
����������	��

��������	
������

����������
������������
���
�����
����
������	����������	��
����

��
�����������

���������
������������������������������
�
��
�����������������������������������

�

!
���"������#$%&'&$#$

��
(
�
� ���
�)���)�%������*)�!�������
+
��
(
�
� ���
�)���)�*
���,���

�

��� �!�� "�!��#"�$!%#
�����-�.��/�������������������

Acknowledgement

My gratitude and appreciation go to my promotor, Prof. dr. Gerrit Janssens for

his guidance throughout my doctoral program, his invaluable contribution to this

research, and his persistence in reminding me to write my dissertation with

clarity and correctness.

 I wish to thank Prof. dr. Koen Vanhoof for his willingness to act as my co-

promotor, and the evaluation committee, Prof. dr. Frank Neven, Prof. dr. Jan

Van Den Bussche, Prof. dr. ir. Tom Dhaene, Prof. dr. Marc Pirlot, and Prof. dr. ir.

Patrick Beullens for their time and thoughtful criticism.

 I wish to thank the Vlaamse Interuniversitaire Raad (VLIR) through Prof. dr.

Joseph Leunis and Prof. dr. ir. Dirk De Waele for funding my scholarship, Saint

Louis University and Fr. Paul Van Parijs for giving me the opportunity to pursue

a doctoral degree, and Hasselt University for granting my scholarship.

 I wish to thank Ms. Martine Dekonink and the International Office staff, Ms.

Sarah Verlackt, Ms. Erika Vandersmissen and Mr. Marc Thoelen for assisting me

with my visa application and accommodation every year, and the Finance Office

and the Secretariat for assisting me with the financial and administrative tasks

necessary during my doctoral program.

 Finally, I would like to thank my family, Teresa and Michael for their support

during the years of my study.

Jose Maria Pangilinan

Diepenbeek, September 2009

i

Contents

1 Introduction 1

1.1 Motivation... 1

1.2 Purpose and Significance of the Study ... 2

1.3 Methodology.. 2

2 Literature Review on Multiobjective Optimization and Evolutionary

Algorithms 5

2.1 Multiobjective Optimization .. 6

2.1.1 Problem Definition.. 6

2.1.2 Scalarization methods... 9

2.1.3 Non-scalarization Methods ...17

2.2.1 Representation ...20

2.2.2 Population size and its initialization20

2.2.3 Variation of the population..21

2.2.4 Evaluation of an individual ..27

2.2.5 Selection ...27

2.2.6 Models of evolutionary algorithms..31

2.2.7 Interaction among genetic operators34

2.3.1 Early implementations of an MOEA.......................................37

2.3.2 Modern implementations of an MOEA....................................42

2.3.3 Comparative studies of MOEAs ..48

3 The Competitive Facility Location Problem: 53

3.1 Introduction ...53
3.1.1 Problem Definition...54

3.1.2 Literature Review..57

3.2 Multiobjective Evolutionary Algorithm ...58
3.2.1 Genetic Algorithm for the CFLP..59

3.2.2 Experiments and Results ..61

3.3 Sensitivity Analysis..65

ii

3.3.1 Experiments and Results ..65

3.4 Summary...81

4 The Container Location Model: 83

4.1 Introduction ...83

4.1.1 Problem Formulation..85

4.1.2 Literature Review..88

4.2 Multiobjective Evolutionary Algorithm ...89

4.2.1 Genetic Algorithm for the CLM...89

4.2.2 Experiments and Results ..91

4.3 Sensitivity Analysis..96
4.3.1 Experiments and Results ..96

4.4 Summary...103

5 The Multiobjective Shortest Path Problem: 105

5.1 Introduction ...105

5.1.1 Problem Definition...107

5.1.2 Literature Review..108

5.2 Multiobjective Evolutionary Algorithm ...110
5.2.1 Genetic Algorithm for the MSPP ...110

5.2.2 Experiments and Results ..112

5.3 Sensitivity Analysis..116
5.3.1 Experiments and Results ..116

5.4 Summary...119

6 Oblique Decision Trees: 121

6.1 Introduction ...121
6.1.1 Problem Definition...122

6.1.2 Literature Review..124

6.2 Multiobjective Evolutionary Algorithm ...133
6.2.1 Genetic Algorithm for DT..133

6.2.2 Experiments and Results ..134

6.3 Sensitivity Analysis..138

6.4 Sample Applications...142

6.5 Summary...147

7 Multicriteria Performance Analysis of Nondominated Sets 149

7.1 Introduction ...149

7.2 Performance Measures ...150

7.3 Computations and Results ..152

7.4 Summary...163

iii

8 Conclusions and future work 165

Bibliography 169

A The Sobol’ method and SIMLAB 181

B SPEA2 and NSGA-II 187

C PISA – A Platform and Programming Language Independent Interface

for Search Algorithms 195

iv

v

List of Tables

Table 3.1 Attraction Parameters..62

Table 3.2 Input parameters ...63

Table 3.3 Comparative results of efficient solutions................................64

Table 3.4 Probability distribution of input parameters66

Table 3.5 Comparative results of best solutions.....................................67

Table 3.6 Sobol first-order and total-order indices for MOEA-AX68

Table 3.7 Sobol first-order and total-order indices for MOEA-BLX..............69

Table 3.8 GA parameters that give best solutions to MOEA-AX70

Table 3.9 Quality values after translation of S on the x-axis75

Table 3.10 Quality values after translation of S on the y-axis76

Table 3.11 Quality values after translation of S in both x and y-axes77

Table 3.12 Quality values of the reflection of S at y=40............................77

Table 3.13 Quality values of the reflection of S at x=40............................78

Table 3.14 Quality values of the reflection of S at y=80-x.........................78

Table 3.15 Quality values after a 90˚ clockwise rotation at (50,20)79

Table 3.16 Quality values after a 90˚ counter-clockwise rotation (25, 45)...80

Table 4.1 Comparison of solutions in an FCFS scheme93

Table 4.2 Comparison of solutions in an LCFS scheme94

Table 4.3 Comparison of bi-objective solutions in an FCFS scheme.95

Table 4.4 Comparison of bi-objective solutions in an LCFS scheme.95

Table 4.5 Input factors and probability distributions97

Table 4.6 Sobol’ indices for an FCFS configuration (single-objective).98

Table 4.7 Sobol’ indices for an LCFS configuration(single-objective)99

Table 4.8 Sobol’ indices for the LCFS configuration (multiobjective).101

Table 4.9 Sobol’ indices for an FCFS configuration (multiobjective).102

Table 5.1 Input factors and probability distributions117

Table 5.2 Sobol’ indices for a 3-S configuration, 10 generations117

Table 5.3 Sobol’ indices for a 3-S configuration, 11-20 generations.........118

Table 5.4 Sobol’ indices for a 2-S|1-M configuration.............................118

vi

Table 6.1 Description of datasets ..135

Table 6.2 Comparison of accuracy and tree size from small datasets.......136

Table 6.3 Comparison of accuracy and tree size from large datasets137

Table 6.4 Sobol’ sensitivity indices of small datasets140

Table 6.5 Sobol’ sensitivity indices of large datasets.............................141

Table 6.6 Input parameters that have main effects of at least 50%.........141

Table 6.7 Description of sample-application datasets............................142

Table 6.8 Comparison of algorithms on accuracy and tree size143

Table 6.9 Comparison of algorithms on accuracy and tree size145

Table 7.1 Computed criteria values of nondominated sets153

Table 7.2 Decision Lab preference thresholds......................................156

vii

List of Figures

Figure 1.1 Conceptual Framework ... 4

Figure 2.1 Decision space maps to objective space................................... 7

Figure 2.2 Nondominated solutions.. 8

Figure 2.3 Weighted Sum Method ..10

Figure 2.4 Non-convex problem ...11

Figure 2.5 ε-Constraint Method..12

Figure 2.6 Goal Attainment method..13

Figure 2.7 Simulated annealing pseudocode...15

Figure 2.8 Tabu search pseudocode..16

Figure 2.9 Evolutionary algorithm template..19

Figure 2.10 Single-point crossover...22

Figure 2.11 Multipoint crossover ..23

Figure 2.12 Discrete recombination..24

Figure 2.13 Intermediate recombination ...25

Figure 2.14 Line recombination ...25

Figure 2.15 Binary mutation ...26

Figure 3.1 Facilities and consumers ..61

Figure 3.2 Translation of S on x-axis ..71

Figure 3.3 Translation of S on y-axis ..71

Figure 3.4 Translation of S on xy-axis...72

Figure 3.5 Reflection of S at y-axis...72

Figure 3.6 Reflection of S on x-axis ..73

Figure 3.7 Reflection of S at xy-axes, y=80-x ..73

Figure 3.8 Rotation of S at (50,20) clockwise 90˚74

Figure 3.9 Rotation of S at (25,45) counter-clockwise 90˚.......................74
Figure 4.1 Setup time and travel time...87

Figure 4.2 Chromosome representation...90

Figure 4.3 Handling time, LCFS vs. FCFS ...92
Figure 5.1 Graph with 3 objectives to be minimized...............................107

viii

Figure 5.2 Crossover starts at the locus at position 3.............................112

Figure 5.3 Average number of paths for the 3-S configuration.................113

Figure 5.4 Average number of paths for the 2-S|1-M configuration114

Figure 5.5 A value path plot for 3-S configuration by SPEA2.114

Figure 5.6 A value path plot for the 3-S configuration in NSGA-II115

Figure 5.7 A value path plot for the 2-S|1-M configuration in SPEA2.........115

Figure 5.8 A value path plot for the 2-S|1-M configuration in NSGA-II.116
Figure 6.1 Decision tree ...123

Figure 6.2 Classification results from the AP classifier (Bankruptcy)144

Figure 6.3 SPEA2 decision tree induced from the Funfair dataset146

Figure 6.4 Classification results from the SPEA2 classifier (Funfair)147
Figure 7.1 Comparison of LCFS nondominated fronts.............................153

Figure 7.2 GAIA diagram for LCFS with equal weights...........................154

Figure 7.3 GAIA diagram for FCFS and LCFS with unequal weights..........155

Figure 7.4 GAIA diagram for LCFS with preferences..............................157

Figure 7.5 Comparison of FCFS nondominated fronts.............................157

Figure 7.6 GAIA diagram for FCFS with preferences..............................158

Figure 7.7 GAIA diagram for a 2S|1M configuration without preferences ..159

Figure 7.8 GAIA diagram for a 2S1M configuration with preferences159

Figure 7.9 GAIA diagram for a 3S configuration without preferences160

Figure 7.10 Nondominated fronts of the Housing dataset161

Figure 7.11 GAIA plane for the Housing dataset without preferences.........161

Figure 7.12 Nondominated fronts of the Optical Digits dataset162

Figure 7.13 GAIA diagram for the Optical Digits dataset with preferences .162
Figure A.1 External model execution...186
Figure B.1 Differences between SPEA2 and NSGA-II..............................193
Figure C.1 The control flow and data flow specifications of PISA.196

1

Chapter 1

Introduction

1.1 Motivation

Many real-world optimization problems are multiobjective by nature and the

objectives are in conflict with each other. Mathematical techniques are available

to find best-compromise solutions by aggregating multiple objectives into a

single function. They have their drawbacks as they have difficulty dealing with

concave and discontinuous Pareto fronts. Stochastic local search algorithms

(also called metaheuristics) are often used when exact or mathematical methods

are infeasible to employ and are used to solve difficult optimization problems.

These algorithms provide approximations to quality solutions based on a

randomized search process using knowledge from a neighborhood of solutions.

The more often used metaheuristics are Simulated Annealing, Tabu Search, Ant

Colony Optimization, and Evolutionary Algorithms. Evolutionary Algorithms (EA)

seem particularly suitable to solve multiobjective optimization problems. There is

a vast collection of published work on multiobjective evolutionary algorithms

(MOEA) and their applications. An increasing number of research papers report

comparative findings of several evolutionary algorithms in terms of computing

speed and Pareto optimality as tested on various multiobjective problem

instances or applications with known Pareto sets. However, in many cases

insufficient explanation is given as to why and how an MOEA succeeds or fails in

terms of the performance of its genetic operators.

2

1.2 Purpose and Significance of the Study

The scientific objective of the dissertation is to improve the understanding of

how multiobjective evolutionary algorithms work in finding efficient solutions to

multiobjective optimization problems through experimental research. The

objective of the study is twofold: (1) to describe the performance of evolutionary

algorithms in terms of stability, computational complexity, diversity and

optimality of solutions in different multiobjective optimization problems (MOOP),

and (2) to describe their strengths and weaknesses in each of the MOOP

considered in the study and describe how the MOEA succeeded or failed in terms

of the effect of its genetic operators.

 The stability of an algorithm is concerned with the sensitivity of the results to

changes in the MOEA parameters settings. Computational complexity refers to

the solution run-time complexity in terms of the size of the problem. Diversity

measures the spread of solutions in the nondominated set in order to provide

the decision maker a true picture of trade-off solutions. Optimality measures the

proximity of the best nondominated set to the Pareto-optimal set.

 This study is a significant undertaking in promoting the use of evolutionary

algorithms in multiobjective optimization and will be beneficial to other

researchers and practitioners when they use evolutionary algorithms in finding

solutions to different problems related to multiobjective optimization. This

research provides proposals on how to evaluate the performance of an MOEA in

terms of its sensitivity to genetic operators and the “goodness” of its solutions in

terms of diversity and optimality. The strengths and weaknesses of the genetic

operators of the EAs in multiobjective optimization are determined, which is

helpful to other researchers and practitioners of EA and multiobjective

optimization in developing new MOEAs. In addition, the sensitivity analyses of

the genetic operators are clearly described, which is significant in setting proper

parameter values for the genetic operators to drive the search for nondominated

solutions more efficiently.

1.3 Methodology

The performance of MOEAs is investigated on several test problems and in some

cases on problems with precise solutions and known Pareto-optimal sets. Such

3

test problems are used to compare MOEA results with known Pareto-optimal

solutions and obtain more information on the behavior of MOEAs in terms of

their proximity to the Pareto-optimal set and the diversity of their efficient

solutions. In the absence of known Pareto-optimal-solutions, performance

measures are utilized to describe and compare nondominated sets. Similarly, a

selection of real-world case studies in multiobjective optimization is investigated.

Testing MOEAs on application problems is necessary to demonstrate the

performance and usefulness of MOEAs in practice. In order to study the

performance of an MOEA, it needs to be tested on different optimization

problems that require different search spaces, data types, structure of solutions,

cardinality of solution sets, and distribution of solutions among others (see

Figure 1.1).

 The research method is for the greater part experimental in nature. The

experimental activity is structured along four multiobjective optimization

problems that are classified according to data structure, data representation,

and search space. The problem sets are specifically selected to evaluate the

performance and usefulness of MOEAs in different settings. Results are

compared, when possible, with other standard or other EA algorithms over a

variety of instances. Sensitivity of results to changes in parameter setting is

tested and the type of test problems on which the MOEA fails or succeeds is

investigated.

 The first problem is a bi-objective problem that has a continuous (real-

parameter) search space. A solution is represented as a fixed-length string of

real-valued decision variables. The cardinality of the set of efficient solutions is

known to be fixed. The application under study for this problem class is the

competitive facility location problem.

 The second problem is a combinatorial optimization problem that has a

discrete search space. A solution is coded as a fixed-length string of discrete

decision variables and the cardinality of the search space is exponential. The

application for this problem class is the container storage location problem.

 The third problem is an NP-complete problem and has a discrete search

space. A solution is represented as a variable-length string of discrete decision

variables. The cardinality of the solution set is exponential to the number of

vertices in the network. The application under study for this problem class is the

shortest path problem.

4

 The fourth problem is an NP-hard problem and has a continuous search

space. A solution is a tree structure with each node representing a string of

continuous decision variables. The cardinality of the set of efficient solutions is

exponential to the size of the tree. The application for this problem class is

applied on decision trees or classification trees.

Figure 1.1 Conceptual Framework

Chapter 2 presents an introduction and literature review of multiobjective

optimization methods, evolutionary algorithms, and multiobjective evolutionary

algorithms. Chapters 3, 4, 5, and 6 discuss the application of MOEAs on

different test problems. The literature review, the design of the genetic

operators, the experiments, and the sensitivity analysis are discussed in each

application chapter. Chapter 7 presents a multicriteria performance analysis for

the solution sets generated in the application chapters. Finally, Chapter 8

presents the conclusions and future research directions.

MOEA
TEST
PROBLEMS

STRUCTURE

SEARCH SPACE

COMPLEXITY
SENSITIVITY
ANALYSIS
MODEL

KNOWN
SOLUTIONS

MOEA
SOLUTIONS

DIVERSITY AND
OPTIMALITY OF
SOLUTIONS

STABILITY OF
ALGORITHM

5

Chapter 2

Literature Review on
Multiobjective Optimization
and Evolutionary
Algorithms

A number of books have been published over the years that present and analyze

multiobjective optimization methods. Ehrgott (2005) provides the necessary

mathematical foundation of multicriteria optimization to solve nonlinear, linear

and combinatorial problems with multiple criteria. Miettinen (1998) provides an

extensive survey and review of literature of the theories and methods in

nonlinear (deterministic) multiobjective optimization. Collette and Siarry (2003)

systematically present a comprehensive analysis of multiobjective optimization

methods from scalar methods to metaheuristics. Deb (2001) introduces the use

of evolutionary algorithms in multiobjective optimization. Other books that

provide a comprehensive treatment on the design of multiobjective evolutionary

algorithms and their applications are by Tan et al. (2005), Abraham et al.

(2005), and Coello et al. (2002).

 Chapter 2 does not present a detailed theoretical enumeration and analysis

of all multiobjective optimization methods but instead presents an overview of

multiobjective optimization and a discussion of well-known deterministic

methods and heuristic techniques. Section 2.1 presents the basic concepts of

multiobjective optimization in terms of Pareto-optimality and an overview of

6

scalarization and non-scalarization techniques. Section 2.1.2 presents various

scalarization techniques, three deterministic methods are presented namely, the

weighted sum, the ε-constraint, and the goal attainment and two metaheuristics

namely simulated annealing and tabu search. The advantages and

disadvantages of these methods are also discussed. Other scalarization methods

such as the hybrid method (Guddat et al. 1985), the elastic constraint method

(Ehrgott and Ryan 2002) and Benson’s method (Benson 1985) are not discussed

in this chapter since these are derivatives of other techniques. The hybrid

method combines the weighted-sum and the ε-constraint methods. The elastic

constraint method relaxes the ε-constraints by using penalty functions. Engau

and Wiecek (2007) derived that the Benson method can be considered a special

case of the hybrid method. The details and theoretical discussion of scalarization

techniques and similar methods are found in Ehrgott (2005) and in Deb (2001).

Section 2.1.2 briefly presents lexicographic ordering as a non-scalarization

method.

 Section 2.2 introduces the fundamentals of an evolutionary algorithm, its

framework, its operators, its models and the implementation guidelines for its

proper use. Section 2.3 enumerates several multiobjective evolutionary

algorithms from their early implementations to the modern and shows the

advantages and disadvantages of each algorithm. The section provides a review

of comparative studies of modern MOEAs to show where each MOEA performs

best in relation to multiobjective optimization.

2.1 Multiobjective Optimization

2.1.1 Problem Definition

Multiobjective optimization is concerned with the minimization or maximization

of a vector of objectives f(x), where f(x) = (f1(x), f2(x), f3(x)… fm(x)), f(x) ∈ ℜℜℜℜm.

Its general form can be stated as follows:

Minimize/Maximize f(x)

 subject to
gj(x) = 0 j = 1, …, J (2.1)

 hk(x) ≥ 0 k = 1, …, K

 xl ≤ x ≤ xu

7

Note that there are m objective functions to be maximized or minimized and x is

a vector of n decision variables with J equality and K inequality constraints. The

constraints xl ≤ x ≤ xu are upper and lower bounds on the decision variable x. If

any of the objectives of f(x) are conflicting, no single solution to the problem

exists. Instead, the outcome is a set of solutions and the concept of

nondomination or Pareto optimality must be used to characterize the objectives.

A nondominated solution is one in which an improvement in one objective

requires a decline in another. To explain this further, consider a feasible region,

the decision space DDDD , in the parameter space x ∈ ℜℜℜℜn and the objective space

ZZZZ={y ∈ ℜℜℜℜm} wherein y = f(x) subject to x ∈ DDDD, the multiple objective function,

fm(x) maps the decision space into an objective function space as shown in

Figure 2.1.

Figure 2.1 Decision space maps to objective space

In a two-dimensional representation of a minimization problem, an objective

space and a feasible region are shown in Figure 2.2. The set of nondominated

solutions lies on the bold curve (Pareto-optimal front). Points A and B represent

specific nondominated points. The points A and B are nondominated solution

points because an increase in one objective f1 requires a decline in the other

objective f2.

Decision Space DDDD

f2

x2

x3

x1

x

f1

y

Objective Space ZZZZ

8

The concepts can be formalized as follows (Bosman and Thierens 2003):

1) Pareto dominance:

A solution x
1
 is said to dominate a solution x2 (denoted by 21 xx p) if

and only if

)))()(|())()(|((2121 xxMxxM iiii ffiffi <∈∧≤∈ ∃∀

where M={1,2,…,m}

2) Pareto-optimality:

 A solution x
1
 is said to be Pareto-optimal if and only if 122

xxx p:∃¬

3) Pareto-optimal set:

The set PS of all Pareto-optimal solutions: PS = { 1221
xxxx p:|∃ }

4) Pareto-optimal front: The set of all objective function values

corresponding to the solutions in PS :
PF ={ f(x) = (f1(x), f2(x), f3(x)… fm(x)): x∈PS}

Figure 2.2 Nondominated solutions

Konak et al. (2006) state that a practical approach to multiobjective

optimization is to investigate a set of solutions (the best-known Pareto set) that

Nondominated
solutions

f2

f1

A

B

f1A

f1B

f2A f2B

ZZZZ

9

represent the Pareto-optimal set as much as possible. A multiobjective

optimization approach should achieve the following three conflicting goals:

1. The best-known nondominated front should be as close possible as to the

Pareto-optimal front. Ideally, the best-known nondominated set should

be a subset of the Pareto-optimal set.

2. Solutions in the best-known nondominated set should be uniformly

distributed and diverse over of the Pareto front in order to provide the

decision maker a true picture of trade-offs.

3. In addition, the best-known nondominated front should capture the

whole spectrum of the Pareto-optimal front. This requires investigating

solutions at the extreme ends of the objective function space (ends of

the bold line as shown in Figure 2.2).

2.1.2 Scalarization methods

Optimization methods are termed traditional or classical in the sense that these

algorithms combine multiple objectives into a single function. They are more

commonly known as aggregating functions. They are easy to implement by

transforming the multiobjective problem into a single-objective nonlinear

programming problem or into a multiobjective goal-programming problem.

However, several disadvantages have been noted: (1) these methods may miss

some optimal solutions; (2) they are influenced by the shape of search spaces;

and (3) they are time-consuming methods because they should be performed in

a series of separate runs to obtain the Pareto-optimal solutions (Das and Dennis

1997). Three scalarizing strategies namely, weighted sum, ε-constraint, and

goal attainment are presented to show how aggregating functions work as

applied to multiobjective optimization. In addition to the traditional methods,

this section presents two global optimization algorithms namely, simulated

annealing and tabu search. Although they are considered global optimization

techniques, they search for solutions using scalarized functions as the traditional

methods. The following sections present the mechanics of each method and

their specific disadvantages in finding Pareto-optimal solutions.

10

WEIGHTED SUM STRATEGY

The weighted sum strategy converts the multiobjective problem f(x) into a scalar

problem by constructing a weighted sum of all the objectives. This means that

the multiobjective optimization problem is transformed into a scalar optimization

problem of the form

)()(
1

xx i

m

i

i
Dx

fwfmin ∑
=∈

= (2.2)

where wi ≥ 0 are the weighting coefficients representing the relative importance

of the objectives. The weighting coefficients usually correspond to the relative

importance of the objectives but this is not always necessary. The problem

reduces to determining the weight coefficients for each objective.

 As an illustration, consider the bi-objective case as shown in Figure 2.3. A

line S is drawn below the objective function space. The optimization finds the

value of B for which S touches the boundary of ZZZZ as it proceeds outwards from

the origin. The weights w1 and w2 define the slope of S, which leads to the

solution point B where S touches the boundary of ZZZZ.

Figure 2.3 Weighted Sum Method

This approach is the simplest way to solve problems with convex Pareto-optimal

fronts but a uniform spread of the vector of weights w={w1,w2, …,wm} does not

S

f1

f2

ZZZZ

B

11

produce a uniform spread of points on the Pareto curve. If the Pareto curve is

not convex, no w exists for which the solution S lies in the non-convex part.

Figure 2.4 illustrates a non-convex objective space and shows why the weighted

sum approach cannot capture the set of Pareto-optimal solutions in a non-

convex objective space.

Figure 2.4 Non-convex problem

ε-CONSTRAINT METHOD

The ε-Constraint Method is based on minimizing one (primary) objective

function, by treating the other objectives as constraints bounded by some

acceptable levels ε (Haimes et al. 1971). A single objective minimization is

carried out for the most relevant objective function fp subject to additional

constraints on the other objective functions. The ε-constraint method

reformulates the multiobjective problem by keeping a primary objective, fp, and

expressing the other objectives in the form of inequality constraints

)(xp
Dx

fmin
∈

 (2.3)

subject to pimiεf ii ≠=≤ ;,...,1;)(x

f2

f1

S

A

B

ZZZZ

A

B

12

Figure 2.5 illustrates the ε-constraint method for a bi-objective problem where f1

is treated as the primary objective and f2 as a constraint such that f2(x) ≤ ε2.

The value ε2 divides the feasible objective space into two parts and the left

portion becomes the feasible region. This approach then tries to find the solution

that reduces or minimizes the new feasible region, in the above example, at the

solution point f1 = f1s and f2 = ε2.

Figure 2.5 ε-Constraint Method

 This method faces the problem that the new feasible region depends on the

value of ε and finding a suitable value of ε to ensure a feasible solution is not

straightforward. A further disadvantage of this approach is it requires more

information from the user as the number of objectives increases. The obvious

drawback is that it is time consuming, and the coding of the objective functions

may be difficult or even impossible for problems with too many objectives

(Coello 2000).

GOAL-ATTAINMENT METHOD

The goal attainment method is a variation of goal programming wherein targets

or goals are assigned for each objective and the objective function minimizes the

sum of the absolute value of differences between target values and computed

values. Although the method works on vectors, it is still considered an

f2

A

B

f1

ε2

f1s

Z

13

aggregating approach. The method requires the user to assign a vector of

weighting coefficients, w={w1,w2, …,wm} relative to the degree of under- or

over- achievement of the objectives. This involves expressing a set of design

goals, p = {p1,p2,…,pm} that is associated with a set of objectives, f(x) = (f1(x),

f2(x), f3(x)… fm(x)). The optimization problem is to find a solution x* by

minimizing a scalar α and is formulated as

αmin

Dx
,α

∉
ℜ∈

 (2.4)

subject to fi(x) –wiα ≤ pi ; i = 1, 2, …,m

The term wiα introduces an element of “slackness” or soft constraints into the
problem. The slack variable α is an argument that simultaneously minimizes the
vector of objectives f(x). The goal-attainment method provides a convenient

intuitive interpretation of the design problem that is solvable using standard

optimization procedures such as nonlinear programming. The goal attainment

method is represented geometrically for the two-dimensional problem in Figure

2.6.

Figure 2.6 Goal Attainment method

The weighting vector w defines the direction of search from p to the feasible

function space, ZZZZ(α). Specification of the goals p1 and p2 defines the goal point,

A

B
p

ZZZZ(α)

w

f2
f2s

p1

p2

f1

f1s

14

p. The term α, which changes the size of the feasible region is altered during the
optimization. The optimal solution is the first point where the vector p + wα
intersects the feasible region ZZZZ(α). This intersection is the unique solution point
(f1s, f2s). The main problem with the method is that it requires some problem

knowledge from the decision maker, such as setting logical goals and target

values for each objective, and finding a suitable weight vector w. Improper

values may mislead the search direction towards non-optimal solutions.

 Other classical methods that aggregate a multiobjective optimization

problem into a scalar optimization problem exist similarly suffer from the

difficulties stated above, that is, all algorithms require some problem knowledge

to find suitable parameters such as weights, value functions or user-specified

targets or goals to find a single Pareto-optimal solution. Deb (1999) explicitly

points out the limitations of the classical approaches.

SIMULATED ANNEALING

Figure 2.7 shows a pseudocode for simulated annealing. Simulated annealing

was originally intended for combinatorial optimization. The basic idea in

simulated annealing is to reduce the possibility of getting trapped in local optima

by allowing local search moves from a current solution to its inferior neighbors.

The algorithm generates local movement in the neighborhood of the current

state and accepts a new state based on a function depending on temperature t.

The temperature t changes as the search progresses.

 Serafini (1994) developed a multiobjective simulated annealing algorithm

(MOSA) for solving multiobjective combinatorial problems. Serafini’s MOSA is a

single-point method that optimizes one weighted scalarizing function at each

step. Ulungu et al. (1999) suggested a population-based MOSA, which optimizes

multiple scalarizing functions separately. Each of them is optimized by a single

simulated annealing run. To maintain the diversity of resultant nondominated

solutions, a set of fixed evenly-distributed weight vectors are used. Unlike

Serafini’s MOSA, Ulungu’s MOSA has the equal chance to optimize each

weighted scalarizing function. Czyzak et al. (1998) proposed a MOSA with

adaptive search directions. It also uses a population of solutions to optimize

multiple weighted scalarizing functions at the same time. To find the solutions in

the unexplored area of the Pareto-optimal front, this approach adaptively tunes

the weight vector of each solution during the search according to the closeness

15

to its neighbors. There are many variations of MOSA in literature and a

comprehensive survey can be found in Coello et al. (2002).

 Simulated annealing is a robust technique that can handle arbitrary cost

functions, is a good option when heuristics are unavailable, and is easy to code.

However, repeatedly annealing with a schedule is very slow, especially if the

cost function is expensive to compute. Since it uses scalarized functions to find

optimal solutions, it also suffers from the disadvantages of scalarization

techniques.

Figure 2.7 Simulated annealing pseudocode.

TABU SEARCH

The general algorithm of tabu search (Glover 1989) is shown in Figure 2.8. The

basic idea of tabu search is to create a subset T from N whose elements are

called tabu moves form historical information of the search process.

Membership in T is awarded either by a historical list of moves detected as

unproductive or by a set of tabu conditions. The subset T limits the search and

Simulated_Annealing{
x0 = initial solution
t0 = initial temperature (>0)
while(t > 0){

x’ = pick a random neighbor to x derive a new solution x’ by
randomly changing current
solution

c= f(x) – f(x’) difference of acceptance
function

if(c > 0) x = x’ keep the better solution
else {

r = random number in range [0…1]
m = exp(-c/t)
if(r < m) x = x’ take the worse

solution
to avoid local optimum.

}
t = reduced (t); decrease the temperature

}
}

16

keeps tabu search from becoming a simple hillclimber. At each step of the

algorithm, a best movement defined by the function opt() is chosen.

 Hansen (1997) proposed a multiobjective tabu search (MOTS*) that

generates random solutions as starting points of the algorithm. A weight vector

is determined for each of these solutions based on a weighted metric that

distributes the solutions uniformly along the Pareto front. Gandibleux et al.

(1997) proposed a MOTS based on the use of a utopian reference point. The

utopian point used is the best objective function value for each objective from

the solution in the neighborhood of current solutions. Weights are used in the

aggregating function and are changed periodically to promote diversity.

