competitive location model with different attraction 

types on a consumer and limit the location of the new facility within a bounded 

area. Plastria and Carrizosa (2004) show that a maximal profit solution to the 

CFL problem through the determination of efficient solutions reduces to the bi-

objective optimization of  

    

Min  α 

Max CW (α, x) ; α ≥ α0 , x ∈ S 
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where  α = unknown quality cost of the new facility at an  

unknown site x 

   CW(α, x) = captured weight of the new facility 

   α0 = minimal quality cost (α0 > 0) 

   S  = closed set in the plane 

 

A finite set of customers is denoted by AF. Each customer a ∈ AF has a known 

location xa and a strictly positive weight wa representing his buying power. A 

finite set of competing facilities with which the new facility is to compete is 

denoted by CF. Competing facility f ∈ CF is located at site xf and has a quality 

αf considered to be known and fixed. Any customer a ∈ AF feels an attraction 

attr(α,f) towards a facility f at xf, which depends on factors such as distance from 

xa to xf or other factors like tradition etc. Consider a new facility with unknown 

site x and unknown quality α, of at least some minimal quality α0 > 0. Its 

attraction on a customer a ∈ AF can be expressed by a function Aa(α,dista(x)), a 

function of the quality α and of the distance  dista(x) from the customer to the 

facility. The function Aa is defined on [ [ [ [ [ ]+∞→+∞×+∞ ,0,0,0α . A typical 

example is attraction of gravity type, given by 
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where p is any strictly positive exponent, and  ka > 0 represent some 

proportionality constant depending on a. In pure gravity models p = 2, which 

may appear in a wide variety of physical contexts. But also linear markets may 

be assumed (see Eiselt and Laporte, 1988 and 1989). A common feature of all 

attraction functions is that a larger quality cost increases the attraction of a 

customer to a facility whereas a larger distance between them decreases it. With 

a deterministic customer choice rule, the facility captures those customers 

attracted more to the new facility than to any competing facility in CF. The set of 

captured customers is given by: 

 

{ })())(()( f,aattrdist,A:CFfAFa,Capt aa ≥∈∈= ∀ xx αα     (3.2) 

 

The total weight captured by the new facility is given by 
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Profit is expressed by a profit-indicator function π which is strictly increasing in 

sales income σ(CW(α,x)) and strictly decreasing in operating costs γ(α) 

 

))())(()( αγασπα ,,CW(, xx =Π          (3.4) 

 
It is the profit-indicator Π that needs to be optimised by an adequate choice of 

both the quality α > α0 and the site x within some set of feasible sites S: 

 

{ }0)( ααα ≥∈Π ,x,max Sx       (3.5) 

 

Given a fixed quality α, profit maximisation is achieved by maximisation of the 

total captured weight. This optimisation problem is called a maximal covering 

problem as studied in the planar context by Drezner (1981). Drezner’s objective 

is to maximise a weighted number of demand points (read: customers) within a 

given (Euclidean) distance from the facility. This constraint might be motivated 

as follows: the location of an emergency facility may be satisfying a bound on 

the distance between each demand point and the new facility, or when a 

shopping centre is planned, only customers within a given distance use its 

services. Drezner (1981) presents an algorithms of complexity O(n2log n) where 

n is the number of demand points. Since, in this problem, α is a decision 

variable, such a maximal covering problem needs to be solved for each possible 

value of α, given that only a finite number of feasible quality values are 

available. 

 

When, however, optimisation needs to be done over the full range of positive α-

values (with α>= α0), another approach is to be advised. In Carrizosa and 

Plastria (1995) it is shown how the optimisation problem can be solved by 

reducing it to a bi-objective problem. In some cases the optimisation problem 

can be solved by inspecting a finite number of points, polynomial in the 

cardinality of AF. They have proven that, if maximal profit solutions exist, they 

are all efficient (or nondominated, or Pareto-optimal) for the bi-objective 

problem. The authors call the problem a minquantile/maxcovering bi-objective 

problem. 

 

The cases in which the optimisation problem can be solved analytically depend 

on (1) the type of attraction function; (2) the characteristics of the subset; and 

(3) the characteristics of the search space. In terms of attraction function a 
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limited number of functions are feasible, including the gravity-type functions. In 

terms of the characteristics of the subset, the subset s needs to be a closed 

convex subset. In terms of the search space, solutions need to be found in the 

plane ℜℜℜℜ2, in which distances are measured by a norm. If the requirements are 

met then Carrizosa and Plastria (1995) state that efficient solutions to the bi-

objective problem are optimal solutions to single-objective problems, i.e. single-

facility minmax location problems. To explain this procedure a bit further, 

Theorem 8 of the article by Plastria and Carrizosa (2004) is stated as follows: 

 

“Theorem 8: Let (α*,x*) be an efficient solution for the bi-objective problem. 

Then, one has: 

1. When Capt(α*
,x

*) ≠ φ there exists a nonempty subset T ⊂ AF, with 

cardinality at most 3 such that  

(a) x* solves the generalizes single-facility minmax location problem 

)(xαDmaxmin
TaSx ∈∈

 

with Da(x): ℜℜℜℜ2→[0,+∞] defined as Da: x → Ba(dista(x)) in which Ba 

indicates, as a function of the distance d, the quality threshold above 

which a customer a at distance d is captured. 

(b) α is the optimal value of (a), which is finite 

2. In case Capt(α,x*) = φ, one must have α*= α0, and any other pair (α0,x) 

is then also efficient for the bi-objective problem.  “ 

 

After finding, in (b) the optimal value αT of each of the O(n3) optimisation 

problems in (a), and finding the set ST of optimal solutions for the problem in 

(a), a list of pairs (αT,xT) is available which contains the set of efficient solutions 

for the bi-objective problem. 

      

 
3.1.2 Literature Review 
 

A number of models exist that solve different competitive facility location 

problems. A survey of such models is discussed by Eiselt et al. (1993). The 

authors suggest fives major components in competitive facility location, which 

are space, number of players, pricing policy, rules of the game, and behavior of 

customers. The mostly used metric space in competitive facility location is the 

m-dimensional real space ℜℜℜℜm and, in most instances, is bounded by a convex 

polygon denoted by |ℜℜℜℜm|. A pricing policy distinguishes between models with 

both price and location as decision variables and models that consider location 
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as the only decision variable. Rules of the game define the general concept of 

equilibrium as applied to games but most competitive facility location studies in 

operations research do not fall under equilibrium models because competing 

facilities already exist. The last component, behavior of customers, defines 

deterministic and probabilistic models. In a deterministic model, customers 

always patronize a single facility that they are most attracted to. On the other 

hand, probabilistic models assign probabilities of customer attraction to each 

facility.  

 

     Drezner (1994) proposes a solution for the location of a new facility in a 

continuous planar space and in an environment where competing facilities have 

different levels of attraction on a consumer. Drezner’s (1994) algorithm solves a 

single-objective optimization problem that first calculates a “break-even” 

distance, which is the maximum distance that a consumer is willing to travel to 

the new facility. Afterwards, the market share is computed for the new facility 

relative to the break-even distance. She concludes that her model guarantees a 

superior location based on information about consumer preferences and facility 

attributes. Plastria and Carrizosa (2004) observes that most algorithms solve 

competitive facility location problems by either setting a fixed site and attempt 

to maximize profit by an adequate choice of quality or setting the quality fixed 

and then find an optimal site. They show that profit maximization with respect to 

both location and the quality of the new facility may be obtained by solving 

efficient solutions (Pareto-optimal) in a bi-objective location problem. 

 

Pangilinan et al. (2005) applies an MOEA for finding efficient solutions to the CFL 

problem and notes that the MOEA generates inferior solutions to the 

deterministic procedure by Plastria and Carrizosa (2004). However, they show 

that the MOEA is more scalable in terms of computational runtime as the 

problem size grows. They recommend that further research on real-parameter 

operators and the integration of a local search procedure may improve the 

results of the MOEA.    

 

 

3.2  Multiobjective Evolutionary Algorithm  
 

The study uses the EA algorithm by Zitzler et al. (1999), the Strength Pareto 

Evolutionary Algorithm (SPEA). Zitzler et al. (2002) have shown that SPEA2, an 

improved version of SPEA, outperforms other evolutionary techniques and 
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seems to have performance advantages in solving optimization problems with 

higher dimensional objective spaces. For such reasons, this chapter employs 

SPEA2 to find nondominated solutions to the CFL problem as described in 

Plastria and Carrizosa (2004).  

 

 

3.2.1 Genetic Algorithm for the CFLP 
 

Four MOEA methods are introduced in the study. The first is a simple MOEA (S-

MOEA) that uses mutation only as implemented by Pangilinan et al. (2005). The 

second is a variant of the simple MOEA wherein a local search procedure is 

added to the algorithm (MOEA-LS). The third MOEA-AX uses average crossover 

and non-uniform mutation.  The non-uniform mutation acts as a local search 

operator at the latter parts of the EA run. The last MOEA-BLX uses blend 

crossover (Eshelman and Schaffer, 1993) and non-uniform mutation.  The blend 

crossover preserves the mean objective function values of the population. All 

four MOEAs use the SPEA2 selection algorithm. 

 

Genetic Representation. A chromosome x for the CFL problem is represented by 

real-parameters, which define the location of a new facility in two dimensions 

using (x,y)-coordinates. The objective functions are qualityα, and captured 
weight CW of a new facility. Variation and selection operators are applied 

directly to these real parameter values. The main difficulty here is how to create 

a new pair of offspring vectors or how to mutate a facility location to a new 

location in a meaningful manner.  

 

Genetic Operators. Deb (2001) argues that binary crossover techniques hardly 

create meaningful offspring vectors in real-parameter EAs. Given this 

observation, implementing a binary crossover operator in a real-parameter 

search space is not very useful. The problem is then reduced to the design of a 

crossover and a mutation operator that are strong enough to create diversified 

solutions and at the same time ensure convergence to optimal solutions. A 

simple solution would be to implement random mutation per new generation to 

guarantee diversity but this operator does not ensure convergence. The next 

step is to generate solutions not from the entire search space but from a search 

space near the parent solution with a uniform probability distribution. It is also 

possible to create a non-uniform mutation where the probability of creating 

solutions closer to the parent increases as the number of generations increase. 
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Our experiment adopts a non-uniform mutation operator, which is described as 

follows 

 

)()(1 thxxpxx u
i

l
i

t
i
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where p is either -1 or 1 with probability of 0.5. The terms l
ix and u

ix  express 

the lower and upper bounds that define the decision space and restrict the 

decision variable ix  to take a value within the decision space at generation t. 

The parameter r is a real random number in the interval [0,1], t is the 

generation counter, and tmax is the  maximum number of generations.. The 

parameter b is a user-defined input that determines non-uniformity and has a 

value usually greater than 1. Equation 3.6 assures that mutation accomplishes 

uniform exploration at the first generations and search becomes local at the last 

generations. Equation 3.7 makes it possible to create a non-uniform mutation 

where the probability of creating solutions closer to the parent gets higher as 

the number of generations increase.  

 
     Recombination is implemented in two ways, as the arithmetic average of 

both parent vectors or as a blend crossover of both parents.  The arithmetic 

crossover is defined as 

 

)(
2

1
iii yxz +=                                      (3.8) 

 

where x and y are the parents, z is the offspring, i = 1,…,m, and m is the 

number of dimensions of the chromosome. The offspring genes represent the 

arithmetic mean of the values of the parent vectors. 

The blend crossover (BLX) is defined as  

 

( ) iiiii yxz γ+γ−= 1                (3.9) 

 

where x and y are the parents, z is the offspring, i = 1,…,m, and m is the 

number of dimensions of the chromosome, γi = (1 + 2β)ui- β.  The term ui is a 

real random number between 0 and 1.  If β is zero, the crossover creates a 

random solution in the range (xi, yi).  Eshelman and Schaffer (1993) report that 

β=0.5 performs better than any other β value for the BLX operator. 
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Fitness Function. The raw fitness function in this MOEA evaluates the real 

parameters α and CW(α, x) and is a multiobjective function that minimizes α 

and maximizes CW(α,x). Tournament selection as defined in SPEA2 (see 
Appendix B) is used for the selection of parent solutions.  

 

Local Search. In addition to the basic genetic operators described above, the 

MOEA-LS uses a local search procedure that improves the convergence rate of 

the simple MOEA. The local search procedure iteratively searches for the lowest 

quality α of a facility (individual) in location x. This is applied to all new offspring 
individuals in every generation.   

 

 

3.2.2 Experiments and Results 
 

The problem considered in this chapter is taken from Plastria and Carrizosa 

(2004). Specifically, a new facility must be located in the planar region S 

bounded by a convex polygon with corner points (0,0), (50,0), (50,20), (25,45), 

(0,45) as shown in Figure 3.1.  

   
Figure 3.1 Facilities and consumers 
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     A set of two facilities, CF = {f1, f2} already exist and compete to attract a 

set of customers AF = {a1, a2,…, a10}. For each consumer ai (i=1…10) the 

gravity-type attraction to any facility is defined in (3.1) with each ka = 1 

representing some proportionality constant depending on consumer a, some 

minimal quality α0 ≈ 0, α0 = 0.0000001 and p = 2. The parameter p represents 

the sensitivity of attraction attr to distance. Consumer a is captured by the 

existing facility yielding the highest attraction. The attraction attra, is determined 

by: 
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An overview of the attraction parameters of ten potential consumers is 

presented in Table 3.1. The terms la and wa represent the location and weight of 

each consumer a respectively.  

 

Consumer Location 

la 

Weight 

wa 

Attraction 

attra 

Facility 

f(a) 

a1 (64.0, 34.0) 600 0.6702 f2 

a2 (60.0, 19.0) 100 0.3702 f2 

a3 (50.0, 38.0) 100 0.9766 f2 

a4 (45.0, 55.0) 100 4.0000 f2 

a5 (20.0, 52.0) 400 2.8345 f1 

a6 (27.8,  7.0) 300 0.2830 f1 

a7 (24.0, 40.0) 100 1.1312 f1 

a8 (20.0, 31.0) 100 0.7086 f1 

a9 (9.0, 36.0) 100 0.8389 f1 

a10 (3.8,  7.0) 600 0.2707 f1 

Table 3.1 Attraction Parameters 

 

One difficulty of using evolutionary algorithms is its sensitivity to the input 

parameters such as population size, random seed, number of generations, and 

probability values for crossover and mutation. Determining a balanced 

interaction between parameter settings to find efficient solutions is not an easy 

task. A number of simulation runs is usually required to come up with near 

optimal solutions. The set of parameters shown in Table 3.2 is one of the many 

combinations that may be used for the competitive facility location problem.  
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     Parameter maxgen stands for the maximum number of generations. The 

maximum quality value is indicated as quality_max. Parameters xy_range and 

quality_range signify maximum perturbation for location and quality. 

Mutation_probability is the probability that a mutation is performed. 

Bit_turn_probability represents the probability of a gene to be mutated. The 

initial population is the number of individuals at the start of the MOEA run. From 

an initial population, a parent population is selected to reproduce a population of 

offspring individuals. The process of selecting parents and reproducing offspring 

is repeated until maxgen is reached.  

 

Parameter S-MOEA MOEA-LS MOEA-AX MOEA-BLX 

initial population 25 25 25 25 

parent population 25 25 25 25 

offspring individuals 25 25 25 25 

maxgen 2000 250 250 250 

quality_max 2000 2000 2000 2000 

xy_range 5 5 4.28 7.19 

quality_range 15 15 1.25 13.13 

mutation_probability 1.00 1.00 0.69 0.47 

crossover_probability 0.00 0.00 0.44 0.91 

bit_turn_probability 0.50 0.50 0.81 0.53 

Table 3.2 Input parameters 

 

Table 3.3 shows comparative results of Plastria and Carrizosa’s algorithm (called 

Plastria in the column table), S-MOEA, MOEA-LS, MOEA-AX, and MOEA-BLX  

from the given sample problem. Plastria and Carrizosa’s results show the 

complete set of optimal solutions. Clearly, all MOEA results show inferior 

solutions to that of Plastria and that the MOEA-LS, the MOEA-BLX, and the 

MOEA-AX perform better than the S-MOEA. The worst solutions are generated 

by the S-MOEA (at 250 generations) because its search operator is weak. It 

requires 2000 generations to have comparable results with the other MOEAs. 

This shows that a non-uniform local search is more effective than a uniform 

search.  The best solutions are obtained by the MOEA-AX, which uses arithmetic 

crossover and non-uniform mutation.  

 The solutions of all MOEA algorithms are near optimal because the CFLP has 

a real-parameter search space. Deb (2001, p.124) explains that after a few 

generations, a real-parameter genetic algorithm treats a continuous search 
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space problem as a discrete search space problem and the global optimum is 

difficult to find. 

 
S-MOEA α MOEA-LS α 

CW 

Plastria 
α 

2000 
generations 

250 
generations 

MOEA-AX 
α 

MOEA-BLX 
α 

600.00 0.00 0.00 0.00 0.00 0.08 
900.00 39.85 40.45 39.92 40.36 40.01 
1000.00 89.83 91.41 89.87 90.46 93.15 
1100.00 135.27 136.69 135.84 135.51 144.72 
1200.00 182.72 184.10 183.23 182.75 200.52 
1300.00 359.56 362.34 360.86 361.92 363.88 
1600.00 362.00 363.41 362.81 362.32 365.47 
1800.00 440.48 447.06 443.73 441.31 441.46 
1900.00 446.91 448.73 448.89 447.34 459.72 
2000.00 566.04 568.70 566.40 566.11 589.47 
2400.00 767.59 770.36 768.99 768.60 769.34 
2500.00 1800.00 1812.14 1806.45 1805.07 1814.01 

Table 3.3 Comparative results of efficient solutions. 

 

In terms of runtime complexity, Plastria and Carrizosa’s algorithm is able to find 

the list of efficient solutions in O(n3logn) time where n is the number of 

consumers. On the other hand, the MOEAs takes O(M2) to evaluate the raw 

fitness of all candidate solutions per generation. The fitness assignment in 

SPEA2 per generation takes O(M2logM) and the environmental selection per 

generation takes O(M2logM) where M is the sum of the list of candidate 

solutions N and the archive size. Calculation of the quality α and captured 

weights CW per generation takes O(nM). The runtime complexity of the MOEAs 

is dominated by its selection operator and is dependent on the initial population 

size N and not on the number of customers n. With regard to the MOEAs, the 

MOEA-LS and the MOEA-AX generates better solutions i.e. solutions nearer to 

the Pareto-front and finds these solutions in a much shorter time (250 

generations against 2000 generations). Plastria and Carrizosa (2004) note that 

their geometric procedure does not extend well in finding solutions when non-

Euclidean distances are used. An MOEA does not suffer from such difficulty since 

it does not employ a geometric procedure to find CFLP solutions. Hence, the 

MOEA becomes more extensible to planar problems with a non-Euclidean metric. 
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3.3 Sensitivity Analysis 
 
The purpose of uncertainty analysis is to determine the uncertainty in estimates 

for dependent variables of interest (Saltelli 2000, Saltelli 1993). The purpose of 

sensitivity analysis (SA) is to determine the relationships between the 

uncertainty in the independent variables and the uncertainty in the dependent 

variables. Uncertainty analysis typically precedes SA since there is no reason to 

perform SA when the uncertainty in a dependent variable is below an acceptable 

bound or range. Sensitivity analysis is often defined as a local measure of the 

effect of a given input on a given output. This measure can be achieved most 

often by Monte Carlo methods in conjunction with a variety of sampling 

strategies (Saltelli et al. 2004). Monte Carlo sensitivity analysis is based on 

performing multiple model evaluations with probabilistically selected model 

inputs, and the results of such evaluations are used to 1) determine the 

uncertainty in model predictions and 2) identify the input variables that influence 

uncertainty.  

 

     SIMLAB (2004) is a program designed for global uncertainty and sensitivity 

analysis based on Monte Carlo methods (see Appendix A). It offers several 

techniques for sample generation, sensitivity analysis, and a link to external 

model execution. The link allows execution of complex models that can hardly be 

coded as simple mathematical functions such as genetic algorithms.  

 

 

3.3.1 Experiments and Results 
 

Pangilinan et al. (2008) conducted a sensitivity analysis of the MOEA-AX for the 

CFLP to determine which input parameters affect the output and avoid assigning 

arbitrary values to the input parameters.  The following experiment is patterned 

from their study but with the addition of a sensitivity analysis for the MOEA-BLX 

and a robustness test for the MOEA-AX. The sensitivity analysis for the MOEA-

BLX is added to compare the effect of different crossover operators on the same 

problem set.  The robustness test is added to show that the MOEA can find near-

optimal solutions without repeating a sensitivity analysis when the position of 

the polygon S are altered. 

 
 The five input parameters for the genetic algorithm model and their 

configuration are shown in Table 3.4. The factor xyrange defines the upper and 
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lower limit for searching a point in the polygon S. The factor αrange defines the 
limits for searching the quality α of the new facility. Mrate, xover, bitrate are the 

mutation, recombination, and bit-turn probabilities respectively.  

 

Input Factor Description Probability 

xyrange Range for searching location Uniform(0, 10) 

αrange Range for searching quality Uniform(0, 20) 

mrate Mutation probability Uniform(0, 1) 

xover Crossover probability Uniform(0, 1) 

bitrate Bit-turn probability Uniform(0, 1) 

Table 3.4 Probability distribution of input parameters 

 

The bit-turn probability is the probability that a gene will undergo mutation 

whereas mutation rate defines the probability that a chromosome or an 

individual will undergo mutation. The MOEA runs for 250 generations for each 

configuration. The Sobol’ method in SIMLAB (see Appendix A) is used for 

sensitivity analysis, which generates 384 input configurations for the five input 

parameters of the genetic algorithm.  

 

     Table 3.5 shows the comparative results of captured weights and facility 

quality as computed from Plastria and Carrizosa’s (2004) and the best solution 

set from 384 different solution sets generated by the genetic algorithms. Plastria 

and Carrizosa’s (2004) results show the Pareto-optimal set P*. The genetic 

algorithm was able to compute the exact captured weight CW of the new 

facilities but show inferior solutions of quality values α.   

 

     The performance of a solution set Q from the genetic algorithm is based on 

three parameters namely, (1) the ratio of CW Pareto-optimal solutions in Q over 

the number of solutions in P*, (2) the ratio of CW solutions in Q that are 

members of P* over the number of solutions in Q, and (3) the sum of 

differences in quality values of Q and P*. The best solution Q*, is the solution 

that has all the CW solutions in P* and the smallest sum of the differences of 

quality values between Q* and P*. The quality values of the best solutions from 

the MOEA-AX and MOEA-BLX are shown in Table 3.5. The quality values 

generated by the MOEA-AX are nearer to the optimal values than values from 

the MOEA-BLX, which means that the arithmetic crossover performs better than 

the blend crossover in this CFLP problem set. 
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CW Plastria (α) P* 

MOEA-AX 

(Q*) 

MOEA-BLX 

(Q*) 

600 0.0000 0.0003 0.0818 

900 39.8488 40.3606 40.0118 

1000 89.8289 90.4611 93.1452 

1100 135.2698 135.5118 144.7237 

1200 182.7161 182.7483 200.5216 

1300 359.5603 361.9230 363.8839 

1600 361.9952 362.3166 365.4698 

1800 440.4785 441.3086 441.4561 

1900 446.9055 447.3366 459.7156 

2000 566.0434 566.1086 589.4663 

2400 767.5907 768.5999 769.3388 

2500 1800.0000 1805.0749 1814.0083 

Table 3.5 Comparative results of best solutions 

 

As regards the sensitivity analysis, Table 3.6 shows the Sobol first-order and 

total-order indices. The first-order sensitivity index shows the individual effect of 

an input factor on the output. More specifically a first-order index gives a 

measure of the direct effect of an input factor on the output variation. An input 

parameter having a first-order index with the least value means that it has the 

least influence on the output whereas a factor with the highest first-order value 

is most important for further investigation. If the sum of the first-order indices 

equals 1.0, then the model is linear. If the sum of the Sobol first-order indices 

does not equal 1.0 then the model is nonlinear and implies that some effects on 

the output are due to interactions among the input factors. First-order sensitivity 

measures do not capture interactions between factors whereas total-order 

sensitivity measures detect interactions among input factors.  

 

     The total-order indices describe the share of the output variation that is 

related to each input factor. This includes the direct effect as well as interactions 

with other factors. Removal of a factor means removal of the amount of the 

total-order index from the output variation. Hence, only factors with very small 

total-order indices can be removed to avoid significant changes in the output. 

 

     Table 3.6 has three columns that represent the performance metrics for the 

MOEA-AX described previously. The values represent the first-order and total-

order sensitivity indices. The mutation rate has the highest first-order index and 
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causes nearly 30% of the variation in each of the output metrics. Similarly,  the 

factors xyrange and the bitrate share almost 50% of the variation as shown in 

the third column output metric-the sum of the differences in the quality α of a 

facility between solutions Q and P* and can be interpreted as the proximity of 

an α solution in Q to P*. The parameters αrange and xover have almost no 
direct influence on the output metrics.  

      
Sobol first order indices 

                    

Number of CW 

solutions in Q 
over |P*| 

Number of CW 
solutions in that 

are in  
P* over |Q| 

Sum of 
differences in 

quality 

xyrange 0.047 0.115 0.298 
αrange -0.089 -0.077 0.039 
mrate 0.286 0.318 0.292 
xover -0.002 0.082 0.054 

bitrate 0.065 -0.070 0.207 

Sobol total order indices  

xyrange 0.602 0.642 0.407 
αrange 0.450 0.264 0.153 
mrate 0.611 0.637 0.528 
xover 0.200 0.300 0.137 

bitrate 0.405 0.243 0.372 

Table 3.6 Sobol first-order and total-order indices for MOEA-AX 

 

The sum of the first-order indices does not add up to 1.0, which means that 

there is interaction among the factors. The mutation rate factor mrate remains 

the highest in the total-order indices followed by the parameters xyrange and 

the bitrate. The order of the remaining factors has changed implying that 

higher-order effects of these factors vary. 