Figure 2.8 Tabu search pseudocode

Two tabu lists are used: (1) a list of normal attributes considered tabu that

prevents the algorithm from returning to visited solutions, and (2) a list to

variate the weights. Other authors have proposed hybrids of the basic tabu

search that combine tabu search with other search methods such as hillclimbing,

simulated annealing, and population-based methods to find solutions to MOOPs.

Tabu_Search {

1: x0 = initial solution

2: x* = x x* is the best solution

3: c = 0 initialize iteration counter

4: T = ∅ T is the set of tabu moves

 if (N (x) – T = ∅) goto step 4 N(x) is the neighborhood

 function

 else {c= c+1

 Select nc ∈ N(x) – T such that
 nc(x)= opt(n(x): n ∈ N(x) – T) opt() is a user-defined

 evaluation function

 }

 x = nc(x)

if (f(x) < f(x*) then x* = x

if (stop) N(x) – T = ∅ check stopping condition

else {update T

 goto step 4

 }

}

17

A survey of MOTS algorithms and their performance comparisons can be found

in Coello et al. (2002). Tabu search has been widely used in combinatorial

optimization but its use in continuous search spaces is not extensive. The basic

problem with tabu search with multiple objectives is how to generate diverse

solutions. In addition, if other search techniques are used for exploration such as

EAs, extra computational cost is added to the algorithm. Since tabu search uses

weights to find optimal solutions, it also suffers from the disadvantages of

scalarization techniques.

2.1.3 Non-scalarization Methods

LEXICOGRAPHIC ORDERING

In lexicographic ordering the decision maker must arrange the objective

functions according to their absolute importance. This ordering means that a

more important objective is infinitely more important than a less important

objective. After ordering the most important objective function is minimized

subject to original constraints. An optimal solution x* in lexicographic ordering is

called lexicographically optimal and f(x*) is a lexicographically a minimal vector

in the objective space. The lexicographic optimization problem can be written as

())()()(lexmin 21 xxx m

Xx

f,...,f,f
∈

 (2.5)

The objective functions are arranged according to lexicographic order from the

most important f1 to the least important fm. A feasible solution x ∈ X is

lexicographically optimal if there is no x’ ∈ X such that f(x) <lex f(x). Miettinen

(1998) proves that the solution to the lexicographic problem (2.5) is Pareto-

optimal. The advantage of lexicographic ordering is its simplicity but the

decision maker may have difficulties in ranking the objectives in terms of their

importance. In addition to its drawbacks, the priority ranking implies the

absence of tradeoffs between criteria (Ehrgott 2005).

2.2 Evolutionary Algorithms

Different strategies can be used for solving multiobjective optimization

problems. On one hand, the decision-making is reduced to a single-objective

18

function and scalar optimization is used to find the corresponding solution. This

approach often requires knowledge of the optimization problem in order to

assign proper weights for each criterion. Such approach entails repetition of the

optimization procedure until a satisfactory solution is found. On another hand,

the decision-making is applied at the end of the optimization to avoid repetition,

in which an optimization run generates a set of solutions. The optimal solution in

this case is the Pareto-optimal set. However, the size of the Pareto-optimal set

may be infinite in some instances and is impossible to find with a finite number

of solutions. In such a case, the preferred result is a subset of the Pareto-

optimal set and such a subset of solutions can be generated using evolutionary

algorithms. Bosman and Thierens (2003) state that searching a space by

maintaining a finite population of solutions is characteristic of EAs, which makes

them natural candidates for multiobjective optimization aiming to find a good

approximation to the Pareto-optimal front.

Evolutionary algorithms (EA) represent a subset of generic population-based

metaheuristic optimization algorithms in Artificial Intelligence. They are

stochastic methods that use techniques motivated by natural evolution such as,

random variation, recombination, selection, and competition of individuals in a

population. Genetic algorithms, Evolutionary Programming, and Evolution

Strategies are the mainstream computational models of EA whereas Genetic

Programming and Learning Classifier Systems are related evolutionary

techniques.

 Evolutionary algorithms work on a population of solutions. With the

application of evolutionary or genetic operators, they produce improving

approximations of solutions to a problem as the generation progresses. The

candidate solutions in a population are referred to as chromosomes or

individuals and depending on the EA model, individuals are coded as bit strings,

real-valued vectors, trees, graphs, or matrices. A new set of chromosomes is

created by selecting individuals according to their level of fitness in the problem

domain. The fitness of an individual is a computed measure that is a function of

the objective value, i.e. if the problem is to minimize an objective function value

the individual with the smaller fitness value is the better solution. At each

generation, the genetic operators lead to the creation of a population of new

individuals that are fitter than their parents. The process of reproduction and

selection continues until the algorithm satisfies a termination criterion. Figure

2.7 shows a template of a general evolutionary algorithm.

19

 At the start of the procedure, a number of individuals (the population Pt;

t=0) are randomly initialized or may be seeded. Then the objective function is

evaluated for these individuals. If the optimization criteria are not met

(termination condition), creation of a new generation starts. Individuals are

selected according to their fitness for the production of offspring. Parents are

recombined and/or mutated with a certain probability to produce offspring. The

fitness of the offspring is then computed. Competent offspring are inserted into

the population replacing the parents, producing a new generation Pt+1. The loop

is repeated until the termination criteria are met.

procedure EA; {

t = 0;

initialize population Pt

evaluate Pt

while (termination condition not satisfied)

{

select parent Pt

variate Pt

evaluate Pt

select environment Pt+1

}

 }

Figure 2.9 Evolutionary algorithm template

An object or an individual that forms a solution in the solution space (phenotype

space) of the problem is called a phenotype or a candidate solution, whereas an

individual in the EA search space is called a genotype or chromosome and the

search space as the search space (genotype space). A chromosome is composed

of genes and the location of a particular gene in a chromosome is referred to as

the locus. A gene may assume different values and each value of a gene is

called an allele. The terms ‘chromosome’, ‘individual’, and ‘solution’ are treated

the same since a chromosome represents only a single solution.

 The following sections introduce the significant elements and genetic

operators used in evolutionary algorithms. The last subsection section presents a

discussion of the interaction between the genetic operators and other important

issues in implementing evolutionary algorithms to solve problems of varying

levels of difficulty.

20

2.2.1 Representation

An EA solves a particular problem by first creating an encoding function from the

solution space of the problem (phenotype space) to the search space of the EA

(genotype space). For instance, if the solution space is composed of integers, an

EA may encode the integers by their binary equivalent, which makes the search

space binary coded. Apparently, the search process is done in the genotype

space and as such may be very different from the problem’s solution space. A

solution is obtained by decoding the fittest chromosomes after the EA has

terminated. However, there are problems wherein the use of binary encoding is

not feasible, specifically in optimization problems that have decision variables

that take continuous values. In such a case, real-valued or real-parameter

encoding is necessary – each solution is represented as a real-valued vector.

Intuitively, the phenotype space is the same as the genotype space.

 It is important to understand the strength of an evolutionary algorithm

depends on a robust encoding or representation scheme. The representation

scheme also dictates the type of variation operators, which controls the

exploitation and exploration of the search space. Discussion on this is presented

in Section 2.2.3.

2.2.2 Population size and its initialization

The basic issues that arise initially in the use of evolutionary algorithms are

determining the size of the population and the manner of inserting individuals in

the initial population. The choice of the population size has been studied in

different perspectives and it seems natural that the population size can be

determined in terms of string length. Goldberg (1985), through a schemata

paradigm for binary strings, shows that the population size increases as an

exponential function of the string length. A later study (Goldberg et al. 1992)

shows a linear dependence of population size on string length is adequate.

Reeves (1993) derives an expression to determine population size from q-ary

alphabets on different confidence levels on the assumption that the initial

population is generated by a random sample with replacement and that at least

one allele is present at each locus can be found.

21

 In multiobjective optimization, it is known that the population size of

solutions increases exponentially with the number of objectives (Deb 2001).

There are two common options to respond to this problem: (1) use a large

population or (2) integrate a dynamic population sizing procedure in the GA.

Implementations for single-objective EAs has shown promising results, but

dynamic sizing has remained a challenge to multiobjective optimization. Hence,

there is no better alternative but to estimate the size of the initial population as

a function of the number of objectives. Deb (2001) provides an approximation

chart for finding the minimum population size as a function of the number of

objectives.

 The second problem is in the choice of a method by which the initial

population is to be filled up. Usually the population is initialized randomly but

this does not necessarily envelop the search space uniformly. Seeding the initial

population with a known solution from other heuristics can facilitate an EA to

find better solutions but on the contrary, the study by Surry and Radcliffe

(1996) find that seeding the initial population may reduce the quality of

solutions found.

2.2.3 Variation of the population

The purpose of variation operators is to improve the diversity of the population

by applying recombination and mutation to selected chromosomes of the

preceding generation. Variation in the genotype space similarly finds new

candidate solutions in the phenotype space. The recombination operator creates

new individuals by combining genes of two or more parents whereas mutation

creates new individuals by variation of a single parent. In a binary-coded EA, the

crossover operator is mainly responsible for the search aspect, whereas

mutation introduces variability and keeps diversity in the population. Variation

methods are grouped into two types: binary-coded variation and real-valued

variation operators.

BINARY RECOMBINATION

This section describes recombination methods for individuals with binary

variables or binary strings. Commonly, these methods are called crossover.

22

During the recombination of binary variables, only parts of the parents are

exchanged between them depending on the number of parts (the number of

crossover points) the individuals are partitioned before the genes are swapped.

Crossover replaces some of the alleles in one parent by alleles of the

corresponding genes of the other.

Single/Multipoint Crossover

In a single-point crossover, one crossover position is selected uniformly at

random and the genes exchanged between the individuals about this point

produces two new offspring as shown in Figure 2.8. In a double-point crossover,

two crossover positions are selected uniformly at random and genes are

exchanged between the individuals between these points, produce two new

offspring.

Figure 2.10 Single-point crossover

For a multipoint crossover, m crossover positions are chosen at random with no

duplicates and then are sorted in ascending order. The genes between

successive crossover points are exchanged from both parents and produce two

new offspring. The genes before the first crossover point are not exchanged

between the parents as shown in Figure 2.9. Single and multipoint crossover

techniques define cross points as places between loci where an individual can be

split. Uniform crossover generalizes this scheme to make every locus a potential

crossover point. An offspring is created by choosing every gene with a

probability p (usually equal to 0.5) from either parent.

 Eshelman et al. (1989) state that the single-point crossover has considerable

positional bias. It favors substrings of contiguous bits of a chromosome without

being sure if the chromosome is moving towards a good solution. The idea

Parents Offspring

23

behind the multipoint crossover and many of the variants of the crossover

operator is that parts of the chromosome that contribute most to the

performance of the chromosome may not necessarily be located in adjacent

substrings. Multipoint crossover appears to encourage the exploration of the

search space, which makes the search more robust rather than favoring the

convergence to fit individuals early in the search.

Figure 2.11 Multipoint crossover

REAL-VALUED RECOMBINATION

The crossover operator with one or more crossover points is easy to apply on

binary strings but is not suitable for real-valued vectors. The main task in real-

valued recombination is how to create new offspring in a logical manner.

Recombination cannot perform search in real-valued variables with respect to

each gene. Hence, it is necessary to practice caution in the usage of

recombination in real-parameter optimization. Many different real-valued

crossover operators exist and the issue of which crossover operator is better is

context-dependent or problem-specific. Three of the many real-valued crossover

operators are presented below and these are discrete recombination,

intermediate recombination, and line recombination.

Discrete Recombination

Discrete recombination is analogous to uniform crossover with binary encoding.

For each position, the parent who contributes its genes to the offspring is chosen

randomly with equal probability. Discrete recombination can be used with any

data type variable (binary, integer, real or symbols). In a two-dimensional real-

Parents Offspring

24

search space, the offspring can be either the parents themselves or the other

two diagonal solutions as shown in Figure 2.10. This crossover operator has

insufficient search power since the locations of new offspring are limited to the

variable boundaries.

Figure 2.12 Discrete recombination

Intermediate recombination

Intermediate recombination is a method only applicable to real variables and not

to binary variables. The genes of the offspring are chosen somewhere around

and between the genes values of the parents. Intermediate recombination is

capable of producing any point within a hypercube slightly larger than that

defined by the parents. Figure 2.11 shows the possible area of offspring after

intermediate recombination.

 The gene of an offspring at position i is produced according to the rule

(Dumitrescu et al. 2000):

zi = xiαi + yi(1 - αi) (2.6)

where α is a scaling factor chosen uniformly at random over an interval [-d,

1+d]. In intermediate recombination d=0, for extended intermediate

recombination d > 0. A good choice is d=0.25. Each variable in the offspring is

the result of combining the variables according to the above expression with a

new α chosen for each variable.

Parents

Possible
Offspring

Variable 2

Variable1

25

Figure 2.13 Intermediate recombination

Line recombination

Line recombination is similar to intermediate recombination except that one

value of α is used for all the genes. Line recombination can generate any point

on the line defined by the parents as shown in Figure 2.12. The line

recombination operator and its variants possess a feature that may constitute an

adaptive search.

Figure 2.14 Line recombination

Consider Figures 2.11 and 2.12, if the difference between the parent solutions is

small, the difference between offspring solutions is also small, and if the

difference between the parent solutions is large, the difference between

offspring solutions is large. If the initial population is randomly chosen over the

Parents

Possible
Offspring

Variable 2

Variable1

Parents

Possible

Offspring

Variable 2

Variable1

26

entire search space, the intermediate recombination operator at the early stages

of the EA allows search of the entire search space and continues to converge to

solutions in some region as the generation progresses. Beyer and Deb (2000)

found similarity in the different real-parameter crossover operators and they

postulate that the crossover operator should (1) keep the mean objective values

of the offspring population the same, and (2) increase the population diversity in

general.

MUTATION

For binary valued individuals mutation means the flipping of gene values,

because every gene has only two states. Thus, the size of the mutation step is

always one.

Figure 2.15 Binary mutation

Mutation of real variables means that randomly generated values are added to

the variables with a low probability. The probability of mutating a variable is

inversely proportional to the number of genes. The more genes one individual

has, the smaller is the mutation probability. Mühlenbein and Schlierkamp-

Voosen (1993) write that a mutation rate of 1/n (n: number of genes of an

individual) produces good results for a wide variety of test functions. This means

that per mutation only one variable per individual is mutated. Thus, the

mutation rate is independent of the size of the population.

 The size of the mutation step is usually difficult to choose. The optimal step-

size depends on the problem considered and may even vary during the

optimization process. It is known that small steps are often successful,

especially when the individual is already well adapted. However, larger changes

can produce good results much faster. Thus, a good mutation operator should

Before mutation

After mutation

0 1 1 1 1 0 0 1 1 1 0 0

0 1 1 1 1 0 0 0 1 1 0 0

27

often produce small step-sizes with a high mutation probability and large step-

sizes with a low probability.

 The proper choice of the recombination and mutation operators is crucial in

the current study since the individuals in the study’s problem classes can only be

represented as either real or discrete numbers. The MOOP in Chapters 3 and 6

require a real-parameter representation whereas the MOOP in Chapters 4 and 5

are combinatorial problems and require a discrete-parameter representation.

Consequently the recombination and mutation operators became dependent on

the coding or representation of an individual in each problem class.

2.2.4 Evaluation of an individual

Associated with the selection operation is the evaluation function, more

commonly known as the fitness function. The evaluation function is the basis of

control of the search progress and forms the foundation for the selection

operator. Its task is to assign a quality measure to evaluate the relevance of

each chromosome. The quality measure may be derived from the objective

function of the optimization problem through some transformation or in some

cases, the fitness function may be identical to the objective function. For most

numerical and combinatorial optimization problems, the fitness function

corresponds to the problem’s objective function. For example, in a minimization

problem the selection operator chooses individuals with the lowest fitness values

whereas in a maximization problem the selector chooses the highest fitness

values.

 In addition to the computation of the fitness of a chromosome, it may be

relevant for most decision-makers to have knowledge about the fitness

landscape generated by the fitness function. The fitness landscape shows the

surface created by the chromosomes and may help the decision-maker to

visualize the search progress of the EA.

2.2.5 Selection

The aim of selection is to focus the search process on the most promising

regions of the search space. It is based on the quality of the individuals as

28

defined by their fitness. Selection involves two tasks: (1) the selection of

individuals for variation (parent selection) and, (2) the selection for replacement

(environmental selection) which selects new individuals and parents to be kept

in the population. The selection of individuals for variation promotes high

reproductive probability of the fittest individuals and preserves the diversity of

solutions in the population whereas the selection for replacement forms the

population of the fittest individual for the next generation.

 Selection techniques are grouped into three schemes: proportional selection,

scaling, ranking procedures, and tournament selection. Proportional selection is

commonly known as the Monte Carlo selection or roulette wheel selection.

Variants of proportional selection include stochastic sampling with replacement,

stochastic universal sampling, and truncation selection. In proportional selection

schemes, the fittest individuals will dominate parent selection and may mislead

the search process. Scaling and ranking mechanisms avoid the problems of

proportional selection by reducing the domination of fittest individuals in parent

selection (Dumitrescu et al. 2000).

SELECTION PRESSURE

Selection pressure is defined as the degree to which highly fit individuals are

allowed to produce offspring in the next generation. It may also be defined as

the ratio of the probability of selecting the fittest individual and the probability of

selecting an average individual. High values of the selection pressure strongly

favor the best individuals in the population. In effect, this drives the parent

selection to just a few individuals making it more elitist. To avoid such a

phenomenon, higher recombination and mutation probabilities need to be

introduced to the EA (Dumitrescu et al. 2000).

SCALING

In most EAs, using the objective function scores in selection as in proportional

selection may be insufficient because the scale wherein a chromosome is

measured is important. Fitness scaling is a method that converts the raw fitness

scores computed by the fitness function to values in a range that is suitable for

the selection function. The selection function uses the scaled fitness values to

select the parents of the next generation. The selection function assigns a higher

29

probability of selection to individuals with higher scaled values. The

transformation may either be static (independent of time) or dynamic. Common

static scaling procedures include linear scaling, logarithmic scaling, and power

law scaling. It has been shown that the use of static scaling may force the EA to

rapidly converge to a local domain and therefore it limits the exploration of the

search space. Dynamic scaling alleviates this problem by changing the scaling

transformation at each generation. The method is cumbersome due to the

repetitive rescaling of the fitness values. The ranking method and tournament

selection are alternative techniques among dynamic scaling that provide better

solutions (Reeves and Rowe 2003).

THE RANKING METHOD

The ranking method ranks the individuals in the population according to their

fitness and the selection probability of an individual is defined as function of its

rank, usually a linear function. Ranking is simple and more efficient than scaling

and avoids premature convergence. However, computing the ranks of each

individual, which is computationally more expensive than linear scaling, requires

sorting the whole population according to their rank. An elegant property of

ranking is that it maintains a constant selection pressure without rescaling at

each generation. In the ranking method, the worst fit individuals have the

lowest reproduction rate and the best-fit individuals have the highest

reproduction rate (Blicke and Thiele, 1995)

TOURNAMENT SELECTION

Tournament selection is similar to linear ranking in the sense that it reduces

selection pressure. Binary tournament selection is the most commonly used

procedure under this scheme. This type of selection chooses two chromosomes

at random for which the fitness is calculated. The fitter individual is selected to

become a parent in the next generation. The procedures iterates until the

population of parents (mating pool) is filled up. The q-tournament selection is a

generalization of the binary tournament selection where q, the tournament size,

defines the number of chromosomes that compete in the tournament. There

exist several variants of tournament selection, like probabilistic tournament,

Boltzmann tournament, and score-based tournament. The potential advantage

of tournament selection over the other schemes is that it does not require a

30

global fitness comparison in a population. It only needs a preference ordering

between a set of individuals (Reeves and Rowe 2003).

SELECTION FOR REPLACEMENT

The discussion above is focused on parent selection. The issue of selection of

offspring for the next generation remains to be addressed. It answers the

question whether the EA allows all offspring to replace the parents. The

environmental selection distinguishes the survivors among the parents and their

offspring. The selection strategies discussed previously may be applied to the

environmental selection phase. The only difference between parent selection and

environmental selection is the phase wherein they are evaluated in the

evolutionary cycle. The question that remains to be answered is the number of

offspring and parents to be kept in the new generation.

 In a generational model, a new population of offspring replaces the whole

parent population, which means that selection is for mating only. A variant of

this type is the generational elitist strategy – it keeps the best individuals of a

generation and allows it to survive in the succeeding generation. The elitist

strategy preserves good individuals to stay for more than one generation unless

it is not chosen for mating and variation. Elitist strategies increase the speed of

convergence of an evolutionary algorithm. An alternative to the generational

model is the steady-state model wherein a number of parents (µ) are selected
based on their fitness and a number of offspring (λ) are generated through
variation functions. All of the offspring are inserted into the new population and

µ parents are discarded by fitness ranking selection or tournament selection. The
concept of generation in its strictest sense is no longer clear since the new

population is composed of both parents and offspring.

 There are other replacement strategies but it is suggested that generational

and elitist strategies work better than pure generational strategies in the context

of the better usage of solutions and convergence to an optimum solution. The

reader is referred to Dumitrescu et al. (2000) and Deb (2001) for further

reading on other replacement strategies.

31

2.2.6 Models of evolutionary algorithms

GENETIC ALGORITHMS

The genetic algorithm (GA) was developed by Holland in the early 1960’s in his

work on natural and adaptive systems. Genetic algorithms are instrumental in

defining the fundamental concepts of evolutionary algorithms and they embody

the main paradigm of evolutionary computation (see the above discussion on EA

concepts).

 The traditional representation of a chromosome is a binary string of fixed

length, but arrays of other data types and structures can be used similarly in the

same way. The search and variation operators are typically mutation and

recombination but recombination is deemed more important in searching for

solutions. Mutation on the other hand is used to induce variability and prevent

premature convergence. However, in recent literature, there is no reason to

presume that recombination must be more important that mutation. A strategy

of recombination-and-mutation is not always necessary. It is also possible to use

recombination-or-mutation (Deb and Agrawal, 1999b).

EVOLUTIONARY STRATEGIES

The method of Evolutionary Strategies (ES) is due to Ingo Rechenberg (1973).

Evolutionary strategies use real-valued vectors to represent individuals and use

mutation as the primary search operator. An individual is usually represented as

a pair, a vector x that corresponds to a point in the search space, and N(0, σ),

the standard deviation vector, is a vector of instances created using a zero-

mean normal distribution with a standard deviation σ.

 The replacement strategy is deterministic and is based on the fitness

rankings, not on the actual fitness values. The first and simplest model, the

(1+1)-ES, operates on the current individual xt (parent) and its descendant xt+1.

The better of xt and xt+1 is selected to become parent of the next generation,

whereas the lesser is discarded. In the (µ+1) –ES, µ parents may generate one
descendant at a time and the least fit individual is discarded. The (µ+λ)-ES and

(µ, λ)-ES where λ ≥ µ, use multiple populations of parents and descendants to

32

increase the population sizes. This process increases the convergence rate. In

the (µ+λ)-ES, a number of parents µ are used to generate λ descendants and

all the µ+λ individuals compete for survival in the intermediate generation. In

the (µ, λ)-ES, the entire parent population is replaced by survivors of λ

descendant. This makes the lifespan of a solution to be limited to only one

generation. This strategy is well suited in cases where the search is affected by

noise.

 The simplest mutation is performed by adding a normally distributed random

value to each vector component – the amplitude given by the standard deviation

vector. The mutation step size or mutation strength is often governed by self-

adaptation depending on the strategy used. In the (1+1)-ES, the mutation step

size is equal to the standard deviation. In the other strategies, the individual

step sizes for each point or correlations between points are governed either by

standard self-adaptation or by correlated adaptation (Dumitrescu et al. 2000).

EVOLUTIONARY PROGRAMMING

The method was introduced by Fogel in the 1960’s in his work on artificial

intelligence – generation of intelligent behavior in a machine as regards to

prediction of the environment. Intelligent behavior in evolutionary programming

(EP) is generated and described by deterministic finite-state machines. Mutation

is the only search and variation operator since recombination of two finite-state

machines or automata does not seem to be useful in exploring solutions. EP is a

mutation-based EA applied to discrete search spaces. In real-valued problems,

evolutionary programming is very similar to evolutionary strategies in the sense

that distributed mutations are performed on each decision variable and a self-

adapting rule is used to update the mutation strengths. Variants and extensions

of EP were suggested by Fogel (1992).

 Two main differences can be identified between EP and ES. EP typically uses

stochastic selection via a tournament in which selection eliminates those

solutions with the least wins, whereas ES typically uses deterministic selection in

which the worst solution are purged from the population depending on their

function evaluation. In EP, no recombination is used whereas ES variants

introduce recombination operators.

33

GENETIC PROGRAMMING

The genetic programming (GP) model was introduced by Koza (1989) and deals

with automatic programming. It is a technique used to optimize a population of

computer programs according to a fitness function with respect to a given

problem. The GP searches for the fittest computer program. The fundamental

structures considered for evolution are tree structures, graph structures, and

linear structures. GP favors the use of programming languages that naturally

embody tree structures since trees can easily represent mathematical structures

that can be evaluated in a recursive manner.

 In a tree-based representation, crossover is applied on an individual by

simply switching a subtree with another subtree from another individual in the

population. The expressions resulting from crossover are very much different

from their initial parents. Several mutation techniques can be applied within

genetic programming. In a tree structure, mutation can replace a node of an

individual and its subtree (macromutation) or replace just the node's information

(micromutation). Mutation and crossover are applied separately. In other words,

either crossover, mutation, or neither is applied to each individual. Both

crossover and mutation are not applied to the same individual.

 GP does not require a special replacement strategy and a parent-selection

operator but tournament selection is preferred for large problem classes

(Dumitrescu et al. 2000).

LEARNING CLASSIFIER SYSTEM

A Learning Classifier System (LCS), is a machine learning system that evolves

rules to adapt to a given classifier system – a learning system using

evolutionary algorithms for rule discovery. It consists of a population of binary

rules on which an evolutionary algorithm is utilized to generate the best rules.

Learning classifier systems process rules in parallel and are grouped into two

types depending upon the learning standpoint. Classifiers or rules consist of a

pair of attributes, a condition, and an action, and are usually binary-coded. Two

approaches exist: the Pittsburgh approach, and the Michigan approach. A

Pittsburgh-type LCS has a population of separate rule sets, where the

evolutionary algorithm evolves a population of rule bases and finds the best rule

set. In a Michigan-type LCS, there is a single population of rules and the

34

algorithm focuses on selecting the best set of rules in the population. The

Pittsburgh approach can be implemented with minimal modifications to an

evolutionary algorithm whereas the Michigan approach requires reinforcement

and learning procedures to determine the fitness of rules, to discover new rules,

and to show how rules interact with other rules.

 The Michigan approach introduced by Holland (1976) learns by interacting

with an environment from which it receives feedback in the form of a numerical

reward. Learning is achieved by trying to maximize the amount of reward

received. There are many models of LCSs and many ways of defining what a

learning classifier system is. Most LCS models consist of four main components.

First, a finite population of condition-action rules (classifiers)that represent the

current knowledge about the system. Second, a performance component that

governs interaction in the environment. Third, a distribution component that

distributes the reward received from the environment to the classifiers

responsible for the rewards obtained. Fourth, a discovery component that is

responsible for discovering of better rules and improving existing ones through a

genetic algorithm.

2.2.7 Interaction among genetic operators

The balance between exploitation and exploration is an important issue in the

usage of GAs. If the selection operator, which exploits fit individuals, applies

excessive selection pressure, the population loses its diversity rapidly. In order

to maintain the diversity of solutions, the use the recombination and mutation

operators should be high. The variation operators must generate offspring that

are reasonably different from the parent solutions. Otherwise, the population

may converge to a suboptimal solution. On the contrary, if the selection

pressure is insufficient and does not exploit good solutions, the GA’s search

process behaves like random search.

 The balance of exploitation and exploration issues was studied by Goldberg

et al. (1993). Goldberg and Deb (1991) calculated the takeover time of a

number of selection operators. The takeover time is defined as the number of

generations required for the best solution to occupy all of the population slots by

repetitive application of the selection operator only. The takeover time provides

information about the speed of how the best solution in a population is

emphasized. They observed that binary tournament selection and linear ranking

35

selection have the same takeover times and that proportionate selection is much

slower than tournament selection.

 Deb and Agrawal (1999) evaluated a series of experiments with different

operators and parameter setting as applied to problems of different difficulties

and concluded the following:

1) For simple problems such as uni-modal and linear problems, a genetic

algorithm with a selection and a crossover or mutation operator, or a

combination of crossover and mutation operators, can all work satisfactorily.

For a selector-mutation combination GA, a small population size provides the

optimum performance. Since the mutation operator behaves similar to local

search, it may require more iterations. For a selector-crossover GA without a

mutation operator, the population requirement is high but the number of

generations required may be smaller.

2) For difficult problems with multimodality and high dimensionality of the

search space, selector-mutation GAs do not work successfully in finding the

optimum solution whereas selector-crossover GAs with adequate population

sizes find the correct optimum.

 While there is a vast collection of empirical and theoretical studies on GAs

there is no singular formula for setting the parameters of a GA. Reeves and

Rowe (2003) tentatively suggest the following recommendation in implementing

a GA:

1) An initial population of about 50 should contain sufficient alleles for the GA to

make successful progress

2) Prior knowledge should be used along with randomization in choosing the

initial chromosomes.

3) Tournament selection is more efficient than roulette wheel selection. Two-

point or uniform crossover have less positional bias the one-point crossover.

4) For a guarantee that an algorithm will eventually converge to the optimum,

incremental reproduction and replacement usually make better use of

resources than the generational approach.

5) The role of crossover is still not well understood. Although the crossover

operator can jump over certain gaps in the search space or speed up search,

design of good recombination operators is difficult unless there is sufficient

knowledge of which properties are being preserved during the process.

36

6) An adaptive mutation rate appropriate to the application should be used, but

if in doubt, a fixed rate of 1/L is a reasonable choice; where L is the length

of the chromosome.

7) Diversity maintenance should be prominent in any implementation.

8) Hybridization should be used wherever possible.

9) GAs are stochastic by nature; several replicate runs are required for

application.

 The recommendations above are from single-objective studies. The current

study investigates the effect of different parameter settings on MOEAs in

multiobjective optimization problems through sensitivity analysis. The

sensitivity analysis will verify whether the recommended values given above are

applicable to multiobjective optimization problems.

2.3 Multiobjective evolutionary algorithms

The remarkable property of an EA is that it processes a population of solutions in

one simulation run whereas classical methods process only a single solution in

one optimization run. This feature of maintaining a finite population of solutions,

which aims to find a good approximation of the Pareto-optimal front makes an

EA an appropriate solution method for multiobjective optimization (Bosman and

Thierens 2003). Classical methods require some knowledge in the assignment of

weight vectors, target values, and ε-vectors to transform a multiobjective
problem into a single-objective optimization problem. EAs eliminate such

requirement or transformation since they generate and work on a population of

solutions. There is a huge amount of literature on MOEA methods and similarly

their application to real-word problems is also numerous. For example Pangilinan

and Janssens (2007b) introduce MOEAs and its application to two optimization

problems of differing search spaces. A list of references can be found at

http://www.lania.mx/~ccoello/EMOO/EMOObib.html.

 Section 2.2 described the important elements and operators of an EA. The

discussion on the selection of fit individuals was limited to the fitness evaluation

of individuals based on a single-objective problem. In order for a basic

evolutionary algorithm to work and find Pareto-optimal solutions to

multiobjective optimization problems (MOOP), modifications in its evolutionary

operators are necessary. Section 2.3.1 describes early modifications to the basic

EA and Section 2.3.2 describes improved MOEAs that use elite-preserving

37

mechanisms (elitist MOEAs). Finally Section 2.3.3 presents recent comparative

studies of modern MOEAs that are known to obtain good approximations of the

Pareto-optimal front.