 
     The crossover probability factor shows small values and can be a candidate 

for removal from the list of parameters. The results also show that the mutation 

rate has the greatest influence on the output but specific mutation probabilities 

that generated near-optimal solutions are not known. Further investigation 

reveals that out of the 384 input configurations 21 samples have generated 

near-optimal solutions i.e. they have detected all Pareto-optimal solutions for 

the function “captured weight”, CW and have small differences in values for the 

function “facility quality”, α. The 21 samples that generated near-optimal 
solutions show high values for the mutation rate, specifically an average of 0.75 
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and a standard deviation of 0.16. Other averages for the input factors are 

bitrate= 0.62, xyrange = 5.96, αrange = 6.46, and xover = 0.40.   

 

     Table 3.7 shows the performance results from the MOEA-BLX. The crossover 

rate has the highest first-order index, followed by the bitrate and mutation rate.  

They account for 68 % of  the variation in the first  column output metric and 

53% of the third column output metric. The factors xyrange and the αrange 
have almost no direct influence on all the output metrics.  However, their total-

order effects are significant.  There are 23 near-optimal solutions generated by 

the MOEA-BLX. The mutation rate averaged at 0.63, the crossover rate at 0.60 

and the bit rate at 0.53. The average of xyrange is 5.04 and αrange is 9.60. 

 

     Sobol First order indices 

                     

Number of CW 

solutions in Q 
over |P*| 

Number of CW 
solutions in Q 
that are in  
P* over |Q| 

Sum of 
differences in 
quality α 

xyrange -0.023 -0.017 0.018 

αrange 0.117 0.041 -0.013 

mrate 0.222 -0.005 0.153 

xover 0.240 0.035 0.229 

bitrate 0.235 -0.108 0.168 

Sobol total order indices  

xyrange 0.486 0.801 0.386 

αrange 0.849 0.742 0.708 

mrate 0.665 0.895 0.544 

xover 0.631 0.694 0.687 

bitrate 0.920 0.650 0.847 

Table 3.7 Sobol first-order and total-order indices for MOEA-BLX 

 

Tables 3.6 and 3.7 show the sensitivity indices of two MOEAs having different 

crossover operators. Their values are very different which means that the type 

of crossover operators while having the same mutation and selection operator 

changes the behavior of the MOEA in terms of the individual and interaction 

effects of each input parameter to the output. A common result between both 

algorithms is that the mutation rate and the bit-turn rate are kept high (>0.60) 

to get near-optimal solutions. 
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ROBUSTNESS 
 

The interaction among parameters with high-valued indices should be further 

investigated in order to improve the solutions in the real-valued objective 

(quality of facility). A method that requires lesser input sample sizes will be 

beneficial in the investigation of sensitivity analyses of evolutionary algorithms 

as applied to CFL problem. To test whether a smaller input sample set is 

beneficial, Table 3.8 is a list of ten parameter combinations that produced the 

best CFL solutions. These are tested on different positions of S. The succeeding 

experiment explores and describes the solutions that are generated by these ten 

parameter combinations using MOEA-AX for nine different area locations as 

defined by the polygon S. The MOEA-AX is chosen for the robustness test since it 

has produced the better solutions than the other MOEAs. 

 

 xyrange qrange mutation xover bitturn 

1 4.38 1.25 0.69 0.44 0.81 

2 3.13 3.75 0.94 0.06 0.44 

3 5.31 0.63 0.91 0.72 0.34 

4 7.81 0.63 0.78 0.59 0.34 

5 3.13 3.75 0.94 0.56 0.44 

6 1.88 1.25 0.94 0.19 0.56 

7 7.50 5.00 0.75 0.25 0.75 

8 9.22 14.69 0.95 0.55 0.83 

9 7.19 13.13 0.47 0.28 0.53 

10 7.81 9.38 0.78 0.72 0.34 

Table 3.8 GA parameters that give best solutions to MOEA-AX 

 

The experiment intends to determine if the same parameter combinations are 

able to generate near-optimal CFLP solutions on differing areas as shown in 

Figures 3.2-3.9. Figure 3.2 is a translation of the original area by +15 units on 

the x-axis and Figure 3.3 is a translation of the original area by +15 units on the  

y-axis. Figure 3.4 is a translation of the original area by +15 units on both the 

x- and y-axes. Figure 3.5, 3.6, and 3.7 are reflections of the original area on the 

y-axis, x-axis, and the xy-axes respectively. Figure 3.8 is the area rotated 

clockwise by 90 degrees at location (50,20) and Figure 3.9 is the original area 

rotated counter-clockwise by 90 degrees at location (25,45). 
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Figure 3.2  Translation of S on x-axis 
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Figure 3.3  Translation of S on y-axis 
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Figure 3.4 Translation of S on xy-axis 
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Figure 3.5  Reflection of S at y-axis 



 

 

73 

 

 

80, 45

80, 0
30, 0

30, 20

55, 45

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90

 
Figure 3.6  Reflection of S on x-axis 
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Figure 3.7  Reflection of S at xy-axes, y=80-x 
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Figure 3.8  Rotation of S at (50,20) clockwise 90˚ 
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Figure 3.9  Rotation of S at  (25,45) counter-clockwise 90˚ 
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Table 3.9 shows the quality values and captured weights after translation of S on 

the x-axis (see Figure 3.2). The best solution is P*, and the quality values are 

from nondominated sets Q1 to Q10. The term Qi, where i ∈{1,2,…,10} represents 

a nondominated set of CFLP solutions generated form in an input combination 

listed in Table 3.7. Solutions Q1, Q3, Q4, Q8, and Q10 have the complete set of 

solutions and have mutation rates ≥ 0.69 and crossover rates ≥ 0.44. Whereas 

solution sets Q2, Q5, Q6, Q7, and Q9 miss one captured weight CW = 1800 and 

their corresponding quality values. The incomplete solutions have mutation rates 

≥ 0.75 (except for Q9, which has 0.47) and crossover rates ≤ 0.56. The nearest 

solution to P*, according to the performance criteria described above is Q8 with 

a mutation rate of 0.95, bit-turn probability of 0.83, and a crossover rate of 0.55 

followed by Q3 with a mutation rate of 0.91, bit-turn probability of 0.72, and a 

crossover rate of 0.34. The worst vector is Q6 with a mutation rate of 0.94, bit-

turn probability of 0.56, and a crossover rate of 0.19. 

 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 CW P* 

0.077 1E-04 0.001 9E-04 2E-04 0.014 0.003 0.215 5E-04 0.016 300 1E-04 

33.9 33.9 33.9 33.9 33.9 33.8 34.1 33.9 34.2 34.2 600 33.8 

39.9 39.9 39.9 89.8 40.3 39.9 39.9 40.4 40.9 41.3 900 39.9 

91.5 103.3 89.9 90.5 92.3 97.8 91.0 90.5 96.7 97.3 1000 89.9 

135.8 139.6 135.7 135.3 137.1 135.4 135.7 135.9 135.6 140.0 1100 135.3 

187.4 183.0 185.4 184.9 192.2 188.8 182.8 182.8 194.0 190.9 1200 182.8 

359.8 368.7 359.9 359.6 355.7 370.6 359.8 359.8 369.9 358.7 1300 355.7 

398.6 400.5 398.1 398.9 396.1 399.1 397.4 364.9 397.1 397.3 1400 364.9 

441.9  441.2 441.0    442.6  443.0 1800 441.0 

447.6 455.8 449.8 447.7 449.2 473.2 449.0 453.1 463.3 447.0 1900 447.0 

566.3 566.8 566.5 566.5 567.0 566.4 566.3 566.4 566.6 568.1 2000 566.3 

687.9 688.6 688.0 689.6 689.1 693.4 687.9 688.3 690.4 689.9 2400 687.9 

789.1 789.0 789.1 791.0 789.0 788.8 789.2 789.2 790.1 790.0 2500 788.8 

     Table 3.9 Quality values after translation of S on the x-axis 

 

Table 3.10 shows the quality values and captured weights after translation of S 

on the y-axis (see Figure 3.3). Vectors Q2 and Q6, have the complete set of 

solutions and have mutation rates equal to 0.94 and crossover rates ≤ 0.44. 

Vectors Q1, Q4 and Q10 miss one solution, the solution for CW=2100. Solution 

sets Q5, Q8, and Q9 miss two solutions each whereas Q3 and Q7 miss three 

solutions. The nearest solution to P* is Q2 with a mutation rate of 0.94, bit-turn 

probability of 0.44, and a crossover rate of 0.06 followed by Q6 with a mutation 

rate of 0.94, bit-turn probability of 0.56, and a crossover rate of 0.19. The worst 



76  

vector is Q3 with a mutation rate of 0.91, bit-turn probability of 0.34, and a 

crossover rate of 0.72. 

 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 CW P* 

0.002 0.0001 0.0001 0.0001 0.001 0.001 0.001 0.095 0.003 0.0003 100 0.0001 

25.1 17.3 17.4 17.4 17.7 17.4 17.4 18.0 23.8 19.2 600 17.3 

59.0 57.9 57.6 57.9 57.6 58.2 57.9 62.1 58.3 59.0 900 57.6 

90.3 90.2 90.5 90.4 91.0 90.0 90.0 91.7 92.1 90.5 1000 90.0 

136.0 135.3 136.5 136.6 136.2 135.6 135.6 135.6 137.2 139.9 1100 135.3 

182.8 183.5 182.9 183.7 185.0 182.8 182.8 183.0 183.0 182.9 1200 182.8 

361.9 361.8 366.7 361.5 361.8 362.0 360.1 361.0 359.8 361.7 1300 359.8 

363.3 362.1  364.5 362.2 362.3  364.2 363.0 363.4 1600 362.1 

446.6 444.7  440.9  440.6   443.7 442.6 1800 440.6 

447.8 449.0 452.7 448.7 451.3 459.7 447.6 450.9 447.7 449.3 1900 447.6 

566.4 567.3 566.2 566.3 566.4 566.4 566.9 566.4 567.7 566.4 2000 566.2 

 684.4    685.5     2100 684.4 

686.4 686.9 686.5 686.7 686.1 686.2 686.3 686.9  687.8 2400 686.1 

688.7 689.2 688.8 688.7 689.3 688.8 689.0 689.2 689.4 690.1 2500 688.7 

Table 3.10 Quality values after translation of S on the y-axis 

 

Table 3.11 shows the quality values and captured weights after translation of S 

on both the x and y axes (see Figure 3.4). No single solution set captures all the 

quality values and captured weights as listed in the column of P*. Solution sets 

Q1, Q7, and Q10 miss only one solution, CW=2100 and vectors Q5 and Q8 miss 

one solution, CW=1800 and CW=100 respectively. The remaining vectors Q2, Q3, 

and Q4 miss two solutions whereas Q6 and Q9 miss three solutions. The nearest 

solution to P* is Q10 with a mutation rate of 0.78, bit-turn probability of 0.34, 

and a crossover rate of 0.72 followed by Q7 with a mutation rate of 0.75, bit-

turn probability of 0.75, and a crossover rate of 0.25. The worst vector is Q8 

with a mutation rate of 0.95, bit-turn probability of 0.85, and a crossover rate of 

0.55. 

 

     Table 3.12 shows the quality values and captured weights of the reflection of 

S on the y-axis (see Figure 3.5). Vectors Q3 and Q6, have the complete set of 

solutions. The nearest solution to P* is Q6 with a mutation rate of 0.94, bit-turn 

probability of 0.56, and a crossover rate of 0.19 followed by Q3 with a mutation 

rate of 0.91, bit-turn probability of 0.72, and a crossover rate of 0.34. The worst 

vector is Q8 with a mutation rate of 0.95, bit-turn probability of 0.85, and a 

crossover rate of 0.55.  
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 CW P* 

1.868 2E-05 0.0001 0.0001 0.0008 0.0002 0.124 0.011 0.022 0.024 600 2E-05 

29.8 43.1 42.6 31.2 43.6 42.6 29.7 31.5 31.9 43.7 700 29.7 

58.7 58.0 58.0 57.9 57.7 74.9 57.9 58.3 59.2 57.9 900 57.7 

95.1 92.6 90.1 90.6 90.6 90.1 91.8 90.6 90.6 90.4 1000 90.1 

135.7 135.5 135.4 135.4 135.5 135.4 135.5 135.5 137.3 136.5 1100 135.4 

183.1 183.6 183.0 183.9 185.3 183.4 182.8 184.1 189.4 184.8 1200 182.8 

350.5 359.9 360.1 359.9 363.4 350.2 362.6 350.6 361.2 372.6 1300 350.2 

398.1 396.5 401.3 395.3 395.7 397.0 398.5 398.3  397.3 1400 395.3 

444.8  440.7 443.7   447.9 447.3 445.7 440.8 1800 440.7 

447.4 449.4 454.0 448.5 448.3 452.1 448.4 455.8 448.4 449.5 1900 447.4 

566.8 566.8 566.5 566.2 566.3 566.1 566.2 566.1 566.2 569.7 2000 566.1 

 683.9 686.6  685.2   689.2   2100 683.9 

686.3 687.2 689.2 687.3 686.1 685.8 686.0 1344.6 687.0 687.2 2400 685.8 

689.0 689.0  688.9 689.0 688.7 688.7 1462.5 689.3 691.3 2500 688.7 

Table 3.11 Quality values after translation of S in both x and y-axes 

 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 CW P* 

0.087 0.0022 0.0039 0.0028 0.0003 5E-05 0.013 0.141 0.002 0.0002 400 5E-05 

73.3 69.3 68.0 68.6 68.5 69.2 70.5 69.9 69.0 73.5 500 68.03 

135.7 139.7 133.1 132.8 133.2 133.0 133.6 133.0 135.7 140.3 600 132.8 

143.7 144.0 143.0 143.3 143.7 142.8 143.3 144.8 146.3 145.6 700 142.8 

212.2 212.6 212.2 212.5 212.4 212.2 212.3 212.5 212.5 212.8 800 212.2 

225.6 226.1 225.6 226.6 226.2 225.9 226.5 227.3 230.5 226.1 900 225.6 

257.0 257.0 257.1 257.3 257.1 257.3 257.4 258.1 257.8 257.7 1200 257 

  361.9 361.5  361.7    362.1 1300 361.5 

362.6 364.7 362.5 362.1 362.2 362.1 362.4 362.8 362.7 363.5 1600 362.1 

485.7 485.7 487.7 485.1 485.3 485.1 487.6 489.4 486.2 488.6 1700 485.1 

538.5 537.9 537.7 537.6 538.1 537.5 537.6 542.0 538.9 539.7 1800 537.5 

649.8 649.4 649.4 651.1 650.1 649.4 651.3 649.3 652.9 650.5 2000 649.3 

685.6 684.0 685.2  683.5 683.6    687.2 2100 683.5 

686.6 686.7 685.8 686.6 686.5 686.4 686.2  686.5  2400 685.8 

688.7 688.8 689.0 689.0 689.0 688.7 689.0 689.1 689.0 690.8 2500 688.7 

Table 3.12 Quality values of the reflection of S at y=40 

 

Table 3.13 shows the quality values and captured weights of the reflection of S 

on the x-axis (see Figure 3.6). Vector Q2 has the complete set of solutions and 

all the other vectors have two or more missed solutions. Following the 

performance criteria described previously the nearest solution to P* is Q2 with a 

mutation rate of 0.94, bit-turn probability of 0.44, and a crossover rate of 0.06 

followed by Q7 with a mutation rate of 0.75, bit-turn probability of 0.75, and a 
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crossover rate of 0.25. The worst vector is Q3 with a mutation rate of 0.91, bit-

turn probability of 0.34, and a crossover rate of 0.72. 

 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 CW P* 

 4E-05  0.0003  1E-06     100 1E-06 

0.04 5.0 3E-04 12.9 0.0001 0.0001 0.001 0.04 0.0002 0.0003 600 1E-04 

30.7 43.0 42.6 29.7 30.3 42.6 29.8 30.6 34.4 29.9 700 29.7 

67.5 66.9 69.2 69.4 66.6 66.0 66.5 69.3 66.1 69.7 800 66.0 

185.1 185.2    185.1 185.4 185.3   900 185.1 

 212.1         1000 212.1 

212.4 212.4 220.1 212.7 212.7 217.8 212.3 213.6 212.2 215.2 1100 212.2 

335.5 335.8 335.5 337.2 337.5 336.3 335.8 338.4 336.3 336.6 1200 335.5 

382.9 384.5 383.5 383.2 384.8 383.4 403.8 383.0 383.8 385.1 1300 382.9 

440.5 440.9 440.6 441.0 440.7 440.6 441.4 441.4 440.7 442.4 1800 440.5 

451.0 447.6 448.3 448.4 447.4 447.4 452.5 448.0 448.7 448.9 1900 447.4 

681.2 655.9 682.0 674.0 652.0 652.0 678.4 653.4 652.9 673.1 2000 652.0 

1245 1245 1246 1246 1246 1245 1246 1246 1256 1246 2100 1245 

Table 3.13 Quality values of the reflection of S at x=40 

 

Table 3.14 shows the quality values and captured weights of the reflection of S 

on both the x and y axes (see Figure 3.7). Vectors Q1, Q6, Q7, and Q9 have the 

complete set of solutions. Vectors Q2, Q3, Q5, and Q10 miss one solution each. 

The nearest solution to P* is Q1 with a mutation rate of 0.69, bit-turn probability 

of 0.81, and a crossover rate of 0.44 followed by Q7 with a mutation rate of 

0.75, bit-turn probability of 0.75, and a crossover rate of 0.25.  

 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 CW P* 

1.307 4E-05 3E-04 0.0002 3E-05 0.003 0.001 0.022 0.0026 0.0011 600 3E-05 

42.6 42.7 42.7 42.6 42.8 42.5 43.2 44.9 45.8 43.2 700 42.5 

74.7 74.8 75.0 77.5 75.1 80.6 75.2 76.9 80.0 75.2 800 74.7 

333.4 331.6 331.4 331.8 331.5 331.2 334.6 331.3 331.6 337.2 900 331.2 

430.9 431.2 430.6 432.3 430.7 431.8 431.1 444.1 430.6 431.5 1100 430.6 

482.0 481.7 482.0 483.7 482.3 482.5 482.1 482.9 482.1 483.1 1200 481.7 

500.9 506.1 501.4 505.6 503.4 502.2 502.1 502.4 507.8 500.8 1300 500.8 

542.8 547.5 543.5 546.8 542.8 549.0 543.0 546.2 543.1 546.0 1400 542.8 

769.0   770.5  792.0 768.1  770.1 848.3 1800 768.1 

848.3 848.1 848.1 848.1 848.0 848.4 848.4 848.1 848.1  2100 848.0 

868.5 867.2 910.8 867.7 897.6 869.3 867.8 867.1 870.3 911.8 2400 867.1 

882.0 908.5 917.6 879.5 914.8 893.0 887.6 907.4 887.0 917.9 2500 879.5 

Table 3.14 Quality values of the reflection of S at y=80-x 
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The worst vector is Q10 with a mutation rate of 0.78, bit-turn probability of 0.34, 

and a crossover rate of 0.72. 

 

     Table 3.15 shows the quality values and captured weights after S is rotated 

clockwise by 90 degrees at (50, 20) (see Figure 3.8). No single vector captures 

all the quality values and captured weights as listed in the column of P*. 

Solution sets Q1, Q3, and Q6 miss only one solution, CW= 1400 and vectors Q9 

and Q10 miss one solution each, CW=2100 and CW=2400 respectively. Vectors 

Q4 and Q5 miss solution CW= 2100. The remaining vectors Q2, Q5, Q7, and Q8 

miss two solutions each. The nearest solution to P* is Q6 with a mutation rate of 

0.94, bit-turn probability of 0.56, and a crossover rate of 0.19 followed by Q3 

with a mutation rate of 0.91, bit-turn probability of 0.34, and a crossover rate of 

0.72 . The worst vector is Q8 with a mutation rate of 0.95, bit-turn probability of 

0.83, and a crossover rate of 0.55. 

 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 CW P* 

0.001  0.0003 0.0053 0.0001 4E-05 0.024 0.039 0.0189 0.0025 100 4.E-05 

4.9 2.4 3.8 2.5 4.2 3.1 2.6 2.4 2.3 5.4 600 2.3 

42.9 42.7 43.2 41.6 43.7 43.6 42.8 44.5 47.8 43.1 700 41.6 

70.0 67.4 66.6 65.9 66.1 66.1 66.4 66.6 67.2 67.5 800 65.9 

214.7 212.5 220.0 215.5 218.0 219.1 219.7 213.9 226.1 212.5 1100 212.5 

335.3 335.7 335.8 335.3 336.0 335.1 308.6 336.8 308.0 337.1 1200 308.0 

350.8 350.4 350.2 358.8 350.5 354.7 359.6 353.1 361.4 351.4 1300 350.2 

   395.5   395.4 395.6 398.8 397.3 1400 395.4 

443.4 443.0 442.6 440.9 442.6 443.4   445.2 443.6 1800 440.9 

447.4 449.7 447.8 450.2 448.9 447.4 448.1 448.6 447.4 448.8 1900 447.4 

566.5 566.9 566.1 566.7 567.0 568.8 566.6 567.4 568.8 571.0 2000 566.1 

683.4 684.6 684.4   683.6 683.9 683.3  688.2 2100 683.3 

686.2 686.2 686.7 686.5 687.4 686.5   686.9  2400 686.2 

688.7 688.7 689.0 688.9 688.9 689.1 689.0 689.6 689.6 691.0 2500 688.7 

Table 3.15 Quality values after a 90˚ clockwise rotation at (50,20)  

 

Table 3.16 shows the quality values and captured weights after S is rotated 

counter-clockwise by 90 degrees at (25, 45) (see Figure 3.9). Vector Q8 has the 

complete set of solutions and all the other vectors have one or more missed 

solutions. Solution sets Q1, Q4, Q7, and Q10 miss only one solution each and 

vectors Q2, Q3,  Q6, and Q9 miss two solutions each. Vector Q5 misses three 

solutions. Following the performance criteria described previously, the nearest 

solution to P* is Q8 with a mutation rate of 0.95, bit-turn probability of 0.83, 
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and a crossover rate of 0.55 followed by Q1 with a mutation rate of 0.69, bit-

turn probability of 0.81, and a crossover rate of 0.44. The worst vector is Q3 

with a mutation rate of 0.91, bit-turn probability of 0.34, and a crossover rate of 

0.72. 

 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 CW P* 

0.017 0.0001 0.0195 0.0004 4E-05 0.0001 0.11 0.038 0.0014 0.0021 600 4.E-05 

33.2 29.9 29.4 29.9 31.6 31.4 30.1 33.1 33.6 43.1 700 29.4 

66.4 66.1 66.2 66.1 66.8 66.0 67.5 70.3 67.6 68.6 800 66.0 

216.5 218.8 214.1 216.4 215.8 218.0 213.0 213.3 223.9 214.2 1100 213.0 

253.7 307.8 335.3 307.8 307.7 307.7 307.9 253.7 312.4 309.6 1200 253.7 

354.0 359.8 351.7 360.9 360.1 359.6 361.3 360.9 361.3 352.1 1300 351.7 

401.2   396.2   395.9 399.0 400.6 401.8 1400 395.9 

  443.9 443.1   444.7 443.6 442.3 441.1 1800 441.1 

489.9 458.4 448.1 463.0 448.0 447.0 448.0 448.7 447.8 447.7 1900 447.0 

566.2 567.1 566.2 566.4 566.1 566.1 566.6 566.6 566.2 566.7 2000 566.1 

686.5 683.1    684.9  685.0   2100 683.1 

686.7 685.8 686.4 687.1 686.4 686.4 686.5 686.9  686.9 2400 685.8 

689.0 688.7 688.8 689.2 689.1 688.7 688.8 688.8 689.2 690.3 2500 688.7 

Table 3.16 Quality values after  a 90˚ counter-clockwise rotation (25, 45) 

 

The results show there is no single parameter combination that dictates the 

generation of the best nondominated solutions. This means a parameter 

combination that finds the best solution in one case area does not necessarily 

find the best solution in another case area. There are also cases wherein not 

even one combination produced a complete set of solutions from all ten 

parameter combinations. This means the ten best parameter combinations in 

the original configuration does not always generate the best solutions when 

changes to the location of the area are introduced. However, the multiobjective 

evolutionary algorithm can generate the best solution Q* from an ensemble of 

only ten parameter combinations by combining the best solutions for each 

combination. 

 

     The tables also show that higher mutation probabilities (> 60%) and lower 

crossover probabilities (<55%) produce the nearest nondominated solution to 

P*. On the contrary, high crossover rates (> 50%) often produce the worst 

nondominated solutions among the parameter combinations when using 

arithmetic crossover and non-uniform mutation. 
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3.4 Summary  
 
This chapter investigates the performance of several MOEAs in discovering a set 

of solutions to the competitive facility location problem and a sensitivity analysis 

of their solutions in relation to their input parameters. In terms of the optimality 

of solutions, the MOEAs are able to find Pareto-optimal solutions in the discrete-

valued objective (captured weights) search space but shows inferior Pareto-

optimal solutions to the real-valued objective (facility quality).  

 

     In terms of runtime complexity, the MOEAs run in polynomial time but are 

computationally expensive in terms of repeated executions for sensitivity 

analysis. The advantage of using MOEAs in finding efficient solutions to the CFLP 

is that it does not suffer from difficulties related to geometric procedures; they 

are extensible to planar problems with a non-Euclidean metric. 

 

     The sensitivity analyses show that the mutation rate causes much of the 

variation in the output and requires a high probability value in order to generate 

CFL solutions near the Pareto-optimal front. When using average crossover, the 

crossover rate has the least influence on the output and requires low probability 

values, and when using blend crossover, the crossover rate has the greatest 

influence and requires high probability values. 