2.3.1 Early implementations of an MOEA

VECTOR EVALUATED GENETIC ALGORITHM

The first implementation of an MOEA was suggested by Schaffer (1984).

Schaffer’s vector evaluated GA (VEGA) extends the basic GA to a multiobjective

optimization method by dividing the population of size N into m equal

subpopulations randomly. Each subpopulation is assigned a fitness based on a

different objective function. The variable m denotes the number of objective

functions. The advantage of VEGA is that it is easy to implement, only minor

changes are needed to convert the basic GA algorithm into a multiobjective GA.

The translation does not change the computational complexity of a simple GA,

which is O(N).

VEGA selection procedure

Input: Pt (population of N individuals)

Output: F (fitness value)

P’ (mating pool)

Step 1: Set the objective counter i = 1 and mating pool P’ =∅.

Step 2: For each individual x ∈ Pt the fitness is computed as

 F(x) = fi(g(x))⋅g(x) is a mapping function.

Step 3: For j=1 to (N/m) select individual x from Pt using proportionate

selection and copy it to the mating pool P’ = P’ + { x }.

Step 4: Set i = i+ 1. If i ≤ m go to Step 2 else stop.

 VEGA fitness results correspond to a linear combination of the objectives where

the weights depend on the distribution of the population at each generation. This

means that VEGA tends to find solutions near the best solution of each objective

(champion solutions). It was shown that certain points in a concave surface

would not be found by this optimization algorithm (Richardson et al. 1989).

38

Schaffer (1984) also observed that the crossover between champion solutions

could not find diverse solutions even in a convex search space.

WEIGHT-BASED GENETIC ALGORITHM

The weight-based genetic algorithm (WBGA) combines the weighted sum

approach and the population feature of genetic algorithms. Hajela and Lin

(1992) proposed that each individual in a population is assigned a different

weight vector in order to find several Pareto-optimal solutions in one

optimization run instead of only one Pareto-optimal solution that is associated to

only one particular weight vector. Hence, an individual is represented as a string

of all decision variables xi with their corresponding weights wi and each objective

function fi is multiplied by the weight wi. The fitness of a solution is computed as
the sum of its weighted objective functions. To maintain diversity of weight

combinations, the WBGA uses fitness sharing in the objective space by a niching

method applied to the substring of the weight vector. The computational

complexity of WBGA is O(mN 2).

WBGA fitness assignment

Input: Pt (population)

Output: F (fitness value)

Step 1: For each individual x ∈ Pt do

 Extract weights wi(i = 1,2, …, m) from x

 Set F(x) = w1 ⋅ f1(g(x)) + w2 ⋅ f2(g(x)) …+wm ⋅ fm(g(x))

 The advantage of this method is its simplicity in implementation. However, it

is inherently biased towards convex portions of the Pareto-optimal front. It may

create a very high selection pressure if certain combinations of weights are

produced at early stages of the search (Coello 1996). As in any weight-based

approach, the WBGA fails to find solutions in non-convex Pareto-optimal regions.

MULTIOBJECTIVE GENETIC ALGORITHM

Fonseca and Fleming (1993) are the first researchers to propose a

multiobjective genetic algorithm (MOGA) that uses Pareto-based ranking to find

39

nondominated solutions. It uses a niching strategy to maintain the diversity of

solutions while finding nondominated solutions. For a solution x, the rank is

computed as one plus the number of solutions y that dominate it. After ranking

is performed, each solution is assigned a raw fitness according to its rank and

afterwards the raw fitness of all solutions for each rank is averaged. This

average fitness is then assigned to each solution of the rank so that each

solution is sampled at the same rate. The averaging procedure ensures that

solutions with higher ranks have higher assigned fitness in the population.

Diversity of solutions in MOGA is maintained by following a niching strategy and

a sharing function σshare. The shared fitness value of a solution is computed by

dividing its assigned fitness by its niche count. It follows that the solutions in

lesser-crowded regions will have better shared fitness. This means that solutions

in such regions will have a higher selection pressure. The computational

complexity of MOGA is O(mN2).

MOGA fitness assignment

Input: Pt (population of N individuals)

Output: F (fitness value)

Step 1: For each x ∈ Pt calculate its rank by counting the number of

solutions that dominates x: r(x) = 1 + |{y| y ∈ Pt ∧ y p x}|. The

symbol | | denotes the cardinality of a set and p denotes the

Pareto dominance relation. In this case, yp x means y dominates

x.

Step 2: Sort a population according to the ranking. Assign each x∈ Pt a

raw fitness F’(x) by interpolating from the best (r(x)=1) to the

worst individual (r(x) ≤ N); linear ranking is used.

Step 3: Calculate fitness values F(x) by averaging and sharing the raw

fitness values F’(x) among individuals x ∈ Pt having identical

ranks r(x)

MOGA is a good approach, efficient and relatively easy to implement but is

highly dependent on an appropriate selection of σshare (Coello 2000). Fitness

sharing and niching are performed in the objective space, which makes the

MOGA applicable to other optimization problems such as combinatorial

optimization problems but the shared fitness computation does not assure that a

solution in a poorer rank will always have a worse scaled fitness than every

solution in a higher rank (Deb 2001). This may introduce bias towards solutions

40

that may evolve from only one region of the trade-off surface. This may slow

down convergence to the Pareto-optimal front in higher rank solutions.

NONDOMINATED SORTING ALGORITHM

Srinivas and Deb (1994) implemented Goldberg’s (1989) idea of a

nondominated sorting genetic algorithm (NSGA) that favors diverse

nondominated solutions by using a sharing strategy similar to MOGA. The

advantage of NSGA over MOGA is that it avoids the problem of slow

convergence and poor spread of better ranked solutions in the trade-off front by

assigning values front-wise i.e. solutions in a better front are assigned larger

shared fitness values. The first step in NSGA is to sort the population Pt

according to nondomination, which produces several mutually exclusive

nondominated sets or classes. The fitness assignment begins from the first class

(best nondominated set) and proceeds to the other dominated sets. The

individuals of the first class are assigned fitness values equal to N and

subsequently their shared fitness values are computed. The minimum shared

fitness value is then used to compute the shared fitness values of the next

dominated set and this process continues until all fitness values of the remaining

dominates have been calculated. The computational complexity of NSGA is

O(mN2).

NSGA selection

Input: Pt (population of N individuals)

 σshare (niche radius)

Output: Ps (nondominated set)

Step 1: Set an initial population Pr = Pt and initialize the minimum

fitness value Fmin= N. Set s = 1.

Step 2: Determine the set Ps of individuals in Pr whose decision vectors

are nondominated regarding g(Pr). Remove the members of Ps

from Pr i.e. Pr= Pr – Ps (multiset subtraction).

Step 3: Set the raw fitness of individuals in Ps to Fmin and perform fitness

sharing in the decision space within Ps only.

Step 4: Decrease the minimum fitness value Fmin such that it is lower

than the smallest shared fitness in Ps:0<F min <min{F(x) | x∈Ps}.

Set s = s + 1.

Step 5: If Pr ≠ ∅ then go to step 2 else stop.

41

The sharing in NSGA is done in the decision values and not in the objective

values, which ensures a better distribution of solutions in the trade-off front.

However, this technique is less efficient (computationally) than MOGA, and is

more sensitive to the sharing function σshare (Srinivas and Deb 1994).

NICHED PARETO GENETIC ALGORITHM

Horn and Nafpliotis (1993) introduced the niched Pareto genetic algorithm

(NPGA) that differed from previous Pareto-dominance methods by using binary

tournament selection rather than proportionate selection. In a NPGA, there is no

need to compute a fitness value for each solution. The selection procedure

favors nondominated solutions (Pdom) and if dominance cannot be established,

niching and fitness sharing is performed. Solutions with lower niche counts win,

which means that parents in less crowded regions are chosen in the offspring

population. The computational complexity of NPGA is O(mN2).

NPGA selection

Input: Pt (population of N individuals)

 Pdom (subpopulation tdom individuals)

 tdom is the domination pressure

Output: P’ (mating pool)

Step 1: Set i = 1 and mating pool P’ = ∅.

Step 2: Select two competitors x, y ∈ Pt and a comparison set Pdom ⊆ Pt

of tdom individuals at random without replacement.

Step 3: If g(x) is nondominated regarding g(Pdom) and g(y) is dominated,

then x is the winner of the tournament: P’= P’+{x}. Else if g(y)

is nondominated regarding g(Pdom) and g(x) is dominated then

y is the winner of the tournament: P’= P’+{y}.

Step 4: Else decide tournament by fitness sharing: calculate the number

of individuals in the partially filled mating pool that are in σshare-

distance to x: n(x)=|{k| k∈P’∧ d(x, k) < σshare }|.

 Do the same for y.

If (n(x) < n(y)) then P’= P’ +{x} else P’= P’+{y}.

Step 5: Set i = i +1. If (i ≤ N) then go to Step 2 else stop.

42

The basic advantage of this approach is it does not require any fitness

assignment, which removes any bias in the fitness assignment procedure. Since

this approach does not apply Pareto selection to the entire population but to a

subpopulation in each run, the technique is very fast and produces good

nondominated runs that can be kept for a large number of generations.

However, the approach requires an appropriate value for the sharing factor σshare

and a good choice of the value tdom in order to perform well. The dependence of

NPGA to the two variables σshare and tdom complicates its appropriate use in

practice (Coello 2000).

2.3.2 Modern implementations of an MOEA

STRENGTH PARETO EVOLUTIONARY ALGORITHM

Zitzler et al. (2002) introduced the Strength Pareto Evolutionary Algorithm 2

(SPEA2), which is an extension and improvement of the original work by Zitzler

and Thiele (1999). SPEA2 integrates a fitness assignment strategy, which

considers the number of individuals that an individual dominates and the

number of its dominators. It uses a nearest-neighbor density estimation

technique that guides the search more efficiently and avoids the formation of

new solutions in only a few clusters in the search space. SPEA2 has a truncation

procedure that preserves the best solutions when the number of nondominated

individuals exceeds the external population size.

 SPEA2 first assigns a strength value S(x), to each individual x from the

archive (N) and population size (N) representing the number of solutions x

dominates. Then the raw fitness R(x), which measures the strength of x’s

dominators of each solution x, is calculated. The raw fitness acts as a niching

mechanism but poorly performs when most paths in N+N are nondominated,

i.e. the population forms new solutions in only a few clusters, in effect

compromising exploration of the search space. Genetic drift is the term for this

phenomenon. SPEA2 introduces a density estimator, a fitness sharing

mechanism to avoid genetic drift. The density estimator is the inverse of the

distance of an individual in objective space to the k-th nearest neighbor. The

density value and the raw fitness value are combined to give the final fitness

function. SPEA2 offers two selection procedures: environmental and mating

selection.

43

 The environmental selection is concerned with choosing individuals that will

have to move on to the next generation archive from the current archive tP

and population Pt. SPEA2 maintains an archive tP in each generation and is

composed of the “best” individuals of a fixed size N , which is equal to the

population size N. Two usual situations may occur in selection. First, the number

of nondominated solutions in 1+tP is less thanN . SPEA2 resolves this by adding

the “best” dominated individuals from tP + Pt to 1+tP . Second, the number of

nondominated solutions for the next generation is greater than N . SPEA2 uses

a truncation procedure whereby the individual with the minimum distance to

another individual is truncated until | 1+tP |= N . SPEA2 implements binary

tournament selection with replacement to fill in the mating pool. This type of

mating selects two solutions at a time in each tournament. Their fitness values

are evaluated and the better solution is placed in the mating pool. The runtime

complexity of SPEA2 is O(mN2logN).

SPEA2 fitness assignment

 Input: Pt (population with N individuals)

 Output: F (fitness values)

Step 1: Calculate the strength values of individuals in Pt and tP . The

strength of individual x is computed as

|| tt|S }{)(yxPPyyx p∧+∈=

Where the symbol   denotes the cardinality of a set, + stands

for multiset union and the symbol p corresponds to the Pareto

dominance relation extended to individuals i.e., the term x p y

means x dominates y.

 Step 2: Compute the raw fitness

∑
+∈

=
xy,y tt

SR
pPP

yx)()(

For each individual x the distances (in objective space) to all

individuals y in archive and population are calculated and stored

in a list. After sorting the list in increasing order, the k-th

element gives the distance sought, denoted as k
xσ .

Step 3: Compute the density of each individual x

NNk
σ

D
k
x

+== ;
2 +

1
)(x

44

Step 4: Compute the fitness values

)()()(xxx DRF +=

Since SPEA2 is an elite-preserving evolutionary algorithm, it preserves the good

solutions of a population by directly carrying them over to the next generation.

It makes sure that the fitness of the population does not deteriorate by storing

the best solutions in an archive. It also ensures a good spread of Pareto-optimal

solutions and prevents boundary solutions from removal in the population by

introducing an enhanced clustering technique and a truncation method. A more

detailed discussion of SPEA2 is found in Appendix B.

ELITIST NONDOMINATED SORTING GA

Deb et al. (2002) introduced an elitist nondominated genetic algorithm (NSGA-

II) that uses not only an elite-preserving strategy but also an explicit-diversity

preserving mechanism. Initially, NSGA-II creates a random parent population P0

sorts the population based on nondomination and assigns each solution a fitness

value equal to its nondomination level (as in NSGA). Thereafter NSGA-II creates

an offspring population Q0 of size N by binary tournament selection and

recombination operators. After the initial populations are created they are

combined in one population Rt of size 2N. Then, the population is sorted

according to nondomination - solutions belonging to the best nondominated set

F1 must be favored more than any other solution in the combined population. If

the size of F1 is smaller then N, then all members of the set are chosen for the

new population Pt+1. The new population Pt+1 are then filled with members from

subsequent nondominated fronts F2, F3,…,Fn in the order of their ranking. This

procedure continues until no more sets can be accommodated in Pt+1. The new

population Pt+1 is used for selection, crossover, and mutation to create a new

offspring population Qt+1 of size N. The selection criterion, which requires both

the rank and the crowded distance of each solution in the population, is

dependent on the crowded-comparison operator. The computational complexity

of NSGA-II is O(mN 2).

NSGA-II selection procedure

Input: Pt (population with N individuals)

 Output: Qt (offspring population with N individuals)

45

Let the symbol   denote the cardinality of a set, + stands for multiset

union.

Step 1: Create a new population Rt = Pt + Qt.

Step 2: Perform nondominated sorting to Rt and generate different

fronts Fi

Step 3: Set counter i = 1; the new population Pt+1 = ∅.

 While Pt+1  + Fi  ≤ N do

 Pt+1 = Pt+1 + Fi

i = i + 1

Step 4: Perform crowding-sort algorithm and include most widely spread

solutions using crowding distance values in Fi to Pt+1.

Step 5: Create Qt+1 from Pt+1 by using crowded tournament selection

and recombination operators

The crowding comparison algorithm of NSGA-II eliminates the need for a niching

parameter such as σshare by allowing solutions to compete using their crowding

distances (Deb 2001). Removing the niching parameter also removes the

problems associated with it such as the proper estimation of its value and its

influence of the search process. A more detailed discussion of NSGA-II is found

in Appendix B.

PARETO-ARCHIVED EVOLUTIONARY STRATEGY

Knowles and Corne (2000a) introduced the Pareto-Archived Evolutionary

Strategy (PAES) using a (1+1)-ES. It comprises of three parts: the candidate

solution generator, the acceptance function, and the nondominated solutions

(NDS) archive. Viewed in this way, (1+1)-PAES represents the simplest non-

trivial approach to a multiobjective local search procedure. The candidate

solution generator is similar to simple random mutation i.e., it maintains a single

current solution then produces a single new offspring via random mutation. In

the simple (1+1)-PAES, the test(xt,yt, tP) function is a density-based procedure

that determines whether the offspring solution should be rejected or accepted

and if it should be archived or not. In the density calculation, each objective is

divided into 2d divisions where d is a user-defined parameter. The archived

solutions are placed in (2d)m hypercubes according to their location in the

objective space and the number of solutions in each hypercube is counted. If the

offspring is in a less crowded hypercube than its parent then the offspring

46

becomes the parent of the next generation otherwise the parent continues to the

next generation. Similarly, solutions residing in the least crowded areas get

preference to the archive. The complexity of (1+1)-PAES is O(mN2).

(1+1) -PAES procedure

Input: xt (a random solution)

Output: tP (nondominated set)

Step 1: Generate an initial random solution xt and add it to the archive

tP of size N

Step 2: Mutate xt to generate an offspring yt

Step 3: If (xt p yt) discard yt

else if (yt p xt) then xt = yt and tP = tP +{y}

else if (zt p yt), ∀z∈ tP , then discard yt

 else apply test(xt, yt, tP) to determine which solution becomes

the current solution or if yt should be added to tP

Step 4: If the termination criterion is reached then stop

else t = t + 1 and go to step 2

The (1+1)-PAES serves as a good, simple baseline algorithm for multiobjective

optimization. Its performance is strong, especially given its low computational

complexity, even on demanding tasks where one might expect local search

methods to be at a disadvantage (Knowles and Corne 2000a). However,

appropriate values for the archive size N and the depth parameter d are

necessary in order to find a good set of nondominated and well-spread solutions.

 Knowles and Corne (2000a) extended the (1+1)-PAES to a (1+λ)-PAES and
a (µ+λ)-PAES. In the multimember (1+λ)-PAES, a parent solution is mutated λ
times and an offspring is created each time. A fitness value is assigned to each

offspring and compared to the archive and its hypercube location. The fittest

among the parent and offspring solutions becomes the parent of the next

generation. In a multimember (µ+λ)-PAES, each µ parent and each λ offspring
are compared with the archive and an offspring membership is calculated as in

(1+1)-PAES. The new parent population is generated based on a dominance

score from the current µ parent population and λ offspring population. The
proponents of PAES observed that the multimember versions of PAES do not

generally perform as well as the (1+1)-PAES since offspring are compared only

47

with the archive and not against other offspring. This means that there is no

assurance that best offspring solutions are exploited.

 Knowles and Corne (2000b) developed a memetic algorithm for

multiobjective optimization M-PAES, which uses the local search method of

(1+1)-PAES, combined it with the use of a population and crossover. The

usefulness of M-PAES was evaluated on a set of multiobjective 0/1 knapsack

problems. Their results showed that M-PAES performs better than (1+1)-PAES

on all problems and, compared with the SPEA, the performance of M-PAES is

similar with SPEA and gives a near-best performance.

PARETO ENVELOPE-BASED SELECTION ALGORITHM

Corne et al. (2000) introduced a Pareto Envelope-based Selection Algorithm

(PESA) wherein a simple hypercube scheme controls selection and diversity

maintenance. The selection of a parent in PESA is dependent on the degree of

crowding in the different regions of the archive. The crowding strategy divides

the objective space into hypercubes. Each chromosome in the archive is

assigned a squeeze factor, which is the total number of other chromosomes in

the archive that are located in the same hyper-box. The lower the squeeze

factor the higher the fitness of an individual. The squeeze factor is also used to

update the archive i.e., the individual with the highest squeeze factor is

removed when the archive exceeds in allowable number of members. The run-

time complexity of PESA is O(mN2).

PESA procedure

Input: Pt (population with N individuals)

 Output: P* (Nondominated set)

Step1: Generate and evaluate N solutions in Pt. Divide the normalized

objective space into n
m hypercubes where n is the number of

grids along a single objective axis and m is the number of

objectives. Set tP = ∅

Step 2: Incorporate the nondominated members of Pt into tP

Step 3: If a termination criterion has been reached, P* = tP and stop

else Pt = ∅. Do while (Pt is not full)

48

with probability pc

select 2 parents from tP

generate a single offspring via crossover

mutate the child and add to Pt+1

with probability (1- pc) select one parent, mutate it to

generate a child,

add child to Pt+1

Step 4: go to Step 2

PESA is easy to implement and computationally efficient. However, its

performance depends on the cell sizes (hyper-box) and prior information is

needed about the objective space. Corne et al. (2001) described a region-based

selection procedure (PESA-II). In the selection step, cells are selected instead of

individuals and a cell that is sparsely occupied has a higher chance to be

selected than a crowded cell. Once a cell is selected, solutions within the cell are

randomly chosen to participate to crossover and mutation. Preliminary

investigations by the researchers (Corne et al. 2001) suggest that the PESA-II

results are not overly sensitive to the cell size or hyper-box dimension

parameter, but they state that more investigation is required to determine if this

is generally the case.

2.3.3 Comparative studies of MOEAs

A comprehensive discussion of multiobjective evolutionary algorithms (MOEA)

can be found in Deb (2001). In addition, Coello (2000) gives a summary of

current approaches in MOEA and emphasizes the importance of new approaches

in exploiting the capabilities of evolutionary algorithms in multiobjective

optimization. Zitzler et al. (1999) performed a comparative analysis of existing

evolutionary algorithms in multiobjective optimization by means of well-defined

quantitative performance measures. They show that elitism is an important

factor in evolutionary multiobjective search. The following discussion presents a

summary of relevant comparative studies of multiobjective evolutionary

algorithms published from the year 2000 and onwards.

 Zitzler et al. (2000) compared several multiobjective EAs on six different test

functions and found the following: (1) multimodality causes the most difficulty

for evolutionary approaches. However, non-convexity remains a problem for

49

weighted-sum based algorithms; (2) for the chosen test problems and

parameter settings, a clear hierarchy of algorithms emerges regarding the

distance to the Pareto-optimal front in descending order of merit: SPEA, NSGA,

VEGA, WBGA, NPGA, and MOGA; (3) elitism is an important factor in

evolutionary multiobjective optimization.

 Zitzler et al. (2002) presented an improved version SPEA2, which uses an

enhanced fitness assignment strategy and a new technique for archive

truncation and density-based selection. The study compared SPEA2 with SPEA,

PESA and NSGA-II on 16 continuous and combinatorial test problems. The

results of the analysis were: (1) SPEA2 performs better than its predecessor

SPEA on all problems; (2) PESA has the fastest convergence, which is probably

due to its higher elitism intensity. However, it has difficulties keeping the

boundary solutions on some problems; (3) SPEA2 and NSGA-II show the best

performance overall. (4) SPEA2 seems to have advantages over PESA and

NSGA-II in higher dimensional objective spaces wherein the number of

nondominated solutions increases rapidly.

 Deb et al. (2002) tested NSGA-II on nine difficult test problems and found

that NSGA-II was able to maintain a better spread of solutions and converge

better in the obtained nondominated front compared to PAES and SPEA. The

diversity preserving mechanism used in NSGA-II was found to be the best

among the three approaches.

 Tan and Lee (2002) surveyed existing multiobjective evolutionary algorithms

according to their performance on four benchmark problems. Besides

considering the spread of solutions across the Pareto-optimal front and the

ability to attain the global trade-offs, the uniform distribution of individuals along

the Pareto-front, the computational effort, the robustness to disturbances, and

the average best performance of tracking optimal regions in changing

environments were evaluated. They conclude that no single algorithm excels in

all performance measures. Furthermore, elitism and a sharing strategy are

important for good convergence and population distribution along the discovered

tradeoffs in multiobjective optimization.

 Yen and Lu (2003) proposed a Rank-Density-based algorithm (RDGA) that

simplifies the problem domain by converting high-dimensional multiple

objectives into two objectives. Their results showed that RDGA produced

statistically competitive results with the four state-of-the-art MOEAs, MOGA,

50

PAES, NSGA-II, and SPEA II on four types of multiobjective problems. The

MOOPs were designed to exploit various complications in finding near-optimal,

near-complete, and uniformly distributed Pareto-optimal fronts. RDGA was found

to show better performance in keeping the diversity of the individuals along the

current tradeoff surface, extending the Pareto front to new areas, and finding a

well-approximated, nondominated set. However, the paper is far from

representing a complete MOOP test suite to conclude that RDGA is a better

algorithm than other modern MOEAs.

 Yen and Lu (2003) proposed a Dynamic Multiobjective Evolutionary

Algorithm (DMOEA) that simplifies computational complexity by using a cell-

based rank and density- fitness estimation scheme, an objective compression

strategy, and an adaptive-population size feature. A cell-based ranking scheme

first divides the objective space into cells or hypercubes (e.g. PAES and RDGA)

and ranks are given to the cells and not individually to the nondominated

solutions. An objective compression strategy enhances the cell-based ranking

scheme by compressing the size of the cells in the objective space. Its effects

refine the Pareto front and reduce cell density. Their comparative study showed

that DMOEA produces statistically competitive or even superior results with the

other modern MOEAs such as PAES, NSGA-II, RDGA, and SPEA II on three

multiobjective optimization benchmark problems. The problems are designed to

exploit various complications in finding near-optimal, well-extended, and

uniformly distributed Pareto-optimal fronts. They conclude that DMOEA can be a

potential candidate in solving time-critical or on-line MOOPs due to its lower

computational complexity. However, as in their study of RDGA, the test

functions do not cover all challenging characteristics of MOOPs.

 Bosman and Thierens (2003) argued that the quest for finding the

components that result in the best EAs for multiobjective optimization is not

likely to converge to a single, specific MOEA. They stated that the tradeoff

between the goals of proximity and diversity preservation plays an important

role in the exploitation and exploration phases of any MOEA.

 Deb et al. (2005) introduced an ε-MOEA which was developed using the ε-
dominance criterion by Laumanns et al. (2002). They found that the ε-MOEA
was successful in finding well-converged and well-distributed solutions with a

much smaller computational effort than a number of state-of-the-art MOEAs

including NSGA-II, SPEA2, and PESA on 12 test problems. They suggest the use

of the ε-MOEA to more complex and real-world problems due to its consistency

51

in achieving convergence and diversity of solutions over multiple simulation runs

with less computational effort compared to other MOEAs.

 Chaiyaratana et al. (2007) proposed a modified multiobjective diversity

control oriented genetic algorithm or MODCGA-II, which is an improvement of its

predecessor MODCGA. Their analysis on six benchmark problems described in

Deb et al. (2005) indicated that the MODCGA-II produces nondominated

solutions that are better than NSGA-II and SPEA-II when the number of

objectives is limited to two but performs worse when the number of objectives

increases to three. They recommended that their technique is the most suitable

approach for both single-objective genetic algorithm and multiobjective genetic

algorithm in case the number of objectives is two.

 Goh and Tan (2007) performed extensive studies to examine the impact of

noisy environments in evolutionary multiobjective optimization, particularly for

the population dynamics of fitness and diversity. They introduced three noise-

handling features that include an Experiential Learning Directed Perturbation

(ELDP) operator that adapts the magnitude and direction of variation according

to previous experiences for fast convergence, a Gene Adaptation Selection

Strategy (GASS) that helps the evolutionary search in escaping from local

optima, and an archiving model based on the concept of possibility and

necessity measures. The comparative study showed that the basic algorithm

incorporating the proposed features exhibits competitive or superior

performance in terms of proximity, diversity, and distribution for both the

noiseless and noisy benchmark problems. They found that existing MOEAs such

as SPEA2 and NSGAII enhanced with the proposed features of GASS and ELDP

are capable of giving better convergence and population diversity along the

global tradeoff for the benchmark problems with and without the presence of

noise.

 The studies presented above show a variety of results and no single MOEA

performs better in the different performance metrics but most of the studies

compare their algorithms with either NSGA-II or SPEA2 or both. The studies

above mostly evaluated the performance of the selection operators of each

MOEA without investigating the effect of the parameter settings on its

performance. The current study differs from the researches above. The current

study does not create a new selection operator and compare its performance

with well-known algorithms but investigates the effect of the parameter settings

52

and variation operators on the performance of NSGA-II and SPEA2 in selected

multiobjective optimization problems.

53

Chapter 3

The Competitive Facility
Location Problem:
An optimization problem
with a fixed-length string of
continuous variables

3.1 Introduction

Facility location is the process of determining a geographic site for operations of

a company or any organization in general. Managers of both service and

manufacturing organizations must weigh several factors when assessing the

desirability of a particular site, including proximity to customers and suppliers,

labor costs, and transportation costs. Facility location is often determined by one

critical factor. In the case of plant or warehouse location, economic factors

usually are dominant.

 A location model is said to be competitive when the problem of locating a

new facility in the market incorporates the existence of other facilities and that

the new facility has to compete for its market share (Plastria 2001). A number of

facilities with known fixed locations exist in the market. That is, Competitive

Facility Location (CFL) models describe how facilities capture their market share

54

and where a new facility should be located to maximize its market share. The

models mostly start from a measure of attraction that a customer feels for a

facility. The attraction is determined by several factors, but most CFL models

represent market share as a function of the distance between the customer and

the facility on the one hand, and on the other hand on internal characteristics of

the facility, which generally can be called the quality of a facility. Various types

of attraction functions might be formulated, but the study will deal with a

multiplicative type, which leads to a gravity type attraction, given by the quality

divided by some strictly positive power of the distance. Anyway, the function

should be non-increasing with distance and non-decreasing with quality. The

models take care of two decisions: the location of the facility and its design. The

location of the site influence the distance part of the objective and the design

relates to the quality. Quality is determined by a mixture of attributes of the

facility like floor area, number of check-counters, product mix and price level.

Raising the level of these attributes of quality involves a higher cost. The main

objective of the decision is to maximize profit, which can be expressed as a

function of sales and cost, like sales minus cost or sales divided by cost. The link

to this chapter is made due to the results obtained by Carrizosa and Plastria

(1995) who show that profit-maximization with respect to both the location and

the quality of the new facility can be obtained by inspecting only a finite number

of solutions. The solutions are obtained after solving a bi-objective optimization

problem of finding efficient solutions that maximize “captured” consumers, while

minimizing the quality costs of the new facility. The type of problem is known as

a maxcovering-minquantile location problem, which arediscussed further on.

3.1.1 Problem Definition

The competitive location model involving bi-objective maximization of location

and quality of a facility is due to Plastria and Carrizosa (2004). They present a

general profit maximizing competitive location model with different attraction

types on a consumer and limit the location of the new facility within a bounded

area. Plastria and Carrizosa (2004) show that a maximal profit solution to the

CFL problem through the determination of efficient solutions reduces to the bi-

objective optimization of

Min α

Max CW (α, x) ; α ≥ α0 , x ∈ S

55

where α = unknown quality cost of the new facility at an

unknown site x

 CW(α, x) = captured weight of the new facility

 α0 = minimal quality cost (α0 > 0)

 S = closed set in the plane

A finite set of customers is denoted by AF. Each customer a ∈ AF has a known

location xa and a strictly positive weight wa representing his buying power. A

finite set of competing facilities with which the new facility is to compete is

denoted by CF. Competing facility f ∈ CF is located at site xf and has a quality

αf considered to be known and fixed. Any customer a ∈ AF feels an attraction

attr(α,f) towards a facility f at xf, which depends on factors such as distance from

xa to xf or other factors like tradition etc. Consider a new facility with unknown

site x and unknown quality α, of at least some minimal quality α0 > 0. Its

attraction on a customer a ∈ AF can be expressed by a function Aa(α,dista(x)), a

function of the quality α and of the distance dista(x) from the customer to the

facility. The function Aa is defined on [[[[[]+∞→+∞×+∞ ,0,0,0α . A typical

example is attraction of gravity type, given by

p

a

a
a

αk
,αA

xx
x

−
=)((3.1)

where p is any strictly positive exponent, and ka > 0 represent some

proportionality constant depending on a. In pure gravity models p = 2, which

may appear in a wide variety of physical contexts. But also linear markets may

be assumed (see Eiselt and Laporte, 1988 and 1989). A common feature of all

attraction functions is that a larger quality cost increases the attraction of a

customer to a facility whereas a larger distance between them decreases it. With

a deterministic customer choice rule, the facility captures those customers

attracted more to the new facility than to any competing facility in CF. The set of

captured customers is given by:

{ })())(()(f,aattrdist,A:CFfAFa,Capt aa ≥∈∈= ∀ xx αα (3.2)

The total weight captured by the new facility is given by

∑
∈

=
)x,(Capta

aw),(CW
α

α x (3.3)

56

Profit is expressed by a profit-indicator function π which is strictly increasing in

sales income σ(CW(α,x)) and strictly decreasing in operating costs γ(α)

))())(()(αγασπα ,,CW(, xx =Π (3.4)

It is the profit-indicator Π that needs to be optimised by an adequate choice of

both the quality α > α0 and the site x within some set of feasible sites S:

{ }0)(ααα ≥∈Π ,x,max Sx (3.5)

Given a fixed quality α, profit maximisation is achieved by maximisation of the

total captured weight. This optimisation problem is called a maximal covering

problem as studied in the planar context by Drezner (1981). Drezner’s objective

is to maximise a weighted number of demand points (read: customers) within a

given (Euclidean) distance from the facility. This constraint might be motivated

as follows: the location of an emergency facility may be satisfying a bound on

the distance between each demand point and the new facility, or when a

shopping centre is planned, only customers within a given distance use its

services. Drezner (1981) presents an algorithms of complexity O(n2log n) where

n is the number of demand points. Since, in this problem, α is a decision

variable, such a maximal covering problem needs to be solved for each possible

value of α, given that only a finite number of feasible quality values are

available.