    

     Section 3.4 examined the effects of changing the area location in finding 

solutions to the competitive facility location problem while preserving a small set 

of previously effective GA-parameter combinations. The results show that there 

is no single GA-parameter combination that dictates the generation of best 

solutions in the CFLP when the area parameters are altered. However, an 

ensemble of a few GA-parameter combinations is sufficient to find near-Pareto-

optimal solutions when area parameters are changed. The MOEA in this case, is 

robust as long as the mutation probability and the bit-turn probability are set to 

a probability of more than 60% while keeping the crossover probability low.  
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Chapter 4 
 

 

The Container Location 
Model:  
An optimization problem 
with a fixed-length string of 
discrete variables  
 

 

4.1 Introduction 
 

Containers are in the market for international conveyance of freight for more 

than 40 years and have got more acceptance due to the concept of a unit-load. 

The breakthrough was achieved in this time period with high investments in 

specially designed vessels, in the availability of (purchased or leased) containers 

and in adaptable seaport terminals with suitable equipment. 

 
     A container terminal serves as an interface connecting container vessels on 

sea with trucks on land. It provides loading and unloading services for the 

container carriers. On top, the terminal serves as a temporary storage space for 

containers between two journeys on carriers. Due to increasing container traffic, 

sometimes thousands of trucks pass the gates of the terminal, of which probably 

the surface area might be relatively small. This combination requires for highly 

efficient handling of the operations. The need for optimization in container 
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terminal operations has become important because the logistics of large 

container terminals reaches a high level of complexity (Steenken, 2004). 

 

     An overall optimization model of the operational decisions in a container 

terminal is not easy, and maybe not feasible, because of the complexity and the 

multi-criteria nature of the problem. In fact, decisions are required on berth 

allocation, schedule and stowage plan of the vessels, quay crane allocation, 

storage space allocation, location assignment of containers in blocks, etc. It 

looks more feasible to split the overall problem into several sub-problems. This 

chapter concentrates on the storage location of outbound containers in the yard. 

 

     Quay cranes discharge inbound and transit containers from vessels and load 

outbound and transit containers to vessels. The storage yard is made up of 

blocks of containers. In a block, containers are stored, usually in six lanes side 

by side, with each lane including 20 or more container stacks. The level at which 

a container is stacked is called a tier. Container stacks typically have four or five 

tiers.  

 

     Performance indicators of a container terminal have been defined, measuring 

productivity, resource utilization and customer satisfaction. Two examples of 

performance indicators taken as objectives are (1) to minimize the vessel 

berthing time, which is a service measure of the terminal, or (2) to maximize 

the throughput of the quay cranes, which is a productivity measure of the 

terminal.  

 
     The berthing time of a vessel consists of several components like waiting, 

berthing, unloading, loading and departing. The times spent in each of those 

components are related to availability of required the resources. Quay cranes 

discharge and load the containers. Internal trucks provide transportation of 

containers between the quay cranes and the storage blocks. External trucks 

bring outbound containers into the yard and pick up inbound containers from the 

yard. Yard cranes handle the containers in the storage blocks. They load 

containers from trucks and stack them onto blocks, and retrieve containers from 

blocks and load them onto trucks. Decisions about the storage of containers in 

the yard directly affect the workload of yard cranes and the travelling distances 

of the internal trucks and indirectly affect the efficiency of the quay cranes. 

 

     An overall optimization model of the operational decisions in a container 

terminal is not easy, and maybe not feasible, because of the complexity and the 
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multicriteria nature of the problem. In fact, decisions are required on berth 

allocation, schedule and stowage plan of the vessels, quay crane allocation, 

storage space allocation, location assignment of containers in blocks, etc. It 

looks more feasible to split the overall problem into several sub-problems. This 

chapter concentrates on the storage location of outbound containers in the yard. 

 

      This chapter focuses on an improved use of the storage area by reducing 

the time for the yard cranes to transfer containers from the storage area to the 

marshalling area for loading onto the vessels. The objective is to minimise the 

time the vessels spend at the berth. To obtain this objective the time spent 

transferring containers from a storage area to the vessel (i.e. the sum of set up 

times and travel times for all containers) needs to be minimised. 

 

      While the model may be formulated as a mixed integer linear program, its 

computational complexity increases exponentially with the number of containers 

in the schedule and is known to be NP-hard (Kozan and Preston 2001). A genetic 

algorithm is formulated as a tool to generate good solutions.  

 

 

4.1.1  Problem Formulation 
 

In practice wherever possible, storage yards are grouped into two categories, 

import and export yard blocks. Import containers are unloaded from container 

ships from overseas and continue through inland transport while export 

containers are loaded on ships for overseas. Arrival of import containers is 

foreseeable but their departure is unpredictable. Because of the randomness in 

their departure, import containers are not stacked so high. Departure of export 

containers is usually connected to a ship and can be stacked more efficiently. In 

a generic stacking problem, items numbered from 1 to n arrive at a set of k 

stacks in some permutation. Eventually, all items need to leave the stacks in 

correct order with a minimum number of reshuffles.  König and Lübbecke (2008) 

show that to approximate the minimum number of reshuffles is NP-hard.  This 

chapter mainly addresses the problem of stacking export containers and shows 

how loading schedules affect handling time in seaport terminals.   

 
     According to Kozan and Preston (2001), the objective of the container 

location model (CLM) is to determine the optimal storage strategy for various 
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handling schedules such that the containers must be stored in a manner that 

minimizes the amount of handling time. They define the optimization problem as 

 

Minimize ( )∑ +
i

time_setup
i

time_travelling                   (4.1) 

Subject to the constraints 

1. Only one container can be stored in a given storage position, 

2. A yard machine is scheduled to handle one container at a given time, 

3. A container arriving at time t’ cannot be stored under a container arriving at 

time t such that t < t’. 

 

The formulation makes use of the following definitions: 

 

Travelling_time is the time required to transport container i between the storage 

area, marshalling area, track area and inter-modal terminal and is defined as 

 

Travelling_time = lock
V

CWyRWx
lock ii +

+
+                 (4.2) 

and 

Setup_time is the time required to access the desired container i at the storage 

area and defined as 

Setup_time = 






 +++

0

224 movelock)movelock(z i
         (4.3) 

 

making use of the following variables  

lock is the time needed for the yard machinery to lock on to a container 

before picking it up and to unlock a container after moving it. 

move is the time required to move containers to an adjoining position to 

access containers below.   

CW is the length of a column of the storage area 

RW is the width of a row of the storage area 

xi is the row where container is stored 

yi is the column in the storage area where container is stored 

zi ,t  is the vertical storage position of container  

V is the  velocity of the yard machine. 

 

Figure 4.1 shows a picture of 3-tier stack and the margin between set up time 

and travel time.  In this example, container B needs to be transferred from the 

storage area for loading. Since container A is on top of container B, the total 
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setup time includes the time to re-handle container A plus the setup time for 

container B.  The re-handling time of container A is the time to remove it from 

the stack and the time to replace it on the stack. Looking at Figure 4.3 the yard 

machine locks on A, moves it to the ground, and unlocks A in the first step. Then 

the yard machine locks on B, moves B to a transport vehicle, and unlocks B.  In 

the third step, the yard machine locks on A, places it on top of C, then unlocks 

A. The travelling time of container B starts only after the setup process is 

completed.  

  

 
Figure 4.1  Setup time and travel time. 

 

The conflicting objectives of maximizing the use of storage space and minimizing 

unproductive moves in a stacking strategy seem to be an interesting bi-objective 

optimization problem, but further examination shows that the efficient use of 

storage space is dependent on the number of containers in a yard block. For 

example, given a set of containers in a block, the percentage of space used by 

these containers does not change when they are relocated in the same block. 

However, proper arrangement of containers in a block may improve the total 

handling time during loading. The bi-objective problem reduces to a single-

objective optimization problem of minimizing the total handling time of 

containers in a block by finding better arrangements of the containers before 

they are loaded. In return, this leads to a multiobjective problem of finding the 

minimum total handling time while minimizing the number of relocated 

containers (re-handled containers).  
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     This chapter evaluates two experiments. The first experiment is a single-

objective optimization problem of minimizing the total handling time as defined 

by Kozan and Preston (2001). The second experiment is a bi-objective 

optimization problem of minimizing total handling time while minimizing re-

handled containers. The bi-objective problem is defined as: 

 

Minimize ∑ +
i

ii time_setuptime_travelling               (4.4) 

 Minimize (re-handled containers) 

 

 

4.1.2 Literature Review 
 

Containers may be arranged according to container information such as size, 

weight, departure time, and destination vessel among others. In category 

stacking, containers of the same category are stacked together in the same yard 

bay or in contiguous yard bays. In the residence time strategy, a container is 

stacked relative to its departure time, i.e. containers that leave earlier are 

stacked on top of containers that leave at a later period. Steenken et al. (2004) 

presents two methods, (1) storage planning wherein storage space is allocated 

before the ship’s arrival and, (2) scattered stacking wherein containers are 

assigned to a berthing place before a ship’s arrival. Dekker et al. (2006) state 

that scattered stacking results in higher yard utilization and significantly reduces 

the number of unproductive moves (reshuffles).   

 
     Chen et al. (1999) provided a description of unproductive moves in port 

terminals, whereas Murty (2005) defines an objective function of minimizing 

reshuffles and maps a solution that is analogous to a bin-packing problem. In 

category stacking, weight is a useful criterion as heavy containers are usually 

stored deep in a ship. Kim et al. (2000) derived decision rules using weight 

groups for determining the storage slots of arriving containers through dynamic 

programming. Kim and Kim (1999) relate the efficiency of loading operations to 

a loading sequence derived from a routing solution of transfer cranes. Kim and 

Bae (1998) describe an approach to move containers efficiently from a current 

layout to an ideal layout by decomposing the container problem into two stages 

– a bay matching problem and a sequencing problem. They propose that 

heuristic techniques should be developed for calculations that are more efficient. 
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Kozan and Preston (2001) describe the effects of loading schedules and storage 

utilization in minimizing turn-around time of container ships though genetic 

algorithms. Kim et al. (2004) define a beam search algorithm to minimize 

handling time of transfer cranes and quay cranes for export containers. Other 

studies show the importance of improving space allocation methods of export 

containers in the management of port terminals (Kim et al. 2003, Zang et al. 

2003, Chen et al. 2004).  Pangilinan and Janssens (2009) evaluated two types 

of loading schemes for export containers using a mutation-only genetic 

algorithm.  Their results show that a last-come-first-served (LCFS) loading 

schedule is superior to a first-come-first-served (FCFS) loading schedule and the 

employment of a GA in both FCFS and LCFS schedules show improvement in 

their handling times. 

 

     The current study differs from the earlier study by Pangilinan and Janssens 

(2009) and by Kozan and Preston (2001) in terms of the following: (1) the 

interactions of the genetic operators are evaluated, (2) the performance of two 

MOEAs is compared, and (3) results of both the single-objective and bi-objective 

CLM problems are presented. 

 

 

4.2 Multiobjective Evolutionary Algorithm 
 

 

4.2.1 Genetic Algorithm for the CLM 
 

Genetic Representation. A chromosome or an individual consists of integer-

valued elements that form a linear string, which contains the location of a 

container in the storage yard. The storage yard is represented as a 3-

dimensional array of storage locations (see Fig. 4.2).  

 
     The index of each element i in the string represents the ID of a container i. 

The value of an element at index i represents the storage location of container i 

in the storage yard. The length of the chromosome is fixed and may not be 

greater than the number of containers, n. A chromosome is randomly generated 

and an integer with a value less than the maximum size of the storage block is 

assigned to each position of the chromosome. The assignment of storage 

locations ensures that the CLM constraints are met, e.g. a container that arrives 

at time t cannot be stacked on top of a container that arrives at time t+1.   
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Figure 4.2  Chromosome representation 

 

Genetic Operators. The crossover operator is an adaptation of the one-point 

crossover. For each pair of individuals, a locus is randomly selected and the 

values from the locus to the end of the chromosomes are is interchanged (see 

Section 2.2.3). Repairs are done to ensure that only one container is assigned to 

a single storage space and that a container occupies a location that is on the 

ground or on top of another container.  In the mutation operator, a locus is 

randomly selected from the chromosome and the value of the locus is replaced 

by a new vacant location in the storage block. 

 

Fitness and Selection. In the single-objective case, the fitness of an individual is 

computed based on total handling time of containers, i.e. the sum of the 

travelling_time and setup_time in loading the necessary containers on a 

container ship. The individual that has a smaller fitness value is the better 

solution. In the bi-objective case, the fitness is evaluated in terms of Pareto-

dominance of total handling time and re-handled containers. The selection in 

both cases uses SPEA2 (Zitzler et al. 2002) and NSGA-II (Deb et al. 2002) to 

find nondominated solutions to the CLM problem.  
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4.2.2 Experiments and Results 
 

 

SINGLE-OBJECTIVE CASE 
 
The experiment compares the performance of two export-container loading 

schemes namely last-come-first-served (LCFS) and first-come-first-served 

(FCFS). The study evaluates the viability of a genetic algorithm in optimizing the 

handling time using the LCFS and FCFS schedules, and evaluates the effect of 

the genetic operators, such as crossover and mutation, on the output. The 

experiment has the following assumptions: 

 

1.   A single yard machine is considered. 

2.  All containers for loading are located in one block and near the departure 

ship. 

3.  One block is composed of five yard bays. One yard bay is 6 rows wide and 4 

tiers high. 

4.  All containers are loaded in only one departure ship and a maximum of 120 

containers can be loaded. 

5.  V=0.33 m/s, RW=2.4 m, CW=6.1 m, lock=60 sec, and move=60 sec.  The 

values assigned to these variables are based on actual data. 

 

     Ten configurations for the storage utilization are used, i.e. from 10% to 

100% usage.  For each usage configuration, 100 instances of container 

arrangements are randomly generated.   Figure 4.3 shows a comparison of the 

average handling time of both the FCFS and the LCFS loading schedule with 

regard to storage use from 10% to 100%. The LCFS schedule shows a linear 

behavior and its slope is small whereas the FCFS schedule produces a curve 

wherein the handling time increases considerably as the space usage increases. 

The performance of the LCFS loading becomes obviously better whereas the 

FCFS schedule becomes worse as the utilization of the storage yard increases. 

This is because the storage of containers emulates a stacking structure.  

 

     The storage block in this experiment contains 120 storage spaces, i.e. six 

rows, 5 columns, and 4 tiers. This means that one tier can accommodate 30 

containers. In this context, the performance of FCFS is ideal only if the 

containers are placed in one tier.  But if the number of containers to be stored is 
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more than 25% of the storage block capacity then the LCFS loading scheme will 

always perform better than the FCFS. 
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Figure 4.3  Handling time, LCFS vs. FCFS 

 

 

     With regard to the EAs, four configurations were used, (1) SPEA2 with 

crossover only, (2) SPEA2with mutation only, (3) NSGA-II with crossover only, 

and (4) NSGA-II with mutation only. Each of the above EA conditions was tested 

on both the FCFS and LCFS loading schedules. An initial population is set to 36 

individuals and a run of 20 generations. The population size of 36 was estimated 

from Deb (2001) with the assumption that 30% of nondominated paths are 

present in the initial population. 

 

     Table 4.1 presents a comparison of the best-average handling times of 50 

random container configurations per percentage usage. The table presents 

results from an FCFS schedule, an EA-mutation-only (EAM-FCFS), and an EA-

crossover-only (EAX-FCFS) schedule. The results show that the EA methods 

have shorter handling times for each storage configuration than FCFS. This 

means reshuffling (re-handles) of the containers from their initial position 

improves the total handling time of all the containers for loading. There are no 

significant differences between the results of mutation-only and crossover-only 

schemes in both SPEA2 and NSGA-II (F-test with 5% significance level). 

However, there is a pattern in the solutions. The crossover-only algorithm 

performs better for both MOAEs when the space usage is low (≤ 60% in NSGA-II 
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and ≤ 30% in SPEA2). The mutation-only algorithms perform better when the 

space usage increases beyond these limits. This shows that SPEA2 and NSGA-II 

use the variation operators differently even when their parameter settings are 

the same. 

 

     Table 4.1 also shows that the NSGA-II results are smaller than the SPEA2 

results, which implies that NSGA-II finds faster total handling times than SPEA2 

in all FCFS configurations for the single-objective CLM problem. The best 

handling times are in bold. 

 

 

Space 

Usage 

(%) 

FCFS 

(min) 

EAM-FCFS 

SPEA2 

(min) 

EAM-FCFS 

NSGA-II 

(min) 

EAX-FCFS 

SPEA2 

(min) 

EAX-FCFS 

NSGA-II 

(min) 

10 32.50 31.41  30.77  30.35  28.96  

20 95.70 91.29  89.16  85.89  80.27  

30 194.24 189.93  188.22  186.85  180.00  

40 320.71 316.64  313.51  316.72  311.89  

50 484.21 479.97 477.15  481.62  476.27  

60 668.93 664.48  659.85  667.87  663.64  

70 881.77 877.11  872.35  880.43  876.50  

80 1118.08 1114.67  1110.42  1116.70  1114.77  

90 1379.01 1377.55  1376.26  1378.46  1377.91  

Table 4.1 Comparison of solutions in an FCFS scheme 

 

Table 4.2 shows the EA methods have shorter handling times for each storage 

configuration in an LCFS schedule. Again, this shows that arranging the 

containers to better positions improves the total handling time. Comparing the 

EA results using the F-test with 5% significance level, there are no significant 

differences between the values of mutation-only and crossover-only schemes in 

both SPEA2 and NSGA-II. However, the results of NSGA-II are better than the 

results of SPEA2 in both mutation-only and crossover-only algorithms. This 

means that NSGA-II finds faster total handling times than SPEA2 in all LCFS 

configurations for the single-objective CLM problem. 
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Space 

Usage 

(%) 

LCFS 

(min) 

EAM-LCFS 

SPEA2 

(min) 

EAM-LCFS 

NSGA-II 

(min) 

EAX-LCFS 

SPEA2 

(min) 

EAX-LCFS 

NSGA-II 

(min) 

10 29.68 26.16  25.51  26.81  25.62  

20 62.36 57.55  55.74  57.99  55.70  

30 95.32 90.58  88.10  91.08  88.61  

40 128.86 124.30  122.09  124.56  122.22  

50 162.27 158.47 156.52  158.24  155.68  

60 196.59 193.24  191.12  192.86  190.27  

70 230.41 227.64  225.14  227.35  225.04  

80 265.17 262.64  260.80  262.27  260.41  

90 300.32 298.39  297.38  298.14  296.93  

Table 4.2 Comparison of solutions in an LCFS scheme 

 

 

MULTIOBJECTIVE CASE 
 

The following experiment compares the performance of SPEA2 and NSGA-II in 

the bi-objective CLM problem as defined in (4.4). Their averages are compared 

in terms of handling time, re-handled containers, and the cardinality of their 

nondominated solutions. The averages per storage-use configuration are taken 

from 50 runs. The initial population is set to 36 individuals and a run is set at 20 

generations. The mutation and crossover rates are set at 0.50. The individuals in 

the initial population in each run are identical in order to count the number of 

re-handled containers after each run.  

 
     Table 4.3 shows the average results of SPEA2 and NSGA-II from an FCFS 

loading scheme in terms of total handling time, quantity of re-handled 

containers, and the cardinality of the nondominated sets. The best handling 

times and the least number of re-handled containers are in bold. The second 

column lists the values of total handling time when there is no reshuffling of 

containers before loading. The results show using the F-test with 5% 

significance level, that there are no significant difference in the total handling 

times, in the number of reshuffled containers, and the size of their 

nondominated sets between SPEA2 and NSGA-II. The results show that NSGA-II 

generates lesser re-handled containers and smaller solution sets. The averages 

in the number of re-handled containers in both MOEAs are small and increase as 

the space usage increases. The size of the solution set behaves similarly. 
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  SPEA2-FCFS NSGA-II-FCFS 
Storage 
Use % 

FCFS Handling 
Time 
(min) 

Re-
handled 

Containers 

Number 
of 

Solutions 

Handling 
Time 
(min) 

Re-
handled 

Containers 

Number 
of 

Solutions 

10 49.83 47.55 1.09 5.04 46.35 0.70 2.24 

20 130.16 125.29 1.32 6.62 124.02 0.88 2.58 

30 243.48 237.66 1.68 6.88 237.76 1.20 3.00 

40 374.56 368.84 2.02 7.50 368.47 1.28 3.02 

50 540.16 531.23 2.30 8.42 533.15 1.72 3.36 

60 727.26 721.77 2.90 9.36 724.63 2.56 4.63 

70 935.08 927.75 3.33 9.86 927.59 2.71 4.76 

80 1163.53 1159.36 3.81 9.62 1157.28 2.91 4.70 

90 1418.7 1414.41 4.70 8.80 1415.74 2.57 4.36 

Table 4.3 Comparison of bi-objective solutions in an FCFS scheme. 

 

Table 4.4 shows the averages of handling time, re-handled containers, and the 

cardinality of nondominated solutions in SPEA2 and NSGA-II using an LCFS 

loading scheme. The results show using the F-test with 5% significance level, 

that there are no significant difference in the total handling times, in the number 

of reshuffled containers, and the size of their nondominated sets between SPEA2 

and NSGA-II. Unlike the results in Table 4.3, NSGA-II generates less re-handled 

containers, smaller solution sets, and faster handling times in all storage 

configurations. The size of the solution sets in SPEA2 decreases gradually as the 

space usage increases from 20% to 90%.  

 
  SPEA2-LCFS NSGA-II-LCFS 
Storage 
Use % 

FCFS Handling 
Time 
(min) 

Re-
handled 

Containers 

Number 
of 

Solutions 

Handling 
Time 
(min) 

Re-
handled 

Containers 

Number 
of 

Solutions 

10 34.47 31.38 3.04 15.76 30.98 2.83 6.32 

20 69.26 65.53 3.57 17.94 65.15 3.36 7.46 

30 103.26 99.76 3.80 17.16 99.42 3.63 7.84 

40 137.56 133.99 3.97 16.06 133.72 3.67 7.34 

50 171.88 168.68 3.92 14.60 168.33 3.64 7.18 

60 206.34 203.44 4.06 13.00 203.09 3.86 7.00 

70 240.28 237.92 4.02 11.16 237.78 3.24 5.84 

80 274.63 272.32 4.87 10.30 272.31 3.38 5.42 

90 309.18 307.22 5.87 9.10 307.66 3.13 4.78 

Table 4.4 Comparison of bi-objective solutions in an LCFS scheme. 

 



96  

NSGA-II behaves similarly when space usage is ≥ 30%. On the other hand, the 

quantity of re-handled containers in SPEA2 increases as the space usage 

increases. 

 

     Tables 4.3 and 4.4 show that the number of re-handled containers and the 

size of solution sets of the LCFS loading method are larger than the values of the 

FCFS loading method. However, the handling times of the LCFS are far smaller 

than handling times of the FCFS scheme.  The tables above show that NSGA-II 

is a better algorithm than SPEA2 in both the single-objective and bi-objective 

CLM cases. 

 

 

4.3 Sensitivity Analysis 
 
The sensitivity analysis investigates the effects of the recombination and 

mutation operators on the handling time of containers in the case of the single-

objective CLM. In the bi-objective case, a sensitivity analysis on the proximity of 

nondominated solutions to the Pareto-optimal set is not possible since the 

Pareto-optimal set is unknown. However, a sensitivity analysis on the cardinality 

of the nondominated sets is feasible.   

 

 

4.3.1 Experiments and Results 
 

SINGLE-OBJECTIVE CASE 
 
The sensitivity analysis for the single-objective case utilizes 12 configurations 

according to space usage. These configurations help illustrate the differences 

between SPEA2 and NSGA-II with regard to the influence of their genetic 

operators. The experiment investigates space usage of 30 %, 60%, and 90% in 

an FCFS loading scheme. The output variable is the sum of the handling time of 

containers. The input parameters are mrate, xover, and maxgen, the mutation 

probability, recombination probability, and number of generations respectively. 

The initial population is 36 with the assumption that 30% of nondominated 

solutions are in the initial population as estimated from Deb (2001). In each 

loading configuration, there are 128 combinations of the input parameters 

generated by Sobol’s method and their distributions are listed in Table 4.5.  
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Input factor Description 

Probability 

Distribution 

mrate Mutation probability Uniform(0,1) 

xover Recombination probability Uniform(0,1) 

maxgen Number of generations 
Uniform(1,10) 

Uniform(11,20) 

Table 4.5 Input factors and probability distributions 

 

Table 4.6 shows the results of the sensitivity analysis for an FCFS schedule. Two 

configurations in the number of generations are provided to show the changes in 

the sensitivity indices between generations 1 to ten and generations 11-20.  The 

figures in bold are the indices of the input parameters with high main effects. 

The second and third column shows the sensitivity indices of the input 

parameters when the number of generations maxgen is between 1 and 10. The 

fourth and fifth column shows the sensitivity indices of the input parameters 

when the number of maxgen is between 11 and 20. The sensitivity indices show 

that the interaction of the input parameters mrate and xover is high while their 

main effects are low in most of the configurations. The interaction of maxgen 

with the other input parameters in the initial generations is high and diminishes 

as the MOEA run progresses. This means the selection operator of either SPEA2 

or NSGA-II has much influence in finding nondominated solutions in the initial 

stages of the MOEA. However, in the latter generations, the main effect of 

mutation increases when the space usage is 60% or higher. This implies that 

when the space usage is high, the mutation operator has the largest influence in 

finding different handling times during the final generations of the optimization 

run in an FCFS schedule. The first-order indices of the crossover rate are small 

in most instances except when the space usage is at 30 % and maxgen is 

between 1to 10. This means that the crossover operator does not explore the 

search space as much as the mutation operator in an FCFS schedule.  

 

        The SPEA2 sensitivity indices are zeroes when the space usage is 30% and 

60% as shown in second column. The zero values imply that there is no 

variation in the output during generations 1 through 10.  Similarly when maxgen 

is between 11 and 20 and space usage is 30%, the SPEA2 indices are negative. 

Negative indices also mean that the inputs have no influence on the output. 

When maxgen is between 11 and 20 and space usage is 60%, the SPEA2 indices 

are small.  This means that the sum of handling times generated by SPEA2 do 

not vary much after the first few generations when space usage is below 60%.   
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Single-objective case 

(FCFS) 
1-10 generations 11-20 generations 

 SPEA2 NSGA-II SPEA2 NSGA-II 

30% space usage     

Sobol’ first-order indices     

mrate 0.00 -0.053 -0.091 -0.312 

xover 0.00 0.439 -0.034 0.067 

maxgen 0.00 0.537 -0.06 -0.063 

Sobol’ total-order indexes    

mrate 0.00 0.343 0.884 0.851 

xover 0.00 0.481 1.296 1.071 

maxgen 0.00 1.187 0.131 0.085 

60% space usage     

Sobol’ first-order indices     

mrate 0.00      0.00 0.043 0.342 

xover 0.00 -0.543 0.029 0.0038 

maxgen 0.00 -0.382 0.00 0.052 

Sobol’ total-order indexes    

mrate 0.00 0.00 1.107 0.566 

xover 0.00 0.341 1.060 0.374 

maxgen 0.00 0.503 0.00 0.119 

90% space usage     

Sobol’ first-order indices     

mrate -0.010 0.342 0.339 0.820 

xover 0.238 0.118 -0.0205 0.152 

maxgen 0.044 0.500 -0.0393 0.133 

Sobol’ total-order indexes    

mrate 0.145 0.609 0.564 1.007 

xover 0.461 0.423 0.212 0.269 

maxgen 0.204 0.897 0.006 0.325 

Table 4.6 Sobol’ indices for an FCFS configuration (single-objective). 

 

Figure 4.7 shows the sensitivity indices for an LCFS schedule.  The figures in 

bold are the input parameters that have the high main effects.  In generations 

1-10, the parameter maxgen has the greatest influence in the variation of 

handling time of containers regardless of space usage.  In generation 11-20, the 

mutation rate has the greatest influence in the variation of the output when the 
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space usage is 30% whereas the crossover rate has the greatest influence when 

the space usage is 60% and 90%.  The sensitivity indices of maxgen decreases 

as the number of generations increase whereas, the influence of the mutation 

and crossovers rates increase as the number of generations increase.  This 

means that the mutation and crossover operator are responsible for the 

exploration of new solutions after the tenth generation.   

 

Single-objective case 

(LCFS) 

1-10 generations 11-20generations 

 SPEA2 NSGA-II SPEA2 NSGA-II 

30 % space usage     

Sobol first-order indexes     

            mrate 0.068 0.052 0.833 0.736 

               xover 0.477 0.284 0.430 0.171 

              maxgen 0.840 0.930 0.066 0.290 

Sobol total-order indexes     

            mrate 0.117 0.142 0.944 1.053 

               xover 0.627 0.336 0.622 0.499 

              maxgen 0.705 1.064 0.247 0.391 

60%  space usage     

Sobol first-order indexes     

            mrate 0.442 0.268 0.148 0.642 

               xover -0.136 0.009 -0.169 0.751 

              maxgen 0.838 1.004 0.001 0.176 

Sobol total-order indexes     

            mrate 0.782 0.300 0.812 0.675 

               xover 0.025 0.056 0.438 0.850 

              maxgen 1.019 1.305 0.246 0.206 

90% space usage     

Sobol first-order indexes     

            mrate 0.265 -0.192 0.332 0.335 

               xover 0.439 0.314 0.495 0.477 

              maxgen 0.733 0.639 0.150 0.187 

Sobol total-order indexes     

            mrate 0.349 0.109 0.728 0.595 

               xover 0.513 0.540 0.959 0.617 

              maxgen 0.882 0.992 0.249 0.168 

Table 4.7 Sobol’ indices for an LCFS configuration(single-objective) 
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With regard to the changes in space usage, the effect of the mutation rate for 

NSGA-II decreases as the space usage increases as shown in the fifth column.  

This pattern is the reverse of the pattern in Table 4.6.  

 

 

MULTIOBJECTIVE CASE 
 

The sensitivity analysis investigates the effect of the input parameters on the 

cardinality of the nondominated sets generated by the MOEA in both LCFS and 

FCFS loading schemes. The input parameters are mrate, xover, and maxgen, 

which are the mutation probability, recombination probability, and number of 

generations respectively.  

 

     Table 4.8 lists the Sobol’ sensitivity indices of SPEA2 and NSGA-II for an 

LCFS loading schedule. The numbers in bold represent the largest first-order 

effects among the input parameters in generations 1 to 10 and in generations 11 

to 20.  The values are emphasized to show the changes in the influence of each 

parameter between generation 1-10 and generations 11-20.   In the first 10 

generations, maxgen contributes 64% to the variation in the output and it has 

the highest interaction effect in both SPEA2 and NSGA-II. However, this 

condition changes in generations 11-20 as its value decreases. The main effect 

of the mutation rate is small in generations 1-10 and increases its influence from 

generations 11-20 as shown in column four and five. This means that the 

mutation operator is responsible mostly for exploring the dominated sets in 

generations 11-20 in an FCFS schedule. The zero indices under column five 

means that size of the nondominated sets  generated by NSGA-II does not 

change from generation 11-20.  

 
      Table 4.9 lists the Sobol’ sensitivity indices of SPEA2 and NSGA-II for an 

FCFC loading schedule. The numbers in bold represent the largest first-order 

effects among the input parameters in generations 1 to 10 and in generations 11 

to 20.  The figures in Table 4.9 show that the mutation rate (in SPEA2) mostly 

affects the variation in the size of the nondominated sets from generation 11-20 

while maxgen has the largest first-order indices from generations 1 to 10, which 

are similar to the results in Table 4.8  
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Multiobjective case 

(LCFS) 
1-10 generations 11-20generations 

 SPEA2 NSGA-II SPEA2 NSGA-II 

30 % space usage     

Sobol first-order indexes     

            mrate -0.015 0.348 0.450 0.590 

               xover -0.099 0.135 -0.029 0.076 

              maxgen 0.508 0.644 0.096 0.051 

Sobol total-order indexes     

            mrate 0.510 0.417 0.820 0.845 

               xover 0.239 0.040 0.278 0.398 

              maxgen 0.832 0.787 0.218 0.155 

60%  space usage     

Sobol first-order indexes     

            mrate 0.239 0.102 0.739 0.804 

               xover 0.064 0.110 0.215 -0.030 

              maxgen 0.425 0.418 0.259 -0.221 

Sobol total-order indexes     

            mrate 0.492 0.489 0.929 1.254 

               xover 0.080 0.120 0.156 0.354 

              maxgen 0.919 0.910 0.320 0.049 

90% space usage     

Sobol first-order indexes     

            mrate 0.098 0.000 0.688 0.000 

               xover 0.098 0.000 0.098 0.000 

              maxgen 0.370 1.067 0.078 0.000 

Sobol total-order indexes     

            mrate 0.772 0.000 0.860 0.000 

               xover 0.424 0.000 0.322 0.000 

              maxgen 1.109 1.067 0.291 0.000 

Table 4.8  Sobol’ indices for the LCFS configuration (multiobjective). 
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Multiobjective case 

(FCFS) 
1-10 generations 11-20generations 

 SPEA2 NSGA-II SPEA2 NSGA-II 

30 % space usage     

Sobol first-order indexes     

            mrate 0.100 0.071 0.689 0.134 

               xover 0.093 -0.198 0.469 -0.257 

              maxgen 0.029 0.137 0.065 0.025 

Sobol total-order indexes     

            mrate 0.672 0.725 1.027 1.068 

               xover 0.171 0.031 0.479 0.927 

              maxgen 0.483 0.575 0.131 0.282 

60%  space usage     

Sobol first-order indexes     

            mrate 0.276 -0.110 0.520 0.438 

               xover -0.040 -0.255 -0.244 0.279 

              maxgen 0.391 0.335 0.333 0.125 

Sobol total-order indexes     

            mrate 0.526 0.530 0.714 0.782 

               xover 0.115 0.339 -0.036 0.322 

              maxgen 0.854 0.933 0.523 0.050 

90% space usage     

Sobol first-order indexes     

            mrate 0.497 0.051 0.748 0.182 

               xover -0.041 0.163 0.528 -0.512 

              maxgen 0.449 0.706 0.074 -0.285 

Sobol total-order indexes     

            mrate 0.833 0.412 0.943 1.331 

               xover 0.192 0.172 0.658 1.017 

              maxgen 0.681 0.919 0.132 0.413 

Table 4.9 Sobol’ indices for an FCFS configuration (multiobjective) 
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4.4 Summary 
 
The chapter presents the performance of two modern MOEAs in relation to the 

container location problem. Each MOEA is evaluated in two dimensions: (1) 

loading scheme and (2) number of objective functions. Different results arise 

between an LCFS and an FCFS loading schedule in relation to their container 

handling times, reshuffles, storage-yard utilization. Similarly, different results 

appear between the single-objective and bi-objective cases. 

 

     In the single-objective case, the results show that the LCFS is superior to the 

FCFS loading schedule when the storage utilization is higher than 25%. In terms 

of the exploration and exploitation of the search space, the mutation-only GA 

finds better solutions when the space usage is high whereas the crossover-only 

GA finds better solutions when the space usage is low in an FCFS schedule. On 

the other hand, the results invert in an LCFS scheme, the crossover-only GA 

finds better solutions when the space usage is high and the mutation-only GA 

finds better solutions when the space usage is low. The results here contradict 

the recommendations of Deb and Agrawal (1999) that a selector-mutation GA 

does not work successfully in finding optimal solutions (see Section 2.2.7). As 

for comparing both MOEAs, NSGA-II performs better in both LCFS and FCFS 

scheduling and in the configurations of mutation-only and cross-only GA.  

 

     In the bi-objective case, the computations show similar results to the single-

objective case. The handling times of the LCFS are far smaller than handling 

times of the FCFS scheme. However, the number of re-handled containers and 

the size of the nondominated sets of the LCFS loading method are larger than 

the results of the FCFS loading method. In both loading schemes, NSGA-II 

generates faster handling times, lesser re-handled containers, and smaller 

solution sets than SPEA2. 

      

     The sensitivity indices in the single-objective and bi-objective cases show 

dissimilarity between SPEA2 and NSGA-II. However, for both SPEA2 and NSGA-

II, and in both scheduling schemes,  the selection operator accounts for the 

variation in the size of the nondominated sets in the initial generations of the 

MOEA run and its effect diminishes in the later generations. Whereas the 

influence of the mutation operator is negligible at the early stages of the run but 

increases in the later generations of the MOEA run. The main effect of the 

crossover operator is small but has high interactions with the other operators.   
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Chapter 5 
 

 

The Multiobjective Shortest 
Path Problem:   
An optimization problem 
with a variable-length 
string of discrete variables  
 

  

5.1 Introduction 
 

As in the case of the single-objective shortest path problem, the multiobjective 

shortest path problem has been studied extensively by various researchers in 

the fields of optimization, route planning for traffic and transport design (Granat 

and Guerriero, 2003) and information and communications network design (Gen 

and Lin, 2004; Kumar and Banjerie, 2003). The MSPP is an extension of the 

traditional shortest path problem and is concerned with finding a set of efficient 

paths with respect to two or more objectives that are usually in conflict. For 

example, the problem of finding optimal routes in communications networks 

involves minimizing delay while maximizing throughput or finding efficient 

routes in transportation planning that simultaneously minimize travel cost, path 

length, and travel time. The concept of optimization in the MSPP or in a 

multiobjective problem in general is different from the single-objective 

optimization problem wherein the task is to find a solution that optimizes a 
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single objective function. The task in a multiobjective problem is not to find an 

optimal solution for each objective function but to find an optimal solution that 

simultaneously optimizes all objectives. In addition, in most cases, no single 

optimal solution exists, only a set of efficient or nondominated solutions. 

 

      A variety of algorithms and methods such as dynamic programming, label 

selecting, label correcting, interactive methods, and approximation algorithms 

have been implemented and investigated with respect to the MSPP (Ehrgott and 

Gandibleux, 2000). The problem is known to be NP-complete (Garey, 1979). It 

has been shown that a set of problems exist wherein the number of Pareto-

optimal solutions is exponential, which implies that any deterministic algorithm 

that attempts to solve it is also exponential in terms of runtime complexity at 

least in the worst case. However, some labeling algorithm studies (Gandibleux et 

al., 2006; Muller-Hannemann and Weihe, 2001) dispute this exponential 

behavior. They show that the number of efficient paths is not exponential in 

practice. Other authors avoid the complexity problem by developing new 

methods that run in polynomial time. For instance, Hansen (1979) and 

Warburton (1987) separately developed fully polynomial time approximation 

schemes (FPTAS) for finding approximately Pareto-optimal paths. Interactive 

procedures (Coutinho-Rodrigues et al., 1999; Granat and Guerriero, 2003) 

similarly avoid the problem of generating the complete set of efficient paths by 

providing a user-interface that assists the decision-maker to focus only on 

promising paths and identify better solutions according to preference. Pangilinan 

and Janssens (2007a) examined evolutionary algorithms for the MSPP to show 

that an MOEA runs in polynomial time.   

 

     Given the wealth of literature in multiobjective algorithms for the MSPP, 

there still seems to be a lack of reported review in evolutionary algorithm (EA) 

applications in relation to the MSPP. Several of the most recent alternative 

methods focus mostly on execution speed comparisons of different MSPP 

algorithms but analysis of the salient issues in multiobjective performance 

analysis such as runtime complexity, diversity, and optimality of nondominated 

solutions are almost omitted. In order to demonstrate a clearer picture of the 

advantages and disadvantages of EAs in optimization, this chapter attempts to 

investigate a multiobjective evolutionary algorithm as applied to the MSPP in 

terms of these measures.  The current study extends the previous studies by 

Janssens and Pangilinan (2007a) by examining the performance of not only one 

MOEA but two MOEAs in order to compare the Pareto-optimality of their 

nondominated sets.  
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5.1.1 Problem Definition 
 

Given a directed graph G = (V, E), where V is set of vertices and E the set of 

edges with cardinality |V| = n and |E| = m and a d-dimensional function vector 

c:E→ [ℜℜℜℜ+]d . Each edge e belonging to E is associated with a cost vector c(e). A 

source vertex s and a sink vertex t are identified. A path p is a sequence of 

vertices and edges from s to t. The cost vector C(p) for linear functions of path 

p is the sum of the cost vectors of its edges, that is  C(p)=Σe∈p c(e) whereas 

C(p)=mine∈p c(e) for min-max functions. Given the two vertices s and t, let 

P(s,t) denote the set of all s-t paths in G. If all objectives are to be minimized, a 

path p∈P(s, t) dominates a path q∈P(s, t) in and only if Ci(p) ≤ Ci(q), i = 1,…,d 

and we write pp q. A path p is Pareto-optimal if it is not dominated by any 

other path and the set of nondominated solutions (paths) is called the Pareto-

optimal set. The objective of the MSPP is to compute the set of nondominated 

solutions that is the Pareto-optimal set P of P(s, t) with respect to c. The 

problem of the single-source multiobjective shortest path is to find the set of all 

paths from s to all other vertices t in G, i.e. to find the Pareto-optimal set of P(s, 

t), ∀t∈V \{s}.  

 

     Figure 5.1 illustrates an example of a directed graph with three objective 

functions that have to be minimized simultaneously. The corresponding efficient 

paths from the source vertex s to all other vertices are : for t=1 that path is 

s→1; for t =2, s→1→2; for  t = 3, s→1→2→3; for  t = 4, s→1→2→4; for  t = 5, 

s→1→2→4→5 and s→1→2→3→5. 

 

 
Figure 5.1 Graph with 3 objectives to be minimized.  
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5.1.2 Literature Review 
 

Martins and Santos (1999) outline a labeling algorithm for the multiobjective 

shortest paths problem and present an analysis in terms of finiteness and 

optimality concepts and report that any instance of the MSPP is bounded if and 

only if there are no absorbent cycles in the network. They show a set of 

networks wherein the labeling algorithm only determines nondominated labels. 

On the contrary, Mooney and Winstanley (2006) state that Martins’ labeling 

algorithm works well in theory but is prohibitive in practice in terms of its 

implementation due to memory costs.  

 

     A study by Gandibleux et al. (2006) reports a concise description of the 

MSPP and clearly narrates the most salient issues to its solution. Their study 

recalls Martins’ labeling algorithm and attempts to improve it. Their new 

algorithm extends Martins’ algorithm by introducing a procedure that can solve 

MSPP that have multiple linear functions and a max min function. Since it is an 

extension of Martins’ algorithm, the generation of all nondominated paths 

remains intractable in polynomial time. However, experimental results of their 

study say otherwise. Their algorithm is tested on a variety of test instances and 

results show that in terms of size and complexity, optimizing simultaneous linear 

and max-min functions does not behave exponentially. They also show that their 

algorithm is not sensitive to different cost ranges and that density and network 

size increase the number of efficient solutions. An independent study by (2001) 

also shows that the cardinality of efficient paths in a bicriteria shortest path 

problem is not exponential as long as the instances are bounded by potential 

characteristics as defined in their experiment. They conclude with emphasis that 

it is still preferable to work with complete information rather than falling back on 

approximations. 

 

     Guerriero and Musmanno (2001) examine several label-selection and vertex-

selection methods that can find Pareto-optimal solutions to the MSPP with 

respect to execution time. The performance of the different algorithms was 

measured using random and grid networks and results show that label-selection 

methods are generally faster than vertex-selection methods and that parallel 

computing is necessary in the design of efficient methods. 
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     While some researchers focus on exhaustive solutions or on improvements 

thereof, other researchers are more concerned with better runtime solutions. 

Tsaggouris and Zaroliagis (2006) present an improved fully polynomial time 

approximation scheme (FPTAS) for the multicriteria shortest path problem and a 

new generic method for obtaining FPTAS to any multiobjective optimization 

problem with non-linear objectives. They show how their results can be used to 

obtain efficient approximate solutions to the multiple constrained path problems 

and to the non-additive shortest path problem. Their algorithm, which departs 

from earlier methods using rounding and scaling techniques on the input edge 

costs, builds upon an iterative process that extends and merges sets of vertex 

labels representing paths. The algorithm resembles the Bellman-Ford method 

but implements the label sets as arrays of polynomial size by relaxing the 

requirements for strict Pareto optimality. 

 

     Granat and Guerriero (2003) introduce an interactive procedure for the MSPP 

based on a reference point labeling algorithm. The algorithm converts the 

multiobjective problem into a parametric single-objective problem whereby the 

efficient paths are found. The algorithm was tested on grid and random 

networks and its performance was measured based on execution time. They 

conclude that an interactive method, from their experimental results, is 

encouraging and does not require the generation of the complete Pareto-optimal 

set (which avoids the intractability problem). Likewise, (Coutinho-Rodrigues et 

al., 1999) suggests an interactive method that incorporates an efficient k-

shortest path algorithm in identifying Pareto-optimal paths in a bi-objective 

shortest path problem. The algorithm was tested against other MSPP algorithms 

on 39 network instances. They conclude that their k-shortest path algorithm 

performs better in terms of execution time. 

 

     From a different perspective, evolutionary algorithms (EAs) have been 

extensively analyzed in single objective optimization problems but only a few 

researchers have applied EAs to the multiobjective shortest path problem either 

as the main problem or as a sub-problem in relation to route planning, traffic 

and transport design, information systems and communications network design. 

Gen and Lin (2004) use a multiobjective hybrid genetic algorithm (GA) to 

improve solutions to the bi-criteria network design problem (finding shortest 

paths) with two conflicting objectives of minimizing cost and maximizing flow. 

The paper shows how the performance of a multiobjective genetic algorithm can 

be improved by hybridization with fuzzy logic control and local search. The 
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results show a positive effect of hybridization, that is, an improvement in the 

convergence of the Pareto front. 

 

     Kumar and Banerjee (2003) present an algorithm for multicriteria network 

design (shortest paths and spanning trees) with two objectives of optimizing 

network delay and cost subject to satisfaction of reliability and flow constraints. 

They tested an evolutionary algorithm approach, Pareto Converging Genetic 

Algorithm (PCGA), to design different sized networks and found that EAs scale 

better in larger networks than two traditional approaches namely branch 

exchange heuristics and exhaustive search. They conclude that the primary 

advantage of EAs to solve multiobjective optimization problems is their diversity 

of solutions generated in polynomial time. Crichigno and Baran (2004) 

demonstrate similar representations (spanning trees) to Kumar’s for a multicast 

algorithm. The basic difference between both algorithms is the latter adopts the 

Strength Pareto Evolutionary Algorithm (SPEA) in generating efficient solutions 

to the multicast routing problem. 

 
     Mooney and Winstanley (2006) show the behavior of an elitist genetic 

algorithm as applied to the MSPP in the field of geographic information systems 

(GIS). The experiment compares the runtime performance (execution time) of 

the EA against a modified version of Dijkstra’s algorithm on several artificial and 

real road networks. The results show that the EA competes well with the 

modified Dijkstra approach in terms of execution time and that the EA converges 

quickly to the Pareto-optimal paths. 

 
     Janssens and Pangilinan (2008) conducted a sensitivity analysis of an MOEA 

for the MSPP using SPEA2. Their results show that the size of the population and 

the number of generations of the GA largely influence the output of the genetic 

algorithm and that mutation and recombination have only minimum influence on 

the output. 

 

 

5.2 Multiobjective Evolutionary Algorithm 
 

5.2.1 Genetic Algorithm for the MSPP 
 

Genetic Representation. A chromosome or an individual consists of integer-ID 

vertices that form a path from the source vertex to a sink vertex. The length of 
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the chromosome is variable and may not be greater than the number of vetices, 

n. 

 

Initial Population. A path or a chromosome is generated randomly in an ordered 

sequence from the source vertex to the sink vertex. The ID of the source vertex 

s is assigned to the first locus (array index) of the chromosome. The ID of a 

randomly generated vertex vi is assigned to the second locus such that vi 

belongs to the set of vertices connected to the source vertex s. This procedure 

continues iteratively for the succeeding vertices until a simple path to the sink 

vertex t is created. It is known that the population size of solutions increases 

exponentially with the number of objectives in the MSPP. There are two common 

options to respond to this problem, use a large population, or integrate a 

dynamic population sizing procedure in the GA. Dynamic population sizing has 

been implemented for single-objective EAs and has been known to show 

promising results. However, dynamic sizing remains a challenge to MOEAs with 

regard to MOPs. An alternative is to estimate the size of the initial population 

using Deb’s (2001) approximation chart for finding the minimum population size 

in relation to the number of objectives.  

 

Genetic Operators. The crossover scheme is an adaptation of the one-point 

crossover as shown in Figure 5.2. For each pair of paths a locus is randomly 

selected from one of the chromosomes (the shorter path in terms of number of 

vertices) and the vertex ID of the locus is matched with the genes in the other 

chromosome. If there is a match then crossover is performed, otherwise two 

new paths are selected for crossover until the mating pool is empty. It should be 

easy to see that the loci of both individuals need not be the same. 

 

     In the mutation operator, a locus is randomly selected from the 

chromosome. The algorithm proceeds by employing the method in the initial 

population process to create a new path, but the start vertex is replaced by the 

locus.  

 

Fitness and Selection. Two objective configurations are considered for finding 

efficient paths, (3-S) and (2-S|1-M). S-type objectives are sum problems that 

are to be minimized whereas M-type objectives are max-min problems that are 

to be minimized. The selection of parents and offspring is done by two 

algorithms, SPEA2 (Zitzler et al. 2002) and NSGA-II (Deb et al. 2002). The 

program runs through the interface of PISA (Bleuler, 2003). 
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Figure 5.2 Crossover starts at the locus at position 3 

 

      

5.2.2 Experiments and Results 
 

The experiments intend to show the behavior of a multiobjective evolutionary 

algorithm as applied to the MSPP in terms of diversity and optimality of 

solutions, and computational complexity. The datasets are random networks 

that have been generated by Gandibleux et al. (2006). Nine configurations are 

selected for the random networks: (a) number of vertices: 50, 100, 200; (b) 

density of the network: 5%, 10%, 20%; (c) range of cost values cp(i, j): [1, 

100], p=1, 2, 3. Ten instances are generated for each network configuration and 

two objective configurations are considered for finding efficient paths. The 

population size of 36 was estimated from Deb (2001) with the assumption that 

30% of nondominated paths are present in the initial population. The probability 
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for mutation and recombination is 0.5 and 0.5 respectively. Efficient paths are 

generated from a single source vertex (Vertex 1) to a single sink vertex (Vertex 

50, 100, 200) for each objective configuration. For each network configuration, 

the number of efficient paths is computed from three different generation runs: 

50, 100, and 200, which makes 540 combinations in total.   Figure 5.3 shows a 

comparison of the average number of nondominated solutions generated by 

SPEA2 and NSGA-II with a 3-S configuration. There are more solutions 

generated by NSGA-II than SPEA2 in all graph configurations.  

 

 
Figure 5.3  Average number of paths for the 3-S configuration 

 

In SPEA2, solutions are not affected by the number of generations for the 50-

vertex and 100-vertex graphs whereas in NSGA-II, the number of nondominated 

solutions in most graphs seems to change as the number of generations 

increases.  

  

     Figure 5.4 shows a comparison of the average number of nondominated 

solutions generated by SPEA2 and NSGA-II with a 2-S|1-M configuration. There 

are more solutions generated by NSGA-II than SPEA2 in most of the graph 

configurations. In both SPEA2 and NSGA-II, the number of nondominated 

solutions in most graphs changes as the number of generations increases.  
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 Figure 5.4 Average number of paths for the 2-S|1-M configuration 

 

In terms of visualizing the diversity of solutions, Figures 5.5 to 5.8 show the 

value path plots of a 50-vertex, 10%-density network. The value path plot 

provides information on how good an algorithm is in finding diverse solutions 

and good trade-off solutions for problems having more than two objectives. A 

good spread of solutions over a range implies that an algorithm is good in 

finding diverse solutions. A large change in slope between objectives implies 

good trade-off solutions. The figures illustrate that both SPEA2 and NSGA-II find 

good trade-off  paths for the 3-S and 2-S| 1-M objective configurations. 