When, however, optimisation needs to be done over the full range of positive α-

values (with α>= α0), another approach is to be advised. In Carrizosa and

Plastria (1995) it is shown how the optimisation problem can be solved by

reducing it to a bi-objective problem. In some cases the optimisation problem

can be solved by inspecting a finite number of points, polynomial in the

cardinality of AF. They have proven that, if maximal profit solutions exist, they

are all efficient (or nondominated, or Pareto-optimal) for the bi-objective

problem. The authors call the problem a minquantile/maxcovering bi-objective

problem.

The cases in which the optimisation problem can be solved analytically depend

on (1) the type of attraction function; (2) the characteristics of the subset; and

(3) the characteristics of the search space. In terms of attraction function a

57

limited number of functions are feasible, including the gravity-type functions. In

terms of the characteristics of the subset, the subset s needs to be a closed

convex subset. In terms of the search space, solutions need to be found in the

plane ℜℜℜℜ2, in which distances are measured by a norm. If the requirements are

met then Carrizosa and Plastria (1995) state that efficient solutions to the bi-

objective problem are optimal solutions to single-objective problems, i.e. single-

facility minmax location problems. To explain this procedure a bit further,

Theorem 8 of the article by Plastria and Carrizosa (2004) is stated as follows:

“Theorem 8: Let (α*,x*) be an efficient solution for the bi-objective problem.

Then, one has:

1. When Capt(α*
,x

*) ≠ φ there exists a nonempty subset T ⊂ AF, with

cardinality at most 3 such that

(a) x* solves the generalizes single-facility minmax location problem

)(xαDmaxmin
TaSx ∈∈

with Da(x): ℜℜℜℜ2→[0,+∞] defined as Da: x → Ba(dista(x)) in which Ba

indicates, as a function of the distance d, the quality threshold above

which a customer a at distance d is captured.

(b) α is the optimal value of (a), which is finite

2. In case Capt(α,x*) = φ, one must have α*= α0, and any other pair (α0,x)

is then also efficient for the bi-objective problem. “

After finding, in (b) the optimal value αT of each of the O(n3) optimisation

problems in (a), and finding the set ST of optimal solutions for the problem in

(a), a list of pairs (αT,xT) is available which contains the set of efficient solutions

for the bi-objective problem.

3.1.2 Literature Review

A number of models exist that solve different competitive facility location

problems. A survey of such models is discussed by Eiselt et al. (1993). The

authors suggest fives major components in competitive facility location, which

are space, number of players, pricing policy, rules of the game, and behavior of

customers. The mostly used metric space in competitive facility location is the

m-dimensional real space ℜℜℜℜm and, in most instances, is bounded by a convex

polygon denoted by |ℜℜℜℜm|. A pricing policy distinguishes between models with

both price and location as decision variables and models that consider location

58

as the only decision variable. Rules of the game define the general concept of

equilibrium as applied to games but most competitive facility location studies in

operations research do not fall under equilibrium models because competing

facilities already exist. The last component, behavior of customers, defines

deterministic and probabilistic models. In a deterministic model, customers

always patronize a single facility that they are most attracted to. On the other

hand, probabilistic models assign probabilities of customer attraction to each

facility.

 Drezner (1994) proposes a solution for the location of a new facility in a

continuous planar space and in an environment where competing facilities have

different levels of attraction on a consumer. Drezner’s (1994) algorithm solves a

single-objective optimization problem that first calculates a “break-even”

distance, which is the maximum distance that a consumer is willing to travel to

the new facility. Afterwards, the market share is computed for the new facility

relative to the break-even distance. She concludes that her model guarantees a

superior location based on information about consumer preferences and facility

attributes. Plastria and Carrizosa (2004) observes that most algorithms solve

competitive facility location problems by either setting a fixed site and attempt

to maximize profit by an adequate choice of quality or setting the quality fixed

and then find an optimal site. They show that profit maximization with respect to

both location and the quality of the new facility may be obtained by solving

efficient solutions (Pareto-optimal) in a bi-objective location problem.

Pangilinan et al. (2005) applies an MOEA for finding efficient solutions to the CFL

problem and notes that the MOEA generates inferior solutions to the

deterministic procedure by Plastria and Carrizosa (2004). However, they show

that the MOEA is more scalable in terms of computational runtime as the

problem size grows. They recommend that further research on real-parameter

operators and the integration of a local search procedure may improve the

results of the MOEA.

3.2 Multiobjective Evolutionary Algorithm

The study uses the EA algorithm by Zitzler et al. (1999), the Strength Pareto

Evolutionary Algorithm (SPEA). Zitzler et al. (2002) have shown that SPEA2, an

improved version of SPEA, outperforms other evolutionary techniques and

59

seems to have performance advantages in solving optimization problems with

higher dimensional objective spaces. For such reasons, this chapter employs

SPEA2 to find nondominated solutions to the CFL problem as described in

Plastria and Carrizosa (2004).

3.2.1 Genetic Algorithm for the CFLP

Four MOEA methods are introduced in the study. The first is a simple MOEA (S-

MOEA) that uses mutation only as implemented by Pangilinan et al. (2005). The

second is a variant of the simple MOEA wherein a local search procedure is

added to the algorithm (MOEA-LS). The third MOEA-AX uses average crossover

and non-uniform mutation. The non-uniform mutation acts as a local search

operator at the latter parts of the EA run. The last MOEA-BLX uses blend

crossover (Eshelman and Schaffer, 1993) and non-uniform mutation. The blend

crossover preserves the mean objective function values of the population. All

four MOEAs use the SPEA2 selection algorithm.

Genetic Representation. A chromosome x for the CFL problem is represented by

real-parameters, which define the location of a new facility in two dimensions

using (x,y)-coordinates. The objective functions are qualityα, and captured
weight CW of a new facility. Variation and selection operators are applied

directly to these real parameter values. The main difficulty here is how to create

a new pair of offspring vectors or how to mutate a facility location to a new

location in a meaningful manner.

Genetic Operators. Deb (2001) argues that binary crossover techniques hardly

create meaningful offspring vectors in real-parameter EAs. Given this

observation, implementing a binary crossover operator in a real-parameter

search space is not very useful. The problem is then reduced to the design of a

crossover and a mutation operator that are strong enough to create diversified

solutions and at the same time ensure convergence to optimal solutions. A

simple solution would be to implement random mutation per new generation to

guarantee diversity but this operator does not ensure convergence. The next

step is to generate solutions not from the entire search space but from a search

space near the parent solution with a uniform probability distribution. It is also

possible to create a non-uniform mutation where the probability of creating

solutions closer to the parent increases as the number of generations increase.

60

Our experiment adopts a non-uniform mutation operator, which is described as

follows

)()(1 thxxpxx u
i

l
i

t
i

t
i −+=+ (3.6)

bt/t maxrth

)1(
1)(

−−= (3.7)

where p is either -1 or 1 with probability of 0.5. The terms l
ix and u

ix express

the lower and upper bounds that define the decision space and restrict the

decision variable ix to take a value within the decision space at generation t.

The parameter r is a real random number in the interval [0,1], t is the

generation counter, and tmax is the maximum number of generations.. The

parameter b is a user-defined input that determines non-uniformity and has a

value usually greater than 1. Equation 3.6 assures that mutation accomplishes

uniform exploration at the first generations and search becomes local at the last

generations. Equation 3.7 makes it possible to create a non-uniform mutation

where the probability of creating solutions closer to the parent gets higher as

the number of generations increase.

 Recombination is implemented in two ways, as the arithmetic average of

both parent vectors or as a blend crossover of both parents. The arithmetic

crossover is defined as

)(
2

1
iii yxz += (3.8)

where x and y are the parents, z is the offspring, i = 1,…,m, and m is the

number of dimensions of the chromosome. The offspring genes represent the

arithmetic mean of the values of the parent vectors.

The blend crossover (BLX) is defined as

() iiiii yxz γ+γ−= 1 (3.9)

where x and y are the parents, z is the offspring, i = 1,…,m, and m is the

number of dimensions of the chromosome, γi = (1 + 2β)ui- β. The term ui is a

real random number between 0 and 1. If β is zero, the crossover creates a

random solution in the range (xi, yi). Eshelman and Schaffer (1993) report that

β=0.5 performs better than any other β value for the BLX operator.

61

Fitness Function. The raw fitness function in this MOEA evaluates the real

parameters α and CW(α, x) and is a multiobjective function that minimizes α

and maximizes CW(α,x). Tournament selection as defined in SPEA2 (see
Appendix B) is used for the selection of parent solutions.

Local Search. In addition to the basic genetic operators described above, the

MOEA-LS uses a local search procedure that improves the convergence rate of

the simple MOEA. The local search procedure iteratively searches for the lowest

quality α of a facility (individual) in location x. This is applied to all new offspring
individuals in every generation.

3.2.2 Experiments and Results

The problem considered in this chapter is taken from Plastria and Carrizosa

(2004). Specifically, a new facility must be located in the planar region S

bounded by a convex polygon with corner points (0,0), (50,0), (50,20), (25,45),

(0,45) as shown in Figure 3.1.

Figure 3.1 Facilities and consumers

62

 A set of two facilities, CF = {f1, f2} already exist and compete to attract a

set of customers AF = {a1, a2,…, a10}. For each consumer ai (i=1…10) the

gravity-type attraction to any facility is defined in (3.1) with each ka = 1

representing some proportionality constant depending on consumer a, some

minimal quality α0 ≈ 0, α0 = 0.0000001 and p = 2. The parameter p represents

the sensitivity of attraction attr to distance. Consumer a is captured by the

existing facility yielding the highest attraction. The attraction attra, is determined

by:














∈

−
= CFf

α
maxattr

fa

f

a 2
xx

 (3.10)

An overview of the attraction parameters of ten potential consumers is

presented in Table 3.1. The terms la and wa represent the location and weight of

each consumer a respectively.

Consumer Location

la

Weight

wa

Attraction

attra

Facility

f(a)

a1 (64.0, 34.0) 600 0.6702 f2

a2 (60.0, 19.0) 100 0.3702 f2

a3 (50.0, 38.0) 100 0.9766 f2

a4 (45.0, 55.0) 100 4.0000 f2

a5 (20.0, 52.0) 400 2.8345 f1

a6 (27.8, 7.0) 300 0.2830 f1

a7 (24.0, 40.0) 100 1.1312 f1

a8 (20.0, 31.0) 100 0.7086 f1

a9 (9.0, 36.0) 100 0.8389 f1

a10 (3.8, 7.0) 600 0.2707 f1

Table 3.1 Attraction Parameters

One difficulty of using evolutionary algorithms is its sensitivity to the input

parameters such as population size, random seed, number of generations, and

probability values for crossover and mutation. Determining a balanced

interaction between parameter settings to find efficient solutions is not an easy

task. A number of simulation runs is usually required to come up with near

optimal solutions. The set of parameters shown in Table 3.2 is one of the many

combinations that may be used for the competitive facility location problem.

63

 Parameter maxgen stands for the maximum number of generations. The

maximum quality value is indicated as quality_max. Parameters xy_range and

quality_range signify maximum perturbation for location and quality.

Mutation_probability is the probability that a mutation is performed.

Bit_turn_probability represents the probability of a gene to be mutated. The

initial population is the number of individuals at the start of the MOEA run. From

an initial population, a parent population is selected to reproduce a population of

offspring individuals. The process of selecting parents and reproducing offspring

is repeated until maxgen is reached.

Parameter S-MOEA MOEA-LS MOEA-AX MOEA-BLX

initial population 25 25 25 25

parent population 25 25 25 25

offspring individuals 25 25 25 25

maxgen 2000 250 250 250

quality_max 2000 2000 2000 2000

xy_range 5 5 4.28 7.19

quality_range 15 15 1.25 13.13

mutation_probability 1.00 1.00 0.69 0.47

crossover_probability 0.00 0.00 0.44 0.91

bit_turn_probability 0.50 0.50 0.81 0.53

Table 3.2 Input parameters

Table 3.3 shows comparative results of Plastria and Carrizosa’s algorithm (called

Plastria in the column table), S-MOEA, MOEA-LS, MOEA-AX, and MOEA-BLX

from the given sample problem. Plastria and Carrizosa’s results show the

complete set of optimal solutions. Clearly, all MOEA results show inferior

solutions to that of Plastria and that the MOEA-LS, the MOEA-BLX, and the

MOEA-AX perform better than the S-MOEA. The worst solutions are generated

by the S-MOEA (at 250 generations) because its search operator is weak. It

requires 2000 generations to have comparable results with the other MOEAs.

This shows that a non-uniform local search is more effective than a uniform

search. The best solutions are obtained by the MOEA-AX, which uses arithmetic

crossover and non-uniform mutation.

 The solutions of all MOEA algorithms are near optimal because the CFLP has

a real-parameter search space. Deb (2001, p.124) explains that after a few

generations, a real-parameter genetic algorithm treats a continuous search

64

space problem as a discrete search space problem and the global optimum is

difficult to find.

S-MOEA α MOEA-LS α

CW

Plastria
α

2000
generations

250
generations

MOEA-AX
α

MOEA-BLX
α

600.00 0.00 0.00 0.00 0.00 0.08
900.00 39.85 40.45 39.92 40.36 40.01
1000.00 89.83 91.41 89.87 90.46 93.15
1100.00 135.27 136.69 135.84 135.51 144.72
1200.00 182.72 184.10 183.23 182.75 200.52
1300.00 359.56 362.34 360.86 361.92 363.88
1600.00 362.00 363.41 362.81 362.32 365.47
1800.00 440.48 447.06 443.73 441.31 441.46
1900.00 446.91 448.73 448.89 447.34 459.72
2000.00 566.04 568.70 566.40 566.11 589.47
2400.00 767.59 770.36 768.99 768.60 769.34
2500.00 1800.00 1812.14 1806.45 1805.07 1814.01

Table 3.3 Comparative results of efficient solutions.

In terms of runtime complexity, Plastria and Carrizosa’s algorithm is able to find

the list of efficient solutions in O(n3logn) time where n is the number of

consumers. On the other hand, the MOEAs takes O(M2) to evaluate the raw

fitness of all candidate solutions per generation. The fitness assignment in

SPEA2 per generation takes O(M2logM) and the environmental selection per

generation takes O(M2logM) where M is the sum of the list of candidate

solutions N and the archive size. Calculation of the quality α and captured

weights CW per generation takes O(nM). The runtime complexity of the MOEAs

is dominated by its selection operator and is dependent on the initial population

size N and not on the number of customers n. With regard to the MOEAs, the

MOEA-LS and the MOEA-AX generates better solutions i.e. solutions nearer to

the Pareto-front and finds these solutions in a much shorter time (250

generations against 2000 generations). Plastria and Carrizosa (2004) note that

their geometric procedure does not extend well in finding solutions when non-

Euclidean distances are used. An MOEA does not suffer from such difficulty since

it does not employ a geometric procedure to find CFLP solutions. Hence, the

MOEA becomes more extensible to planar problems with a non-Euclidean metric.

65

3.3 Sensitivity Analysis

The purpose of uncertainty analysis is to determine the uncertainty in estimates

for dependent variables of interest (Saltelli 2000, Saltelli 1993). The purpose of

sensitivity analysis (SA) is to determine the relationships between the

uncertainty in the independent variables and the uncertainty in the dependent

variables. Uncertainty analysis typically precedes SA since there is no reason to

perform SA when the uncertainty in a dependent variable is below an acceptable

bound or range. Sensitivity analysis is often defined as a local measure of the

effect of a given input on a given output. This measure can be achieved most

often by Monte Carlo methods in conjunction with a variety of sampling

strategies (Saltelli et al. 2004). Monte Carlo sensitivity analysis is based on

performing multiple model evaluations with probabilistically selected model

inputs, and the results of such evaluations are used to 1) determine the

uncertainty in model predictions and 2) identify the input variables that influence

uncertainty.

 SIMLAB (2004) is a program designed for global uncertainty and sensitivity

analysis based on Monte Carlo methods (see Appendix A). It offers several

techniques for sample generation, sensitivity analysis, and a link to external

model execution. The link allows execution of complex models that can hardly be

coded as simple mathematical functions such as genetic algorithms.

3.3.1 Experiments and Results

Pangilinan et al. (2008) conducted a sensitivity analysis of the MOEA-AX for the

CFLP to determine which input parameters affect the output and avoid assigning

arbitrary values to the input parameters. The following experiment is patterned

from their study but with the addition of a sensitivity analysis for the MOEA-BLX

and a robustness test for the MOEA-AX. The sensitivity analysis for the MOEA-

BLX is added to compare the effect of different crossover operators on the same

problem set. The robustness test is added to show that the MOEA can find near-

optimal solutions without repeating a sensitivity analysis when the position of

the polygon S are altered.

 The five input parameters for the genetic algorithm model and their

configuration are shown in Table 3.4. The factor xyrange defines the upper and

66

lower limit for searching a point in the polygon S. The factor αrange defines the
limits for searching the quality α of the new facility. Mrate, xover, bitrate are the

mutation, recombination, and bit-turn probabilities respectively.

Input Factor Description Probability

xyrange Range for searching location Uniform(0, 10)

αrange Range for searching quality Uniform(0, 20)

mrate Mutation probability Uniform(0, 1)

xover Crossover probability Uniform(0, 1)

bitrate Bit-turn probability Uniform(0, 1)

Table 3.4 Probability distribution of input parameters

The bit-turn probability is the probability that a gene will undergo mutation

whereas mutation rate defines the probability that a chromosome or an

individual will undergo mutation. The MOEA runs for 250 generations for each

configuration. The Sobol’ method in SIMLAB (see Appendix A) is used for

sensitivity analysis, which generates 384 input configurations for the five input

parameters of the genetic algorithm.

 Table 3.5 shows the comparative results of captured weights and facility

quality as computed from Plastria and Carrizosa’s (2004) and the best solution

set from 384 different solution sets generated by the genetic algorithms. Plastria

and Carrizosa’s (2004) results show the Pareto-optimal set P*. The genetic

algorithm was able to compute the exact captured weight CW of the new

facilities but show inferior solutions of quality values α.

 The performance of a solution set Q from the genetic algorithm is based on

three parameters namely, (1) the ratio of CW Pareto-optimal solutions in Q over

the number of solutions in P*, (2) the ratio of CW solutions in Q that are

members of P* over the number of solutions in Q, and (3) the sum of

differences in quality values of Q and P*. The best solution Q*, is the solution

that has all the CW solutions in P* and the smallest sum of the differences of

quality values between Q* and P*. The quality values of the best solutions from

the MOEA-AX and MOEA-BLX are shown in Table 3.5. The quality values

generated by the MOEA-AX are nearer to the optimal values than values from

the MOEA-BLX, which means that the arithmetic crossover performs better than

the blend crossover in this CFLP problem set.

67

CW Plastria (α) P*

MOEA-AX

(Q*)

MOEA-BLX

(Q*)

600 0.0000 0.0003 0.0818

900 39.8488 40.3606 40.0118

1000 89.8289 90.4611 93.1452

1100 135.2698 135.5118 144.7237

1200 182.7161 182.7483 200.5216

1300 359.5603 361.9230 363.8839

1600 361.9952 362.3166 365.4698

1800 440.4785 441.3086 441.4561

1900 446.9055 447.3366 459.7156

2000 566.0434 566.1086 589.4663

2400 767.5907 768.5999 769.3388

2500 1800.0000 1805.0749 1814.0083

Table 3.5 Comparative results of best solutions

As regards the sensitivity analysis, Table 3.6 shows the Sobol first-order and

total-order indices. The first-order sensitivity index shows the individual effect of

an input factor on the output. More specifically a first-order index gives a

measure of the direct effect of an input factor on the output variation. An input

parameter having a first-order index with the least value means that it has the

least influence on the output whereas a factor with the highest first-order value

is most important for further investigation. If the sum of the first-order indices

equals 1.0, then the model is linear. If the sum of the Sobol first-order indices

does not equal 1.0 then the model is nonlinear and implies that some effects on

the output are due to interactions among the input factors. First-order sensitivity

measures do not capture interactions between factors whereas total-order

sensitivity measures detect interactions among input factors.

 The total-order indices describe the share of the output variation that is

related to each input factor. This includes the direct effect as well as interactions

with other factors. Removal of a factor means removal of the amount of the

total-order index from the output variation. Hence, only factors with very small

total-order indices can be removed to avoid significant changes in the output.

 Table 3.6 has three columns that represent the performance metrics for the

MOEA-AX described previously. The values represent the first-order and total-

order sensitivity indices. The mutation rate has the highest first-order index and

68

causes nearly 30% of the variation in each of the output metrics. Similarly, the

factors xyrange and the bitrate share almost 50% of the variation as shown in

the third column output metric-the sum of the differences in the quality α of a

facility between solutions Q and P* and can be interpreted as the proximity of

an α solution in Q to P*. The parameters αrange and xover have almost no
direct influence on the output metrics.

Sobol first order indices

Number of CW

solutions in Q
over |P*|

Number of CW
solutions in that

are in
P* over |Q|

Sum of
differences in

quality

xyrange 0.047 0.115 0.298
αrange -0.089 -0.077 0.039
mrate 0.286 0.318 0.292
xover -0.002 0.082 0.054

bitrate 0.065 -0.070 0.207

Sobol total order indices

xyrange 0.602 0.642 0.407
αrange 0.450 0.264 0.153
mrate 0.611 0.637 0.528
xover 0.200 0.300 0.137

bitrate 0.405 0.243 0.372

Table 3.6 Sobol first-order and total-order indices for MOEA-AX

The sum of the first-order indices does not add up to 1.0, which means that

there is interaction among the factors. The mutation rate factor mrate remains

the highest in the total-order indices followed by the parameters xyrange and

the bitrate. The order of the remaining factors has changed implying that

higher-order effects of these factors vary.

 The crossover probability factor shows small values and can be a candidate

for removal from the list of parameters. The results also show that the mutation

rate has the greatest influence on the output but specific mutation probabilities

that generated near-optimal solutions are not known. Further investigation

reveals that out of the 384 input configurations 21 samples have generated

near-optimal solutions i.e. they have detected all Pareto-optimal solutions for

the function “captured weight”, CW and have small differences in values for the

function “facility quality”, α. The 21 samples that generated near-optimal
solutions show high values for the mutation rate, specifically an average of 0.75

69

and a standard deviation of 0.16. Other averages for the input factors are

bitrate= 0.62, xyrange = 5.96, αrange = 6.46, and xover = 0.40.

 Table 3.7 shows the performance results from the MOEA-BLX. The crossover

rate has the highest first-order index, followed by the bitrate and mutation rate.

They account for 68 % of the variation in the first column output metric and

53% of the third column output metric. The factors xyrange and the αrange
have almost no direct influence on all the output metrics. However, their total-

order effects are significant. There are 23 near-optimal solutions generated by

the MOEA-BLX. The mutation rate averaged at 0.63, the crossover rate at 0.60

and the bit rate at 0.53. The average of xyrange is 5.04 and αrange is 9.60.

 Sobol First order indices

Number of CW

solutions in Q
over |P*|

Number of CW
solutions in Q
that are in
P* over |Q|

Sum of
differences in
quality α

xyrange -0.023 -0.017 0.018

αrange 0.117 0.041 -0.013

mrate 0.222 -0.005 0.153

xover 0.240 0.035 0.229

bitrate 0.235 -0.108 0.168

Sobol total order indices

xyrange 0.486 0.801 0.386

αrange 0.849 0.742 0.708

mrate 0.665 0.895 0.544

xover 0.631 0.694 0.687

bitrate 0.920 0.650 0.847

Table 3.7 Sobol first-order and total-order indices for MOEA-BLX

Tables 3.6 and 3.7 show the sensitivity indices of two MOEAs having different

crossover operators. Their values are very different which means that the type

of crossover operators while having the same mutation and selection operator

changes the behavior of the MOEA in terms of the individual and interaction

effects of each input parameter to the output. A common result between both

algorithms is that the mutation rate and the bit-turn rate are kept high (>0.60)

to get near-optimal solutions.

70

ROBUSTNESS

The interaction among parameters with high-valued indices should be further

investigated in order to improve the solutions in the real-valued objective

(quality of facility). A method that requires lesser input sample sizes will be

beneficial in the investigation of sensitivity analyses of evolutionary algorithms

as applied to CFL problem. To test whether a smaller input sample set is

beneficial, Table 3.8 is a list of ten parameter combinations that produced the

best CFL solutions. These are tested on different positions of S. The succeeding

experiment explores and describes the solutions that are generated by these ten

parameter combinations using MOEA-AX for nine different area locations as

defined by the polygon S. The MOEA-AX is chosen for the robustness test since it

has produced the better solutions than the other MOEAs.

 xyrange qrange mutation xover bitturn

1 4.38 1.25 0.69 0.44 0.81

2 3.13 3.75 0.94 0.06 0.44

3 5.31 0.63 0.91 0.72 0.34

4 7.81 0.63 0.78 0.59 0.34

5 3.13 3.75 0.94 0.56 0.44

6 1.88 1.25 0.94 0.19 0.56

7 7.50 5.00 0.75 0.25 0.75

8 9.22 14.69 0.95 0.55 0.83

9 7.19 13.13 0.47 0.28 0.53

10 7.81 9.38 0.78 0.72 0.34

Table 3.8 GA parameters that give best solutions to MOEA-AX

The experiment intends to determine if the same parameter combinations are

able to generate near-optimal CFLP solutions on differing areas as shown in

Figures 3.2-3.9. Figure 3.2 is a translation of the original area by +15 units on

the x-axis and Figure 3.3 is a translation of the original area by +15 units on the

y-axis. Figure 3.4 is a translation of the original area by +15 units on both the

x- and y-axes. Figure 3.5, 3.6, and 3.7 are reflections of the original area on the

y-axis, x-axis, and the xy-axes respectively. Figure 3.8 is the area rotated

clockwise by 90 degrees at location (50,20) and Figure 3.9 is the original area

rotated counter-clockwise by 90 degrees at location (25,45).

71

40, 45

65, 20

15, 45

15, 0 65, 0

0

10

20

30

40

50

0 10 20 30 40 50 60 70

Figure 3.2 Translation of S on x-axis

25, 60

50, 35

50, 15

0, 60

0, 15

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Figure 3.3 Translation of S on y-axis

72

40, 60

65, 35

65, 15

15, 60

15, 15

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

Figure 3.4 Translation of S on xy-axis

25, 35

50, 60

50, 80

0, 35

0, 80

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

Figure 3.5 Reflection of S at y-axis

73

80, 45

80, 0
30, 0

30, 20

55, 45

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90

Figure 3.6 Reflection of S on x-axis

80, 80

80, 30

80, 80

60, 30

35, 55

35, 80

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

Figure 3.7 Reflection of S at xy-axes, y=80-x

74

50, 20

75, 70

75, 50

50, 2030, 20

30, 70

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

Figure 3.8 Rotation of S at (50,20) clockwise 90˚

70, 20

50, 70

25, 45

25, 20

70, 70

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

Figure 3.9 Rotation of S at (25,45) counter-clockwise 90˚

75

Table 3.9 shows the quality values and captured weights after translation of S on

the x-axis (see Figure 3.2). The best solution is P*, and the quality values are

from nondominated sets Q1 to Q10. The term Qi, where i ∈{1,2,…,10} represents

a nondominated set of CFLP solutions generated form in an input combination

listed in Table 3.7. Solutions Q1, Q3, Q4, Q8, and Q10 have the complete set of

solutions and have mutation rates ≥ 0.69 and crossover rates ≥ 0.44. Whereas

solution sets Q2, Q5, Q6, Q7, and Q9 miss one captured weight CW = 1800 and

their corresponding quality values. The incomplete solutions have mutation rates

≥ 0.75 (except for Q9, which has 0.47) and crossover rates ≤ 0.56. The nearest

solution to P*, according to the performance criteria described above is Q8 with

a mutation rate of 0.95, bit-turn probability of 0.83, and a crossover rate of 0.55

followed by Q3 with a mutation rate of 0.91, bit-turn probability of 0.72, and a

crossover rate of 0.34. The worst vector is Q6 with a mutation rate of 0.94, bit-

turn probability of 0.56, and a crossover rate of 0.19.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 CW P*

0.077 1E-04 0.001 9E-04 2E-04 0.014 0.003 0.215 5E-04 0.016 300 1E-04

33.9 33.9 33.9 33.9 33.9 33.8 34.1 33.9 34.2 34.2 600 33.8

39.9 39.9 39.9 89.8 40.3 39.9 39.9 40.4 40.9 41.3 900 39.9

91.5 103.3 89.9 90.5 92.3 97.8 91.0 90.5 96.7 97.3 1000 89.9

135.8 139.6 135.7 135.3 137.1 135.4 135.7 135.9 135.6 140.0 1100 135.3

187.4 183.0 185.4 184.9 192.2 188.8 182.8 182.8 194.0 190.9 1200 182.8

359.8 368.7 359.9 359.6 355.7 370.6 359.8 359.8 369.9 358.7 1300 355.7

398.6 400.5 398.1 398.9 396.1 399.1 397.4 364.9 397.1 397.3 1400 364.9

441.9 441.2 441.0 442.6 443.0 1800 441.0

447.6 455.8 449.8 447.7 449.2 473.2 449.0 453.1 463.3 447.0 1900 447.0

566.3 566.8 566.5 566.5 567.0 566.4 566.3 566.4 566.6 568.1 2000 566.3

687.9 688.6 688.0 689.6 689.1 693.4 687.9 688.3 690.4 689.9 2400 687.9

789.1 789.0 789.1 791.0 789.0 788.8 789.2 789.2 790.1 790.0 2500 788.8

 Table 3.9 Quality values after translation of S on the x-axis

Table 3.10 shows the quality values and captured weights after translation of S

on the y-axis (see Figure 3.3). Vectors Q2 and Q6, have the complete set of

solutions and have mutation rates equal to 0.94 and crossover rates ≤ 0.44.