 

 
Figure 5.5 A value path plot for 3-S configuration by SPEA2. 
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Figure 5.6 A value path plot for the 3-S configuration in NSGA-II 

 

Proximity of solutions to the Pareto-optimal set is another issue for the 

evaluation of the MOEA. In the absence of a Pareto-optimal set in the MSPP, 

there is difficulty in the evaluation of the MOEA solutions in terms of proximity to 

the Pareto-optimal front. Similarly, there is no assurance that the nondominated 

solutions of the MOEAs will converge to the Pareto-optimal front or the maximal 

set. A performance measure is necessary to compare nondominated sets in 

order to determine which set is best. 

 

 
Figure 5.7 A value path plot for the 2-S|1-M configuration in SPEA2 
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Figure 5.8 A value path plot for the 2-S|1-M configuration in NSGA-II. 

 

 

5.3 Sensitivity Analysis 
 

The results in Section 5.2.2 show that the increase in the number of generations 

in the MOEA does not significantly change the number of efficient paths. This 

means that the mutation and recombination operators do not find new solutions 

as the generation increases. The following section investigates why this is the 

case and shows which of the input parameters mainly affects the output of the 

MSPP. 

 

 

5.3.1  Experiments and Results 
 
A network of 50-vertices with 10% density, which represents the other networks 

of this type used in the study, is utilized to illustrate sensitivity analyses of 

SPEA2 and NSGA-II as applied the multiobjective shortest path problem. The 

initial population is 36 as estimated from Deb (2001). The output variable is the 

cardinality of the nondominated set. The input parameters are mrate, xover, and 

maxgen, the mutation probability, recombination probability, and number of 

generations respectively. The configurations of the input parameters are 

generated using the Sobol’ method and their distributions are listed in Table 5.1.  
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Input factor Description 

Probability 

Distribution 

mrate Mutation probability Uniform(0,1) 

xover Recombination probability Uniform(0,1) 

maxgen Number of generations 
Uniform(1,10) 

Uniform(10,20) 

Table 5.1 Input factors and probability distributions 

 

    Table 5.2 shows that all of the variation in the output is due to the number of 

generations of the MOEA when the maximum number of generations is 10. The 

highest first-order indices among the input parameters are in bold. The 

mutation and recombination rates have no direct influence on the variation in 

the output. Similarly, their interaction indices are small. This means that the 

selection operator mainly generates the efficient paths and that the MOEAs 

converge to efficient paths after a few generations, in this case, in just 10 

generations. Results of the sensitivity analysis for the 2-S|1-M configuration 

show similar results. It should be noted that during the sensitivity analysis, the 

population in each configuration was constant at 36 and that no significant 

improvements were recorded after the 10th generation in most of the graphs as 

shown in Figures 5.3 and 5.4. 

 

Sobol first-order indices SPEA2 NSGA-II 

mrate -0.010 0.010 

xover -0.022 -0.005 

maxgen 1.227 1.138 

Sobol total-order indexes    

mrate 0.004 -0.002 

xover -0.011 -0.000 

maxgen 1.233 1.1429 

Table 5.2 Sobol’ indices for a 3-S configuration, 10 generations 

      

Table 5.3 shows the results of the sensitivity analysis from the 11th generation 

until the 20th generation of a 3-S configuration of the same graph in Table 5.2. 

The first-order indices in SPEA2 differ from the first-order indices in NSGA-II but 

their total-order indices are very similar. The first-order indices for mutation rate 

and crossover rate contribute to more than 90% of the variation in the output, 

whereas the indices for mutation and crossover in SPEA2 do not change much. 

This explains the results in Figure 5.3, i.e. the average cardinality of 
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nondominated sets in SPEA does not change after 10 generations, whereas the 

cardinality of the solutions in NSGA-II varies. The first-order and total-order 

indices for maxgen have changed considerably. In the first 10 generations, the 

number of generations contributes mostly to the variation in the output, but 

from the 11th to the 20th generation, its effect on the output has diminished. 

Instead, the interaction of the mutation and recombination operators has the 

greater effect on the output, particularly in SPEA2. In NSGA-II on the other 

hand, the direct effects and interaction effects of the genetic operators have also 

increased considerably after 10 generations. 

 

Sobol First-order indices SPEA2 NSGA-II 

mrate -0.381 0.567 

xover 0.121 0.487 

maxgen -0.132 0.272 

Sobol total-order indexes  

mrate 0.714 0.657 

xover 0.931 0.740 

maxgen 0.392 0.272 

 

Table 5.3 Sobol’ indices for a 3-S configuration, 11-20 generations 

     

Table 5.4 shows the results of the sensitivity analysis from  generations 1 to 10 

and generations 11 to 20 of a 2-S|1-M configuration of the same graph in Table 

5.2. It presents similar results to Table 5.3 except that the Sobol’ indices in 

NSGA-II are all zeroes. The indices are zeroes because there is no variation in 

the output. This means that whatever the combinations of mrate, xover, and 

maxgen from generations 11-20, NSGA-II generates the same number of 

nondominated solutions.  

 

 1-10 generations 11-20 generations 
Sobol First-order indices  SPEA2 NSGA-II SPEA2 NSGA-II 

mrate 0.006 -0.006 0.554 0.000 
xover 0.013 0.011 0.242 0.000 

maxgen 1.152 1.214 -0.069 0.000 

Sobol total-order Indexes     
mrate 0.005 0.000 0.970 0.000 
xover 0.009 0.008 0.901 0.000 

maxgen 1.150 1.207 0.196 0.000 

Table 5.4 Sobol’ indices for a 2-S|1-M configuration 
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There can be two reasons, either the Pareto-optimal set has been achieved or 

the algorithm is trapped in a local optimum. Further investigation validates that 

NSGA-II has achieved the Pareto-optimal set in 10 generations. 

 

 

5.4 Summary 
 

The chapter presents the feasibility of a multiobjective evolutionary algorithm as 

applied to the multiobjective shortest path problem on several graph 

configurations. Results show that an MOEA is a feasible technique in finding 

approximations of the Pareto-optimal set to the MSPP.  

 

     Section 5.2 shows that in most graphs, the increase in the number of 

generations does not necessarily change or improve the cardinality of 

nondominated sets. In fact, it shows that most nondominated solutions are 

generated in the early generations of the MOEA. This seems to exhibit the 

genetic drift phenomenon. However, the sensitivity analysis shows otherwise.  

 

     Section 5.3 explores the sensitivity of an MOEA to changes in its input 

factors. The sensitivity analysis shows that the mutation and recombination do 

not cause much of the variation in the output in the early stages of the MOEA 

run. The number of generations has the most influence on the output. This 

means that the selection operator mostly influences the cardinality of the 

nondominated sets in the early stages of the run. However, after the 10th 

generation, the indices of the interaction effects of mutation and crossover have 

increased. This means that exploitation and exploration of the search space 

continue after the early stages of the MOEA run. Although the mutation and 

recombination operators have almost no direct influence on the output, their 

total sensitivity indices show that their interaction effects are important. 

Therefore, they cannot be removed as input parameters. Furthermore, the low 

first-order sensitivity indices of mutation and crossover imply that the MOEA is 

robust in terms of the input parameter values of the mutation and crossover 

rates. 



120  

   



 

121 

 

 
 

 

Chapter 6 
 

 

Oblique Decision Trees:  
An optimization problem 
with a tree structure of 
continuous variables  
 

 

6.1  Introduction 
 

The data mining task of classification using decision trees (DT) has been studied 

for many years. Researchers in the fields of statistics, decision theory, and 

machine learning have reported a huge amount of work on this topic. Significant 

improvements on decision trees are difficult to produce but promising researches 

still remains open and have to be explored. One of these areas is the application 

of evolutionary algorithms in decision tree construction and optimization. For 

example, optimal tree construction belongs to the set of NP-hard problems 

(Murthy et al. 1994). The selection of a linear split in multivariate decision trees 

is also NP-hard (Murthy et al. 1994). Both optimization problems make standard 

tree-based methods infeasible for finding a good or a sub-optimal solution. 

However, the application of evolutionary algorithms is a promising option in 

finding solutions to NP-hard problems and is known to exploit and explore large 

search spaces and solve optimization problems that many classic optimization 

algorithms cannot.    
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     The purpose of this chapter is to apply evolutionary algorithms in the 

optimization aspects of decision tree construction, to describe the EA 

performance, and to investigate if they succeed or fail in relation to decision tree 

optimization.  

 

6.1.1 Problem Definition 
 

A clear definition of the class and type of variables or attributes in decision tree 

construction is useful in order to understand how classification works. The 

“target variable” is the variable to be modeled and predicted by other variables. 

It is equivalent to the dependent variable in linear regression. There must be 

one and only one target variable in a decision tree analysis. A “predictor 

variable” or simply predictor is a variable whose values are used to predict the 

value of the target variable. It is equivalent to the independent variable in linear 

regression. There must be at least one predictor variable specified for decision 

tree analysis. A continuous variable has numeric values and are called ordered 

or monotonic variables. A categorical variable has values that function as labels 

rather than as numbers. Some programs call categorical variables as nominal 

variables.  

 

     In machine learning, a decision tree is a predictive model that is a mapping 

of observations about an item to conclusions about the item's target value. Each 

inner node corresponds to a predictor. An arc to a child represents a possible 

value of that variable. A leaf represents the predicted value of a target variable 

given the values of the variables represented by the path from the root node. 

Figure 6.1 shows a diagram of a decision tree. The machine learning technique 

for inducing a decision tree from data is called decision tree learning. Decision 

tree learning is also a common method used in data mining. Here, a decision 

tree describes a tree structure wherein leaves represent classifications and 

branches represent conjunctions of features that lead to those classifications 

(Menzies and Hu 2003). Splitting the source set into subsets based on an 

attribute value test can learn a decision tree. This process is repeated on each 

derived subset in a recursive manner. The recursion is completed when splitting 

is either non-feasible, or a singular classification can be applied to each element 

of the derived subset.  

 

     Several issues have to be considered simultaneously in this exploration, such 

as computational complexity, accuracy, depth of tree, tree size, balance, and 
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stability. The study, for purposes of clarity and visualization uses two criteria 

only henceforth reducing the decision tree construction problem to a bi-objective 

optimization problem, i.e. minimization of tree size and maximization of 

classification accuracy. Classification accuracy is the ratio of correctly classified 

instances over the total number of instances in a dataset. Computational 

complexity is not an objective criterion in the study. 

 

 

 
Figure 6.1 Decision tree 

 

 

The DT optimization problem can be formulated as  

 

Minimize   (T, x)     x = 1,2…, n 

Maximize   (T, α)  α ∈ ℜℜℜℜ: 0 ≤ α ≤ 100% 

 

where:  T is the decision tree 

    x is the size of tree T 

    α is the classification accuracy of tree T 
    n is the maximum number of leaves of tree T 

 

 

 

 

 

Internal 

Root node 

Internal 

Internal Leaf node 

Leaf node 

Leaf node 
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6.1.2 Literature Review 
 

 

SPLITTING CRITERIA 
 

An early technique by Quinlan (1986) that influenced a large part of the 

research on decision trees is useful to look at in order to understand basic 

decision tree construction. A fundamental part of any algorithm that constructs a 

decision tree from a dataset is the method in which it selects attributes at each 

node of the tree. Some attributes split the data up more purely than others. 

That means that their values correspond more consistently with instances that 

have particular values of the target attribute than those of another attribute. 

Therefore, such attributes have some underlying relationship with the target 

attribute. Essentially, splitting is finding a measure that compares attributes with 

each other and then deciding the variables that split the data more purely higher 

up the tree. 

 

      A measure used from information theory in decision tree construction is 

entropy. Informally, the entropy of a dataset can be considered as a measure of 

how disordered it is. It has been shown that entropy is related to information, in 

the sense that the higher the entropy, or uncertainty, of some data, then the 

more information is required to describe that data. In building a decision tree, 

the aim is to decrease the entropy of the dataset until leaf nodes are reached. 

The entropy of a dataset, S with respect to one variable, in this case the target 

variable, is defined as: 

 

Entropy (S) = Σ pi log2 pi ;         i = 1,…,c             (6.1) 

 

where pi is the proportion of instances in the dataset that take the i-th value of 

the target variable. This probability measures give an indication of how much 

uncertainty is present about the data. The log2 measure represents how many 

bits would be needed in order to specify the class (value of the target attribute) 

of a random instance.  

 

     A measure called Information Gain, calculates the reduction in entropy that 

would result in splitting the data on a predictor variable A. 
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where v is a value of A, |Sv| is the subset of instances of S where A takes the 

value v, and |S| is the number of instances. 

 

     The observation that Information Gain is unfairly biased has led to new 

proposals of splitting criteria. An obvious way to negate the bias or "greediness" 

of Information Gain is to take into account the number of values of a variable. 

This is exactly the approach that can be used. A new, improved calculation for 

variable A over data S is: 
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The second equation for I(A) measures the information content for the variable 

A by looking at each proportion p, of instances that take value i for the variable.  

 
     Classification and Regression Trees (CART) which was developed in the 

1980s (Breiman et al. 1984) is an analytic procedure for predicting the values of 

continuous or categorical dependent variables from continuous or categorical 

predictors. When the target variable of interest is categorical, the technique is 

referred to as Classification Trees. If the target variable of interest is continuous 

in nature, the method is referred to as Regression Trees. For classification 

problems, the goal is generally to find a tree where the terminal tree nodes are 

relatively "pure" using an impurity measure called the Gini measure. For 

regression tree problems node purity is usually defined in terms of the sums-of-

squares deviation within each node.   

 

     The Gini measure is the measure of impurity of a node and is commonly 

used when the target variable is a categorical variable, and defined as: 

 

g(t) = Σ p(j| t) p(i|t) ; i ≠ j                 (6.5) 
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where the sum extends over all classes and  p( j|t) is the probability of class j at 

the node t. 

 

 

PERFORMANCE MEASURES 
 

There are several criteria to evaluate a decision tree algorithm for a given 

dataset over another algorithm on the same dataset. Conciseness of the decision 

tree that an algorithm produces may be one measure and clarity of the rules 

from the tree is another. It is also possible to look at how fast an algorithm is, 

but the interest of most researchers is in an algorithm's learning ability and 

classification accuracy.  

 

     Moret (1982) summarizes work on measures such as tree size, expected 

testing cost, and worst-case testing cost. He shows that an algorithm that 

minimizes one measure does not guarantee minimization of other measures. On 

the other hand, Fayad and Irani (1990) argue that by concentrating optimization 

on one measure, improvement on the performance of other measures is 

possible. Kononenko and Bratko(1991) points out that comparisons based on 

classification accuracy are unreliable, because different classifiers produce 

different types of estimates and accuracy values can vary with prior probabilities 

of the classes. They suggested an information-based metric to evaluate a 

classifier as a remedy to accuracy problems.  

 

     Tree quality depends more on stopping rules than on splitting rules. Pruning 

is argued to be a better method than stop-splitting rules (Murthy et al. 1994). 

No single pruning method has been adjudged superior to others. Obtaining the 

‘right’ sized trees is important for several reasons, which depend on the size of 

the classification problem (Gelfand and Ravishankar 1991). For moderate sized 

problems, the critical issues are classification accuracy, error-estimation, and 

gaining insight into the predictive and generalization structure of the data. For 

large tree classifiers, the critical issue is optimizing structural properties such as 

height and balance (Wang and Suen 1984). 

  

     Murthy (1998) notes that the time complexity of induction and post-

processing is exponential in tree height in the worst case (Martin and Hirschberg 

1995). This puts a premium on designs that produce shallower trees, multi-way 

rather than binary splits, and selection criteria that prefer balanced splits. 

Several authors have designed methods to improve upon greedy algorithms by 
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constructing near-optimal decision trees using a look-ahead algorithm (Murthy 

and Salzberg 1995) genetic programming (Koza 1991) and simulated annealing 

(Heath et al. 1993b, Lutsko and Kuijpers 1994, Folino et al. 2000). 

 

     Many authors suggest that using a collection of decision trees, instead of just 

one reduces the variance in classification performance (Kwok and Carter 1990; 

Shlien 1990; Shlien 1992; Buntine 1992; Breiman 1990). The idea is to build a 

set of trees (ensembles) for the same training sample and then combine their 

results. Multiple trees have been built using randomness or using different 

subsets of attributes for each tree (Heath et al. 1993). 

 

 

OBLIQUE DECISION TREES 
 

There have been many studies in optimizing split selection. A split can be either 

univariate (axis-parallel) or multivariate (oblique). An axis-parallel split divides a 

node with only one predictor and an oblique split divides a node with a linear or 

non-linear combination or predictors. Trees that are induced using oblique splits 

are called oblique trees. Finding optimal linear splits is known to be intractable 

and is an optimization problem, so heuristic methods are required. Methods for 

finding good linear splits include linear discriminant analysis, hill climbing 

search, linear programming, and perceptron training in neural networks. This 

section examines existing literature that addresses the problem of finding 

oblique splits for Classification Trees. 

 

     The more popular approach in finding univariate splits examines all possible 

binary splits along each predictor variable to select the split that most reduces 

some measure of impurity. Such method is used in CART (Breiman et al. 1984), 

Quinlan’s C5.0 (1986), and Morgan’s THAID (1973). This type of exhaustive 

search has two major drawbacks. First, the computational complexity of finding 

splits for nominal variables increases exponentially with the number of its 

categorical values and obtaining linear combinations of ordered predictor 

variables becomes computationally difficult. Second, it tends to select variables 

that have more instances. 

 

Loh and Vanichsetakul (1988) free the bias in variable selection for ordered 

predictor variables by separating the selection of the variable and the split point. 

They calculate the F-statistic for each predictor variable, select the variable with 

the highest F-statistic, and apply linear discriminant analysis to find the split 
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point. Unordered variables are transformed into ordered variables but this 

transformation is not free from bias. Loh and Shih (1997) further developed 

QUEST (Quick, Unbiased, Efficient, Statistical Tree) to address the 

disadvantages of their first algorithm, e.g. a split rapidly lessens the learning 

sample when a node is split into as many sub-nodes as there are classes. Loh 

and Shih conclude that in terms of classification accuracy, variability of splits, 

and tree size, there is no clear winner when univariate splits are used. However, 

QUEST trees, based on a linear combination of splits are usually shorter and 

more accurate than the same trees based on univariate splits. 

 

     Preliminary work in oblique decision trees was done by Breiman et al. 

(1984). They introduced CART with linear combinations (CART-LC) as a method 

to create oblique splits. CART-LC iteratively finds local optimal values of each of 

the coefficients. CART-LC generates and tests hyperplanes until the marginal 

benefits become smaller than a specified constant. It uses a backward-deletion 

procedure to simplify the structure of the split by deleting variables that have 

little contribution to the effectiveness of the split.   

 

     Heath et al. (1993b) developed an algorithm (SADT) to induce oblique 

decision trees based on simulated annealing. The algorithm first creates an 

initial random hyperplane to divide the dataset and creates hyperplanes on the 

two new partitions. This process of creating hyperplanes is recursive. Their 

experiments show that simulated annealing works well for generating oblique 

decision trees since it generates smaller trees without reducing classification 

accuracy.   

 

     Murthy et al. (1994) developed a randomized algorithm Oblique Classifier 1 

(OC1) and has been thought to be an extension of CART-LC. The primary 

contribution of OC1 in oblique decision tree research is its perturbation algorithm 

in finding linear splits. The perturbation is a randomization of hyperplanes to 

escape local minima. Murthy notes that there are data distributions wherein 

univariate splits perform better than oblique splits. They accounted such 

distributions in OC1 by computing the best axis-parallel split at each node before 

applying hyperplane perturbation. The experiments of Murthy et al. show that 

OC1 outperforms CART-LC in several datasets. 

 
     Vadera (2005) presents a new algorithm that utilizes linear discriminant 

analysis to identify oblique relationships between continuous attributes and then 

carries out an appropriate modification to ensure that the resulting tree errs on 
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the side of safety. The algorithm is evaluated with respect to a cost-sensitive 

algorithm (ICET), an oblique decision tree algorithm (OC1) and to linear 

programming. 

 

    A study of multi-class binary decision trees with oblique planes using 

nonlinear programming can be found in Street (2005). Street finds that a 

nonlinear programming approach (OC-SEP) appears to offer an advantage over 

some axis-parallel methods on oblique separating planes but is more 

computationally demanding than greedy algorithms. The OC-SEP 

implementation is still not feasible for large scale problems. He suggests that 

incorporating feature-selection to the objective function can achieve enhanced 

classification accuracy and interpretability. 

 

 

EVOLUTIONARY ALGORITHMS AND DECISION TREES 
 

An evolutionary algorithm is a promising technique to build oblique decision 

trees. Cantu-Paz and Kamath (2003) summarizes the advantages of an EA, 

which are the following:   

 

1. EAs can consider more than one coefficient at a time and may not be 

trapped in local optima as easily as the simple greedy hill-climbing 

algorithms. 

2. EAs have been shown to have good scalability to the dimensionality 

of the problem (Harik et al. 1999). 

3. EAs are tolerant to noisy fitness evaluations (Miller and Goldberg 

1996). 

4. EAs are stochastic algorithms; they produce different trees on the 

same data set that can be easily combined into ensembles. 

 

Cantu-Paz and Kamath (2003) extended the OC1 algorithm by Murthy et al. 

(1994) into three new algorithms by using evolution strategies, genetic 

algorithms, and simulated annealing to find oblique partitions on a variety of 

datasets including seven datasets from the UCI (University of California at 

Irvine) machine learning repository. They compared the performance of six 

algorithms according to accuracy, number of nodes, and execution time. They 

conclude (1) that the EAs scale up better than traditional methods (OC1-AP, 

OC1, CART-LC) to the dimensionality of the data and (2) that creating 

ensembles with the EAs results in higher accuracy than single trees produced by 



130  

existing methods. The study suggests future work may be done on scalability 

using larger datasets, on design of specialized operators, and the integration of 

local hill-climbing algorithms to EAs. 

 

     Sörensen and Janssens (2003) developed a genetic algorithm for binary 

decision trees to overcome the drawbacks of the automatic interaction (AID)-

technique. The technique uses specialized genetic operators that preserve the 

structure of the trees to find a diverse set of DTs with high explanatory power. 

The algorithm’s advantage as compared to the AID-technique is that it gives the 

decision maker a set of high-fitness decision trees to choose from instead of only 

one DT. 

 
      Papagelis and Kalles (2001) proposed a genetic algorithm (GAtree) to evolve 

binary decision trees and introduced a single-objective fitness function to 

balance accuracy and size of decision trees. The GAtree algorithm randomly 

picks a variable to create a node and a binary decision tree is completed down to 

the leaves with this same line of thought. There is no discussion of a splitting 

criterion. The selection of highest fit chromosome is taken by cross-validation. 

Their experiments used selected datasets from the UCI repository and the 

GAtree performance was compared to C4.5 and the One-R algorithm. They find 

that the time burden of the GAtree is substantially bigger than greedy heuristics 

but on the other hand, their experiments show advantages over greedy 

heuristics when there are irrelevant or strongly dependent variables. 

 

     Bot and Langdon (2000) applied genetic programming (GP) to linear 

classification trees using limited error fitness (LEF), cross validation, and Pareto 

scoring on continuous data attributes from four UCI repository data sets. The 

study measured the GP’s performance, accuracy and tree size in comparison to 

OC1, C5.0, and M5’. They used the GPsys program by Qureshi (1997), which is 

a strongly-typed, steady state GP system. They conclude that in some datasets, 

the GP works comparatively or better than the reported accuracy from other 

decision tree algorithms but the GP performs worse on other datasets. 

Furthermore, fitness-sharing Pareto creates a promising approach to reducing 

tree size but creates larger trees than Pareto domination while LEF does not 

improve or worsen classification accuracy, but saves much on execution time. 

 
     Kim (2004) proposed an evolutionary multiobjective optimization (EMO) 

approach that searches for the best accuracy rate of classification for different 

sized trees using genetic programming. He introduces structural risk 
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minimization that finds a desirable number of rules for a given error bound. His 

EMO reduces the size of trees dramatically and his best rule set is better than 

that of C4.5, but computing time takes longer  

 

     A multicriteria approach in evaluating decision trees was presented by 

Bryson (2004). He provided a method to assist decision makers to select an 

efficient decision tree by ranking decision trees using a weighing model. The 

model evaluates a decision tree on several performance measures such as 

accuracy rate, tree simplicity and size, stability, and the discrimination power of 

its predictors.  

 

     Zhao (2007) presented a multiobjective genetic programming (MOGP) 

system for developing Pareto optimal decision trees. The system allows the 

decision-maker to make tradeoffs in several ways based on his estimates of 

classification errors, and recommends a set of alternative solutions accordingly. 

As an evolutionary approach, the system visualizes the progress of the evolution 

of solutions such that the decision maker can decide to stop the procedure when 

satisfactory solutions have been found or when the solutions on the front appear 

to have stabilized.  

 

 

FEATURE SELECTION 
 

Irrelevant attributes pose a significant problem for most machine learning 

methods Decision Tree algorithms, even axis-parallel ones, can be confused by 

too many irrelevant attributes. Because oblique decision trees learn the 

coefficients of each attribute at a DT node, searching for good coefficient values 

is much more efficient when there are fewer attributes. (Murthy et al. 1994).  

Feature selection (also known as subset selection) is a process used in machine 

learning, wherein a subset of the features available from the data is selected for 

a learning algorithm. The best subset contains the least number of dimensions 

that most contribute to accuracy, hence making the search space smaller. With 

this, oblique DT construction methods can benefit substantially by using a 

feature selection method. 

 

   Dash and Liu (1997) present a survey of several feature selection methods 

according to generation procedure and evaluation function.  The generation 

procedure defines how a method generates a subset of features for evaluation. 

The procedure starts either with no feature, or with all features, or with a 
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random subset of features.  The evaluation function measures the goodness of a 

subset produced by some generation procedure. They group evaluation functions 

into five categories: distance, information, dependence, consistency, and 

classifier error rate measures and are briefly described as follows: 

 

1. Distance Measures also known as separability, divergence, or 

discrimination measures. For a two-class problem, a feature x is 

preferred to another feature y if x induces a greater difference 

between the two-class conditional probabilities than y; if the 

difference is zero, then x and y are indistinguishable. An example is 

the Euclidean distance measure. 