Vectors Q1, Q4 and Q10 miss one solution, the solution for CW=2100. Solution

sets Q5, Q8, and Q9 miss two solutions each whereas Q3 and Q7 miss three

solutions. The nearest solution to P* is Q2 with a mutation rate of 0.94, bit-turn

probability of 0.44, and a crossover rate of 0.06 followed by Q6 with a mutation

rate of 0.94, bit-turn probability of 0.56, and a crossover rate of 0.19. The worst

76

vector is Q3 with a mutation rate of 0.91, bit-turn probability of 0.34, and a

crossover rate of 0.72.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 CW P*

0.002 0.0001 0.0001 0.0001 0.001 0.001 0.001 0.095 0.003 0.0003 100 0.0001

25.1 17.3 17.4 17.4 17.7 17.4 17.4 18.0 23.8 19.2 600 17.3

59.0 57.9 57.6 57.9 57.6 58.2 57.9 62.1 58.3 59.0 900 57.6

90.3 90.2 90.5 90.4 91.0 90.0 90.0 91.7 92.1 90.5 1000 90.0

136.0 135.3 136.5 136.6 136.2 135.6 135.6 135.6 137.2 139.9 1100 135.3

182.8 183.5 182.9 183.7 185.0 182.8 182.8 183.0 183.0 182.9 1200 182.8

361.9 361.8 366.7 361.5 361.8 362.0 360.1 361.0 359.8 361.7 1300 359.8

363.3 362.1 364.5 362.2 362.3 364.2 363.0 363.4 1600 362.1

446.6 444.7 440.9 440.6 443.7 442.6 1800 440.6

447.8 449.0 452.7 448.7 451.3 459.7 447.6 450.9 447.7 449.3 1900 447.6

566.4 567.3 566.2 566.3 566.4 566.4 566.9 566.4 567.7 566.4 2000 566.2

 684.4 685.5 2100 684.4

686.4 686.9 686.5 686.7 686.1 686.2 686.3 686.9 687.8 2400 686.1

688.7 689.2 688.8 688.7 689.3 688.8 689.0 689.2 689.4 690.1 2500 688.7

Table 3.10 Quality values after translation of S on the y-axis

Table 3.11 shows the quality values and captured weights after translation of S

on both the x and y axes (see Figure 3.4). No single solution set captures all the

quality values and captured weights as listed in the column of P*. Solution sets

Q1, Q7, and Q10 miss only one solution, CW=2100 and vectors Q5 and Q8 miss

one solution, CW=1800 and CW=100 respectively. The remaining vectors Q2, Q3,

and Q4 miss two solutions whereas Q6 and Q9 miss three solutions. The nearest

solution to P* is Q10 with a mutation rate of 0.78, bit-turn probability of 0.34,

and a crossover rate of 0.72 followed by Q7 with a mutation rate of 0.75, bit-

turn probability of 0.75, and a crossover rate of 0.25. The worst vector is Q8

with a mutation rate of 0.95, bit-turn probability of 0.85, and a crossover rate of

0.55.

 Table 3.12 shows the quality values and captured weights of the reflection of

S on the y-axis (see Figure 3.5). Vectors Q3 and Q6, have the complete set of

solutions. The nearest solution to P* is Q6 with a mutation rate of 0.94, bit-turn

probability of 0.56, and a crossover rate of 0.19 followed by Q3 with a mutation

rate of 0.91, bit-turn probability of 0.72, and a crossover rate of 0.34. The worst

vector is Q8 with a mutation rate of 0.95, bit-turn probability of 0.85, and a

crossover rate of 0.55.

77

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 CW P*

1.868 2E-05 0.0001 0.0001 0.0008 0.0002 0.124 0.011 0.022 0.024 600 2E-05

29.8 43.1 42.6 31.2 43.6 42.6 29.7 31.5 31.9 43.7 700 29.7

58.7 58.0 58.0 57.9 57.7 74.9 57.9 58.3 59.2 57.9 900 57.7

95.1 92.6 90.1 90.6 90.6 90.1 91.8 90.6 90.6 90.4 1000 90.1

135.7 135.5 135.4 135.4 135.5 135.4 135.5 135.5 137.3 136.5 1100 135.4

183.1 183.6 183.0 183.9 185.3 183.4 182.8 184.1 189.4 184.8 1200 182.8

350.5 359.9 360.1 359.9 363.4 350.2 362.6 350.6 361.2 372.6 1300 350.2

398.1 396.5 401.3 395.3 395.7 397.0 398.5 398.3 397.3 1400 395.3

444.8 440.7 443.7 447.9 447.3 445.7 440.8 1800 440.7

447.4 449.4 454.0 448.5 448.3 452.1 448.4 455.8 448.4 449.5 1900 447.4

566.8 566.8 566.5 566.2 566.3 566.1 566.2 566.1 566.2 569.7 2000 566.1

 683.9 686.6 685.2 689.2 2100 683.9

686.3 687.2 689.2 687.3 686.1 685.8 686.0 1344.6 687.0 687.2 2400 685.8

689.0 689.0 688.9 689.0 688.7 688.7 1462.5 689.3 691.3 2500 688.7

Table 3.11 Quality values after translation of S in both x and y-axes

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 CW P*

0.087 0.0022 0.0039 0.0028 0.0003 5E-05 0.013 0.141 0.002 0.0002 400 5E-05

73.3 69.3 68.0 68.6 68.5 69.2 70.5 69.9 69.0 73.5 500 68.03

135.7 139.7 133.1 132.8 133.2 133.0 133.6 133.0 135.7 140.3 600 132.8

143.7 144.0 143.0 143.3 143.7 142.8 143.3 144.8 146.3 145.6 700 142.8

212.2 212.6 212.2 212.5 212.4 212.2 212.3 212.5 212.5 212.8 800 212.2

225.6 226.1 225.6 226.6 226.2 225.9 226.5 227.3 230.5 226.1 900 225.6

257.0 257.0 257.1 257.3 257.1 257.3 257.4 258.1 257.8 257.7 1200 257

 361.9 361.5 361.7 362.1 1300 361.5

362.6 364.7 362.5 362.1 362.2 362.1 362.4 362.8 362.7 363.5 1600 362.1

485.7 485.7 487.7 485.1 485.3 485.1 487.6 489.4 486.2 488.6 1700 485.1

538.5 537.9 537.7 537.6 538.1 537.5 537.6 542.0 538.9 539.7 1800 537.5

649.8 649.4 649.4 651.1 650.1 649.4 651.3 649.3 652.9 650.5 2000 649.3

685.6 684.0 685.2 683.5 683.6 687.2 2100 683.5

686.6 686.7 685.8 686.6 686.5 686.4 686.2 686.5 2400 685.8

688.7 688.8 689.0 689.0 689.0 688.7 689.0 689.1 689.0 690.8 2500 688.7

Table 3.12 Quality values of the reflection of S at y=40

Table 3.13 shows the quality values and captured weights of the reflection of S

on the x-axis (see Figure 3.6). Vector Q2 has the complete set of solutions and

all the other vectors have two or more missed solutions. Following the

performance criteria described previously the nearest solution to P* is Q2 with a

mutation rate of 0.94, bit-turn probability of 0.44, and a crossover rate of 0.06

followed by Q7 with a mutation rate of 0.75, bit-turn probability of 0.75, and a

78

crossover rate of 0.25. The worst vector is Q3 with a mutation rate of 0.91, bit-

turn probability of 0.34, and a crossover rate of 0.72.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 CW P*

 4E-05 0.0003 1E-06 100 1E-06

0.04 5.0 3E-04 12.9 0.0001 0.0001 0.001 0.04 0.0002 0.0003 600 1E-04

30.7 43.0 42.6 29.7 30.3 42.6 29.8 30.6 34.4 29.9 700 29.7

67.5 66.9 69.2 69.4 66.6 66.0 66.5 69.3 66.1 69.7 800 66.0

185.1 185.2 185.1 185.4 185.3 900 185.1

 212.1 1000 212.1

212.4 212.4 220.1 212.7 212.7 217.8 212.3 213.6 212.2 215.2 1100 212.2

335.5 335.8 335.5 337.2 337.5 336.3 335.8 338.4 336.3 336.6 1200 335.5

382.9 384.5 383.5 383.2 384.8 383.4 403.8 383.0 383.8 385.1 1300 382.9

440.5 440.9 440.6 441.0 440.7 440.6 441.4 441.4 440.7 442.4 1800 440.5

451.0 447.6 448.3 448.4 447.4 447.4 452.5 448.0 448.7 448.9 1900 447.4

681.2 655.9 682.0 674.0 652.0 652.0 678.4 653.4 652.9 673.1 2000 652.0

1245 1245 1246 1246 1246 1245 1246 1246 1256 1246 2100 1245

Table 3.13 Quality values of the reflection of S at x=40

Table 3.14 shows the quality values and captured weights of the reflection of S

on both the x and y axes (see Figure 3.7). Vectors Q1, Q6, Q7, and Q9 have the

complete set of solutions. Vectors Q2, Q3, Q5, and Q10 miss one solution each.

The nearest solution to P* is Q1 with a mutation rate of 0.69, bit-turn probability

of 0.81, and a crossover rate of 0.44 followed by Q7 with a mutation rate of

0.75, bit-turn probability of 0.75, and a crossover rate of 0.25.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 CW P*

1.307 4E-05 3E-04 0.0002 3E-05 0.003 0.001 0.022 0.0026 0.0011 600 3E-05

42.6 42.7 42.7 42.6 42.8 42.5 43.2 44.9 45.8 43.2 700 42.5

74.7 74.8 75.0 77.5 75.1 80.6 75.2 76.9 80.0 75.2 800 74.7

333.4 331.6 331.4 331.8 331.5 331.2 334.6 331.3 331.6 337.2 900 331.2

430.9 431.2 430.6 432.3 430.7 431.8 431.1 444.1 430.6 431.5 1100 430.6

482.0 481.7 482.0 483.7 482.3 482.5 482.1 482.9 482.1 483.1 1200 481.7

500.9 506.1 501.4 505.6 503.4 502.2 502.1 502.4 507.8 500.8 1300 500.8

542.8 547.5 543.5 546.8 542.8 549.0 543.0 546.2 543.1 546.0 1400 542.8

769.0 770.5 792.0 768.1 770.1 848.3 1800 768.1

848.3 848.1 848.1 848.1 848.0 848.4 848.4 848.1 848.1 2100 848.0

868.5 867.2 910.8 867.7 897.6 869.3 867.8 867.1 870.3 911.8 2400 867.1

882.0 908.5 917.6 879.5 914.8 893.0 887.6 907.4 887.0 917.9 2500 879.5

Table 3.14 Quality values of the reflection of S at y=80-x

79

The worst vector is Q10 with a mutation rate of 0.78, bit-turn probability of 0.34,

and a crossover rate of 0.72.

 Table 3.15 shows the quality values and captured weights after S is rotated

clockwise by 90 degrees at (50, 20) (see Figure 3.8). No single vector captures

all the quality values and captured weights as listed in the column of P*.

Solution sets Q1, Q3, and Q6 miss only one solution, CW= 1400 and vectors Q9

and Q10 miss one solution each, CW=2100 and CW=2400 respectively. Vectors

Q4 and Q5 miss solution CW= 2100. The remaining vectors Q2, Q5, Q7, and Q8

miss two solutions each. The nearest solution to P* is Q6 with a mutation rate of

0.94, bit-turn probability of 0.56, and a crossover rate of 0.19 followed by Q3

with a mutation rate of 0.91, bit-turn probability of 0.34, and a crossover rate of

0.72 . The worst vector is Q8 with a mutation rate of 0.95, bit-turn probability of

0.83, and a crossover rate of 0.55.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 CW P*

0.001 0.0003 0.0053 0.0001 4E-05 0.024 0.039 0.0189 0.0025 100 4.E-05

4.9 2.4 3.8 2.5 4.2 3.1 2.6 2.4 2.3 5.4 600 2.3

42.9 42.7 43.2 41.6 43.7 43.6 42.8 44.5 47.8 43.1 700 41.6

70.0 67.4 66.6 65.9 66.1 66.1 66.4 66.6 67.2 67.5 800 65.9

214.7 212.5 220.0 215.5 218.0 219.1 219.7 213.9 226.1 212.5 1100 212.5

335.3 335.7 335.8 335.3 336.0 335.1 308.6 336.8 308.0 337.1 1200 308.0

350.8 350.4 350.2 358.8 350.5 354.7 359.6 353.1 361.4 351.4 1300 350.2

 395.5 395.4 395.6 398.8 397.3 1400 395.4

443.4 443.0 442.6 440.9 442.6 443.4 445.2 443.6 1800 440.9

447.4 449.7 447.8 450.2 448.9 447.4 448.1 448.6 447.4 448.8 1900 447.4

566.5 566.9 566.1 566.7 567.0 568.8 566.6 567.4 568.8 571.0 2000 566.1

683.4 684.6 684.4 683.6 683.9 683.3 688.2 2100 683.3

686.2 686.2 686.7 686.5 687.4 686.5 686.9 2400 686.2

688.7 688.7 689.0 688.9 688.9 689.1 689.0 689.6 689.6 691.0 2500 688.7

Table 3.15 Quality values after a 90˚ clockwise rotation at (50,20)

Table 3.16 shows the quality values and captured weights after S is rotated

counter-clockwise by 90 degrees at (25, 45) (see Figure 3.9). Vector Q8 has the

complete set of solutions and all the other vectors have one or more missed

solutions. Solution sets Q1, Q4, Q7, and Q10 miss only one solution each and

vectors Q2, Q3, Q6, and Q9 miss two solutions each. Vector Q5 misses three

solutions. Following the performance criteria described previously, the nearest

solution to P* is Q8 with a mutation rate of 0.95, bit-turn probability of 0.83,

80

and a crossover rate of 0.55 followed by Q1 with a mutation rate of 0.69, bit-

turn probability of 0.81, and a crossover rate of 0.44. The worst vector is Q3

with a mutation rate of 0.91, bit-turn probability of 0.34, and a crossover rate of

0.72.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 CW P*

0.017 0.0001 0.0195 0.0004 4E-05 0.0001 0.11 0.038 0.0014 0.0021 600 4.E-05

33.2 29.9 29.4 29.9 31.6 31.4 30.1 33.1 33.6 43.1 700 29.4

66.4 66.1 66.2 66.1 66.8 66.0 67.5 70.3 67.6 68.6 800 66.0

216.5 218.8 214.1 216.4 215.8 218.0 213.0 213.3 223.9 214.2 1100 213.0

253.7 307.8 335.3 307.8 307.7 307.7 307.9 253.7 312.4 309.6 1200 253.7

354.0 359.8 351.7 360.9 360.1 359.6 361.3 360.9 361.3 352.1 1300 351.7

401.2 396.2 395.9 399.0 400.6 401.8 1400 395.9

 443.9 443.1 444.7 443.6 442.3 441.1 1800 441.1

489.9 458.4 448.1 463.0 448.0 447.0 448.0 448.7 447.8 447.7 1900 447.0

566.2 567.1 566.2 566.4 566.1 566.1 566.6 566.6 566.2 566.7 2000 566.1

686.5 683.1 684.9 685.0 2100 683.1

686.7 685.8 686.4 687.1 686.4 686.4 686.5 686.9 686.9 2400 685.8

689.0 688.7 688.8 689.2 689.1 688.7 688.8 688.8 689.2 690.3 2500 688.7

Table 3.16 Quality values after a 90˚ counter-clockwise rotation (25, 45)

The results show there is no single parameter combination that dictates the

generation of the best nondominated solutions. This means a parameter

combination that finds the best solution in one case area does not necessarily

find the best solution in another case area. There are also cases wherein not

even one combination produced a complete set of solutions from all ten

parameter combinations. This means the ten best parameter combinations in

the original configuration does not always generate the best solutions when

changes to the location of the area are introduced. However, the multiobjective

evolutionary algorithm can generate the best solution Q* from an ensemble of

only ten parameter combinations by combining the best solutions for each

combination.

 The tables also show that higher mutation probabilities (> 60%) and lower

crossover probabilities (<55%) produce the nearest nondominated solution to

P*. On the contrary, high crossover rates (> 50%) often produce the worst

nondominated solutions among the parameter combinations when using

arithmetic crossover and non-uniform mutation.

81

3.4 Summary

This chapter investigates the performance of several MOEAs in discovering a set

of solutions to the competitive facility location problem and a sensitivity analysis

of their solutions in relation to their input parameters. In terms of the optimality

of solutions, the MOEAs are able to find Pareto-optimal solutions in the discrete-

valued objective (captured weights) search space but shows inferior Pareto-

optimal solutions to the real-valued objective (facility quality).

 In terms of runtime complexity, the MOEAs run in polynomial time but are

computationally expensive in terms of repeated executions for sensitivity

analysis. The advantage of using MOEAs in finding efficient solutions to the CFLP

is that it does not suffer from difficulties related to geometric procedures; they

are extensible to planar problems with a non-Euclidean metric.

 The sensitivity analyses show that the mutation rate causes much of the

variation in the output and requires a high probability value in order to generate

CFL solutions near the Pareto-optimal front. When using average crossover, the

crossover rate has the least influence on the output and requires low probability

values, and when using blend crossover, the crossover rate has the greatest

influence and requires high probability values.

 Section 3.4 examined the effects of changing the area location in finding

solutions to the competitive facility location problem while preserving a small set

of previously effective GA-parameter combinations. The results show that there

is no single GA-parameter combination that dictates the generation of best

solutions in the CFLP when the area parameters are altered. However, an

ensemble of a few GA-parameter combinations is sufficient to find near-Pareto-

optimal solutions when area parameters are changed. The MOEA in this case, is

robust as long as the mutation probability and the bit-turn probability are set to

a probability of more than 60% while keeping the crossover probability low.

82

83

Chapter 4

The Container Location
Model:
An optimization problem
with a fixed-length string of
discrete variables

4.1 Introduction

Containers are in the market for international conveyance of freight for more

than 40 years and have got more acceptance due to the concept of a unit-load.

The breakthrough was achieved in this time period with high investments in

specially designed vessels, in the availability of (purchased or leased) containers

and in adaptable seaport terminals with suitable equipment.

 A container terminal serves as an interface connecting container vessels on

sea with trucks on land. It provides loading and unloading services for the

container carriers. On top, the terminal serves as a temporary storage space for

containers between two journeys on carriers. Due to increasing container traffic,

sometimes thousands of trucks pass the gates of the terminal, of which probably

the surface area might be relatively small. This combination requires for highly

efficient handling of the operations. The need for optimization in container

84

terminal operations has become important because the logistics of large

container terminals reaches a high level of complexity (Steenken, 2004).

 An overall optimization model of the operational decisions in a container

terminal is not easy, and maybe not feasible, because of the complexity and the

multi-criteria nature of the problem. In fact, decisions are required on berth

allocation, schedule and stowage plan of the vessels, quay crane allocation,

storage space allocation, location assignment of containers in blocks, etc. It

looks more feasible to split the overall problem into several sub-problems. This

chapter concentrates on the storage location of outbound containers in the yard.

 Quay cranes discharge inbound and transit containers from vessels and load

outbound and transit containers to vessels. The storage yard is made up of

blocks of containers. In a block, containers are stored, usually in six lanes side

by side, with each lane including 20 or more container stacks. The level at which

a container is stacked is called a tier. Container stacks typically have four or five

tiers.

 Performance indicators of a container terminal have been defined, measuring

productivity, resource utilization and customer satisfaction. Two examples of

performance indicators taken as objectives are (1) to minimize the vessel

berthing time, which is a service measure of the terminal, or (2) to maximize

the throughput of the quay cranes, which is a productivity measure of the

terminal.

 The berthing time of a vessel consists of several components like waiting,

berthing, unloading, loading and departing. The times spent in each of those

components are related to availability of required the resources. Quay cranes

discharge and load the containers. Internal trucks provide transportation of

containers between the quay cranes and the storage blocks. External trucks

bring outbound containers into the yard and pick up inbound containers from the

yard. Yard cranes handle the containers in the storage blocks. They load

containers from trucks and stack them onto blocks, and retrieve containers from

blocks and load them onto trucks. Decisions about the storage of containers in

the yard directly affect the workload of yard cranes and the travelling distances

of the internal trucks and indirectly affect the efficiency of the quay cranes.

 An overall optimization model of the operational decisions in a container

terminal is not easy, and maybe not feasible, because of the complexity and the

85

multicriteria nature of the problem. In fact, decisions are required on berth

allocation, schedule and stowage plan of the vessels, quay crane allocation,

storage space allocation, location assignment of containers in blocks, etc. It

looks more feasible to split the overall problem into several sub-problems. This

chapter concentrates on the storage location of outbound containers in the yard.

 This chapter focuses on an improved use of the storage area by reducing

the time for the yard cranes to transfer containers from the storage area to the

marshalling area for loading onto the vessels. The objective is to minimise the

time the vessels spend at the berth. To obtain this objective the time spent

transferring containers from a storage area to the vessel (i.e. the sum of set up

times and travel times for all containers) needs to be minimised.

 While the model may be formulated as a mixed integer linear program, its

computational complexity increases exponentially with the number of containers

in the schedule and is known to be NP-hard (Kozan and Preston 2001). A genetic

algorithm is formulated as a tool to generate good solutions.

4.1.1 Problem Formulation

In practice wherever possible, storage yards are grouped into two categories,

import and export yard blocks. Import containers are unloaded from container

ships from overseas and continue through inland transport while export

containers are loaded on ships for overseas. Arrival of import containers is

foreseeable but their departure is unpredictable. Because of the randomness in

their departure, import containers are not stacked so high. Departure of export

containers is usually connected to a ship and can be stacked more efficiently. In

a generic stacking problem, items numbered from 1 to n arrive at a set of k

stacks in some permutation. Eventually, all items need to leave the stacks in

correct order with a minimum number of reshuffles. König and Lübbecke (2008)

show that to approximate the minimum number of reshuffles is NP-hard. This

chapter mainly addresses the problem of stacking export containers and shows

how loading schedules affect handling time in seaport terminals.

 According to Kozan and Preston (2001), the objective of the container

location model (CLM) is to determine the optimal storage strategy for various

86

handling schedules such that the containers must be stored in a manner that

minimizes the amount of handling time. They define the optimization problem as

Minimize ()∑ +
i

time_setup
i

time_travelling (4.1)

Subject to the constraints

1. Only one container can be stored in a given storage position,

2. A yard machine is scheduled to handle one container at a given time,

3. A container arriving at time t’ cannot be stored under a container arriving at

time t such that t < t’.

The formulation makes use of the following definitions:

Travelling_time is the time required to transport container i between the storage

area, marshalling area, track area and inter-modal terminal and is defined as

Travelling_time = lock
V

CWyRWx
lock ii +

+
+ (4.2)

and

Setup_time is the time required to access the desired container i at the storage

area and defined as

Setup_time =






 +++

0

224 movelock)movelock(z i
 (4.3)

making use of the following variables

lock is the time needed for the yard machinery to lock on to a container

before picking it up and to unlock a container after moving it.

move is the time required to move containers to an adjoining position to

access containers below.

CW is the length of a column of the storage area

RW is the width of a row of the storage area

xi is the row where container is stored

yi is the column in the storage area where container is stored

zi ,t is the vertical storage position of container

V is the velocity of the yard machine.

Figure 4.1 shows a picture of 3-tier stack and the margin between set up time

and travel time. In this example, container B needs to be transferred from the

storage area for loading. Since container A is on top of container B, the total

87

setup time includes the time to re-handle container A plus the setup time for

container B. The re-handling time of container A is the time to remove it from

the stack and the time to replace it on the stack. Looking at Figure 4.3 the yard

machine locks on A, moves it to the ground, and unlocks A in the first step. Then

the yard machine locks on B, moves B to a transport vehicle, and unlocks B. In

the third step, the yard machine locks on A, places it on top of C, then unlocks

A. The travelling time of container B starts only after the setup process is

completed.

Figure 4.1 Setup time and travel time.

The conflicting objectives of maximizing the use of storage space and minimizing

unproductive moves in a stacking strategy seem to be an interesting bi-objective

optimization problem, but further examination shows that the efficient use of

storage space is dependent on the number of containers in a yard block. For

example, given a set of containers in a block, the percentage of space used by

these containers does not change when they are relocated in the same block.

However, proper arrangement of containers in a block may improve the total

handling time during loading. The bi-objective problem reduces to a single-

objective optimization problem of minimizing the total handling time of

containers in a block by finding better arrangements of the containers before

they are loaded. In return, this leads to a multiobjective problem of finding the

minimum total handling time while minimizing the number of relocated

containers (re-handled containers).

3

1

4

Setup time Travel time

2

C

B

A

B A

88

 This chapter evaluates two experiments. The first experiment is a single-

objective optimization problem of minimizing the total handling time as defined

by Kozan and Preston (2001). The second experiment is a bi-objective

optimization problem of minimizing total handling time while minimizing re-

handled containers. The bi-objective problem is defined as:

Minimize ∑ +
i

ii time_setuptime_travelling (4.4)

 Minimize (re-handled containers)

4.1.2 Literature Review

Containers may be arranged according to container information such as size,

weight, departure time, and destination vessel among others. In category

stacking, containers of the same category are stacked together in the same yard

bay or in contiguous yard bays. In the residence time strategy, a container is

stacked relative to its departure time, i.e. containers that leave earlier are

stacked on top of containers that leave at a later period. Steenken et al. (2004)

presents two methods, (1) storage planning wherein storage space is allocated

before the ship’s arrival and, (2) scattered stacking wherein containers are

assigned to a berthing place before a ship’s arrival. Dekker et al. (2006) state

that scattered stacking results in higher yard utilization and significantly reduces

the number of unproductive moves (reshuffles).

 Chen et al. (1999) provided a description of unproductive moves in port

terminals, whereas Murty (2005) defines an objective function of minimizing

reshuffles and maps a solution that is analogous to a bin-packing problem. In

category stacking, weight is a useful criterion as heavy containers are usually

stored deep in a ship. Kim et al. (2000) derived decision rules using weight

groups for determining the storage slots of arriving containers through dynamic

programming. Kim and Kim (1999) relate the efficiency of loading operations to

a loading sequence derived from a routing solution of transfer cranes. Kim and

Bae (1998) describe an approach to move containers efficiently from a current

layout to an ideal layout by decomposing the container problem into two stages

– a bay matching problem and a sequencing problem. They propose that

heuristic techniques should be developed for calculations that are more efficient.

89

Kozan and Preston (2001) describe the effects of loading schedules and storage

utilization in minimizing turn-around time of container ships though genetic

algorithms. Kim et al. (2004) define a beam search algorithm to minimize

handling time of transfer cranes and quay cranes for export containers. Other

studies show the importance of improving space allocation methods of export

containers in the management of port terminals (Kim et al. 2003, Zang et al.

2003, Chen et al. 2004). Pangilinan and Janssens (2009) evaluated two types

of loading schemes for export containers using a mutation-only genetic

algorithm. Their results show that a last-come-first-served (LCFS) loading

schedule is superior to a first-come-first-served (FCFS) loading schedule and the

employment of a GA in both FCFS and LCFS schedules show improvement in

their handling times.

 The current study differs from the earlier study by Pangilinan and Janssens

(2009) and by Kozan and Preston (2001) in terms of the following: (1) the

interactions of the genetic operators are evaluated, (2) the performance of two

MOEAs is compared, and (3) results of both the single-objective and bi-objective

CLM problems are presented.

4.2 Multiobjective Evolutionary Algorithm

4.2.1 Genetic Algorithm for the CLM

Genetic Representation. A chromosome or an individual consists of integer-

valued elements that form a linear string, which contains the location of a

container in the storage yard. The storage yard is represented as a 3-

dimensional array of storage locations (see Fig. 4.2).

 The index of each element i in the string represents the ID of a container i.

The value of an element at index i represents the storage location of container i

in the storage yard. The length of the chromosome is fixed and may not be

greater than the number of containers, n. A chromosome is randomly generated

and an integer with a value less than the maximum size of the storage block is

assigned to each position of the chromosome. The assignment of storage

locations ensures that the CLM constraints are met, e.g. a container that arrives

at time t cannot be stacked on top of a container that arrives at time t+1.

90

Figure 4.2 Chromosome representation

Genetic Operators. The crossover operator is an adaptation of the one-point

crossover. For each pair of individuals, a locus is randomly selected and the

values from the locus to the end of the chromosomes are is interchanged (see

Section 2.2.3). Repairs are done to ensure that only one container is assigned to

a single storage space and that a container occupies a location that is on the

ground or on top of another container. In the mutation operator, a locus is

randomly selected from the chromosome and the value of the locus is replaced

by a new vacant location in the storage block.

Fitness and Selection. In the single-objective case, the fitness of an individual is

computed based on total handling time of containers, i.e. the sum of the

travelling_time and setup_time in loading the necessary containers on a

container ship. The individual that has a smaller fitness value is the better

solution. In the bi-objective case, the fitness is evaluated in terms of Pareto-

dominance of total handling time and re-handled containers. The selection in

both cases uses SPEA2 (Zitzler et al. 2002) and NSGA-II (Deb et al. 2002) to

find nondominated solutions to the CLM problem.

1

1

4 5

2 3 4 n-
1

n contain
er

locatio
n

2
7

1
1

1
0

1
3

91

4.2.2 Experiments and Results

SINGLE-OBJECTIVE CASE

The experiment compares the performance of two export-container loading

schemes namely last-come-first-served (LCFS) and first-come-first-served

(FCFS). The study evaluates the viability of a genetic algorithm in optimizing the

handling time using the LCFS and FCFS schedules, and evaluates the effect of

the genetic operators, such as crossover and mutation, on the output. The

experiment has the following assumptions:

1. A single yard machine is considered.

2. All containers for loading are located in one block and near the departure

ship.

3. One block is composed of five yard bays. One yard bay is 6 rows wide and 4

tiers high.

4. All containers are loaded in only one departure ship and a maximum of 120

containers can be loaded.

5. V=0.33 m/s, RW=2.4 m, CW=6.1 m, lock=60 sec, and move=60 sec. The

values assigned to these variables are based on actual data.

 Ten configurations for the storage utilization are used, i.e. from 10% to

100% usage. For each usage configuration, 100 instances of container

arrangements are randomly generated. Figure 4.3 shows a comparison of the

average handling time of both the FCFS and the LCFS loading schedule with

regard to storage use from 10% to 100%. The LCFS schedule shows a linear

behavior and its slope is small whereas the FCFS schedule produces a curve

wherein the handling time increases considerably as the space usage increases.

The performance of the LCFS loading becomes obviously better whereas the

FCFS schedule becomes worse as the utilization of the storage yard increases.

This is because the storage of containers emulates a stacking structure.

 The storage block in this experiment contains 120 storage spaces, i.e. six

rows, 5 columns, and 4 tiers. This means that one tier can accommodate 30

containers. In this context, the performance of FCFS is ideal only if the

containers are placed in one tier. But if the number of containers to be stored is

92

more than 25% of the storage block capacity then the LCFS loading scheme will

always perform better than the FCFS.

0

200

400

600

800

1000

1200

1400

1600

1800

10 20 30 40 50 60 70 80 90 100

Percentage of storage use

T
im

e
 (

m
in

u
te

s
)

LCFS FCFS

Figure 4.3 Handling time, LCFS vs. FCFS

 With regard to the EAs, four configurations were used, (1) SPEA2 with

crossover only, (2) SPEA2with mutation only, (3) NSGA-II with crossover only,

and (4) NSGA-II with mutation only. Each of the above EA conditions was tested

on both the FCFS and LCFS loading schedules. An initial population is set to 36

individuals and a run of 20 generations. The population size of 36 was estimated

from Deb (2001) with the assumption that 30% of nondominated paths are

present in the initial population.

 Table 4.1 presents a comparison of the best-average handling times of 50

random container configurations per percentage usage. The table presents

results from an FCFS schedule, an EA-mutation-only (EAM-FCFS), and an EA-

crossover-only (EAX-FCFS) schedule. The results show that the EA methods

have shorter handling times for each storage configuration than FCFS. This

means reshuffling (re-handles) of the containers from their initial position

improves the total handling time of all the containers for loading. There are no

significant differences between the results of mutation-only and crossover-only

schemes in both SPEA2 and NSGA-II (F-test with 5% significance level).

However, there is a pattern in the solutions. The crossover-only algorithm

performs better for both MOAEs when the space usage is low (≤ 60% in NSGA-II

93

and ≤ 30% in SPEA2). The mutation-only algorithms perform better when the

space usage increases beyond these limits. This shows that SPEA2 and NSGA-II

use the variation operators differently even when their parameter settings are

the same.

 Table 4.1 also shows that the NSGA-II results are smaller than the SPEA2

results, which implies that NSGA-II finds faster total handling times than SPEA2

in all FCFS configurations for the single-objective CLM problem. The best

handling times are in bold.

Space

Usage

(%)

FCFS

(min)

EAM-FCFS

SPEA2

(min)

EAM-FCFS

NSGA-II

(min)

EAX-FCFS

SPEA2

(min)

EAX-FCFS

NSGA-II

(min)

10 32.50 31.41 30.77 30.35 28.96

20 95.70 91.29 89.16 85.89 80.27

30 194.24 189.93 188.22 186.85 180.00

40 320.71 316.64 313.51 316.72 311.89

50 484.21 479.97 477.15 481.62 476.27

60 668.93 664.48 659.85 667.87 663.64

70 881.77 877.11 872.35 880.43 876.50

80 1118.08 1114.67 1110.42 1116.70 1114.77

90 1379.01 1377.55 1376.26 1378.46 1377.91

Table 4.1 Comparison of solutions in an FCFS scheme

Table 4.2 shows the EA methods have shorter handling times for each storage

configuration in an LCFS schedule. Again, this shows that arranging the

containers to better positions improves the total handling time. Comparing the

EA results using the F-test with 5% significance level, there are no significant

differences between the values of mutation-only and crossover-only schemes in

both SPEA2 and NSGA-II. However, the results of NSGA-II are better than the

results of SPEA2 in both mutation-only and crossover-only algorithms. This

means that NSGA-II finds faster total handling times than SPEA2 in all LCFS

configurations for the single-objective CLM problem.

94

Space

Usage

(%)

LCFS

(min)

EAM-LCFS

SPEA2

(min)

EAM-LCFS

NSGA-II

(min)

EAX-LCFS

SPEA2

(min)

EAX-LCFS

NSGA-II

(min)

10 29.68 26.16 25.51 26.81 25.62

20 62.36 57.55 55.74 57.99 55.70

30 95.32 90.58 88.10 91.08 88.61

40 128.86 124.30 122.09 124.56 122.22

50 162.27 158.47 156.52 158.24 155.68

60 196.59 193.24 191.12 192.86 190.27

70 230.41 227.64 225.14 227.35 225.04

80 265.17 262.64 260.80 262.27 260.41

90 300.32 298.39 297.38 298.14 296.93

Table 4.2 Comparison of solutions in an LCFS scheme

MULTIOBJECTIVE CASE

The following experiment compares the performance of SPEA2 and NSGA-II in

the bi-objective CLM problem as defined in (4.4). Their averages are compared

in terms of handling time, re-handled containers, and the cardinality of their

nondominated solutions. The averages per storage-use configuration are taken

from 50 runs. The initial population is set to 36 individuals and a run is set at 20

generations. The mutation and crossover rates are set at 0.50. The individuals in

the initial population in each run are identical in order to count the number of

re-handled containers after each run.

 Table 4.3 shows the average results of SPEA2 and NSGA-II from an FCFS

loading scheme in terms of total handling time, quantity of re-handled

containers, and the cardinality of the nondominated sets. The best handling

times and the least number of re-handled containers are in bold. The second

column lists the values of total handling time when there is no reshuffling of

containers before loading. The results show using the F-test with 5%

significance level, that there are no significant difference in the total handling

times, in the number of reshuffled containers, and the size of their

nondominated sets between SPEA2 and NSGA-II. The results show that NSGA-II

generates lesser re-handled containers and smaller solution sets. The averages

in the number of re-handled containers in both MOEAs are small and increase as

the space usage increases. The size of the solution set behaves similarly.

95

 SPEA2-FCFS NSGA-II-FCFS
Storage
Use %

FCFS Handling
Time
(min)

Re-
handled

Containers

Number
of

Solutions

Handling
Time
(min)

Re-
handled

Containers

Number
of

Solutions

10 49.83 47.55 1.09 5.04 46.35 0.70 2.24

20 130.16 125.29 1.32 6.62 124.02 0.88 2.58

30 243.48 237.66 1.68 6.88 237.76 1.20 3.00

40 374.56 368.84 2.02 7.50 368.47 1.28 3.02

50 540.16 531.23 2.30 8.42 533.15 1.72 3.36

60 727.26 721.77 2.90 9.36 724.63 2.56 4.63

70 935.08 927.75 3.33 9.86 927.59 2.71 4.76

80 1163.53 1159.36 3.81 9.62 1157.28 2.91 4.70

90 1418.7 1414.41 4.70 8.80 1415.74 2.57 4.36

Table 4.3 Comparison of bi-objective solutions in an FCFS scheme.

Table 4.4 shows the averages of handling time, re-handled containers, and the

cardinality of nondominated solutions in SPEA2 and NSGA-II using an LCFS

loading scheme. The results show using the F-test with 5% significance level,

that there are no significant difference in the total handling times, in the number

of reshuffled containers, and the size of their nondominated sets between SPEA2

and NSGA-II. Unlike the results in Table 4.3, NSGA-II generates less re-handled

containers, smaller solution sets, and faster handling times in all storage

configurations. The size of the solution sets in SPEA2 decreases gradually as the

space usage increases from 20% to 90%.

 SPEA2-LCFS NSGA-II-LCFS
Storage
Use %

FCFS Handling
Time
(min)

Re-
handled

Containers

Number
of

Solutions

Handling
Time
(min)

Re-
handled

Containers

Number
of

Solutions

10 34.47 31.38 3.04 15.76 30.98 2.83 6.32

20 69.26 65.53 3.57 17.94 65.15 3.36 7.46

30 103.26 99.76 3.80 17.16 99.42 3.63 7.84

40 137.56 133.99 3.97 16.06 133.72 3.67 7.34

50 171.88 168.68 3.92 14.60 168.33 3.64 7.18

60 206.34 203.44 4.06 13.00 203.09 3.86 7.00

70 240.28 237.92 4.02 11.16 237.78 3.24 5.84

80 274.63 272.32 4.87 10.30 272.31 3.38 5.42

90 309.18 307.22 5.87 9.10 307.66 3.13 4.78

Table 4.4 Comparison of bi-objective solutions in an LCFS scheme.

96

NSGA-II behaves similarly when space usage is ≥ 30%. On the other hand, the

quantity of re-handled containers in SPEA2 increases as the space usage

increases.

 Tables 4.3 and 4.4 show that the number of re-handled containers and the

size of solution sets of the LCFS loading method are larger than the values of the

FCFS loading method. However, the handling times of the LCFS are far smaller

than handling times of the FCFS scheme. The tables above show that NSGA-II

is a better algorithm than SPEA2 in both the single-objective and bi-objective

CLM cases.

4.3 Sensitivity Analysis

The sensitivity analysis investigates the effects of the recombination and

mutation operators on the handling time of containers in the case of the single-

objective CLM. In the bi-objective case, a sensitivity analysis on the proximity of

nondominated solutions to the Pareto-optimal set is not possible since the

Pareto-optimal set is unknown. However, a sensitivity analysis on the cardinality

of the nondominated sets is feasible.

4.3.1 Experiments and Results

SINGLE-OBJECTIVE CASE

The sensitivity analysis for the single-objective case utilizes 12 configurations

according to space usage. These configurations help illustrate the differences

between SPEA2 and NSGA-II with regard to the influence of their genetic

operators. The experiment investigates space usage of 30 %, 60%, and 90% in

an FCFS loading scheme. The output variable is the sum of the handling time of

containers. The input parameters are mrate, xover, and maxgen, the mutation

probability, recombination probability, and number of generations respectively.

The initial population is 36 with the assumption that 30% of nondominated

solutions are in the initial population as estimated from Deb (2001). In each

loading configuration, there are 128 combinations of the input parameters

generated by Sobol’s method and their distributions are listed in Table 4.5.

97

Input factor Description

Probability

Distribution

mrate Mutation probability Uniform(0,1)

xover Recombination probability Uniform(0,1)

maxgen Number of generations
Uniform(1,10)

Uniform(11,20)

Table 4.5 Input factors and probability distributions

Table 4.6 shows the results of the sensitivity analysis for an FCFS schedule. Two

configurations in the number of generations are provided to show the changes in

the sensitivity indices between generations 1 to ten and generations 11-20. The

figures in bold are the indices of the input parameters with high main effects.

The second and third column shows the sensitivity indices of the input

parameters when the number of generations maxgen is between 1 and 10. The

fourth and fifth column shows the sensitivity indices of the input parameters

when the number of maxgen is between 11 and 20. The sensitivity indices show

that the interaction of the input parameters mrate and xover is high while their

main effects are low in most of the configurations. The interaction of maxgen

with the other input parameters in the initial generations is high and diminishes

as the MOEA run progresses. This means the selection operator of either SPEA2

or NSGA-II has much influence in finding nondominated solutions in the initial

stages of the MOEA. However, in the latter generations, the main effect of

mutation increases when the space usage is 60% or higher. This implies that

when the space usage is high, the mutation operator has the largest influence in

finding different handling times during the final generations of the optimization

run in an FCFS schedule. The first-order indices of the crossover rate are small

in most instances except when the space usage is at 30 % and maxgen is

between 1to 10. This means that the crossover operator does not explore the

search space as much as the mutation operator in an FCFS schedule.

 The SPEA2 sensitivity indices are zeroes when the space usage is 30% and

60% as shown in second column. The zero values imply that there is no

variation in the output during generations 1 through 10. Similarly when maxgen

is between 11 and 20 and space usage is 30%, the SPEA2 indices are negative.

Negative indices also mean that the inputs have no influence on the output.

When maxgen is between 11 and 20 and space usage is 60%, the SPEA2 indices

are small. This means that the sum of handling times generated by SPEA2 do

not vary much after the first few generations when space usage is below 60%.

98

Single-objective case

(FCFS)
1-10 generations 11-20 generations

 SPEA2 NSGA-II SPEA2 NSGA-II

30% space usage

Sobol’ first-order indices

mrate 0.00 -0.053 -0.091 -0.312

xover 0.00 0.439 -0.034 0.067

maxgen 0.00 0.537 -0.06 -0.063

Sobol’ total-order indexes

mrate 0.00 0.343 0.884 0.851

xover 0.00 0.481 1.296 1.071

maxgen 0.00 1.187 0.131 0.085

60% space usage

Sobol’ first-order indices

mrate 0.00 0.00 0.043 0.342

xover 0.00 -0.543 0.029 0.0038

maxgen 0.00 -0.382 0.00 0.052

Sobol’ total-order indexes

mrate 0.00 0.00 1.107 0.566

xover 0.00 0.341 1.060 0.374

maxgen 0.00 0.503 0.00 0.119

90% space usage

Sobol’ first-order indices

mrate -0.010 0.342 0.339 0.820

xover 0.238 0.118 -0.0205 0.152

maxgen 0.044 0.500 -0.0393 0.133

Sobol’ total-order indexes

mrate 0.145 0.609 0.564 1.007

xover 0.461 0.423 0.212 0.269

maxgen 0.204 0.897 0.006 0.325

Table 4.6 Sobol’ indices for an FCFS configuration (single-objective).

Figure 4.7 shows the sensitivity indices for an LCFS schedule. The figures in

bold are the input parameters that have the high main effects. In generations

1-10, the parameter maxgen has the greatest influence in the variation of

handling time of containers regardless of space usage. In generation 11-20, the

mutation rate has the greatest influence in the variation of the output when the

99

space usage is 30% whereas the crossover rate has the greatest influence when

the space usage is 60% and 90%. The sensitivity indices of maxgen decreases

as the number of generations increase whereas, the influence of the mutation

and crossovers rates increase as the number of generations increase. This

means that the mutation and crossover operator are responsible for the

exploration of new solutions after the tenth generation.

Single-objective case

(LCFS)

1-10 generations 11-20generations

 SPEA2 NSGA-II SPEA2 NSGA-II

30 % space usage

Sobol first-order indexes

 mrate 0.068 0.052 0.833 0.736

 xover 0.477 0.284 0.430 0.171

 maxgen 0.840 0.930 0.066 0.290

Sobol total-order indexes

 mrate 0.117 0.142 0.944 1.053

 xover 0.627 0.336 0.622 0.499

 maxgen 0.705 1.064 0.247 0.391

60% space usage

Sobol first-order indexes

 mrate 0.442 0.268 0.148 0.642

 xover -0.136 0.009 -0.169 0.751

 maxgen 0.838 1.004 0.001 0.176

Sobol total-order indexes

 mrate 0.782 0.300 0.812 0.675

 xover 0.025 0.056 0.438 0.850

 maxgen 1.019 1.305 0.246 0.206

90% space usage

Sobol first-order indexes

 mrate 0.265 -0.192 0.332 0.335

 xover 0.439 0.314 0.495 0.477

 maxgen 0.733 0.639 0.150 0.187

Sobol total-order indexes

 mrate 0.349 0.109 0.728 0.595

 xover 0.513 0.540 0.959 0.617

 maxgen 0.882 0.992 0.249 0.168

Table 4.7 Sobol’ indices for an LCFS configuration(single-objective)

100

With regard to the changes in space usage, the effect of the mutation rate for

NSGA-II decreases as the space usage increases as shown in the fifth column.

This pattern is the reverse of the pattern in Table 4.6.

MULTIOBJECTIVE CASE

The sensitivity analysis investigates the effect of the input parameters on the

cardinality of the nondominated sets generated by the MOEA in both LCFS and

FCFS loading schemes. The input parameters are mrate, xover, and maxgen,

which are the mutation probability, recombination probability, and number of

generations respectively.

 Table 4.8 lists the Sobol’ sensitivity indices of SPEA2 and NSGA-II for an

LCFS loading schedule. The numbers in bold represent the largest first-order

effects among the input parameters in generations 1 to 10 and in generations 11

to 20. The values are emphasized to show the changes in the influence of each

parameter between generation 1-10 and generations 11-20. In the first 10

generations, maxgen contributes 64% to the variation in the output and it has

the highest interaction effect in both SPEA2 and NSGA-II. However, this

condition changes in generations 11-20 as its value decreases. The main effect

of the mutation rate is small in generations 1-10 and increases its influence from

generations 11-20 as shown in column four and five. This means that the

mutation operator is responsible mostly for exploring the dominated sets in

generations 11-20 in an FCFS schedule. The zero indices under column five

means that size of the nondominated sets generated by NSGA-II does not

change from generation 11-20.

 Table 4.9 lists the Sobol’ sensitivity indices of SPEA2 and NSGA-II for an

FCFC loading schedule. The numbers in bold represent the largest first-order

effects among the input parameters in generations 1 to 10 and in generations 11

to 20. The figures in Table 4.9 show that the mutation rate (in SPEA2) mostly

affects the variation in the size of the nondominated sets from generation 11-20

while maxgen has the largest first-order indices from generations 1 to 10, which

are similar to the results in Table 4.8

101

Multiobjective case

(LCFS)
1-10 generations 11-20generations

 SPEA2 NSGA-II SPEA2 NSGA-II

30 % space usage

Sobol first-order indexes

 mrate -0.015 0.348 0.450 0.590

 xover -0.099 0.135 -0.029 0.076

 maxgen 0.508 0.644 0.096 0.051

Sobol total-order indexes

 mrate 0.510 0.417 0.820 0.845

 xover 0.239 0.040 0.278 0.398

 maxgen 0.832 0.787 0.218 0.155

60% space usage

Sobol first-order indexes

 mrate 0.239 0.102 0.739 0.804

 xover 0.064 0.110 0.215 -0.030

 maxgen 0.425 0.418 0.259 -0.221

Sobol total-order indexes

 mrate 0.492 0.489 0.929 1.254

 xover 0.080 0.120 0.156 0.354

 maxgen 0.919 0.910 0.320 0.049

90% space usage

Sobol first-order indexes

 mrate 0.098 0.000 0.688 0.000

 xover 0.098 0.000 0.098 0.000

 maxgen 0.370 1.067 0.078 0.000

Sobol total-order indexes

 mrate 0.772 0.000 0.860 0.000

 xover 0.424 0.000 0.322 0.000

 maxgen 1.109 1.067 0.291 0.000

Table 4.8 Sobol’ indices for the LCFS configuration (multiobjective).

102

Multiobjective case

(FCFS)
1-10 generations 11-20generations

 SPEA2 NSGA-II SPEA2 NSGA-II

30 % space usage

Sobol first-order indexes

 mrate 0.100 0.071 0.689 0.134

 xover 0.093 -0.198 0.469 -0.257

 maxgen 0.029 0.137 0.065 0.025

Sobol total-order indexes

 mrate 0.672 0.725 1.027 1.068

 xover 0.171 0.031 0.479 0.927

 maxgen 0.483 0.575 0.131 0.282

60% space usage

Sobol first-order indexes

 mrate 0.276 -0.110 0.520 0.438

 xover -0.040 -0.255 -0.244 0.279

 maxgen 0.391 0.335 0.333 0.125

Sobol total-order indexes

 mrate 0.526 0.530 0.714 0.782

 xover 0.115 0.339 -0.036 0.322

 maxgen 0.854 0.933 0.523 0.050

90% space usage

Sobol first-order indexes

 mrate 0.497 0.051 0.748 0.182

 xover -0.041 0.163 0.528 -0.512

 maxgen 0.449 0.706 0.074 -0.285

Sobol total-order indexes

 mrate 0.833 0.412 0.943 1.331

 xover 0.192 0.172 0.658 1.017

 maxgen 0.681 0.919 0.132 0.413

Table 4.9 Sobol’ indices for an FCFS configuration (multiobjective)

103

4.4 Summary

The chapter presents the performance of two modern MOEAs in relation to the

container location problem. Each MOEA is evaluated in two dimensions: (1)

loading scheme and (2) number of objective functions. Different results arise

between an LCFS and an FCFS loading schedule in relation to their container

handling times, reshuffles, storage-yard utilization. Similarly, different results

appear between the single-objective and bi-objective cases.

 In the single-objective case, the results show that the LCFS is superior to the

FCFS loading schedule when the storage utilization is higher than 25%. In terms

of the exploration and exploitation of the search space, the mutation-only GA

finds better solutions when the space usage is high whereas the crossover-only

GA finds better solutions when the space usage is low in an FCFS schedule. On

the other hand, the results invert in an LCFS scheme, the crossover-only GA

finds better solutions when the space usage is high and the mutation-only GA

finds better solutions when the space usage is low. The results here contradict

the recommendations of Deb and Agrawal (1999) that a selector-mutation GA

does not work successfully in finding optimal solutions (see Section 2.2.7). As

for comparing both MOEAs, NSGA-II performs better in both LCFS and FCFS

scheduling and in the configurations of mutation-only and cross-only GA.

 In the bi-objective case, the computations show similar results to the single-

objective case. The handling times of the LCFS are far smaller than handling

times of the FCFS scheme. However, the number of re-handled containers and

the size of the nondominated sets of the LCFS loading method are larger than

the results of the FCFS loading method. In both loading schemes, NSGA-II

generates faster handling times, lesser re-handled containers, and smaller

solution sets than SPEA2.

 The sensitivity indices in the single-objective and bi-objective cases show

dissimilarity between SPEA2 and NSGA-II. However, for both SPEA2 and NSGA-

II, and in both scheduling schemes, the selection operator accounts for the

variation in the size of the nondominated sets in the initial generations of the

MOEA run and its effect diminishes in the later generations. Whereas the

influence of the mutation operator is negligible at the early stages of the run but

increases in the later generations of the MOEA run. The main effect of the

crossover operator is small but has high interactions with the other operators.

104

105

Chapter 5

The Multiobjective Shortest
Path Problem:
An optimization problem
with a variable-length
string of discrete variables

5.1 Introduction

As in the case of the single-objective shortest path problem, the multiobjective

shortest path problem has been studied extensively by various researchers in

the fields of optimization, route planning for traffic and transport design (Granat

and Guerriero, 2003) and information and communications network design (Gen

and Lin, 2004; Kumar and Banjerie, 2003). The MSPP is an extension of the

traditional shortest path problem and is concerned with finding a set of efficient

paths with respect to two or more objectives that are usually in conflict. For

example, the problem of finding optimal routes in communications networks

involves minimizing delay while maximizing throughput or finding efficient

routes in transportation planning that simultaneously minimize travel cost, path

length, and travel time. The concept of optimization in the MSPP or in a

multiobjective problem in general is different from the single-objective

optimization problem wherein the task is to find a solution that optimizes a

106

single objective function. The task in a multiobjective problem is not to find an

optimal solution for each objective function but to find an optimal solution that

simultaneously optimizes all objectives. In addition, in most cases, no single

optimal solution exists, only a set of efficient or nondominated solutions.

 A variety of algorithms and methods such as dynamic programming, label

selecting, label correcting, interactive methods, and approximation algorithms

have been implemented and investigated with respect to the MSPP (Ehrgott and

Gandibleux, 2000). The problem is known to be NP-complete (Garey, 1979). It

has been shown that a set of problems exist wherein the number of Pareto-

optimal solutions is exponential, which implies that any deterministic algorithm

that attempts to solve it is also exponential in terms of runtime complexity at

least in the worst case. However, some labeling algorithm studies (Gandibleux et

al., 2006; Muller-Hannemann and Weihe, 2001) dispute this exponential

behavior. They show that the number of efficient paths is not exponential in

practice. Other authors avoid the complexity problem by developing new

methods that run in polynomial time. For instance, Hansen (1979) and

Warburton (1987) separately developed fully polynomial time approximation

schemes (FPTAS) for finding approximately Pareto-optimal paths. Interactive

procedures (Coutinho-Rodrigues et al., 1999; Granat and Guerriero, 2003)

similarly avoid the problem of generating the complete set of efficient paths by

providing a user-interface that assists the decision-maker to focus only on

promising paths and identify better solutions according to preference. Pangilinan

and Janssens (2007a) examined evolutionary algorithms for the MSPP to show

that an MOEA runs in polynomial time.

 Given the wealth of literature in multiobjective algorithms for the MSPP,

there still seems to be a lack of reported review in evolutionary algorithm (EA)

applications in relation to the MSPP. Several of the most recent alternative

methods focus mostly on execution speed comparisons of different MSPP

algorithms but analysis of the salient issues in multiobjective performance

analysis such as runtime complexity, diversity, and optimality of nondominated

solutions are almost omitted. In order to demonstrate a clearer picture of the

advantages and disadvantages of EAs in optimization, this chapter attempts to

investigate a multiobjective evolutionary algorithm as applied to the MSPP in

terms of these measures. The current study extends the previous studies by

Janssens and Pangilinan (2007a) by examining the performance of not only one

MOEA but two MOEAs in order to compare the Pareto-optimality of their

nondominated sets.

107

5.1.1 Problem Definition

Given a directed graph G = (V, E), where V is set of vertices and E the set of

edges with cardinality |V| = n and |E| = m and a d-dimensional function vector

c:E→ [ℜℜℜℜ+]d . Each edge e belonging to E is associated with a cost vector c(e). A

source vertex s and a sink vertex t are identified. A path p is a sequence of

vertices and edges from s to t. The cost vector C(p) for linear functions of path

p is the sum of the cost vectors of its edges, that is C(p)=Σe∈p c(e) whereas

C(p)=mine∈p c(e) for min-max functions. Given the two vertices s and t, let

P(s,t) denote the set of all s-t paths in G. If all objectives are to be minimized, a

path p∈P(s, t) dominates a path q∈P(s, t) in and only if Ci(p) ≤ Ci(q), i = 1,…,d

and we write pp q. A path p is Pareto-optimal if it is not dominated by any

other path and the set of nondominated solutions (paths) is called the Pareto-

optimal set. The objective of the MSPP is to compute the set of nondominated

solutions that is the Pareto-optimal set P of P(s, t) with respect to c. The

problem of the single-source multiobjective shortest path is to find the set of all

paths from s to all other vertices t in G, i.e. to find the Pareto-optimal set of P(s,

t), ∀t∈V \{s}.

 Figure 5.1 illustrates an example of a directed graph with three objective

functions that have to be minimized simultaneously. The corresponding efficient

paths from the source vertex s to all other vertices are : for t=1 that path is

s→1; for t =2, s→1→2; for t = 3, s→1→2→3; for t = 4, s→1→2→4; for t = 5,

s→1→2→4→5 and s→1→2→3→5.

Figure 5.1 Graph with 3 objectives to be minimized.

s

4 1

2

5

3

(3,1,1)

(3,5,2)

(4,3,3)

(2,3,2)

(3,2,2)

(2,3,3)

(1,1,1)

(2,2,1)

(3,4,4)

108

5.1.2 Literature Review

Martins and Santos (1999) outline a labeling algorithm for the multiobjective

shortest paths problem and present an analysis in terms of finiteness and

optimality concepts and report that any instance of the MSPP is bounded if and

only if there are no absorbent cycles in the network. They show a set of

networks wherein the labeling algorithm only determines nondominated labels.

On the contrary, Mooney and Winstanley (2006) state that Martins’ labeling

algorithm works well in theory but is prohibitive in practice in terms of its

implementation due to memory costs.

 A study by Gandibleux et al. (2006) reports a concise description of the

MSPP and clearly narrates the most salient issues to its solution. Their study

recalls Martins’ labeling algorithm and attempts to improve it. Their new

algorithm extends Martins’ algorithm by introducing a procedure that can solve

MSPP that have multiple linear functions and a max min function. Since it is an

extension of Martins’ algorithm, the generation of all nondominated paths

remains intractable in polynomial time. However, experimental results of their

study say otherwise. Their algorithm is tested on a variety of test instances and

results show that in terms of size and complexity, optimizing simultaneous linear

and max-min functions does not behave exponentially. They also show that their

algorithm is not sensitive to different cost ranges and that density and network

size increase the number of efficient solutions. An independent study by (2001)

also shows that the cardinality of efficient paths in a bicriteria shortest path

problem is not exponential as long as the instances are bounded by potential

characteristics as defined in their experiment. They conclude with emphasis that

it is still preferable to work with complete information rather than falling back on

approximations.

 Guerriero and Musmanno (2001) examine several label-selection and vertex-

selection methods that can find Pareto-optimal solutions to the MSPP with

respect to execution time. The performance of the different algorithms was

measured using random and grid networks and results show that label-selection

methods are generally faster than vertex-selection methods and that parallel

computing is necessary in the design of efficient methods.

109

 While some researchers focus on exhaustive solutions or on improvements

thereof, other researchers are more concerned with better runtime solutions.

Tsaggouris and Zaroliagis (2006) present an improved fully polynomial time

approximation scheme (FPTAS) for the multicriteria shortest path problem and a

new generic method for obtaining FPTAS to any multiobjective optimization

problem with non-linear objectives. They show how their results can be used to

obtain efficient approximate solutions to the multiple constrained path problems

and to the non-additive shortest path problem. Their algorithm, which departs

from earlier methods using rounding and scaling techniques on the input edge

costs, builds upon an iterative process that extends and merges sets of vertex

labels representing paths. The algorithm resembles the Bellman-Ford method

but implements the label sets as arrays of polynomial size by relaxing the

requirements for strict Pareto optimality.

 Granat and Guerriero (2003) introduce an interactive procedure for the MSPP

based on a reference point labeling algorithm. The algorithm converts the

multiobjective problem into a parametric single-objective problem whereby the

efficient paths are found. The algorithm was tested on grid and random

networks and its performance was measured based on execution time. They

conclude that an interactive method, from their experimental results, is

encouraging and does not require the generation of the complete Pareto-optimal

set (which avoids the intractability problem). Likewise, (Coutinho-Rodrigues et

al., 1999) suggests an interactive method that incorporates an efficient k-

shortest path algorithm in identifying Pareto-optimal paths in a bi-objective

shortest path problem. The algorithm was tested against other MSPP algorithms

on 39 network instances. They conclude that their k-shortest path algorithm

performs better in terms of execution time.

 From a different perspective, evolutionary algorithms (EAs) have been

extensively analyzed in single objective optimization problems but only a few

researchers have applied EAs to the multiobjective shortest path problem either

as the main problem or as a sub-problem in relation to route planning, traffic

and transport design, information systems and communications network design.

Gen and Lin (2004) use a multiobjective hybrid genetic algorithm (GA) to

improve solutions to the bi-criteria network design problem (finding shortest

paths) with two conflicting objectives of minimizing cost and maximizing flow.

The paper shows how the performance of a multiobjective genetic algorithm can

be improved by hybridization with fuzzy logic control and local search. The

110

results show a positive effect of hybridization, that is, an improvement in the

convergence of the Pareto front.

 Kumar and Banerjee (2003) present an algorithm for multicriteria network

design (shortest paths and spanning trees) with two objectives of optimizing

network delay and cost subject to satisfaction of reliability and flow constraints.

They tested an evolutionary algorithm approach, Pareto Converging Genetic

Algorithm (PCGA), to design different sized networks and found that EAs scale

better in larger networks than two traditional approaches namely branch

exchange heuristics and exhaustive search. They conclude that the primary

advantage of EAs to solve multiobjective optimization problems is their diversity

of solutions generated in polynomial time. Crichigno and Baran (2004)

demonstrate similar representations (spanning trees) to Kumar’s for a multicast

algorithm. The basic difference between both algorithms is the latter adopts the

Strength Pareto Evolutionary Algorithm (SPEA) in generating efficient solutions

to the multicast routing problem.

 Mooney and Winstanley (2006) show the behavior of an elitist genetic

algorithm as applied to the MSPP in the field of geographic information systems

(GIS). The experiment compares the runtime performance (execution time) of

the EA against a modified version of Dijkstra’s algorithm on several artificial and

real road networks. The results show that the EA competes well with the

modified Dijkstra approach in terms of execution time and that the EA converges

quickly to the Pareto-optimal paths.

 Janssens and Pangilinan (2008) conducted a sensitivity analysis of an MOEA

for the MSPP using SPEA2. Their results show that the size of the population and

the number of generations of the GA largely influence the output of the genetic

algorithm and that mutation and recombination have only minimum influence on

the output.

5.2 Multiobjective Evolutionary Algorithm

5.2.1 Genetic Algorithm for the MSPP

Genetic Representation. A chromosome or an individual consists of integer-ID

vertices that form a path from the source vertex to a sink vertex. The length of

111

the chromosome is variable and may not be greater than the number of vetices,

n.

Initial Population. A path or a chromosome is generated randomly in an ordered

sequence from the source vertex to the sink vertex. The ID of the source vertex

s is assigned to the first locus (array index) of the chromosome. The ID of a

randomly generated vertex vi is assigned to the second locus such that vi

belongs to the set of vertices connected to the source vertex s. This procedure

continues iteratively for the succeeding vertices until a simple path to the sink

vertex t is created. It is known that the population size of solutions increases

exponentially with the number of objectives in the MSPP. There are two common

options to respond to this problem, use a large population, or integrate a

dynamic population sizing procedure in the GA. Dynamic population sizing has

been implemented for single-objective EAs and has been known to show

promising results. However, dynamic sizing remains a challenge to MOEAs with

regard to MOPs. An alternative is to estimate the size of the initial population

using Deb’s (2001) approximation chart for finding the minimum population size

in relation to the number of objectives.