2. Information Measures determine the information gain from a 

feature. The information gain from a feature x is defined as the 

difference between the prior uncertainty and expected posterior 

uncertainty using x. Feature x is preferred to feature y if the 

information gain from feature x is greater than that from feature y 

(e.g., entropy measure). 

3. Correlation Measures qualify the ability to predict the value of one 

variable from the value of another. The coefficient is a classical 

dependence measure and can be used to find the correlation 

between a feature and a class. If the correlation of feature x with 

class c is higher than the correlation of feature y with c, then 

feature x is preferred to y. A slight variation of this is to determine 

the dependence of a feature on other features; this value indicates 

the degree of redundancy of the feature. All evaluation functions 

based on dependence measures can be divided between distance 

and information measures. 

4. Consistency Measures find out the minimally sized subset that 

satisfies the acceptable inconsistency rate that is usually set by the 

user. These are characteristically different from other measures, 

because of their heavy reliance on the training dataset. In the 

simplest implementation, it does a breadth-first search and checks 

for any inconsistency considering only the candidate subset of 

features. 

5. Classifier Error Rate Measures are called “wrapper methods”, i.e. 

the classifier is the evaluation function. Features are selected using 

the classifier that later on uses these selected features in predicting 

the class labels of unseen instances. The accuracy level is very high 
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but computationally costly.  A typical wrapper method can use 

different kinds of classifiers for evaluation. 

 

Dash and Liu (1997) state that there is no single feature selection method that 

can handle all applications. The choice of a feature selection method depends on 

various data set characteristics: data types, data size, and noise. A survey and 

comparison of feature selection methods are also found in Guyon and Elisseeff 

(2003), Blum and Langley (1997), and Jain and Zongker (1997). 

 

 

6.2 Multiobjective Evolutionary Algorithm 
 

The EA in the decision tree optimization problem is a search function the finds a 

linear combination of the predictor variables that best splits the dataset. The 

algorithm to find the best linear split on a dataset S is described below. 

 

1. t = 0. Find H0, the best axis-parallel split of S 

2. Place 1 copy of H0 to the initial population of linear splits P0 

3. Evaluate fitness  using an impurity measure  

4. Perform selection based on SPEA2 or NSGA-II 

5. If (t ≥ max generation) or (another stopping criterion is satisfied) then 

End. 

6. Perform recombination and mutation.  

7. t = t +1 and go to Step 3. 

 

 

6.2.1  Genetic Algorithm for DT 
 

Genetic Representation. A chromosome or an individual consists of real-

parameter genes that represent the coefficients of a hyperplane that splits the 

dataset to form a node of the decision tree. The length of the chromosome is 

fixed and is equal to the number of dimensions, d of the dataset. Each gene in a 

chromosome represents the coefficient of a predictor variable xi where i=1, 2,…, 

d in a d-dimensional dataset. Each gene is a real random number in [-1, 1]. The 

decision tree is represented as a binary tree of chromosomes. 

 
Initial Population. The initial population is composed of chromosomes of linear 

splits. An axis-parallel chromosome is added to the initial population to ensure 
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that the initial population can capture univariate splits in the early generations of 

the EA.  

 

Genetic Operators. Recombination is implemented as the arithmetic average of 

both parents as defined in (3.3). The experiment adopts a non-uniform mutation 

operator and as described in (3.1) and (3.2). 

 

Fitness and Selection. The fitness of a chromosome is evaluated by an impurity 

measure called the towing rule (Breiman et al. 1984). For the selection of 

parents and offspring, two MOEAs are compared namely SPEA2 (Zitzler et al. 

2002) and NSGA-II (Deb et al. 2002). The program runs through the interface of 

PISA (Bleuler, 2003). 

      

     The proposed multiobjective evolutionary algorithm is an adaptation of OC1 

(Murthy 1998). The extension comes from changing the original hill climbing and 

perturbation algorithms in OC1 to an EA process.   

 

 

6.2.2 Experiments and Results 
 

The following experiments intend to show the performance of two multiobjective 

evolutionary algorithms (SPEA2 and NSGA-II) in terms of selecting hyperplanes 

in the induction of oblique decision trees. The results are compared to two other 

algorithms: an axis-parallel algorithm (AP) and the oblique classifier (OC1 by 

Murthy). The experiment is similar to the work of Cantu-Paz and Kamath (2003) 

in terms of describing classification accuracy and tree size but is different in the 

sense that the current experiment describes the effects of the EA operators on 

building decision trees. Feature selection is not used in the UCI and synthetic 

datasets but is applied to the application datasets (see Section 6.4). 

 

 

UCI DATASETS 
 

In order to evaluate the EA effectively for purpose classification, the 

classification datasets from the UCI machine-learning repository are excellent 

benchmarks. Nine UCI classification datasets are chosen for the experiment. 

Seven of them are small datasets wherein the number of instances in dataset n 

< 1000, and two are large datasets, n > 5000. An additional artificial dataset, 
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the RCB dataset is used to test an algorithm’s performance in generating oblique 

splits. The RCB dataset is an artificial dataset with linear partitions only. The 

datasets are briefly described in Table 6.1.    

     

Name of 

dataset 

Number of 

samples n 

Number of 

dimensions d 

Number of 

Classes c 

Cancer 699 10 2 

Diabetes 768 8 2 

Housing 506 12 2 

Iris 150 4 3 

Vehicle 946 18 4 

Glass  214 9 7 

Vowel 528 10 4 

RCB 2000 2 2 

Optical-

digit 

3823 (training) 

1797 (testing) 
64 10 

Pen-digit 
7494 (training) 

3498 (testing) 
16 10 

Table 6.1 Description of datasets 

 

In order to estimate the classification accuracy of the classifiers, ten five-fold 

cross-validation experiments are implemented on the small datasets and the 

RCB dataset. Cross-validation is a technique to estimate the accuracy of a 

predictive model by partitioning the sample dataset into corresponding subsets 

and analyzing one subset (training set) and validating the analysis on the other 

subset (validation set). A k-fold cross-validation partitions the dataset in k 

subsets. Of the k subsets, a single subset is used as the validation set and the 

remaining k-1 subsets are combined to form the training set. The cross-

validation repeats for k times with each of the k subsets used only once as the 

validation set.   

 

     For the large datasets (Optical-digit and Pen-digit), there is no need for 

cross-validation since they have separate training and testing sets. Fifty trees 

are generated from each dataset and the averages of their classification 

accuracy and tree size are used for comparison purposes. 

 

     The accuracy is measured as the proportion of correctly classified instances 

of each dataset and the size of the tree is measured by the number of leaves. 
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Each value also shows the standard error of their means. For SPEA2 and NSGA-

II, a population of 28 is used, a mutation and a recombination rate of 0.5, a bit-

turn probability of 0.5 and a run of 100 generations. For OC1, twenty random 

hyperplanes are used at each node and the best hyperplane is selected through 

hill-climbing and five perturbations are allowed for each hyperplane.  

 

     The results shown in Table 6.2 are the averages of fifty trees per data set. 

The averages in accuracy do not show significant differences for all four 

classifiers. The highest classification accuracy and the smallest tree size in each 

dataset are printed in bold. The averages of the tree size for the oblique 

classifiers have no significant differences but are obviously smaller than the 

trees induced by the axis-parallel algorithm particularly in the Vehicle and Vowel 

datasets. Similarly, the standard errors for accuracy and size of the oblique 

classifier are smaller than the results of the AP classifier in all the datasets. This 

means that the variation in the decision trees generated by the oblique 

classifiers is also small. 

 

Dataset  AP OC1 SPEA2 NSGA-II 

Accuracy 93.78±0.32 95.39±0.26 95.32±0.24 95.57±0.23 
Cancer 

Size 8.46±1.06 3.26±0.33  3.24±0.27 3.20±0.35 

Accuracy 73.53±0.46 72.19±0.45 72.41±0.49 73.22±0.32 
Diabetes 

Size 13.86±2.58 6.54±0.98 13.30±2.28 9.18±1.92 

Accuracy 64.63±1.08 61.57±1.16 64.24±1.28 64.53±1.15 
Glass 

Size 13.00±1.46 9.12±0.94 8.72±0.88 9.12±1.06 

Accuracy 80.36±0.75 74.49±0.75 80.47±0.62 79.29±0.71 
Housing 

Size 35.94±1.81 31.28±2.07 33.08±1.86 28.96±1.78 

Accuracy 94.13±0.45 95.53±0.57 95.20±0.51 95.07±0.56 
Iris 

Size 3.44±0.15 3.04±0.03 3.04±0.03 3.08±0.05 

Accuracy 69.42±0.55 67.33±0.52 67.84±0.56 68.71±0.45 
Vehicle 

Size 44.54±4.47 31.44±3.86 29.48±3.70 36.58±4.61 

Accuracy 74.72±0.76 78.75±0.72 81.15±0.63 80.64±0.70 
Vowel 

Size 60.76±2.04 28.46±1.18 31.66±1.15 31.68±1.22 

Table 6.2 Comparison of accuracy and tree size from small datasets 

 

In the 1400 trees generated from the small datasets, the AP classifier produces 

the worst solutions in terms of size whereas the best solutions in terms of 

accuracy are generated not from only one classifier but from all classifiers 

including the AP classifier. This observation supports the findings of Moret 
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(1982) that an algorithm that minimizes one performance measure does not 

necessarily minimize the other measures. It also corroborates the findings of Bot 

and Langdon (2000) that evolutionary algorithms do not necessarily perform 

well on all datasets. However, this observation contradicts the previous findings 

of Loh and Shih (1997) that a linear combination of spits is usually shorter and 

more accurate than axis-parallel splits. In terms of computing time, the AP 

classifier is the fastest followed by OC1. The EA classifiers took a much longer 

time to induce decision trees. This observation confirms the findings of Kim 

(2004). 

 

     The results of the averages of accuracy and size from the large datasets are 

shown in Table 6.3. The average results in accuracy do not show significant 

differences for all four classifiers. The averages of the tree size for the oblique 

classifiers have no significant differences but are much smaller than the trees 

induced by the axis-parallel algorithm. Of the 600 trees generated from the 

large datasets, the worst solutions in terms of accuracy and size were produced 

by the AP classifier while the best solutions were generated from the oblique 

classifiers. In these datasets, the observation that larger trees are less accurate 

holds. However,  the finding the smaller trees are more accurate does not hold. 

The computing time of the AP classifier remains fast but the computing time of 

OC1 has increased tenfold. Still, the EA classifiers took a much longer time to 

induce decision trees from the large datasets. 

   

Dataset  AP OC1 SPEA2 NSGA-II 

Accuracy 92.85±0.20 98.37±0.10 97.54±0.13 97.62±0.14 
RCB 

Size 83.72±2.51 12.78±0.63 18.50±1.12 17.28±1.09 

Accuracy 

on test set 84.78±0.22 86.51±0.18 88.69±0.16 88.62±0.14 
Optical-

digits 
Size 148.14±7.53 54.44±4.59 59.08±4.79 57.26±4.19 

Accuracy 

on test set 90.91±0.11 92.88±0.09 94.14±0.11 94.20±0.08 
Pen-

digits 
Size 211.10±5.15 74.98±3.53 71.72±3.87 76.64±3.97 

Table 6.3 Comparison of accuracy and tree size from large datasets 

 

Comparing the results of Table 6.2 and Table 6.3, the performance of the AP 

classifier in terms of accuracy seem to decline on the larger datasets. It may be 

obvious that the AP classifier induces larger and less accurate trees from large-
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dimensional datasets because of its technique of splitting the dataset with only 

one predictor at a time. 

  

    This is not conclusive. For example, the AP classifier performs poorly in terms 

of accuracy and tree size on the RCB dataset which has only two dimensions but 

it performs well on the Diabetes, Glass, and Vehicle datasets which have 8, 9, 

and 18 dimensions respectively. The oblique classifiers’ estimates on accuracy 

are better than the estimates of the AP classifier for most datasets except for 

the Diabetes, Glass, and Vehicle datasets. It is worthwhile to examine the 

reasons why the performance of the AP classifier is better on these datasets. 

Likewise, it is useful to examine the effect of changing the parameter settings of 

the oblique classifiers on their accuracy and tree size.  

 

     In the case of the OC1 classifier, increasing the number of hyperplanes 

generated per node slows down the program but may produce better trees. 

Increasing the number of random jumps may generate better coefficients but 

may cause over-fitting. In the case of the EAs, decreasing the number of 

generations gives worse trees in both accuracy and tree size. Increasing the 

number of generations does not ensure improvement in tree quality but surely 

increases computing time. Increasing the population size does not necessarily 

result in better trees but will definitely increase its computing time. This leads 

the experiment to one alternative - examine the effects of changing the 

mutation and recombination rates on tree quality (see Section 6.3). 

 

 

6.3 Sensitivity Analysis 
 

The purpose of the sensitivity analysis is to determine the effect of the input 

parameters specifically the mutation and recombination rates on the induction of 

oblique decision trees. The sensitivity analysis on one hand determines the input 

parameter or parameters that cause the variation in the output, if they cause 

any at all. If an input parameter is known to cause much of the variation in the 

output, this variable may be fixed to a certain value in order to reduce the 

variation in the output and as a consequence makes the algorithm more stable. 

On the other hand, if no single parameter causes the variation, the sensitivity 

analysis provides a value to describe the interaction among the input 

parameters and determines which among them does not interact at all with 

other variables. 
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    In this experiment, only two input parameters are tested for sensitivity 

namely, the mutation rate and the crossover rate. The input parameter  

population size remains at 28, and maxgen at 100, and the bit-turn probability 

at 0.5. The method of Sobol’ in SIMLAB (Sec. 3.3) is used as the sensitivity 

analysis method. In the Sobol’ setting with two input parameters, a minimum of 

96 combinations must be generated for the input sample file. The values of the 

mutation and crossover rates are real random numbers from a Uniform 

distribution in the interval (0,1). It is worthy to note that when the mutation 

rate is almost zero and the crossover rate is high, the EA behaves as a real-

parameter genetic algorithm. When the mutation rate is high and the crossover 

rate is zero, the EA behaves as an evolutionary program or as an evolutionary 

strategy. Ninety-six samples in the input file means that the experiment should 

generate 96 trees for each algorithm in each dataset. This totals to 2112 trees.  

 
     Table 6.4 shows the sensitivity indices for both the SPEA2 and NSGA-II 

algorithms in the small datasets. The highest first-order sensitivity indices in 

each dataset are in bold. The negative values are equivalent to zeroes, which 

means “no effect”. In the Cancer dataset, the mutation and crossover rates 

share almost the same values for SPEA2 for both accuracy and size whereas the 

mutation rate has a large effect on the accuracy of trees of NSGA-II. In the 

Diabetes dataset, both mutation and recombination do not have any main effect 

on the outputs of NSGA-II while the crossover rate has a large main effect on 

accuracy and size in SPEA2. In the Glass dataset, the input parameters do not 

have main effects for both algorithms. In the Housing dataset, the crossover 

rate has main effects on accuracy and size in NSGA-II. In the Iris dataset, there 

are no main effects from the input parameters in both SPEA2 and NSGA-II.  

 

     In the Vehicle dataset, the mutation and crossover rates have main effects 

on accuracy and size for SPEA2 but have none for NSGA-II. In the Vowel 

dataset, only the mutation rate has a main effect on the tree size in SPEA2 and 

no effect in NSGA-II. For all the small datasets, the total-order effects are 

significant for both algorithms in all datasets. This means that the mutation and 

crossover rates may not be removed as input parameters even though they may 

not have main effects. 

 

     Table 6.5 shows the comparison of Sobol’ sensitivity indices of the large 

datasets. The mutation rate significantly affects the size in both SPEA2 and 

NSGA-II trees. In the Optical-digit dataset, only the mutation rate affects the 
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variation in accuracy in NSGA-II. In the pen-digits dataset, similar values are 

observed for both SPEA2 and NSGA-II, i.e. the mutation has main effects on 

accuracy and tree size. 

 
SPEA2 NSGA-II 

Dataset 
Sensitivity 
Indices 

  

Accuracy Size Accuracy Size 

mutation 0.326 0.404 0.782 -0.291 First-
order crossover 0.352 0.330 0.138 -0.468 

mutation 0.638 0.868 1.077 1.286 

Cancer 
Total-
order crossover 0.664 0.794 0.433 1.109 

mutation -0.285 -0.263 -0.798 -0.961 First-
order crossover 0.794 0.721 -0.682 -0.823 

mutation 0.561 0.498 1.051 1.269 

Diabetes 
Total-
order crossover 1.640 1.482 1.167 1.408 

mutation -0.008 0.173 -0.424 0.065 First-
order crossover -0.031 0.194 -0.202 0.088 

mutation 0.766 0.390 1.056 1.099 

Glass 
Total-
order crossover 0.743 0.411 1.278 1.121 

mutation 0.153 0.340 -0.162 -0.014 First-
order crossover -0.289 -0.070 0.476 0.533 

mutation 1.009 1.098 0.604 0.483 

Housing 
Total-
order crossover 0.628 0.775 1.242 1.030 

mutation -0.040 0.000 0.008 0.000 First-
order crossover -0.017 0.000 0.176 0.000 

mutation 0.769 0.000 0.699 0.000 

Iris 
Total-
order crossover 0.792 0.000 0.867 0.000 

mutation 0.326 0.377 -0.361 -0.476 First-
order crossover 0.548 0.575 -0.341 -0.432 

mutation 0.646 0.792 0.801 0.875 

Vehicle 
Total-
order crossover 0.869 0.989 0.821 0.918 

mutation -0.020 0.411 -1.190 -0.200 First-
order crossover 0.100 -0.023 -1.400 -0.386 

mutation 0.760 1.091 2.118 1.107 

Vowel 
Total-
order crossover 0.880 0.652 1.901 0.922 

Table 6.4 Sobol’ sensitivity indices of small datasets  

 
Table 6.6 lists the input parameters that may be assigned a fixed value in order 

to reduce the variation in the corresponding output variable or variables. The 

input parameters listed have at least a main effect of 50% on the variation in 

the output and the values shown are their suggested values in order to generate 



 

 

141 

trees of higher accuracy or trees of smaller size. Table 6.6 also shows that the 

mutation rate has a significant effect on the variation of the tree size in the large 

datasets. 

 
SPEA2 NSGA-II 

Dataset 

Sensitivity 
Indices 

  

Accuracy Size Accuracy Size 

mutation 0.170 0.604 0.301 1.040 

First-order crossover -0.226 -0.229 0.002 0.023 

mutation 1.127 1.215 0.943 1.192 

RCB Total-order crossover 0.907 0.435 0.644 0.174 

mutation -0.552 -0.223 0.775 0.261 

First-order crossover -0.575 -0.244 0.354 -0.030 

mutation 1.373 1.138 0.927 0.778 Optical-
digits Total-order crossover 1.350 1.117 0.507 0.487 

mutation 0.496 0.670 0.534 0.673 

First-order crossover 0.493 -0.072 0.286 0.025 

mutation 0.801 1.226 0.931 1.053 Pen-
digits Total-order crossover 0.799 0.484 0.683 0.405 

Table 6.5 Sobol’ sensitivity indices of large datasets  

 

 

     Dataset SPEA2 NSGA-II 

 Accuracy Size Accuracy Size 

Cancer   
Mutation 

(≥0.70) 
 

Diabetes 
Crossover 

(≥0.50) 

Crossover 

(≥0.50) 
  

Housing    
Crossover 

(≥0.65) 

Vehicle 
Crossover 

(≥0.70) 

Crossover 

(≥0.70) 
  

RCB  
Mutation 

(≥0.25) 
 

Mutation 

(≥0.45) 

Optical-digits   
Mutation 

(≥0.60) 
 

Pen-digits  
Mutation 

(≥0.40) 

Mutation 

(≥0.50) 

Mutation 

(≥0.70) 

 

Table 6.6 Input parameters that have main effects of at least 50% 
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6.4 Sample Applications 
 

Table 6.7 presents the details of two application datasets. The Bankruptcy 

dataset contains financial measurements that determine an establishment’s 

ability to pay. There are 220 “can pay” samples and 72 “cannot pay” samples. A 

5-fold cross-validation is sufficient to show the average training accuracy of the 

decision trees induced from this dataset. The four types of classifiers, as 

described previously, are compared in terms of training accuracy and size, and 

accuracy on each of class. The Funfair dataset measures the general 

performance of an amusement facility based on patron perception over a variety 

of predictors. The decision tree however, does not classify the amusement 

facility according to general performance but classifies the types of patrons 

according to their perception. There are three classes of patrons, not satisfied 

(214 samples), satisfied (1,873 samples), and very satisfied (1,254 samples). A 

separate training set is used to induce the decision trees and another dataset to 

test them. Due to the large size of the training set, a 10-fold cross-validation is 

ideal.  

 
     In order to compare the performance of the classifiers, each dataset is 

classified on four different settings: (1) the raw dataset as is, i.e. without 

preprocessing, (2) the dataset is cleaned using imputation, (3) the dimensions 

are reduced via consistency-based feature selection (CBF), and (4) the 

dimensions are reduced via correlation-based feature selection (CFS). 

  

Name of dataset 
Number of 

samples n 

Number of 

predictors d 

Number of 

Classes c 

Bankruptcy 292 24 2 

Funfair 

3343 (training 

set) 

690 (test set) 

54 3 

Table 6.7 Description of sample-application datasets. 

     
Table 6.8 shows the results of four Bankruptcy datasets along four classifiers 

based on tree size, training accuracy, and accuracy of each class. Class 1 has 

220 instances and Class 2 has 72 instances. The Bank-O refers to the raw 

Bankruptcy dataset with 292 instances, 24 attributes and 423 missing values. All 

the classifiers replace missing values with the mean. The Bank-I refers to the 

Bankruptcy dataset where missing values were replaced using Expectancy 
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Maximization imputation.  The Bank-CBF refers to the Bankruptcy dataset after a 

consistency-based feature selection was applied. The number of attributes was 

reduced to eleven. The Bank-CFS refers to the Bankruptcy dataset after a 

correlation-based feature selection was applied. The number of attributes was 

reduced to one.  

   

     Bankruptcy Dataset AP OC1 SPEA2 NSGA-II 

Training 

Accuracy  

72.95 73.97 73.97 74.66 

Class 1 90.00 94.09 93.18 91.36 

Class 2 20.83 12.50 15.28 23.61 

Bank-O 

24 

attributes 

Average Size 6.8 2.40 3.80 5.40 

Training 

Accuracy  

66.10 71.23 68.5 66.10 

Class 1 83.18 88.73 85.45 82.27 

Bank-I 

24 

attributes 
Class 2 13.89 20.83 15.28 16.67 

 Average Size 13.2 5.60 6.00 12.40 

Training 

Accuracy  

71.23 72.60 72.60 71.23 

Class 1 91.82 88.18 95.00 87.73 

Class 2 8.33 25.00 4.17 20.83 

Bank-CBF 

11 

attributes 

Average Size 4.60 5.80 2.60 13.00 

Training 

Accuracy  

75.34 75.34 75.34 75.34 

Class 1 100 100 100 100 

Class 2 0 0 0 0 

Bank-CFS 

1 attribute 

Average Size 2.00 2.00 2.00 2.00 

Table 6.8 Comparison of algorithms on accuracy and tree size 

 

The results show that there are no significant differences among the classifiers 

in their average training accuracy and accuracy per class (best results are in 

bold). The oblique DTs perform better than the AP classifier in all datasets.  In 

addition, among the oblique classifiers, OC1 performs best on the different 

Bankruptcy datasets. On the other hand, all the classifiers perform better on the 

raw dataset than on the “clean” datasets Bank-I and Bank-CBF. This means that 

the classifiers perform better when missing values are replaced by the means of 

their respective attributes than when missing values are imputed. Similarly, 

feature selection using consistency selection did not positively affect the 
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classification accuracy of all the classifiers. However, when the dimension of the 

raw dataset reduces to one attribute using correlation, the classification 

accuracy of all classifiers improves and in this case creates the best decision 

tree. The decision tree generated in this dataset has only two leaves and 

classifies Class 1 without any error but misclassifies all instances of Class 2, 

which make the transformation to a decision rule simple.  

 

     Figure 6.2 shows a sample run of the axis-parallel classifier and the 

classification results of the Bank-CFS dataset from the rule “If (x1 <= 1.215) 

then Class 1”. 

 

 
Figure 6.2  Classification results from the  AP classifier (Bankruptcy) 

 

Table 6.9 shows the classification results of four Funfair datasets. For the 

training set, Class 1 has 1,254 instances, Class 2 with 1,873 instances, and 

Class 3 with 214 instances. For the test set, Class 1 has 333 instances, Class 2 

with 267 instances, and Class 3 with 90 instances.  The Fun-O refers to the raw 

Funfair dataset, a training set with 28,455 missing values and a test set with 

4,928 missing values. All the classifiers replace missing values with their mean 

when preprocessing of a dataset is omitted. The Fun-I refers to the Funfair 

dataset where missing values were replaced using Expectancy Maximization 

imputation.  The Fun-CBF refers to the Funfair dataset after a consistency-based 

feature selection was applied. The number of attributes is reduced to 15.  The 

Fun-CFS refers to the Funfair dataset after a correlation-based feature selection 

was applied. The number of attributes is reduced to 19.   

 
     The results along the classifiers do not show any significant differences in 

terms of accuracy on the training set and test set (best results are in bold). In 

the raw Funfair dataset, the SPEA2 classifier gives the highest training set 

accuracy whereas the AP classifier gives the highest accuracy in the test set.   