Genetic Operators. The crossover scheme is an adaptation of the one-point

crossover as shown in Figure 5.2. For each pair of paths a locus is randomly

selected from one of the chromosomes (the shorter path in terms of number of

vertices) and the vertex ID of the locus is matched with the genes in the other

chromosome. If there is a match then crossover is performed, otherwise two

new paths are selected for crossover until the mating pool is empty. It should be

easy to see that the loci of both individuals need not be the same.

 In the mutation operator, a locus is randomly selected from the

chromosome. The algorithm proceeds by employing the method in the initial

population process to create a new path, but the start vertex is replaced by the

locus.

Fitness and Selection. Two objective configurations are considered for finding

efficient paths, (3-S) and (2-S|1-M). S-type objectives are sum problems that

are to be minimized whereas M-type objectives are max-min problems that are

to be minimized. The selection of parents and offspring is done by two

algorithms, SPEA2 (Zitzler et al. 2002) and NSGA-II (Deb et al. 2002). The

program runs through the interface of PISA (Bleuler, 2003).

112

Figure 5.2 Crossover starts at the locus at position 3

5.2.2 Experiments and Results

The experiments intend to show the behavior of a multiobjective evolutionary

algorithm as applied to the MSPP in terms of diversity and optimality of

solutions, and computational complexity. The datasets are random networks

that have been generated by Gandibleux et al. (2006). Nine configurations are

selected for the random networks: (a) number of vertices: 50, 100, 200; (b)

density of the network: 5%, 10%, 20%; (c) range of cost values cp(i, j): [1,

100], p=1, 2, 3. Ten instances are generated for each network configuration and

two objective configurations are considered for finding efficient paths. The

population size of 36 was estimated from Deb (2001) with the assumption that

30% of nondominated paths are present in the initial population. The probability

113

for mutation and recombination is 0.5 and 0.5 respectively. Efficient paths are

generated from a single source vertex (Vertex 1) to a single sink vertex (Vertex

50, 100, 200) for each objective configuration. For each network configuration,

the number of efficient paths is computed from three different generation runs:

50, 100, and 200, which makes 540 combinations in total. Figure 5.3 shows a

comparison of the average number of nondominated solutions generated by

SPEA2 and NSGA-II with a 3-S configuration. There are more solutions

generated by NSGA-II than SPEA2 in all graph configurations.

Figure 5.3 Average number of paths for the 3-S configuration

In SPEA2, solutions are not affected by the number of generations for the 50-

vertex and 100-vertex graphs whereas in NSGA-II, the number of nondominated

solutions in most graphs seems to change as the number of generations

increases.

 Figure 5.4 shows a comparison of the average number of nondominated

solutions generated by SPEA2 and NSGA-II with a 2-S|1-M configuration. There

are more solutions generated by NSGA-II than SPEA2 in most of the graph

configurations. In both SPEA2 and NSGA-II, the number of nondominated

solutions in most graphs changes as the number of generations increases.

3-S

0.00

1.00

2.00

3.00

4.00

5.00

N
u

m
b

er
 o

f
S

o
lu

ti
o
n
s

spea2 nsga2

 5% 10% 20% 5% 10% 20% 5% 10% 20%

 N=50 N=100 N=200

Generation 10 25 50

114

 Figure 5.4 Average number of paths for the 2-S|1-M configuration

In terms of visualizing the diversity of solutions, Figures 5.5 to 5.8 show the

value path plots of a 50-vertex, 10%-density network. The value path plot

provides information on how good an algorithm is in finding diverse solutions

and good trade-off solutions for problems having more than two objectives. A

good spread of solutions over a range implies that an algorithm is good in

finding diverse solutions. A large change in slope between objectives implies

good trade-off solutions. The figures illustrate that both SPEA2 and NSGA-II find

good trade-off paths for the 3-S and 2-S| 1-M objective configurations.

Figure 5.5 A value path plot for 3-S configuration by SPEA2.

2-S|1-M

0.00

2.00

4.00

6.00

8.00

N
u

m
b

er
 o

f
S

o
lu

ti
o

n
s

spea2 nsga2

 N=50 N=100

 5% 10% 20% 5% 10% 20% 5% 10% 20%

 Generation 10 25 50

3sspea2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

1 2 3

Objectives

N
o

rm
al

iz
ed

 v
al

u
es

115

Figure 5.6 A value path plot for the 3-S configuration in NSGA-II

Proximity of solutions to the Pareto-optimal set is another issue for the

evaluation of the MOEA. In the absence of a Pareto-optimal set in the MSPP,

there is difficulty in the evaluation of the MOEA solutions in terms of proximity to

the Pareto-optimal front. Similarly, there is no assurance that the nondominated

solutions of the MOEAs will converge to the Pareto-optimal front or the maximal

set. A performance measure is necessary to compare nondominated sets in

order to determine which set is best.

Figure 5.7 A value path plot for the 2-S|1-M configuration in SPEA2

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

1 2 3
Objectives

N
o

rm
al

iz
ed

v
al

u
es

2s|1mspea2

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

1 2 3

Objectives

N
o
rm

al
iz

ed
 v

al
u
es

116

Figure 5.8 A value path plot for the 2-S|1-M configuration in NSGA-II.

5.3 Sensitivity Analysis

The results in Section 5.2.2 show that the increase in the number of generations

in the MOEA does not significantly change the number of efficient paths. This

means that the mutation and recombination operators do not find new solutions

as the generation increases. The following section investigates why this is the

case and shows which of the input parameters mainly affects the output of the

MSPP.

5.3.1 Experiments and Results

A network of 50-vertices with 10% density, which represents the other networks

of this type used in the study, is utilized to illustrate sensitivity analyses of

SPEA2 and NSGA-II as applied the multiobjective shortest path problem. The

initial population is 36 as estimated from Deb (2001). The output variable is the

cardinality of the nondominated set. The input parameters are mrate, xover, and

maxgen, the mutation probability, recombination probability, and number of

generations respectively. The configurations of the input parameters are

generated using the Sobol’ method and their distributions are listed in Table 5.1.

2s|1m nsga2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

1 2 3

Objectives

N
o

rm
al

iz
ed

 V
al

u
es

117

Input factor Description

Probability

Distribution

mrate Mutation probability Uniform(0,1)

xover Recombination probability Uniform(0,1)

maxgen Number of generations
Uniform(1,10)

Uniform(10,20)

Table 5.1 Input factors and probability distributions

 Table 5.2 shows that all of the variation in the output is due to the number of

generations of the MOEA when the maximum number of generations is 10. The

highest first-order indices among the input parameters are in bold. The

mutation and recombination rates have no direct influence on the variation in

the output. Similarly, their interaction indices are small. This means that the

selection operator mainly generates the efficient paths and that the MOEAs

converge to efficient paths after a few generations, in this case, in just 10

generations. Results of the sensitivity analysis for the 2-S|1-M configuration

show similar results. It should be noted that during the sensitivity analysis, the

population in each configuration was constant at 36 and that no significant

improvements were recorded after the 10th generation in most of the graphs as

shown in Figures 5.3 and 5.4.

Sobol first-order indices SPEA2 NSGA-II

mrate -0.010 0.010

xover -0.022 -0.005

maxgen 1.227 1.138

Sobol total-order indexes

mrate 0.004 -0.002

xover -0.011 -0.000

maxgen 1.233 1.1429

Table 5.2 Sobol’ indices for a 3-S configuration, 10 generations

Table 5.3 shows the results of the sensitivity analysis from the 11th generation

until the 20th generation of a 3-S configuration of the same graph in Table 5.2.

The first-order indices in SPEA2 differ from the first-order indices in NSGA-II but

their total-order indices are very similar. The first-order indices for mutation rate

and crossover rate contribute to more than 90% of the variation in the output,

whereas the indices for mutation and crossover in SPEA2 do not change much.

This explains the results in Figure 5.3, i.e. the average cardinality of

118

nondominated sets in SPEA does not change after 10 generations, whereas the

cardinality of the solutions in NSGA-II varies. The first-order and total-order

indices for maxgen have changed considerably. In the first 10 generations, the

number of generations contributes mostly to the variation in the output, but

from the 11th to the 20th generation, its effect on the output has diminished.

Instead, the interaction of the mutation and recombination operators has the

greater effect on the output, particularly in SPEA2. In NSGA-II on the other

hand, the direct effects and interaction effects of the genetic operators have also

increased considerably after 10 generations.

Sobol First-order indices SPEA2 NSGA-II

mrate -0.381 0.567

xover 0.121 0.487

maxgen -0.132 0.272

Sobol total-order indexes

mrate 0.714 0.657

xover 0.931 0.740

maxgen 0.392 0.272

Table 5.3 Sobol’ indices for a 3-S configuration, 11-20 generations

Table 5.4 shows the results of the sensitivity analysis from generations 1 to 10

and generations 11 to 20 of a 2-S|1-M configuration of the same graph in Table

5.2. It presents similar results to Table 5.3 except that the Sobol’ indices in

NSGA-II are all zeroes. The indices are zeroes because there is no variation in

the output. This means that whatever the combinations of mrate, xover, and

maxgen from generations 11-20, NSGA-II generates the same number of

nondominated solutions.

 1-10 generations 11-20 generations
Sobol First-order indices SPEA2 NSGA-II SPEA2 NSGA-II

mrate 0.006 -0.006 0.554 0.000
xover 0.013 0.011 0.242 0.000

maxgen 1.152 1.214 -0.069 0.000

Sobol total-order Indexes
mrate 0.005 0.000 0.970 0.000
xover 0.009 0.008 0.901 0.000

maxgen 1.150 1.207 0.196 0.000

Table 5.4 Sobol’ indices for a 2-S|1-M configuration

119

There can be two reasons, either the Pareto-optimal set has been achieved or

the algorithm is trapped in a local optimum. Further investigation validates that

NSGA-II has achieved the Pareto-optimal set in 10 generations.

5.4 Summary

The chapter presents the feasibility of a multiobjective evolutionary algorithm as

applied to the multiobjective shortest path problem on several graph

configurations. Results show that an MOEA is a feasible technique in finding

approximations of the Pareto-optimal set to the MSPP.

 Section 5.2 shows that in most graphs, the increase in the number of

generations does not necessarily change or improve the cardinality of

nondominated sets. In fact, it shows that most nondominated solutions are

generated in the early generations of the MOEA. This seems to exhibit the

genetic drift phenomenon. However, the sensitivity analysis shows otherwise.

 Section 5.3 explores the sensitivity of an MOEA to changes in its input

factors. The sensitivity analysis shows that the mutation and recombination do

not cause much of the variation in the output in the early stages of the MOEA

run. The number of generations has the most influence on the output. This

means that the selection operator mostly influences the cardinality of the

nondominated sets in the early stages of the run. However, after the 10th

generation, the indices of the interaction effects of mutation and crossover have

increased. This means that exploitation and exploration of the search space

continue after the early stages of the MOEA run. Although the mutation and

recombination operators have almost no direct influence on the output, their

total sensitivity indices show that their interaction effects are important.

Therefore, they cannot be removed as input parameters. Furthermore, the low

first-order sensitivity indices of mutation and crossover imply that the MOEA is

robust in terms of the input parameter values of the mutation and crossover

rates.

120

121

Chapter 6

Oblique Decision Trees:
An optimization problem
with a tree structure of
continuous variables

6.1 Introduction

The data mining task of classification using decision trees (DT) has been studied

for many years. Researchers in the fields of statistics, decision theory, and

machine learning have reported a huge amount of work on this topic. Significant

improvements on decision trees are difficult to produce but promising researches

still remains open and have to be explored. One of these areas is the application

of evolutionary algorithms in decision tree construction and optimization. For

example, optimal tree construction belongs to the set of NP-hard problems

(Murthy et al. 1994). The selection of a linear split in multivariate decision trees

is also NP-hard (Murthy et al. 1994). Both optimization problems make standard

tree-based methods infeasible for finding a good or a sub-optimal solution.

However, the application of evolutionary algorithms is a promising option in

finding solutions to NP-hard problems and is known to exploit and explore large

search spaces and solve optimization problems that many classic optimization

algorithms cannot.

122

 The purpose of this chapter is to apply evolutionary algorithms in the

optimization aspects of decision tree construction, to describe the EA

performance, and to investigate if they succeed or fail in relation to decision tree

optimization.

6.1.1 Problem Definition

A clear definition of the class and type of variables or attributes in decision tree

construction is useful in order to understand how classification works. The

“target variable” is the variable to be modeled and predicted by other variables.

It is equivalent to the dependent variable in linear regression. There must be

one and only one target variable in a decision tree analysis. A “predictor

variable” or simply predictor is a variable whose values are used to predict the

value of the target variable. It is equivalent to the independent variable in linear

regression. There must be at least one predictor variable specified for decision

tree analysis. A continuous variable has numeric values and are called ordered

or monotonic variables. A categorical variable has values that function as labels

rather than as numbers. Some programs call categorical variables as nominal

variables.

 In machine learning, a decision tree is a predictive model that is a mapping

of observations about an item to conclusions about the item's target value. Each

inner node corresponds to a predictor. An arc to a child represents a possible

value of that variable. A leaf represents the predicted value of a target variable

given the values of the variables represented by the path from the root node.

Figure 6.1 shows a diagram of a decision tree. The machine learning technique

for inducing a decision tree from data is called decision tree learning. Decision

tree learning is also a common method used in data mining. Here, a decision

tree describes a tree structure wherein leaves represent classifications and

branches represent conjunctions of features that lead to those classifications

(Menzies and Hu 2003). Splitting the source set into subsets based on an

attribute value test can learn a decision tree. This process is repeated on each

derived subset in a recursive manner. The recursion is completed when splitting

is either non-feasible, or a singular classification can be applied to each element

of the derived subset.

 Several issues have to be considered simultaneously in this exploration, such

as computational complexity, accuracy, depth of tree, tree size, balance, and

123

stability. The study, for purposes of clarity and visualization uses two criteria

only henceforth reducing the decision tree construction problem to a bi-objective

optimization problem, i.e. minimization of tree size and maximization of

classification accuracy. Classification accuracy is the ratio of correctly classified

instances over the total number of instances in a dataset. Computational

complexity is not an objective criterion in the study.

Figure 6.1 Decision tree

The DT optimization problem can be formulated as

Minimize (T, x) x = 1,2…, n

Maximize (T, α) α ∈ ℜℜℜℜ: 0 ≤ α ≤ 100%

where: T is the decision tree

 x is the size of tree T

 α is the classification accuracy of tree T
 n is the maximum number of leaves of tree T

Internal

Root node

Internal

Internal Leaf node

Leaf node

Leaf node

124

6.1.2 Literature Review

SPLITTING CRITERIA

An early technique by Quinlan (1986) that influenced a large part of the

research on decision trees is useful to look at in order to understand basic

decision tree construction. A fundamental part of any algorithm that constructs a

decision tree from a dataset is the method in which it selects attributes at each

node of the tree. Some attributes split the data up more purely than others.

That means that their values correspond more consistently with instances that

have particular values of the target attribute than those of another attribute.

Therefore, such attributes have some underlying relationship with the target

attribute. Essentially, splitting is finding a measure that compares attributes with

each other and then deciding the variables that split the data more purely higher

up the tree.

 A measure used from information theory in decision tree construction is

entropy. Informally, the entropy of a dataset can be considered as a measure of

how disordered it is. It has been shown that entropy is related to information, in

the sense that the higher the entropy, or uncertainty, of some data, then the

more information is required to describe that data. In building a decision tree,

the aim is to decrease the entropy of the dataset until leaf nodes are reached.

The entropy of a dataset, S with respect to one variable, in this case the target

variable, is defined as:

Entropy (S) = Σ pi log2 pi ; i = 1,…,c (6.1)

where pi is the proportion of instances in the dataset that take the i-th value of

the target variable. This probability measures give an indication of how much

uncertainty is present about the data. The log2 measure represents how many

bits would be needed in order to specify the class (value of the target attribute)

of a random instance.

 A measure called Information Gain, calculates the reduction in entropy that

would result in splitting the data on a predictor variable A.

125

∑
∈

−=
Av

v

v
EntropyEntropyA,Gain)()()(S

S

S
SS (6.2)

where v is a value of A, |Sv| is the subset of instances of S where A takes the

value v, and |S| is the number of instances.

 The observation that Information Gain is unfairly biased has led to new

proposals of splitting criteria. An obvious way to negate the bias or "greediness"

of Information Gain is to take into account the number of values of a variable.

This is exactly the approach that can be used. A new, improved calculation for

variable A over data S is:

)(

)(
)(

AI

A,Gain
A,GainRatio

S
S = (6.3)

where ∑
−

=
N

Plog
)A(I i2 (6.4)

The second equation for I(A) measures the information content for the variable

A by looking at each proportion p, of instances that take value i for the variable.

 Classification and Regression Trees (CART) which was developed in the

1980s (Breiman et al. 1984) is an analytic procedure for predicting the values of

continuous or categorical dependent variables from continuous or categorical

predictors. When the target variable of interest is categorical, the technique is

referred to as Classification Trees. If the target variable of interest is continuous

in nature, the method is referred to as Regression Trees. For classification

problems, the goal is generally to find a tree where the terminal tree nodes are

relatively "pure" using an impurity measure called the Gini measure. For

regression tree problems node purity is usually defined in terms of the sums-of-

squares deviation within each node.

 The Gini measure is the measure of impurity of a node and is commonly

used when the target variable is a categorical variable, and defined as:

g(t) = Σ p(j| t) p(i|t) ; i ≠ j (6.5)

126

where the sum extends over all classes and p(j|t) is the probability of class j at

the node t.

PERFORMANCE MEASURES

There are several criteria to evaluate a decision tree algorithm for a given

dataset over another algorithm on the same dataset. Conciseness of the decision

tree that an algorithm produces may be one measure and clarity of the rules

from the tree is another. It is also possible to look at how fast an algorithm is,

but the interest of most researchers is in an algorithm's learning ability and

classification accuracy.

 Moret (1982) summarizes work on measures such as tree size, expected

testing cost, and worst-case testing cost. He shows that an algorithm that

minimizes one measure does not guarantee minimization of other measures. On

the other hand, Fayad and Irani (1990) argue that by concentrating optimization

on one measure, improvement on the performance of other measures is

possible. Kononenko and Bratko(1991) points out that comparisons based on

classification accuracy are unreliable, because different classifiers produce

different types of estimates and accuracy values can vary with prior probabilities

of the classes. They suggested an information-based metric to evaluate a

classifier as a remedy to accuracy problems.

 Tree quality depends more on stopping rules than on splitting rules. Pruning

is argued to be a better method than stop-splitting rules (Murthy et al. 1994).

No single pruning method has been adjudged superior to others. Obtaining the

‘right’ sized trees is important for several reasons, which depend on the size of

the classification problem (Gelfand and Ravishankar 1991). For moderate sized

problems, the critical issues are classification accuracy, error-estimation, and

gaining insight into the predictive and generalization structure of the data. For

large tree classifiers, the critical issue is optimizing structural properties such as

height and balance (Wang and Suen 1984).

 Murthy (1998) notes that the time complexity of induction and post-

processing is exponential in tree height in the worst case (Martin and Hirschberg

1995). This puts a premium on designs that produce shallower trees, multi-way

rather than binary splits, and selection criteria that prefer balanced splits.

Several authors have designed methods to improve upon greedy algorithms by

127

constructing near-optimal decision trees using a look-ahead algorithm (Murthy

and Salzberg 1995) genetic programming (Koza 1991) and simulated annealing

(Heath et al. 1993b, Lutsko and Kuijpers 1994, Folino et al. 2000).

 Many authors suggest that using a collection of decision trees, instead of just

one reduces the variance in classification performance (Kwok and Carter 1990;

Shlien 1990; Shlien 1992; Buntine 1992; Breiman 1990). The idea is to build a

set of trees (ensembles) for the same training sample and then combine their

results. Multiple trees have been built using randomness or using different

subsets of attributes for each tree (Heath et al. 1993).

OBLIQUE DECISION TREES

There have been many studies in optimizing split selection. A split can be either

univariate (axis-parallel) or multivariate (oblique). An axis-parallel split divides a

node with only one predictor and an oblique split divides a node with a linear or

non-linear combination or predictors. Trees that are induced using oblique splits

are called oblique trees. Finding optimal linear splits is known to be intractable

and is an optimization problem, so heuristic methods are required. Methods for

finding good linear splits include linear discriminant analysis, hill climbing

search, linear programming, and perceptron training in neural networks. This

section examines existing literature that addresses the problem of finding

oblique splits for Classification Trees.

 The more popular approach in finding univariate splits examines all possible

binary splits along each predictor variable to select the split that most reduces

some measure of impurity. Such method is used in CART (Breiman et al. 1984),

Quinlan’s C5.0 (1986), and Morgan’s THAID (1973). This type of exhaustive

search has two major drawbacks. First, the computational complexity of finding

splits for nominal variables increases exponentially with the number of its

categorical values and obtaining linear combinations of ordered predictor

variables becomes computationally difficult. Second, it tends to select variables

that have more instances.

Loh and Vanichsetakul (1988) free the bias in variable selection for ordered

predictor variables by separating the selection of the variable and the split point.

They calculate the F-statistic for each predictor variable, select the variable with

the highest F-statistic, and apply linear discriminant analysis to find the split

128

point. Unordered variables are transformed into ordered variables but this

transformation is not free from bias. Loh and Shih (1997) further developed

QUEST (Quick, Unbiased, Efficient, Statistical Tree) to address the

disadvantages of their first algorithm, e.g. a split rapidly lessens the learning

sample when a node is split into as many sub-nodes as there are classes. Loh

and Shih conclude that in terms of classification accuracy, variability of splits,

and tree size, there is no clear winner when univariate splits are used. However,

QUEST trees, based on a linear combination of splits are usually shorter and

more accurate than the same trees based on univariate splits.

 Preliminary work in oblique decision trees was done by Breiman et al.

(1984). They introduced CART with linear combinations (CART-LC) as a method

to create oblique splits. CART-LC iteratively finds local optimal values of each of

the coefficients. CART-LC generates and tests hyperplanes until the marginal

benefits become smaller than a specified constant. It uses a backward-deletion

procedure to simplify the structure of the split by deleting variables that have

little contribution to the effectiveness of the split.

 Heath et al. (1993b) developed an algorithm (SADT) to induce oblique

decision trees based on simulated annealing. The algorithm first creates an

initial random hyperplane to divide the dataset and creates hyperplanes on the

two new partitions. This process of creating hyperplanes is recursive. Their

experiments show that simulated annealing works well for generating oblique

decision trees since it generates smaller trees without reducing classification

accuracy.

 Murthy et al. (1994) developed a randomized algorithm Oblique Classifier 1

(OC1) and has been thought to be an extension of CART-LC. The primary

contribution of OC1 in oblique decision tree research is its perturbation algorithm

in finding linear splits. The perturbation is a randomization of hyperplanes to

escape local minima. Murthy notes that there are data distributions wherein

univariate splits perform better than oblique splits. They accounted such

distributions in OC1 by computing the best axis-parallel split at each node before

applying hyperplane perturbation. The experiments of Murthy et al. show that

OC1 outperforms CART-LC in several datasets.

 Vadera (2005) presents a new algorithm that utilizes linear discriminant

analysis to identify oblique relationships between continuous attributes and then

carries out an appropriate modification to ensure that the resulting tree errs on

129

the side of safety. The algorithm is evaluated with respect to a cost-sensitive

algorithm (ICET), an oblique decision tree algorithm (OC1) and to linear

programming.

 A study of multi-class binary decision trees with oblique planes using

nonlinear programming can be found in Street (2005). Street finds that a

nonlinear programming approach (OC-SEP) appears to offer an advantage over

some axis-parallel methods on oblique separating planes but is more

computationally demanding than greedy algorithms. The OC-SEP

implementation is still not feasible for large scale problems. He suggests that

incorporating feature-selection to the objective function can achieve enhanced

classification accuracy and interpretability.

EVOLUTIONARY ALGORITHMS AND DECISION TREES

An evolutionary algorithm is a promising technique to build oblique decision

trees. Cantu-Paz and Kamath (2003) summarizes the advantages of an EA,

which are the following:

1. EAs can consider more than one coefficient at a time and may not be

trapped in local optima as easily as the simple greedy hill-climbing

algorithms.

2. EAs have been shown to have good scalability to the dimensionality

of the problem (Harik et al. 1999).

3. EAs are tolerant to noisy fitness evaluations (Miller and Goldberg

1996).

4. EAs are stochastic algorithms; they produce different trees on the

same data set that can be easily combined into ensembles.

Cantu-Paz and Kamath (2003) extended the OC1 algorithm by Murthy et al.

(1994) into three new algorithms by using evolution strategies, genetic

algorithms, and simulated annealing to find oblique partitions on a variety of

datasets including seven datasets from the UCI (University of California at

Irvine) machine learning repository. They compared the performance of six

algorithms according to accuracy, number of nodes, and execution time. They

conclude (1) that the EAs scale up better than traditional methods (OC1-AP,

OC1, CART-LC) to the dimensionality of the data and (2) that creating

ensembles with the EAs results in higher accuracy than single trees produced by

130

existing methods. The study suggests future work may be done on scalability

using larger datasets, on design of specialized operators, and the integration of

local hill-climbing algorithms to EAs.

 Sörensen and Janssens (2003) developed a genetic algorithm for binary

decision trees to overcome the drawbacks of the automatic interaction (AID)-

technique. The technique uses specialized genetic operators that preserve the

structure of the trees to find a diverse set of DTs with high explanatory power.

The algorithm’s advantage as compared to the AID-technique is that it gives the

decision maker a set of high-fitness decision trees to choose from instead of only

one DT.

 Papagelis and Kalles (2001) proposed a genetic algorithm (GAtree) to evolve

binary decision trees and introduced a single-objective fitness function to

balance accuracy and size of decision trees. The GAtree algorithm randomly

picks a variable to create a node and a binary decision tree is completed down to

the leaves with this same line of thought. There is no discussion of a splitting

criterion. The selection of highest fit chromosome is taken by cross-validation.

Their experiments used selected datasets from the UCI repository and the

GAtree performance was compared to C4.5 and the One-R algorithm. They find

that the time burden of the GAtree is substantially bigger than greedy heuristics

but on the other hand, their experiments show advantages over greedy

heuristics when there are irrelevant or strongly dependent variables.

 Bot and Langdon (2000) applied genetic programming (GP) to linear

classification trees using limited error fitness (LEF), cross validation, and Pareto

scoring on continuous data attributes from four UCI repository data sets. The

study measured the GP’s performance, accuracy and tree size in comparison to

OC1, C5.0, and M5’. They used the GPsys program by Qureshi (1997), which is

a strongly-typed, steady state GP system. They conclude that in some datasets,

the GP works comparatively or better than the reported accuracy from other

decision tree algorithms but the GP performs worse on other datasets.

Furthermore, fitness-sharing Pareto creates a promising approach to reducing

tree size but creates larger trees than Pareto domination while LEF does not

improve or worsen classification accuracy, but saves much on execution time.

 Kim (2004) proposed an evolutionary multiobjective optimization (EMO)

approach that searches for the best accuracy rate of classification for different

sized trees using genetic programming. He introduces structural risk

131

minimization that finds a desirable number of rules for a given error bound. His

EMO reduces the size of trees dramatically and his best rule set is better than

that of C4.5, but computing time takes longer

 A multicriteria approach in evaluating decision trees was presented by

Bryson (2004). He provided a method to assist decision makers to select an

efficient decision tree by ranking decision trees using a weighing model. The

model evaluates a decision tree on several performance measures such as

accuracy rate, tree simplicity and size, stability, and the discrimination power of

its predictors.

 Zhao (2007) presented a multiobjective genetic programming (MOGP)

system for developing Pareto optimal decision trees. The system allows the

decision-maker to make tradeoffs in several ways based on his estimates of

classification errors, and recommends a set of alternative solutions accordingly.

As an evolutionary approach, the system visualizes the progress of the evolution

of solutions such that the decision maker can decide to stop the procedure when

satisfactory solutions have been found or when the solutions on the front appear

to have stabilized.

FEATURE SELECTION

Irrelevant attributes pose a significant problem for most machine learning

methods Decision Tree algorithms, even axis-parallel ones, can be confused by

too many irrelevant attributes. Because oblique decision trees learn the

coefficients of each attribute at a DT node, searching for good coefficient values

is much more efficient when there are fewer attributes. (Murthy et al. 1994).

Feature selection (also known as subset selection) is a process used in machine

learning, wherein a subset of the features available from the data is selected for

a learning algorithm. The best subset contains the least number of dimensions

that most contribute to accuracy, hence making the search space smaller. With

this, oblique DT construction methods can benefit substantially by using a

feature selection method.

 Dash and Liu (1997) present a survey of several feature selection methods

according to generation procedure and evaluation function. The generation

procedure defines how a method generates a subset of features for evaluation.

The procedure starts either with no feature, or with all features, or with a

132

random subset of features. The evaluation function measures the goodness of a

subset produced by some generation procedure. They group evaluation functions

into five categories: distance, information, dependence, consistency, and

classifier error rate measures and are briefly described as follows:

1. Distance Measures also known as separability, divergence, or

discrimination measures. For a two-class problem, a feature x is

preferred to another feature y if x induces a greater difference

between the two-class conditional probabilities than y; if the

difference is zero, then x and y are indistinguishable. An example is

the Euclidean distance measure.

2. Information Measures determine the information gain from a

feature. The information gain from a feature x is defined as the

difference between the prior uncertainty and expected posterior

uncertainty using x. Feature x is preferred to feature y if the

information gain from feature x is greater than that from feature y

(e.g., entropy measure).

3. Correlation Measures qualify the ability to predict the value of one

variable from the value of another. The coefficient is a classical

dependence measure and can be used to find the correlation

between a feature and a class. If the correlation of feature x with

class c is higher than the correlation of feature y with c, then

feature x is preferred to y. A slight variation of this is to determine

the dependence of a feature on other features; this value indicates

the degree of redundancy of the feature. All evaluation functions

based on dependence measures can be divided between distance

and information measures.

4. Consistency Measures find out the minimally sized subset that

satisfies the acceptable inconsistency rate that is usually set by the

user. These are characteristically different from other measures,

because of their heavy reliance on the training dataset. In the

simplest implementation, it does a breadth-first search and checks

for any inconsistency considering only the candidate subset of

features.

5. Classifier Error Rate Measures are called “wrapper methods”, i.e.

the classifier is the evaluation function. Features are selected using

the classifier that later on uses these selected features in predicting

the class labels of unseen instances. The accuracy level is very high

133

but computationally costly. A typical wrapper method can use

different kinds of classifiers for evaluation.

Dash and Liu (1997) state that there is no single feature selection method that

can handle all applications. The choice of a feature selection method depends on

various data set characteristics: data types, data size, and noise. A survey and

comparison of feature selection methods are also found in Guyon and Elisseeff

(2003), Blum and Langley (1997), and Jain and Zongker (1997).

6.2 Multiobjective Evolutionary Algorithm

The EA in the decision tree optimization problem is a search function the finds a

linear combination of the predictor variables that best splits the dataset. The

algorithm to find the best linear split on a dataset S is described below.

1. t = 0. Find H0, the best axis-parallel split of S

2. Place 1 copy of H0 to the initial population of linear splits P0

3. Evaluate fitness using an impurity measure

4. Perform selection based on SPEA2 or NSGA-II

5. If (t ≥ max generation) or (another stopping criterion is satisfied) then

End.

6. Perform recombination and mutation.

7. t = t +1 and go to Step 3.