 

 

C:\oc1dos\trial>mktree -Dbankruptcycfs.dt -Tbankruptcy.csv -v 
292 testing examples loaded from bankruptcy.csv. 
Decision tree read from bankruptcy.dt. 
accuracy = 75.34        #leaves = 2.00  max depth = 1.00 
 
Class   1 : accuracy = 100.00% (220/220) 
Class   2 : accuracy = 0.00% (0/72) 



 

 

145 

       Funfair Dataset AP OC1 SPEA2 NSGA-II 

 Training Accuracy 64.35 64.29 64.71 63.33 

Class 1 46.89 49.76 49.84 50.16 

Class 2 81.63 79.55 81.1 78.86 

Class 3 15.12 15.89 8.41 9.35 
Fun-O 
 54 

attributes Average Size 16.6 15.6 5.4 6.6 

 Test set Accuracy 64.93 64.64 62.9 62.03 

 Class 1 70.27 69.97 69.67 72.67 

 Class 2 74.91 71.91 75.66 61.05 

  Class 3 15.56 23.33 0 25.56 

Training Accuracy 65.55 64.5 60.84 64.28 
Class 1 50.08 46.33 49.09 43.22 
Class 2 82.49 82.22 82.22 86.17 

Class 3 7.94 15.89 15.89 8.41 
Fun-I 
54 

attributes Average Size 13.4 6.8 3.3 3 

 Test set Accuracy 62.17 62.75 61.59 61.3 

 Class 1 77.18 65.15 66.67 64.56 

 Class 2 64.42 74.53 76.03 77.9 

  Class 3 0 18.89 0 0 

Training Accuracy 64.98 64.05 65.04 63.15 

Class 1 47.85 46.97 50.32 44.18 

Class 2 82.17 81.05 80.78 81.37 

Class 3 14.95 15.42 13.55 14.95 
Fun-CBF 

15 
attributes Average Size 10 7.6 6.2 13.6 

 Test set Accuracy 63.33 61.74 62.61 59.71 

 Class 1 65.17 66.37 81.08 58.26 

 Class 2 77.15 76.78 56.18 77.15 

  Class 3 15.56 0 13.33 13.33 

Training Accuracy 64.47 64.44 64.17 64.02 

Class 1 47.29 52.71 49.52 48.96 

Class 2 81.85 77.31 79.33 79.6 
Fun-CFS 

19 
attributes Class 3 13.08 20.56 18.22 15.89 

 Average Size 19.6 27.6 19.6 14 

 Test set Accuracy 61.3 61.59 63.77 62.46 

 Class 1 61.26 59.76 63.36 64.86 

 Class 2 76.78 76.4 80.52 75.28 

  Class 3 15.56 24.44 15.56 15.56 

Table 6.9 Comparison of algorithms on accuracy and tree size 

 

The opposite is true for the reduced dataset using CFS, the AP classifier gives 

the highest training set accuracy whereas the SPEA2 classifier gives the highest 

accuracy in the test set. In the imputed dataset, the highest training accuracy is 

induced by the AP classifier and the highest test set accuracy by the OC1 
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classifier.  The highest training accuracy for the reduced dataset using CBF is 

induced by SPEA2 and the highest test accuracy by the AP classifier.  

 

     All the preprocessed datasets (Fun-I, Fun-CBF, and Fun-CFS) improves the 

training set accuracy of most of the classifiers but worsen their test set 

accuracy. The best test accuracy for all classifiers is induced from the raw 

dataset, which means that preprocessing the Funfair dataset does improve 

classification accuracy.  

   

     The SPEA2 and AP classifiers induce better trees than the OC1 and NSGA-II.  

That AP classifier is more convenient for transformation to decision rules as it 

requires not more than eight nested if-then-else statements to classify the 

Funfair dataset. The SPEA2 classifier may also be utilized as it requires less if-

then-else statements but transforming a linear combination of attributes to a 

decision rule remains a problem. Figure 6.3 shows the oblique decision tree 

induced by SPEA2 from the Funfair dataset. Although each node is composed of 

a linear combination of all the predictors, important variables can be identified. 

These variables have high-valued coefficients. The decision tree in this case is 

easy to interpret since only one predictor remains in each hyperplane.  

 

 
     Figure 6.3  SPEA2 decision tree induced from the Funfair dataset 

 
Figure 6.4 shows a sample run of the SPEA2 classifier and the classification 

results of the raw Funfair dataset from the decision tree in Figure 6.3. The 

classifiers have generated varying classification accuracies and tree sizes, and 

none of them performed consistently in all the datasets.  Oblique classifiers are 

best suited for generating trees for the Bankruptcy dataset when preprocessing 

Training set: funfair.csv, Dimensions: 54, Classes: 3 
 
 
Root Hyperplane: Left = [263,811,131], Right = [657,515,29] 
0.958000 x[1] -8.245000 = 0 
 
r Hyperplane: Left = [304,381,22], Right = [353,134,7] 
0.991300 x[2] - 9.500000 = 0 
 
rl Hyperplane: Left = [220,334,16], Right = [84,47,6] 
-0.403200 x[11] -0.423000 x[17] +  0.218600 x[19] +  0.310400 x[22] 
- 0.288900 x[25] + 0.331900 x[29] + 0.984500 x[38] +   
0.347000 x[41] -0.302600 x[54] -8.648400 = 0 



 

 

147 

is omitted. Either the AP or SPEA2 classifiers may be utilized for the Funfair 

classifier. 

 

 
Figure 6.4 Classification results from the  SPEA2 classifier (Funfair) 

. 

 

6.5 Summary 
  
This chapter presents the application and analysis of evolutionary algorithms in 

Decision Tree construction and optimization. Two evolutionary algorithms of 

different selection schemes are compared to an axis-parallel classifier, and a hill-

climbing oblique classifier. The experiments show that the EAs generate 

comparable results with the latter methods in terms of classification accuracy 

and tree size. However, their computing time takes longer in all the datasets. 

The best results of the EAs become evident only in the large UCI databases. 

None of the classifiers dominated the UCI datasets with respect to inducing the 

optimal tree. This observation is also evident in the sample application datasets.  

The use of preprocessing techniques that clean the application datasets using 

imputation and that reduce their dimension using feature selection did not 

significantly improve the classification accuracy of all classifiers.  

 

    The sensitivity analysis shows that there are considerable dissimilarities 

between the main effects of mutation and recombination in all the UCI datasets, 

which means that none of them performs better in the induction of decision 

trees. However, the sensitivity analysis indicates that in the large datasets, the 

mutation rate significantly affects the tree size. With regard to the sensitivity 

indices between SPEA2 and NSGA-II, they differ in all the datasets and in most 

 
C:\pisa\dtea>mktree -Dfunfairspea.dt -Tfunfairtest.csv -v 
690 testing examples loaded from funfairtest.csv. 
4928 missing values filled with respective attribute means. 
Decision tree read from funfairspea.dt. 
accuracy = 62.90        #leaves = 4.00  max depth = 3.00 
 
Class   1 : accuracy = 69.67% (232/333) 
Class   2 : accuracy = 75.66% (202/267) 
Class   3 : accuracy = 0.00% (0/90) 
 

C:\pisa\dtea> 
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cases, show differing sensitivity indices, which implies that they treat the 

nondominated solutions differently. 

 

     The evolutionary algorithms in the above experiments are imbedded 

functions in the induction of the decision tree. They act as search algorithms 

that select a predictor or a linear combination of predictors which best splits the 

dataset to create small trees with high classification accuracy. In this respect, 

the tree size is a consequence of the goodness of a split. Our experiments have 

produced an ensemble of decision trees of varying accuracies and sizes and an 

approximation of the Pareto set can be easily calculated.  

 

     In the true sense of evolutionary multiobjective optimization, the ensemble 

of decision trees induced in our experiments can be compared to a population of 

decision trees in one generation of an MOEA wherein both objective functions of 

maximizing accuracy and minimizing size are evaluated simultaneously.  
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Chapter 7 
 

 

Multicriteria Performance 
Analysis of Nondominated 
Sets 
 

 

7.1 Introduction 
 

The multiobjective evolutionary algorithm experiments in the previous chapters 

have generated a variety of nondominated sets in each problem domain. 

Comparisons of the quality of the nondominated sets have not yet been 

presented in each of the cases except for the solution sets in Chapters 3 and 5. 

In the Competitive Facility Location problem, the quality of the nondominated 

sets generated by the MOEA were calculated and compared to the Pareto-

optimal set generated by Carrizosa and Plastria (1995). The error ratio metric, 

which measures the closeness of the nondominated set to the Pareto front in 

terms of set membership, was used to measure the quality of solutions in the 

CFLP.  In the Multiobjective Shortest Paths problem, the nondominated paths 

generated by the MOEAs were compared to the nondominated paths generated 

by Martins algorithm (1999). The comparisons were possible because the 

Pareto-optimal sets for the CFLP experiment are known and can be computed. 

However, in the Container Location model, the MSPP and the Decision Tree 

experiments, the Pareto-optimal sets are unknown and cannot be computed by 

deterministic methods. Hence, only approximations to their Pareto-optimal sets 

are available for performance analysis.  

 



150  

   This chapter presents some performance metrics that are useful in measuring 

the quality of nondominated sets when the Pareto-optimal set is unknown, and 

utilizes a multicriteria tool to determine the best nondominated set for the CLM, 

MSPP, and DT problems based on the performance metrics.  Several 

performance metrics exist in literature, and several comparative studies have 

been conducted that evaluate them (see Section 2.3.3).  

 

 

7.2 Performance Measures  
 

There are three main classifications of performance metrics for evaluating the 

quality of nondominated sets. The first classification evaluates the convergence 

or the proximity of the non–dominated set to the Pareto-front based on several 

concepts (e.g. dominance, distance, and set membership). The second 

classification evaluates the diversity of a non–dominated set by calculating the 

spread of solution along its front. The third classification evaluates both 

convergence and diversity. 

 

 

Hypervolume   
 

The hypervolume metric (Zitzler and Thiele 2000) calculates the volume covered 

by the members of the nondominated set Q. For each solution i ∈ Q, a 

hypercube vi is computed from a reference point and the solution i as the 

diagonal corners of the hypercube, The reference point can be found by 

constructing a vector of worst objective function values. The hypervolume (HV) 

is calculated as: 

 

( )i
|Q|

i vvolumeHV 1== U            (7.1) 

 

The hypervolume is a metric that measures both convergence and diversity of a 

nondominated set. 

 

 

Spacing 
 

Schott (1995) introduced a metric, which is a measure of the relative distances 

between consecutive solutions in the nondominated set Q is calculated as: 



 

 

151 

 

 
( )
Q

∑ =
−

=
Q

i i dd
S 1                                          (7.2) 

 

where     ∑ =≠∧∈ −=
M

m

k
m

i
mikQki ffmind

1
                       (7.3) 

 

Q

∑ −=
Q

i id
d 1                                               (7.4) 

 

Schott’s metric measures the diversity of a nondominated set. 

 

 

Set coverage metric 
 

This metric is based on Zitzler (1999). The metric computes the relative spread 

of solutions between two nondominated sets A and B. The set coverage metric 

C(A, B) calculates the proportion of solutions in B that are weakly dominated by 

solutions of A: 

 

( ) { }
B

baAaBb
BA

p:∈∃∈
=,C                                (7.5) 

 

The metric value C(A, B) = 1 means all members of B are weakly dominated by 

A. On the other hand, C(A, B) = 0 means that no member of B is weakly 

dominated by A. This operator is not symmetric, thus it is necessary to calculate 

C(B, A).The set coverage metric measures convergence based on the concept of 

dominance relations. 

 

 

Cardinality 
 

This metric counts the number of solutions in the nondominated set. It 

measures neither diversity nor convergence. 
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7.3 Computations and Results 
 

In order not to limit the description of the quality of a nondominated set by 

using only a single metric, a multicriteria evaluation is necessary. Hence, the 

computations in this chapter evaluate the quality of nondominated sets 

according to four criteria, which are mentioned in Section 7.2. The multicriteria 

tool employed in the computations is Decision Lab (Visual Decision, 2003). The 

Decision Lab software is multicriteria decision making software, which is based 

on the Preference Ranking Organization Method for Enrichment Evaluations 

(PROMETHEE) and the Graphical Analysis for Interactive Assistance (GAIA). The 

details of the PROMETHEE method are found in Bran and Mareschal (1986). 

GAIA, which makes use of principal component analysis, is a descriptive 

complement to the PROMETHEE  methods (Bran and Mareschal 1994). 

 

    Table 7.1 shows the computed values for each performance criterion in the 

different multiobjective optimization problems. There are four criteria. A smaller 

set cardinality is preferred. A spread that has smaller value means that the 

solutions on the on-dominated front are uniformly spaced therefore this criterion 

is minimized. Hypervolume and set coverage are maximized. Two nondominated 

sets are compared in each MOOP. One set is generated by NSGA-II and the 

other by SPEA2. Decision Lab can rank more nondominated sets but since the 

set coverage is a binary quality measure, only two nondominated sets can be 

evaluated each time.  

 

     The values of the LCFS and FCFS sets (for the Container Location Problem) 

are computed from a 50% space usage configuration. A 50-node of 10% density 

is the basis for the computed values in both MSPP (Multi-objective Shortest Path 

Problem) configurations. The Housing and the Optical Digits  are used as the 

nondominated sets for the Decision Tree problem. The hypervolume values for 

the MSPP are blank since they cannot be computed. This reduces the number of  

MSPP criteria to three.  

 

     Figure 7.1 shows the nondominated fronts of SPEA2 and NSGA-II in the LCFS 

optimization problem. By visual observation, it is not clear which front is better 

because there are some overlapping solutions between the SPEA2 and NSGA-II 

sets. However, the range of solutions in SPEA2 is wider than NSGA-II, which 

consequently creates a larger hypervolume. SPEA2 has more solutions but 
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NSGA-II has better set coverage as some of its solutions dominate several 

SPEA2 solutions. 

 
Criterion 

Nondominated 
Set 

Cardinality Spread Hyper-
volume 

Set 
Coverage 

  (Minimize) (Minimize) (Maximize) (Maximize) 

LCFS      
NSGA-II 6 0.2 4.76 0.41 
SPEA2 12 0.17 6.59 0.17 

FCFS      
NSGA-II 5 0.39 5.78 0.44 
SPEA2 9 0.21 7.03 0.2 

MSPP 2S|1M      
NSGA-II 7 0.8  0 
SPEA2 8 0.51   0 

MSPP 3S      
NSGA-II 8 0.57  0 
SPEA2 5 1.14   0.38 

Housing dataset      
NSGA-II 5 0.43 5.47 0.17 
SPEA2 6 0.38 6.98 0.6 

Optical-digits       
NSGA-II 5 0.36 5.96 0 
SPEA2 6 0.63 7.15 0.6 

Table 7.1 Computed criteria values of nondominated sets 
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Figure 7.1 Comparison of LCFS nondominated fronts 
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Decision Lab has a visualization tool that shows the relation between the criteria  

and the nondominated set, and shows a preferred solution if it exists. Figure 7.2 

shows a GAIA diagram that shows how each criterion relates to each action. The 

GAIA plane corresponds to the first principal components of the data, which 

ensures that a maximum quantity of information is available on the plane. An 

action in this case refers to a nondominated set. The orientation of the criteria 

axes indicates which criteria are in agreement with each other. In this case, 

cardinality and set coverage have the same orientation but opposite to 

hypervolume and spread. The orientation of the position of an action indicates 

its strong features. The length of the axis correspond to a criterion’s observed 

deviations between actions, the longer the axis the higher the deviation. In the 

example, the set coverage projects the longest axis, which means the difference 

in values between two actions in this criterion is greater, compared to the other 

criteria. 

 

 
Figure 7.2 GAIA  diagram for LCFS with equal weights 

 

The orientation of the pi, which is the decision axis, points to the preferred 

action or solution considering all the criteria. In this example, pi does not point 

towards any action, which means that there is no compromise solution. This due 

to the condition that NSGA-II has two strong features, SPEA2 has two strong 

features, and all the criteria have the same weight. Adding different weights to 

each criterion obviously changes the orientation of the pi decision axis.  
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Figure 7.3 shows the GAIA plane wherein the weights of hypervolume and set 

coverage are set at 1.0, spread at 0.50, and cardinality at 0.20. Consequently, 

SPEA2 becomes the compromise solution. 

 

      

 
Figure 7.3 GAIA  diagram for FCFS and LCFS with unequal weights 

 

The criterion weight is independent from the scale of the criterion which means 

the larger the value the more important the criterion. In order to compare the 

different criteria independently form their measurement units, the PROMETHEE 

method provides six preference functions. A preference function and a 

preference threshold are associated with each criterion when a decision-maker 

compares two actions.  

 

     Table 7.2 lists the preference thresholds for the LCFS example described in 

Chapter 4. The threshold represents the largest deviation that is considered as 

decisive by the decision-maker. For example, the cardinality threshold means 

that any difference in the number of solutions between NSGA-II and SPEA2 

should be important. Smaller differences correspond to lower degrees of 

preference. When the difference reaches the 75% threshold, then the set with 

the smaller cardinality is preferred in this criterion. The preference function 

translates the deviation between the values of two actions on a single criterion 
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in terms of a preference degree. The preference degree is an increasing function 

of the deviation. The degree of preference is expressed on a percentage scale. A 

linear preference function as defined by Bran and Mareschal (1986) is as 

follows: 

   

   ( ) 




>−<
≤≤−

=
pdpd

,pdpp/d
dH

orif1

if
                        7.5) 

 

As long as d is lower than p, the preference of the decision maker increases 

linearly with d. If d becomes greater than p, a strict preference exists. The linear 

preference function is used in the succeeding computations and is associated 

with all the criteria listed in Table 7.2 The linear preference function was chosen 

since the function takes into account any difference in the values between two 

alternatives. 

      

Criterion Threshold 

Cardinality 75% 

Spread 50% 

Hypervolume 75% 

Set Coverage 50% 

Table 7.2 Decision Lab preference thresholds 

 

The criteria spread and set coverage represent diversity and convergence 

respectively, and they are conflicting features. Both criteria are assigned the 

same threshold of 50% to avoid any preference to diversity or convergence. The 

hypervolume, which measures diversity and convergence, is assigned a 

threshold of 75% to assure that there is a significant difference in the number of 

dominated solutions between both nondominated sets.  

 

     Figure 7.4 shows the GAIA plane when the preferences have been 

incorporated. The orientation of cardinality and set coverage are pointing to 

NSGA-II, which means that they are decisive in finding a compromise solution, 

whereas the hypervolume and spread criteria are not decisive, which means that 

their differences are small. In this case, the preferred solution to the LCFS 

example is the NSGA-II nondominated set. 
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Figure 7.4 GAIA  diagram for LCFS with preferences. 

 

Figure 7.5 shows the nondominated fronts of SPEA2 and NSGA-II in the FCFS 

optimization problem. NSGA-II has solutions that dominate the solutions of 

SPEA2 when the handling time is longer than 555 minutes but has no solutions 

when handling time is less than 555 minutes. The range of solutions in SPEA2 is 

wider than NSGA-II. With this, the better set cannot be determined visually. 
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Figure 7.5 Comparison of FCFS nondominated fronts 
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The FCFS example has the same GAIA plane shown in Figure 7.2 when the 

criteria have no weights, and Figure 7.6 shows the GAIA plane when the 

preferences in Table 7.2 have been incorporated. The pi decision axis leans 

towards the NSGA-II option but its orientation is not as much as in the LCFS 

example. Still, the preferred solution is NSGA-II.      

 
Figure 7.6 GAIA  diagram for FCFS with preferences. 

 

Decision Lab is utilized for the MSPP to show which nondominated set has better 

quality. Figure 7.7 shows the plane for the 2S|1M configuration. The number of 

criteria has reduced to three as mentioned previously. The values for set 

coverage in both sets are zero, which means that there are no weakly 

dominated solutions from each set or that their solutions are similar. The pi 

decision axis has no preferred solution at this point therefore preferences should 

be incorporated to the Decision Lab model. Figure 7.8 shows that SPEA2 is the 

preferred solution after incorporating the thresholds in Table 7.2, and the 

decisive criterion is the spread of solutions. The set coverage criterion is not a 

factor since both sets do not cover any weakly dominated solutions between 

them. 
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 Figure 7.7 GAIA  diagram for a 2S|1M configuration without preferences 

 

 
 

Figure 7.8 GAIA  diagram for a 2S1M configuration with  preferences 
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In the 3S configuration as shown in Figure 7.9, the GAIA plane shows that the 

SPEA2 action is preferred, even without any decision-maker preference since it 

has two strong features whereas NSGA-II has only one. The result is the same 

after the preferences in Table 7.2 have been added. The decisive factors are 

cardinality and set coverage. 

 

 
Figure 7.9 GAIA  diagram for a 3S configuration without preferences 

 

The fronts shown in Figure 7.10 are the nondominated sets from the ensembles 

of trees generated in Chapter 6. The OC1 solutions are dominated by the 

solutions of either SPEA2, or NSGA-II, or AP. The nondominated solutions of the 

AP classifier are dominated by either SPEA2 or NSGA-II. Most of the 

nondominated solutions in NSGA are dominated by solutions in SPEA2. It seems 

that SPEA2 is the better nondominated set through the projection of their 

nondominated sets but needs to be validated using the PROMETHEE method. 

The nondominated sets of AP and OC1 need not be tested for performance 

quality as their solutions are dominated by both MOEAs solutions.  
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Figure 7.10 Nondominated fronts of the Housing dataset  

 

Figure 7.11 shows the GAIA plane of the Housing dataset options, and validates 

that SPEA2 is the preferred solution. The factors that favor SPEA2 are the 

hypervolume, the spread, and the set coverage. The result does not change 

when preference thresholds are added. In fact, the pi decision axis leans more 

to the direction of SPEA2 when preferences are added than it does when without 

any preferences. 

  

 
Figure 7.11 GAIA  plane for the Housing dataset without preferences 
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Figure 7.12 Nondominated fronts of the Optical Digits dataset 

 

 
Figure 7.13 GAIA  diagram for the Optical Digits dataset with  preferences 

 

Figure 7.12 shows the Optical Digits fronts, and most AP and OC1 solutions are 

dominated by either SPEA2 or NSGA-II, which means that AP and OC1 need not 

be considered as alternatives. It is difficult to determine which front is better 
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between SPEA2 and NSGA-II by visual observation alone, which calls for a 

multicriteria analysis. Similarly, a GAIA diagram (not shown) for the Optical 

Digits example does not show any preferred set when there are no preferences 

included in the computations. However, it shows that hypervolume and set 

coverage favor SPEA2, whereas spread and cardinality favor NSGA-II. Figure 

7.13, a GAIA diagram with the preferences thresholds in Table 7.2 added, shows 

that the preferred alternative is SPEA2, with hypervolume and set coverage as 

the decisive factors.  

 

 

7.4 Summary 
 

The chapter shows the importance of a multicriteria performance analysis in 

evaluating the quality of nondominated sets. Six problem examples from 

different problem domains were analyzed on four criteria of quality. These four 

criteria namely cardinality of the nondominated set, spread of the solutions, 

hypervolume, and set coverage do not favor any algorithm along the six 

problem examples. In the CLM example, the set coverage and cardinality criteria 

were the decisive factors since the nondominated set of SPEA2 and NSGA-II did 

not differ much in terms of hypervolume and spread. In the MSSP examples, the 

spread of solutions is the decisive factor for the 2S|1M configuration, and the 

cardinality and set coverage for the 3S configuration. The difference in set 

coverage values between SPEA2 and NSGA-II in the MSPP are small since both 

algorithms have almost identical nondominated solutions. In the Decision Tree 

examples, the decisive factors are set coverage and hypervolume. 

 

      The computations show that the decisive criterion or criteria vary in all 

examples except for the set coverage criterion. This shows the importance of a 

binary measure in evaluating the quality of nondominated sets, as the measure 

itself tests for dominance. 
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Chapter 8 

 

 

Conclusions and future 
work 
 

 

CONCLUSIONS 
 
The scientific objective of the dissertation is to improve the understanding of 

how evolutionary algorithms work in finding efficient solutions to multiobjective 

optimization problems through experimental research. The objective of the study 

is twofold: (1) to describe the performance of evolutionary algorithms in terms 

of stability, computational complexity, diversity and optimality of solutions in 

different multiobjective optimization problems, and (2) to describe their 

strengths and weaknesses in each of the MOOP considered in the study and 

identify why the MOEA succeeded or failed. 

 

     The thesis evaluated the performance of two multiobjective evolutionary 

algorithms on four problem sets that have different search spaces and data 

structure. The outputs of both MOEAs in each problem set were compared either 

to other algorithms or with each other, and their results with respect to each 

problem set were explained. The sensitivity analysis measured the effects of the 

input parameters on the outputs to describe stability. The multicriteria 

performance analysis evaluated the quality of nondominated sets in terms of 

diversity and optimality. The essential results are: 

 

     In terms of computational complexity, the MOEAs run in polynomial time 

with respect to the size of their population and are linear with respect to the 
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problem size. Hence, their runtime complexity does not change in the different 

problem sets. However, they have the worst execution time in all the problem 

sets. They need a large number of generations to find good nondominated 

solutions in both continuous and discrete search spaces. Furthermore, 

conducting sensitivity analyses for the MOEAs is computationally demanding in 

terms of execution time. 

 

    In terms of stability, the sensitivity analysis shows varying degrees of 

influence of the mutation and recombination rates on the output along all the 

problem sets and within each problem set. There are instances when the 

mutation rate has greater effect than the recombination rate and instances when 

it is the opposite. There are instances that both have small main effects and 

instances that their effects shift from low to high or high to low within the MOEA 

run. Unless the sensitivity analysis shows that the input parameters have high 

main effects and do not interact, fixing the values for the mutation and 

recombination rates that insure a stable output is difficult. 

 

    Similarly, the sensitivity indices between the MOEAs in all the test cases differ 

given the same input parameter values. The input parameters influence the 

outputs of each MOEA differently. Caution must be taken when comparing the 

performance of MOEAs as using the same combination of input parameters may 

favor one of the algorithms.  

 

     In terms of the quality of solutions, the MOEAs succeeded in finding 

comparable solutions to other algorithms. In the case of the decision tree 

problem, the MOEAs perform better in some datasets but worse on other 

datasets and the differences are not significant in the small datasets. The MOEAs 

perform better in larger datasets against a greedy algorithm and a hill climbing 

algorithm. In the case of the CFLP, the MOEA fails to converge to the Pareto-

optimal set. For the CLM and MSPP cases, the MOEAs are compared with each 

other and their performance are comparable in terms of diversity and optimality 

in their solutions. A visual projection of two-dimensional fronts is useful in 

interpreting the quality of nondominated sets, but becomes worthless in higher 

objective spaces. A multicriteria performance evaluation proves to be beneficial 

in understanding the qualities of a nondominated set. 

     

 

 

 



 

 

167 

FUTURE WORK 
    

The MOEAs did not fail to find efficient solutions to the test cases of different 

search spaces and structure. However, the performance of each MOEA and the 

influence of the genetic operators on its performance fluctuate, not only between 

the problem sets but also within each problem set. Due to the variation in their 

performance, it is difficult to characterize the problem sets on which they do well 

as it is difficult to find proper combinations of input parameters to have a stable 

output. The major difficulty lies in the fact that evolutionary algorithms combine 

two search strategies that behave very differently (mutation and recombination) 

and their behavior in searching for optimal solutions depend on the genetic 

representation of the optimization problem. Another drawback of an MOEA is its 

execution time.   

      

     The sensitivity analysis proves to be an important step in analyzing the 

behavior of an MOEA in terms of the main and interaction effects of its input 

parameters. A sensitivity analysis in each generation step better describes the 

behavior and the influence of each genetic operator. However, this requires 

much computational time. Future work on designing such experiments that 

reduce computing time in sensitivity analysis will be valuable.    

 

     On the issue of MOEA-execution time, future work on embedding a heuristic 

in the MOEA or hybrid methods will be beneficial, as a specific heuristic that 

suits a particular optimization may reduce the execution time and may be more 

efficient in finding optimal solutions for the problem sets considered in the 

study.     
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Appendix A 
 

 

The Sobol’ method and 
SIMLAB 
 

 

Sensitivity analysis (SA) is the study of how the variation in an observed 

response can be apportioned to different possible sources or factors. Variation in 

SA, is the randomness in a given dataset. It tries to determine how variable the 

output Y is to changes in the inputs. Sensitivity analysis is often performed using 

regression techniques. The regression coefficient for a given factor plays the role 

of a sensitivity measure for that factor. One advantage of regression methods is 

that they explore the entire interval of definition of each factor. Another is that 

each effect for a factor is in fact an average over the possible values of the other 

factors. Moreover standardized regression coefficients (SRC) also give the sign 

of the effect of an input factor on the output providing a simplified model of the 

input-output mapping. Methods of this type are called global to distinguish them 

from local methods wherein only one point of the factor space is explored, and 

factors are changed one at a time. A disadvantage of regression-based methods 

is that their performance is poor for non-linear models and can be misleading for 

non-monotonic models (Saltelli et al 2004).  

 

 

Model-free sensitivity analysis 
      

Many techniques have been developed that can be considered as a model-free 

extension of the regression methods as they can be applied to non-linear, non-

monotonic models. This subsection presents a general introduction to variance-
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based techniques, with cases of non-correlated input variables and of correlated 

input variables.  

 

     Consider a deterministic model represented by Y = f(X) where X = (X1, X2,…, 

Xd) is a vector of d input variables and Y is the model output. Methods of 

sensitivity analysis can be defined in terms of the decomposition of the function 

Y=f(X) into main effects and interactions. A high dimensional model 

representation (HDMR) of f(X) can be written as, 
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X      (A.1) 

 

This procedure is called decomposition of f(X) into terms of increasing 

dimensionality, wherein each first order term is a function of a single input 

variable, each second order term is a function of two variables, and so on. This 

decomposition is not unique as the lower order terms can be selected arbitrarily 

and the highest order term can be written as the difference between f(X) and 

the terms of lower order.  

 

    If each term in the HDMR is chosen with a zero average, then all pairs of 

terms in the HDMR are orthogonal to each other and the HDMR decomposition is 

unique. Being unique, each term can be defined by the conditional averages of 

f(X). 

 

( ) ( ) ( )YEXYEXf iii −=  

( ) ( ) ( ) ( )jjiijijiij XfXfX,XYEX,Xf −−=  

( ) ( ) ( ) ( ) ( )kjjkkiikjiijkjikjiijk X,XfX,XfX,XfX,X,XYEX,X,Xf −−−=  

 
The ( )ii Xf  are referred to as main effects of Xi, the ( )jiij X,Xf are two-way 

interactions between the pairs ( )ji X,X , etc. 

 

     One measure of sensitivity of Y to an individual input variable Xi that is often 

used is V[E(Y| Xi)], the expected amount of variance that would be removed 

from the total output variance when the true value of Xi is known (called as 

main effect). Dividing the main effect by the total unconditional variance, the 

first-order sensitivity index for variable Xi can be obtained and is defined as 
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This measure indicates the relative importance of an individual input variable Xi 

in driving the uncertainty, and directs the effort to reduce uncertainty in the 

future. This type of measure is used before conducting a calibration experiment 

on a given input. A high value for the main effect of a given input variable 

indicates that the variable is a good candidate for being calibrated via 

observations of the model output. The term 1- Si can be interpreted as the 

minimum value of the expected quadratic loss when approximating f(X) with the 

function E(Y|Xi). If Xi is important, then the approximating function E(Y| Xi)  

explains much of the variance of f(X) and Si is high.  

 

     If f(X) is approximated by a two variable function E(Y |Xi, Xj), then the 

minimum expected quadratic loss is V(Y)-V[E(Y |Xi, Xj)]. This corresponds to the 

maximum value of V[E(Y |Xi, Xj)], which is  the reduction in expected output 

variance when the true value of the pair (Xi, Xj) is known. It may be interpreted 

as the fraction of the output variance that is removed when the true value of Xi 

and Xj is known, or the fraction of the output variance that is explained  by the 

function E(Y |Xi, Xj). 

 

     The total effect for the input variable Xi is linked to E[V(Y|X-i)], which is the 

expected amount of output variance that would remain unexplained (residual 

variance) if only Xi and Xj were left free to vary over its uncertainty range and 

all the other variables are known. The term X-i represents all the input variables 

except Xi. Dividing the total effect by the total unconditional variance, the total 

sensitivity index (TSI) for variable Xi can be obtained and is defined as 

 

( )[ ]
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S

i

Ti

−=           (A.3) 

 

The total sensitivity indices are used in model building to identify unessential 

variables - those that are unimportant either singularly or in combination with 

others. All the input variables having a low total index can be frozen to any 

value within their range of uncertainty. Total sensitivity indices should be 

employed to reduce the number of uncertain model inputs.  
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     When the input variables are mutually orthogonal, independent, or non-

correlated then it is possible to decompose (or partition) the variance of f(X) into 

terms of increasing dimensionality  

 

( ) ∑∑∑∑ ++++=
<<<

d,...,
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     This decomposition is called ANOVA-HDMR and it is unique. The single terms 

Vi, Vi j, Vi jk,…, are called partial variances and they are orthogonal. No 

covariances are involved in the decomposition. The single terms Vi, Vij, Vi jk,…, 

can be computed by suitably integrating the corresponding terms in the 

decomposition.  

 

( )[ ]ii XYEVV =  

( )[ ] jijiij VVX,XYEVV −−=  

( )[ ] jkikijkjiijk VVVX,X,XYEVV −−−=           

 

Hence:  

 

Vi  / V(Y) =  Si are the first order sensitivity indices (also called main 

effects).  

Vi j / V(Y) =  Sij are the second order sensitivity indices (also called two-

way interactions)  

Vi jk / V(Y) =  Sijk are the third order sensitivity indices (also called three-

way interactions)  

 

The total sensitivity index STi for a given Xi in the orthogonal case is the sum of 

all sensitivity indices that include the input variable Xi. 

 

     There are several variance-based techniques for sensitivity analysis and one 

such method is by Sobol’(Chan et al. 1997). The Sobol’ method (Saltelli et al 

2000) is a variance-based global sensitivity analysis method based upon total 

sensitivity indices that take into account interaction effects. The TSI of an input 

is defined as the sum of all the sensitivity indices involving that input. The TSI 

includes both the main effect as well as interaction effects (Homma and Saltelli, 

1996). For example, if there are three inputs X1, X2 and X3, the TSI of input X1 is 

given by S(X1) + S(X1 X2) + S(X1 X2 X3), where S(Xi) is the sensitivity index of 

Xi. S(X1) refers to the main effect of X1. S(X1 X2) refers to the interaction effect 
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between X1 and X2. S(X1 X2 X3) refers to the interaction effect between X1, X2, 

and X3. Effort has been made to reduce the computational complexity associated 

with the calculation of Sobol’ indices (Saltelli 2002a). The method of Sobol’ in its 

improved version uses quasi-random sampling of the input factors The pair (Si, 

STi) give a fairly good description of the model sensitivities at a reasonable cost, 

which for the improved Sobol’ method is of 2n(k+1) model evaluations, where n 

represents the sample size that is required to approximate the multidimensional 

integration to a plain sum. n can vary in the 100–1000 range (Saltelli et al., 

2005). 

 

     The Sobol’ method is used in the study because of the following features:  

 

(1) It can cope with both nonlinear and non-monotonic models, and provide 

a truly quantitative ranking of inputs and not just a relative qualitative 

measure. 

(2) The types of influence of an input that are captured by Sobol’ method 

include additive, nonlinear or with interactions.  

(3) The Sobol’ method can be smoothly applied to categorical variables 

without re-scaling.  

(4) It can explore the whole range of variation in the input factors instead of 

just sampling factors over a limited number of values.  

 

 

SIMLAB 
 

SIMLAB (2004) is a program designed for global uncertainty and sensitivity 

analysis based on Monte Carlo methods. It offers several techniques for sample 

generation, sensitivity analysis, and a link to external model execution. The link 

allows execution of complex models that can hardly be coded as simple 

mathematical functions such as genetic algorithms (see Figure A.1).  

 

    In general, a Monte Carlo sensitivity analysis involves five steps. In the first 

step, a range and distribution are selected for each input variable (input factor). 

If the analysis is primarily of an exploratory nature, then quite rough distribution 

assumptions may be adequate. In the second step, a sample of points is 

generated  from the  distribution  of  the inputs specified in the first step. The 

result is a sequence of samples (input sample). In the third step, the model is 

fed with the samples and a set of model outputs is produced. In essence, these 

model evaluations create a mapping from the input space to the space of the 
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results. This mapping is the basis for subsequent uncertainty and sensitivity 

analysis. In the fourth step, the results of model evaluations are used as the 

basis for uncertainty analysis. Uncertainty is characterized statistically by the 

mean value and the variance. In the fifth step, the results of model evaluations 

are used as the basis for sensitivity analysis.  

      

 

 
 

Figure A.1  External model execution. 
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Appendix B 
 

 

SPEA2 and NSGA-II 
 

 

Appendix B presents the complete pseudo code of SPEA2 and NSGA-II to show 

their differences in terms of finding nondominated solutions and runtime 

complexity (see Table A.1). The main reference of SPEA in literature is found in 

Zitzler et al. (2002). The main reference of NSGA-II is found in Deb et al. 

(2002).  Among several reports that evaluate MOEAs as enumerated in Chapter 

2, the technical report by Deb et al. (2001) which compares the performance of 

both algorithms on scalable multiobjective optimization test problems is most 

significant. 

 

 

Strength Pareto Evolutionary Algorithm 2 (SPEA2)  
 

Input:    N : population size 

             N : archive size 

   T : maximum number of generations 

Output:   A : non-dominated set 

 

Step 1: Initialization.  

Initialize(P0)    generate an initial population of size N 

0P  = ∅   create the empty archive (external set)  

 t = 0. 

 

Step 2: Fitness assignment:   

{ }jiPPjji p∧+∈= +1tt|)(S  calculate strength of individual  i     (B.1) 
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∑
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ijPPj
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)(S)(R                  calculate raw fitness of individual     (B.2) 

;)(D

σ
k

i
2 + 

1
=i                      calculate density  of individual i       (B.3) 

NNk += is a density parameter  

σ
k

i
 is the distance between solution i 

and its kth nearest neighbor 

        )(D)(R)(F iii +=               calculate fitness of individual i           (B.4) 

 

Step 3: Environmental Selection.  

            1+tP = Pt + tP     copy all non-dominated individuals  

            if (| 1+tP | > N  )then 

                 reduce( 1+tP )  use truncation operator to reduce the 

size of 1+tP  to N ,  

             else if (| 1+tP |< N )  

                  then fill( 1+tP )  add dominated individuals from tP  and 

1+tP . 

 

Step 4: Termination. 

             if (t ≥ T) or  

            (other stopping criterion)  

                  then return(A)   return the nondominated set A 

                 Stop. 

 

Step 5: Mating selection.  

             Select( 1+tP ) perform binary tournament selection 

with replacement  

 

Step 6: Variation. 

variate(mating_pool )  apply recombination the mating pool 

mutate(mating_pool)  apply mutation to the mating pool  

t = t +1   increment generation counter  

           go to Step 2 
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SPEA2 first assigns a strength value S(i), to each individual i from the archive 

( N ) and population (N)  representing the number of solutions i dominates. 

Refer to (B.1) Then the raw fitness R(i) of each individual i is calculated which 

measures the strength of i’s dominators. The raw fitness acts as a niching 

mechanism but poorly performs when most individuals in N+N  are non-

dominated, i.e. the population forms new solutions in only a few clusters, in 

effect compromising exploration of the search space. Refer to (B.2).  This 

phenomenon is called genetic drift.  SPEA2 introduces a density estimator (B.3), 

a fitness sharing mechanism to avoid genetic drift. The density estimator is 

defined as the inverse of the distance of an individual in objective space to the 

k-th  nearest neighbor. The density value is then added to the raw fitness value 

to give the final fitness function (B.4).  The computing run-time of the fitness 

function is governed by the density estimator which is O(N2log N). 

 

     SPEA2 offers two selection procedures, environmental and mating selection. 

The environmental selection is concerned with choosing individuals that will have 

to move on to the next generation archive 1+tP  from the current archive tP  and 

population Pt. SPEA2 maintains an archive tP  in each generation and is 

composed of the “best” individuals of a fixed size N  which is equal to the 

population size N. Two usual situations may occur in selection. First, the number 

of non-dominated solutions in 1+tP  is less thanN .  SPEA2 resolves this by 

adding the “best” dominated individuals from tP + Pt to 1+tP . Second, the 

number of non-dominated solutions for the next generation is greater thanN . 

SPEA2 uses a truncation procedure whereby the individual with the minimum 

distance to another individual is truncated until | 1+tP |= N . SPEA2 implements 

binary tournament selection with replacement to fill in the mating pool. This 

type of mating selects two solutions at a time in each tournament. Their fitness 

values are evaluated and the better solution is placed in the mating pool.  The 

truncation operator dominates the runtime complexity of the selection procedure 

and takes O(N2log N)on the average and  O(N3) on the worst case.  

 

 

Nondominated Sorting Genetic Algorithm II (NSGA-II) 
 

Input:    N : population size 

      T : maximum number of generations 

Output:   A : non-dominated set 

 



190  

Step 1: Initialization.  

Initialize(P0)  Generate a population of size N 

 t = 0. 

Q0 = variate(P0) recombine and mutate P0 and create 

offspring population Q0 

 Sort(Fk, p) 

 

Step 2: Termination 

if (t ≥ T) or 
(other stopping criterion)   

Then A = Pt 

return(A)  return the nondominated set A 

Stop. 

 

Step 3: Environmental Selection 

Rt = Pt U Qt combine parent and offspring 

population 

F = fast-nondominated-sort(Rt) create all nondominated fronts of  Rt 

Pt+1= ∅ and k = 1 

while (|Pt+1| + |Fk |) ≤ N 

           crowding-distance(Fk) calculate crowding distance 

           Pt+1 = Pt+1 U Fk add members of Fk to new parent 

population 

 k = k + 1 

Sort(Fk, p) sort in descending order using p 

Pt+1 = Pt+1 U Fk[1: (N − |Pt+1|)] choose first (N − |Pt+1|) of  Fk  

 

Step 4: Mating Selection and Variation 

Qt+1 = create(Pt+1) apply selection, crossover, and 

mutation to create new offspring 

population 

t = t + 1 increment generation counter 

goto Step 2 
 

 

In NSGA-II, an initial random parent population P0 is created. The population is 

sorted based on nondomination. Each solution is assigned a fitness (or rank) 

equal to its nondomination level (1 is the best level, 2 is the next-best level, and 

so on). Thus, minimization of fitness is assumed. At first, the usual binary 
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tournament selection, recombination, and mutation operators are used to create 

an offspring population Q0 of size N. The step-by-step procedure shows that 

NSGA-II algorithm is simple and straightforward. First, a combined population 

Rt= Pt U Qt of size 2N is formed and sorted according to nondomination. Since 

all previous and current population members are included in Rt, elitism is 

ensured. The solutions belonging to the best nondominated set F1 are the best 

solutions in the combined population and must be emphasized more than any 

other solution in the combined population. If the size of F1 is smaller than N, all 

members of the F1 are chosen for the new population Pt+1. The remaining slots 

of the next population Pt+1 are chosen from subsequent nondominated fronts (F2, 
F3, …, Fk) in the order of their ranking. This procedure is continued until no more 

sets can be accommodated. In general, the count of solutions in all sets from F1 

to Fk would be larger than the population size. The solutions of the last front are 

sorted using the crowded-comparison operator in descending order to fill N 

population members. The new population Pt+1 is subjected to selection, 

crossover, and mutation to create a new offspring population Qt+1 of size N. The 

algorithm uses a binary tournament selection operator but the selection criterion 

is based on the crowded-comparison operator p. Since this operator requires 

both the rank and crowded distance of each solution in the population, these 

quantities are calculated while forming the new parent population Pt+1. 

 

 

     NSGA-II uses a fast nondominated sorting approach which requires O(N2) 

computations. For each solution, NSGA-II calculates two entities: 1) domination 

count ni, the number of solutions which dominate the solution i, and 2) a set of 

solutions Si that the solution i dominates. This requires O(N
2) comparisons.  

  All solutions in the first nondominated front have their domination count as 

zero. For each solution i with ni = 0, NSGA-II visits each member j of its set Si 

and reduces its domination count by one. If for any member j, the domination 

count becomes zero, j is added in a separate list Q. These individuals belong to 

the second nondominated front. This procedure is continued with each member 

of Q and the third front is identified. The process continues until all fronts are 

identified. For each solution in the second or higher level of nondomination, the 

domination count ni can be at most N−1. Each solution is visited at most N−1 

times before its domination count becomes zero. At this point, the solution is 

assigned a nondomination level and is never be visited again. Since there are at 

most N−1 such solutions, the total complexity is O(N2). Thus, the overall 

complexity of the procedure is O(N2). Another way to calculate this complexity is 

to realize that the body of the first inner loop (for each i ∈ Fk) is executed 
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exactly N times as each individual can be the member of at most one front and 

the second inner loop (for each j ∈ Si) can be executed at maximum N−1 times 

for each individual results in the overall O(N2) computations.  

    

Fast-nondominated-sort (P) 

for each i ∈ P 

 Si = ∅ 

 ni = 0 

 for each j ∈ P 

  if  (i p j) then  

   Si = Si U { j}  Add j to solutions dominated by i 

  else if (j p i) then  

   ni = ni + 1   Increment the domination counter of i 

 if  (ni = 0)   then   i  belong to the first front 

irank = 1 

F1 = F1 U {i} 

 

k = 1     Initialize the front counter 

while Fk ≠ ∅ 

 Q = ∅    Used to store the members of the next 

front 

 for each i ∈ Fk 

  for each j ∈ Si 

   nj = nj − 1 

   if (nj = 0) then   j belongs to the next front 

 jrank = k + 1 

 Q = Q U {j} 

 k = k + 1 

 Fk = Q 

 

NSGA-II uses a crowded-comparison approach. This approach does not require 

any user-defined parameter for maintaining diversity among population 

members. An estimate of the density of solutions surrounding a particular 

solution in the population is calculated, which is the average distance of two 

points on either side of a particular solution along each of the objectives. This 

quantity serves as an estimate of the perimeter of the cuboid  formed by using 

the nearest neighbors as the vertices and is called the crowding distance. The 

crowding-distance computation requires sorting the population according to each 

objective function value in ascending order of magnitude. Thereafter, for each 
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objective function, the boundary solutions (solutions with smallest and largest 

function values) are assigned an infinite distance value. All other intermediate 

solutions are assigned a distance value equal to the absolute normalized 

difference in the function values of two adjacent solutions. This calculation is 

continued with other objective functions. The overall crowding-distance value is 

calculated as the sum of individual distance values corresponding to each 

objective. Each objective function is normalized before calculating the crowding 

distance. The complexity of this procedure is governed by the sorting algorithm 

which is O(NlogN). After all population members in the nondominated set are 

assigned a distance metric, two solutions are compared for their proximity with 

other solutions. A solution with a smaller value of this distance measure means 

it is more crowded by other solutions.  

     The crowded-comparison operator (p) guides the selection process at the 

various stages of the algorithm toward a uniformly-spread Pareto-optimal front. 

Assume that every individual in the population has two attributes: 

nondomination rank (irank) and crowding distance (idistance). A partial order p can 

be defined as 

 

i p  j  if  (irank < jrank)  or ((irank = jrank) and (idistance > jdistance)) 

 

That is, between two solutions with differing nondomination ranks, preference is 

given to the solution with the lower (better) rank. Otherwise, if both solutions 

belong to the same front, then preference is given to the solution that is located 

in a lesser crowded region.  

 

 

 SPEA2  NSGA-II 

• Creates a single non-

dominated front 

• Fitness is based on one 

attribute  

–  a function of dominators 

and  density  

• O(N2logN) 

• Creates subsequent non-

dominated fronts 

• Fitness is based on two separate 

attributes.  

– non-domination rank 

– crowding distance 

• O(N2) 
Figure B.1  Differences between SPEA2 and NSGA-II 
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Appendix C 
 

 

PISA – A Platform and 
Programming Language 
Independent Interface for 
Search Algorithms 
 

 

Bleuler et al. (2002) proposed a platform and programming language 

independent interface for search algorithms (PISA) that uses a text file format 

for data exchange. PISA allows developers to maintain collections of precompiled 

optimization algorithms and applications which can be arbitrarily combined. 

Application developers with little knowledge in optimization can easily try 

different optimization strategies for the problem at hand whereas algorithm 

developers have the opportunity to test optimization techniques on various 

applications without the need to program the problem-specific parts. The 

interface is simple to use, and most existing optimizers and applications can be 

adapted to the interface specification with several modifications 

 

 

Control Flow 
 

The model ensures that there is a consistent control flow state for the whole 

optimization process and that only one module is active at any time. Whenever a 

module reads a state that requires some action on its part, the operations are 

performed and the next state is set.  
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Figure C.1  The control flow and data flow specifications of PISA. 

 

The core of the optimization process consists of state 2 and state 3: In each 

generation the selector chooses a set of parent individuals (µ) and passes them 
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to the variator. The variator generates new individuals (λ) on the basis of the 
parents, computes the objective function values of the new individuals, and 

passes them back to the selector. In addition to the core states, two more states 

are shown in Figure C.1. State 0 and state 1 trigger the initialization of the 

variator and the selector, respectively. In state 0 the variator reads the 

necessary parameters. Then, the variator creates an initial population (α), 

calculates the objective values of the individuals and passes the initial 

population to the selector. In state 1, the selector also reads the required 

parameters, then selects a sample of parent individuals and passes them to the 

variator. The abovementioned states provide the basic functionality of the 

optimization. 

 

 

Data Flow 
 

The data transfer between both modules introduces some overhead compared to 

a traditional monolithic implementation. Thus, the amount of data exchange for 

each individual must be minimized. Since all representation specific operators 

are located in the variator, the selector does not have to know the 

representation of the individuals. Therefore, it is sufficient to convey only the 

following data to the selector for each individual: an index, which identifies the 

individual in both modules, and one objective vector. In return, the selector only 

needs to communicate the indices of the parent individuals to the variator. The 

proposed scheme allows restricting the amount of data exchange between both 

modules to a minimum. An individual is superior to another in regard to one 

objective, if the corresponding element of the objective vector is smaller, i.e., 

objective values are to be minimized. Furthermore, the two modules need to 

agree on the sizes of the three collections of individuals passed between each 

other: the initial population, the sample of parent individuals, and the offspring 

individuals. These sizes are denoted as α, µ and λ in Fig. C.1. Instead of using 

some kind of automatic coordination, which would increase the overhead for 

implementing the interface, the sizes are specified as parameter values. Setting 

µ and λ as parameters requires that they are constant during the optimization 
run. Most existing algorithms comply with this requirement. A collection of 

parent individuals is passed from the selector to the variator and a collection of 

offspring individuals is returned. The actual individuals are stored on the 

variation side.  
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Synchronization 
 

In order to reach the necessary separation and compatibility, the selector and 

the variator are implemented as two separate processes. These two processes 

can be located on different machines with possibly different operating systems. 

A common state variable is used for synchronization, which both modules can 

read and write. Both processes regularly read this state variable and perform the 

corresponding actions. If no action is required in a certain state, the respective 

process sleeps for a specified amount of time and then rereads the state 

variable. The common state variable is implemented as an integer written to a 

text file. File access is completely portable and familiar to all programmers. The 

only requirement is access to the same file system. All data exchange is 

established through text files. Using text files with human readable format 

allows the user to monitor data exchange easily. A separate file is used for each 

collection of individuals shown in Fig. C.1. Several parameters are necessary for 

both modules and each module specifies its own parameter set. However, 

parameters that are common to both modules are written in a common 

parameter file. This prevents users from setting different values for the same 

parameter on the variation and the selection side. The set of common 

parameters consists of the number of objectives and the sizes of the three 

different collections of individuals that are passed between the two modules. 

 

    The authors of PISA maintain a website at http://www.tik.ethz.ch/~sop/pisa/.  

The website provides documentation, downloads for variator and selector 

modules, and PISA beginner modules among others.  The source code of the 

modules is written in the C programming language in a Linux environment but 

the modules come with binary files that run in Linux, Solaris, and Windows. For 

Windows users, the original C code must be ported to a C compiler that runs in 

DOS.  Since PISA uses a text file format for data exchange, collections of 

precompiled optimization algorithms and applications can be arbitrarily 

combined independent of their platform.  However, the data exchange via files 

increases the execution time but this overhead is small compared to the benefits 

of PISA. 
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