6.2.1 Genetic Algorithm for DT

Genetic Representation. A chromosome or an individual consists of real-

parameter genes that represent the coefficients of a hyperplane that splits the

dataset to form a node of the decision tree. The length of the chromosome is

fixed and is equal to the number of dimensions, d of the dataset. Each gene in a

chromosome represents the coefficient of a predictor variable xi where i=1, 2,…,

d in a d-dimensional dataset. Each gene is a real random number in [-1, 1]. The

decision tree is represented as a binary tree of chromosomes.

Initial Population. The initial population is composed of chromosomes of linear

splits. An axis-parallel chromosome is added to the initial population to ensure

134

that the initial population can capture univariate splits in the early generations of

the EA.

Genetic Operators. Recombination is implemented as the arithmetic average of

both parents as defined in (3.3). The experiment adopts a non-uniform mutation

operator and as described in (3.1) and (3.2).

Fitness and Selection. The fitness of a chromosome is evaluated by an impurity

measure called the towing rule (Breiman et al. 1984). For the selection of

parents and offspring, two MOEAs are compared namely SPEA2 (Zitzler et al.

2002) and NSGA-II (Deb et al. 2002). The program runs through the interface of

PISA (Bleuler, 2003).

 The proposed multiobjective evolutionary algorithm is an adaptation of OC1

(Murthy 1998). The extension comes from changing the original hill climbing and

perturbation algorithms in OC1 to an EA process.

6.2.2 Experiments and Results

The following experiments intend to show the performance of two multiobjective

evolutionary algorithms (SPEA2 and NSGA-II) in terms of selecting hyperplanes

in the induction of oblique decision trees. The results are compared to two other

algorithms: an axis-parallel algorithm (AP) and the oblique classifier (OC1 by

Murthy). The experiment is similar to the work of Cantu-Paz and Kamath (2003)

in terms of describing classification accuracy and tree size but is different in the

sense that the current experiment describes the effects of the EA operators on

building decision trees. Feature selection is not used in the UCI and synthetic

datasets but is applied to the application datasets (see Section 6.4).

UCI DATASETS

In order to evaluate the EA effectively for purpose classification, the

classification datasets from the UCI machine-learning repository are excellent

benchmarks. Nine UCI classification datasets are chosen for the experiment.

Seven of them are small datasets wherein the number of instances in dataset n

< 1000, and two are large datasets, n > 5000. An additional artificial dataset,

135

the RCB dataset is used to test an algorithm’s performance in generating oblique

splits. The RCB dataset is an artificial dataset with linear partitions only. The

datasets are briefly described in Table 6.1.

Name of

dataset

Number of

samples n

Number of

dimensions d

Number of

Classes c

Cancer 699 10 2

Diabetes 768 8 2

Housing 506 12 2

Iris 150 4 3

Vehicle 946 18 4

Glass 214 9 7

Vowel 528 10 4

RCB 2000 2 2

Optical-

digit

3823 (training)

1797 (testing)
64 10

Pen-digit
7494 (training)

3498 (testing)
16 10

Table 6.1 Description of datasets

In order to estimate the classification accuracy of the classifiers, ten five-fold

cross-validation experiments are implemented on the small datasets and the

RCB dataset. Cross-validation is a technique to estimate the accuracy of a

predictive model by partitioning the sample dataset into corresponding subsets

and analyzing one subset (training set) and validating the analysis on the other

subset (validation set). A k-fold cross-validation partitions the dataset in k

subsets. Of the k subsets, a single subset is used as the validation set and the

remaining k-1 subsets are combined to form the training set. The cross-

validation repeats for k times with each of the k subsets used only once as the

validation set.

 For the large datasets (Optical-digit and Pen-digit), there is no need for

cross-validation since they have separate training and testing sets. Fifty trees

are generated from each dataset and the averages of their classification

accuracy and tree size are used for comparison purposes.

 The accuracy is measured as the proportion of correctly classified instances

of each dataset and the size of the tree is measured by the number of leaves.

136

Each value also shows the standard error of their means. For SPEA2 and NSGA-

II, a population of 28 is used, a mutation and a recombination rate of 0.5, a bit-

turn probability of 0.5 and a run of 100 generations. For OC1, twenty random

hyperplanes are used at each node and the best hyperplane is selected through

hill-climbing and five perturbations are allowed for each hyperplane.

 The results shown in Table 6.2 are the averages of fifty trees per data set.

The averages in accuracy do not show significant differences for all four

classifiers. The highest classification accuracy and the smallest tree size in each

dataset are printed in bold. The averages of the tree size for the oblique

classifiers have no significant differences but are obviously smaller than the

trees induced by the axis-parallel algorithm particularly in the Vehicle and Vowel

datasets. Similarly, the standard errors for accuracy and size of the oblique

classifier are smaller than the results of the AP classifier in all the datasets. This

means that the variation in the decision trees generated by the oblique

classifiers is also small.

Dataset AP OC1 SPEA2 NSGA-II

Accuracy 93.78±0.32 95.39±0.26 95.32±0.24 95.57±0.23
Cancer

Size 8.46±1.06 3.26±0.33 3.24±0.27 3.20±0.35

Accuracy 73.53±0.46 72.19±0.45 72.41±0.49 73.22±0.32
Diabetes

Size 13.86±2.58 6.54±0.98 13.30±2.28 9.18±1.92

Accuracy 64.63±1.08 61.57±1.16 64.24±1.28 64.53±1.15
Glass

Size 13.00±1.46 9.12±0.94 8.72±0.88 9.12±1.06

Accuracy 80.36±0.75 74.49±0.75 80.47±0.62 79.29±0.71
Housing

Size 35.94±1.81 31.28±2.07 33.08±1.86 28.96±1.78

Accuracy 94.13±0.45 95.53±0.57 95.20±0.51 95.07±0.56
Iris

Size 3.44±0.15 3.04±0.03 3.04±0.03 3.08±0.05

Accuracy 69.42±0.55 67.33±0.52 67.84±0.56 68.71±0.45
Vehicle

Size 44.54±4.47 31.44±3.86 29.48±3.70 36.58±4.61

Accuracy 74.72±0.76 78.75±0.72 81.15±0.63 80.64±0.70
Vowel

Size 60.76±2.04 28.46±1.18 31.66±1.15 31.68±1.22

Table 6.2 Comparison of accuracy and tree size from small datasets

In the 1400 trees generated from the small datasets, the AP classifier produces

the worst solutions in terms of size whereas the best solutions in terms of

accuracy are generated not from only one classifier but from all classifiers

including the AP classifier. This observation supports the findings of Moret

137

(1982) that an algorithm that minimizes one performance measure does not

necessarily minimize the other measures. It also corroborates the findings of Bot

and Langdon (2000) that evolutionary algorithms do not necessarily perform

well on all datasets. However, this observation contradicts the previous findings

of Loh and Shih (1997) that a linear combination of spits is usually shorter and

more accurate than axis-parallel splits. In terms of computing time, the AP

classifier is the fastest followed by OC1. The EA classifiers took a much longer

time to induce decision trees. This observation confirms the findings of Kim

(2004).

 The results of the averages of accuracy and size from the large datasets are

shown in Table 6.3. The average results in accuracy do not show significant

differences for all four classifiers. The averages of the tree size for the oblique

classifiers have no significant differences but are much smaller than the trees

induced by the axis-parallel algorithm. Of the 600 trees generated from the

large datasets, the worst solutions in terms of accuracy and size were produced

by the AP classifier while the best solutions were generated from the oblique

classifiers. In these datasets, the observation that larger trees are less accurate

holds. However, the finding the smaller trees are more accurate does not hold.

The computing time of the AP classifier remains fast but the computing time of

OC1 has increased tenfold. Still, the EA classifiers took a much longer time to

induce decision trees from the large datasets.

Dataset AP OC1 SPEA2 NSGA-II

Accuracy 92.85±0.20 98.37±0.10 97.54±0.13 97.62±0.14
RCB

Size 83.72±2.51 12.78±0.63 18.50±1.12 17.28±1.09

Accuracy

on test set 84.78±0.22 86.51±0.18 88.69±0.16 88.62±0.14
Optical-

digits
Size 148.14±7.53 54.44±4.59 59.08±4.79 57.26±4.19

Accuracy

on test set 90.91±0.11 92.88±0.09 94.14±0.11 94.20±0.08
Pen-

digits
Size 211.10±5.15 74.98±3.53 71.72±3.87 76.64±3.97

Table 6.3 Comparison of accuracy and tree size from large datasets

Comparing the results of Table 6.2 and Table 6.3, the performance of the AP

classifier in terms of accuracy seem to decline on the larger datasets. It may be

obvious that the AP classifier induces larger and less accurate trees from large-

138

dimensional datasets because of its technique of splitting the dataset with only

one predictor at a time.

 This is not conclusive. For example, the AP classifier performs poorly in terms

of accuracy and tree size on the RCB dataset which has only two dimensions but

it performs well on the Diabetes, Glass, and Vehicle datasets which have 8, 9,

and 18 dimensions respectively. The oblique classifiers’ estimates on accuracy

are better than the estimates of the AP classifier for most datasets except for

the Diabetes, Glass, and Vehicle datasets. It is worthwhile to examine the

reasons why the performance of the AP classifier is better on these datasets.

Likewise, it is useful to examine the effect of changing the parameter settings of

the oblique classifiers on their accuracy and tree size.

 In the case of the OC1 classifier, increasing the number of hyperplanes

generated per node slows down the program but may produce better trees.

Increasing the number of random jumps may generate better coefficients but

may cause over-fitting. In the case of the EAs, decreasing the number of

generations gives worse trees in both accuracy and tree size. Increasing the

number of generations does not ensure improvement in tree quality but surely

increases computing time. Increasing the population size does not necessarily

result in better trees but will definitely increase its computing time. This leads

the experiment to one alternative - examine the effects of changing the

mutation and recombination rates on tree quality (see Section 6.3).

6.3 Sensitivity Analysis

The purpose of the sensitivity analysis is to determine the effect of the input

parameters specifically the mutation and recombination rates on the induction of

oblique decision trees. The sensitivity analysis on one hand determines the input

parameter or parameters that cause the variation in the output, if they cause

any at all. If an input parameter is known to cause much of the variation in the

output, this variable may be fixed to a certain value in order to reduce the

variation in the output and as a consequence makes the algorithm more stable.

On the other hand, if no single parameter causes the variation, the sensitivity

analysis provides a value to describe the interaction among the input

parameters and determines which among them does not interact at all with

other variables.

139

 In this experiment, only two input parameters are tested for sensitivity

namely, the mutation rate and the crossover rate. The input parameter

population size remains at 28, and maxgen at 100, and the bit-turn probability

at 0.5. The method of Sobol’ in SIMLAB (Sec. 3.3) is used as the sensitivity

analysis method. In the Sobol’ setting with two input parameters, a minimum of

96 combinations must be generated for the input sample file. The values of the

mutation and crossover rates are real random numbers from a Uniform

distribution in the interval (0,1). It is worthy to note that when the mutation

rate is almost zero and the crossover rate is high, the EA behaves as a real-

parameter genetic algorithm. When the mutation rate is high and the crossover

rate is zero, the EA behaves as an evolutionary program or as an evolutionary

strategy. Ninety-six samples in the input file means that the experiment should

generate 96 trees for each algorithm in each dataset. This totals to 2112 trees.

 Table 6.4 shows the sensitivity indices for both the SPEA2 and NSGA-II

algorithms in the small datasets. The highest first-order sensitivity indices in

each dataset are in bold. The negative values are equivalent to zeroes, which

means “no effect”. In the Cancer dataset, the mutation and crossover rates

share almost the same values for SPEA2 for both accuracy and size whereas the

mutation rate has a large effect on the accuracy of trees of NSGA-II. In the

Diabetes dataset, both mutation and recombination do not have any main effect

on the outputs of NSGA-II while the crossover rate has a large main effect on

accuracy and size in SPEA2. In the Glass dataset, the input parameters do not

have main effects for both algorithms. In the Housing dataset, the crossover

rate has main effects on accuracy and size in NSGA-II. In the Iris dataset, there

are no main effects from the input parameters in both SPEA2 and NSGA-II.

 In the Vehicle dataset, the mutation and crossover rates have main effects

on accuracy and size for SPEA2 but have none for NSGA-II. In the Vowel

dataset, only the mutation rate has a main effect on the tree size in SPEA2 and

no effect in NSGA-II. For all the small datasets, the total-order effects are

significant for both algorithms in all datasets. This means that the mutation and

crossover rates may not be removed as input parameters even though they may

not have main effects.

 Table 6.5 shows the comparison of Sobol’ sensitivity indices of the large

datasets. The mutation rate significantly affects the size in both SPEA2 and

NSGA-II trees. In the Optical-digit dataset, only the mutation rate affects the

140

variation in accuracy in NSGA-II. In the pen-digits dataset, similar values are

observed for both SPEA2 and NSGA-II, i.e. the mutation has main effects on

accuracy and tree size.

SPEA2 NSGA-II

Dataset
Sensitivity
Indices

Accuracy Size Accuracy Size

mutation 0.326 0.404 0.782 -0.291 First-
order crossover 0.352 0.330 0.138 -0.468

mutation 0.638 0.868 1.077 1.286

Cancer
Total-
order crossover 0.664 0.794 0.433 1.109

mutation -0.285 -0.263 -0.798 -0.961 First-
order crossover 0.794 0.721 -0.682 -0.823

mutation 0.561 0.498 1.051 1.269

Diabetes
Total-
order crossover 1.640 1.482 1.167 1.408

mutation -0.008 0.173 -0.424 0.065 First-
order crossover -0.031 0.194 -0.202 0.088

mutation 0.766 0.390 1.056 1.099

Glass
Total-
order crossover 0.743 0.411 1.278 1.121

mutation 0.153 0.340 -0.162 -0.014 First-
order crossover -0.289 -0.070 0.476 0.533

mutation 1.009 1.098 0.604 0.483

Housing
Total-
order crossover 0.628 0.775 1.242 1.030

mutation -0.040 0.000 0.008 0.000 First-
order crossover -0.017 0.000 0.176 0.000

mutation 0.769 0.000 0.699 0.000

Iris
Total-
order crossover 0.792 0.000 0.867 0.000

mutation 0.326 0.377 -0.361 -0.476 First-
order crossover 0.548 0.575 -0.341 -0.432

mutation 0.646 0.792 0.801 0.875

Vehicle
Total-
order crossover 0.869 0.989 0.821 0.918

mutation -0.020 0.411 -1.190 -0.200 First-
order crossover 0.100 -0.023 -1.400 -0.386

mutation 0.760 1.091 2.118 1.107

Vowel
Total-
order crossover 0.880 0.652 1.901 0.922

Table 6.4 Sobol’ sensitivity indices of small datasets

Table 6.6 lists the input parameters that may be assigned a fixed value in order

to reduce the variation in the corresponding output variable or variables. The

input parameters listed have at least a main effect of 50% on the variation in

the output and the values shown are their suggested values in order to generate

141

trees of higher accuracy or trees of smaller size. Table 6.6 also shows that the

mutation rate has a significant effect on the variation of the tree size in the large

datasets.

SPEA2 NSGA-II

Dataset

Sensitivity
Indices

Accuracy Size Accuracy Size

mutation 0.170 0.604 0.301 1.040

First-order crossover -0.226 -0.229 0.002 0.023

mutation 1.127 1.215 0.943 1.192

RCB Total-order crossover 0.907 0.435 0.644 0.174

mutation -0.552 -0.223 0.775 0.261

First-order crossover -0.575 -0.244 0.354 -0.030

mutation 1.373 1.138 0.927 0.778 Optical-
digits Total-order crossover 1.350 1.117 0.507 0.487

mutation 0.496 0.670 0.534 0.673

First-order crossover 0.493 -0.072 0.286 0.025

mutation 0.801 1.226 0.931 1.053 Pen-
digits Total-order crossover 0.799 0.484 0.683 0.405

Table 6.5 Sobol’ sensitivity indices of large datasets

 Dataset SPEA2 NSGA-II

 Accuracy Size Accuracy Size

Cancer
Mutation

(≥0.70)

Diabetes
Crossover

(≥0.50)

Crossover

(≥0.50)

Housing
Crossover

(≥0.65)

Vehicle
Crossover

(≥0.70)

Crossover

(≥0.70)

RCB
Mutation

(≥0.25)

Mutation

(≥0.45)

Optical-digits
Mutation

(≥0.60)

Pen-digits
Mutation

(≥0.40)

Mutation

(≥0.50)

Mutation

(≥0.70)

Table 6.6 Input parameters that have main effects of at least 50%

142

6.4 Sample Applications

Table 6.7 presents the details of two application datasets. The Bankruptcy

dataset contains financial measurements that determine an establishment’s

ability to pay. There are 220 “can pay” samples and 72 “cannot pay” samples. A

5-fold cross-validation is sufficient to show the average training accuracy of the

decision trees induced from this dataset. The four types of classifiers, as

described previously, are compared in terms of training accuracy and size, and

accuracy on each of class. The Funfair dataset measures the general

performance of an amusement facility based on patron perception over a variety

of predictors. The decision tree however, does not classify the amusement

facility according to general performance but classifies the types of patrons

according to their perception. There are three classes of patrons, not satisfied

(214 samples), satisfied (1,873 samples), and very satisfied (1,254 samples). A

separate training set is used to induce the decision trees and another dataset to

test them. Due to the large size of the training set, a 10-fold cross-validation is

ideal.

 In order to compare the performance of the classifiers, each dataset is

classified on four different settings: (1) the raw dataset as is, i.e. without

preprocessing, (2) the dataset is cleaned using imputation, (3) the dimensions

are reduced via consistency-based feature selection (CBF), and (4) the

dimensions are reduced via correlation-based feature selection (CFS).

Name of dataset
Number of

samples n

Number of

predictors d

Number of

Classes c

Bankruptcy 292 24 2

Funfair

3343 (training

set)

690 (test set)

54 3

Table 6.7 Description of sample-application datasets.

Table 6.8 shows the results of four Bankruptcy datasets along four classifiers

based on tree size, training accuracy, and accuracy of each class. Class 1 has

220 instances and Class 2 has 72 instances. The Bank-O refers to the raw

Bankruptcy dataset with 292 instances, 24 attributes and 423 missing values. All

the classifiers replace missing values with the mean. The Bank-I refers to the

Bankruptcy dataset where missing values were replaced using Expectancy

143

Maximization imputation. The Bank-CBF refers to the Bankruptcy dataset after a

consistency-based feature selection was applied. The number of attributes was

reduced to eleven. The Bank-CFS refers to the Bankruptcy dataset after a

correlation-based feature selection was applied. The number of attributes was

reduced to one.

 Bankruptcy Dataset AP OC1 SPEA2 NSGA-II

Training

Accuracy

72.95 73.97 73.97 74.66

Class 1 90.00 94.09 93.18 91.36

Class 2 20.83 12.50 15.28 23.61

Bank-O

24

attributes

Average Size 6.8 2.40 3.80 5.40

Training

Accuracy

66.10 71.23 68.5 66.10

Class 1 83.18 88.73 85.45 82.27

Bank-I

24

attributes
Class 2 13.89 20.83 15.28 16.67

 Average Size 13.2 5.60 6.00 12.40

Training

Accuracy

71.23 72.60 72.60 71.23

Class 1 91.82 88.18 95.00 87.73

Class 2 8.33 25.00 4.17 20.83

Bank-CBF

11

attributes

Average Size 4.60 5.80 2.60 13.00

Training

Accuracy

75.34 75.34 75.34 75.34

Class 1 100 100 100 100

Class 2 0 0 0 0

Bank-CFS

1 attribute

Average Size 2.00 2.00 2.00 2.00

Table 6.8 Comparison of algorithms on accuracy and tree size

The results show that there are no significant differences among the classifiers

in their average training accuracy and accuracy per class (best results are in

bold). The oblique DTs perform better than the AP classifier in all datasets. In

addition, among the oblique classifiers, OC1 performs best on the different

Bankruptcy datasets. On the other hand, all the classifiers perform better on the

raw dataset than on the “clean” datasets Bank-I and Bank-CBF. This means that

the classifiers perform better when missing values are replaced by the means of

their respective attributes than when missing values are imputed. Similarly,

feature selection using consistency selection did not positively affect the

144

classification accuracy of all the classifiers. However, when the dimension of the

raw dataset reduces to one attribute using correlation, the classification

accuracy of all classifiers improves and in this case creates the best decision

tree. The decision tree generated in this dataset has only two leaves and

classifies Class 1 without any error but misclassifies all instances of Class 2,

which make the transformation to a decision rule simple.

 Figure 6.2 shows a sample run of the axis-parallel classifier and the

classification results of the Bank-CFS dataset from the rule “If (x1 <= 1.215)

then Class 1”.

Figure 6.2 Classification results from the AP classifier (Bankruptcy)

Table 6.9 shows the classification results of four Funfair datasets. For the

training set, Class 1 has 1,254 instances, Class 2 with 1,873 instances, and

Class 3 with 214 instances. For the test set, Class 1 has 333 instances, Class 2

with 267 instances, and Class 3 with 90 instances. The Fun-O refers to the raw

Funfair dataset, a training set with 28,455 missing values and a test set with

4,928 missing values. All the classifiers replace missing values with their mean

when preprocessing of a dataset is omitted. The Fun-I refers to the Funfair

dataset where missing values were replaced using Expectancy Maximization

imputation. The Fun-CBF refers to the Funfair dataset after a consistency-based

feature selection was applied. The number of attributes is reduced to 15. The

Fun-CFS refers to the Funfair dataset after a correlation-based feature selection

was applied. The number of attributes is reduced to 19.

 The results along the classifiers do not show any significant differences in

terms of accuracy on the training set and test set (best results are in bold). In

the raw Funfair dataset, the SPEA2 classifier gives the highest training set

accuracy whereas the AP classifier gives the highest accuracy in the test set.

C:\oc1dos\trial>mktree -Dbankruptcycfs.dt -Tbankruptcy.csv -v
292 testing examples loaded from bankruptcy.csv.
Decision tree read from bankruptcy.dt.
accuracy = 75.34 #leaves = 2.00 max depth = 1.00

Class 1 : accuracy = 100.00% (220/220)
Class 2 : accuracy = 0.00% (0/72)

145

 Funfair Dataset AP OC1 SPEA2 NSGA-II

 Training Accuracy 64.35 64.29 64.71 63.33

Class 1 46.89 49.76 49.84 50.16

Class 2 81.63 79.55 81.1 78.86

Class 3 15.12 15.89 8.41 9.35
Fun-O
 54

attributes Average Size 16.6 15.6 5.4 6.6

 Test set Accuracy 64.93 64.64 62.9 62.03

 Class 1 70.27 69.97 69.67 72.67

 Class 2 74.91 71.91 75.66 61.05

 Class 3 15.56 23.33 0 25.56

Training Accuracy 65.55 64.5 60.84 64.28
Class 1 50.08 46.33 49.09 43.22
Class 2 82.49 82.22 82.22 86.17

Class 3 7.94 15.89 15.89 8.41
Fun-I
54

attributes Average Size 13.4 6.8 3.3 3

 Test set Accuracy 62.17 62.75 61.59 61.3

 Class 1 77.18 65.15 66.67 64.56

 Class 2 64.42 74.53 76.03 77.9

 Class 3 0 18.89 0 0

Training Accuracy 64.98 64.05 65.04 63.15

Class 1 47.85 46.97 50.32 44.18

Class 2 82.17 81.05 80.78 81.37

Class 3 14.95 15.42 13.55 14.95
Fun-CBF

15
attributes Average Size 10 7.6 6.2 13.6

 Test set Accuracy 63.33 61.74 62.61 59.71

 Class 1 65.17 66.37 81.08 58.26

 Class 2 77.15 76.78 56.18 77.15

 Class 3 15.56 0 13.33 13.33

Training Accuracy 64.47 64.44 64.17 64.02

Class 1 47.29 52.71 49.52 48.96

Class 2 81.85 77.31 79.33 79.6
Fun-CFS

19
attributes Class 3 13.08 20.56 18.22 15.89

 Average Size 19.6 27.6 19.6 14

 Test set Accuracy 61.3 61.59 63.77 62.46

 Class 1 61.26 59.76 63.36 64.86

 Class 2 76.78 76.4 80.52 75.28

 Class 3 15.56 24.44 15.56 15.56

Table 6.9 Comparison of algorithms on accuracy and tree size

The opposite is true for the reduced dataset using CFS, the AP classifier gives

the highest training set accuracy whereas the SPEA2 classifier gives the highest

accuracy in the test set. In the imputed dataset, the highest training accuracy is

induced by the AP classifier and the highest test set accuracy by the OC1

146

classifier. The highest training accuracy for the reduced dataset using CBF is

induced by SPEA2 and the highest test accuracy by the AP classifier.

 All the preprocessed datasets (Fun-I, Fun-CBF, and Fun-CFS) improves the

training set accuracy of most of the classifiers but worsen their test set

accuracy. The best test accuracy for all classifiers is induced from the raw

dataset, which means that preprocessing the Funfair dataset does improve

classification accuracy.

 The SPEA2 and AP classifiers induce better trees than the OC1 and NSGA-II.

That AP classifier is more convenient for transformation to decision rules as it

requires not more than eight nested if-then-else statements to classify the

Funfair dataset. The SPEA2 classifier may also be utilized as it requires less if-

then-else statements but transforming a linear combination of attributes to a

decision rule remains a problem. Figure 6.3 shows the oblique decision tree

induced by SPEA2 from the Funfair dataset. Although each node is composed of

a linear combination of all the predictors, important variables can be identified.

These variables have high-valued coefficients. The decision tree in this case is

easy to interpret since only one predictor remains in each hyperplane.

 Figure 6.3 SPEA2 decision tree induced from the Funfair dataset

Figure 6.4 shows a sample run of the SPEA2 classifier and the classification

results of the raw Funfair dataset from the decision tree in Figure 6.3. The

classifiers have generated varying classification accuracies and tree sizes, and

none of them performed consistently in all the datasets. Oblique classifiers are

best suited for generating trees for the Bankruptcy dataset when preprocessing

Training set: funfair.csv, Dimensions: 54, Classes: 3

Root Hyperplane: Left = [263,811,131], Right = [657,515,29]
0.958000 x[1] -8.245000 = 0

r Hyperplane: Left = [304,381,22], Right = [353,134,7]
0.991300 x[2] - 9.500000 = 0

rl Hyperplane: Left = [220,334,16], Right = [84,47,6]
-0.403200 x[11] -0.423000 x[17] + 0.218600 x[19] + 0.310400 x[22]
- 0.288900 x[25] + 0.331900 x[29] + 0.984500 x[38] +
0.347000 x[41] -0.302600 x[54] -8.648400 = 0

147

is omitted. Either the AP or SPEA2 classifiers may be utilized for the Funfair

classifier.

Figure 6.4 Classification results from the SPEA2 classifier (Funfair)

.

6.5 Summary

This chapter presents the application and analysis of evolutionary algorithms in

Decision Tree construction and optimization. Two evolutionary algorithms of

different selection schemes are compared to an axis-parallel classifier, and a hill-

climbing oblique classifier. The experiments show that the EAs generate

comparable results with the latter methods in terms of classification accuracy

and tree size. However, their computing time takes longer in all the datasets.

The best results of the EAs become evident only in the large UCI databases.

None of the classifiers dominated the UCI datasets with respect to inducing the

optimal tree. This observation is also evident in the sample application datasets.

The use of preprocessing techniques that clean the application datasets using

imputation and that reduce their dimension using feature selection did not

significantly improve the classification accuracy of all classifiers.

 The sensitivity analysis shows that there are considerable dissimilarities

between the main effects of mutation and recombination in all the UCI datasets,

which means that none of them performs better in the induction of decision

trees. However, the sensitivity analysis indicates that in the large datasets, the

mutation rate significantly affects the tree size. With regard to the sensitivity

indices between SPEA2 and NSGA-II, they differ in all the datasets and in most

C:\pisa\dtea>mktree -Dfunfairspea.dt -Tfunfairtest.csv -v
690 testing examples loaded from funfairtest.csv.
4928 missing values filled with respective attribute means.
Decision tree read from funfairspea.dt.
accuracy = 62.90 #leaves = 4.00 max depth = 3.00

Class 1 : accuracy = 69.67% (232/333)
Class 2 : accuracy = 75.66% (202/267)
Class 3 : accuracy = 0.00% (0/90)

C:\pisa\dtea>

148

cases, show differing sensitivity indices, which implies that they treat the

nondominated solutions differently.

 The evolutionary algorithms in the above experiments are imbedded

functions in the induction of the decision tree. They act as search algorithms

that select a predictor or a linear combination of predictors which best splits the

dataset to create small trees with high classification accuracy. In this respect,

the tree size is a consequence of the goodness of a split. Our experiments have

produced an ensemble of decision trees of varying accuracies and sizes and an

approximation of the Pareto set can be easily calculated.

 In the true sense of evolutionary multiobjective optimization, the ensemble

of decision trees induced in our experiments can be compared to a population of

decision trees in one generation of an MOEA wherein both objective functions of

maximizing accuracy and minimizing size are evaluated simultaneously.

149

Chapter 7

Multicriteria Performance
Analysis of Nondominated
Sets

7.1 Introduction

The multiobjective evolutionary algorithm experiments in the previous chapters

have generated a variety of nondominated sets in each problem domain.

Comparisons of the quality of the nondominated sets have not yet been

presented in each of the cases except for the solution sets in Chapters 3 and 5.

In the Competitive Facility Location problem, the quality of the nondominated

sets generated by the MOEA were calculated and compared to the Pareto-

optimal set generated by Carrizosa and Plastria (1995). The error ratio metric,

which measures the closeness of the nondominated set to the Pareto front in

terms of set membership, was used to measure the quality of solutions in the

CFLP. In the Multiobjective Shortest Paths problem, the nondominated paths

generated by the MOEAs were compared to the nondominated paths generated

by Martins algorithm (1999). The comparisons were possible because the

Pareto-optimal sets for the CFLP experiment are known and can be computed.

However, in the Container Location model, the MSPP and the Decision Tree

experiments, the Pareto-optimal sets are unknown and cannot be computed by

deterministic methods. Hence, only approximations to their Pareto-optimal sets

are available for performance analysis.

150

 This chapter presents some performance metrics that are useful in measuring

the quality of nondominated sets when the Pareto-optimal set is unknown, and

utilizes a multicriteria tool to determine the best nondominated set for the CLM,

MSPP, and DT problems based on the performance metrics. Several

performance metrics exist in literature, and several comparative studies have

been conducted that evaluate them (see Section 2.3.3).

7.2 Performance Measures

There are three main classifications of performance metrics for evaluating the

quality of nondominated sets. The first classification evaluates the convergence

or the proximity of the non–dominated set to the Pareto-front based on several

concepts (e.g. dominance, distance, and set membership). The second

classification evaluates the diversity of a non–dominated set by calculating the

spread of solution along its front. The third classification evaluates both

convergence and diversity.

Hypervolume

The hypervolume metric (Zitzler and Thiele 2000) calculates the volume covered

by the members of the nondominated set Q. For each solution i ∈ Q, a

hypercube vi is computed from a reference point and the solution i as the

diagonal corners of the hypercube, The reference point can be found by

constructing a vector of worst objective function values. The hypervolume (HV)

is calculated as:

()i
|Q|

i vvolumeHV 1== U (7.1)

The hypervolume is a metric that measures both convergence and diversity of a

nondominated set.

Spacing

Schott (1995) introduced a metric, which is a measure of the relative distances

between consecutive solutions in the nondominated set Q is calculated as:

151

()
Q

∑ =
−

=
Q

i i dd
S 1 (7.2)

where ∑ =≠∧∈ −=
M

m

k
m

i
mikQki ffmind

1
 (7.3)

Q

∑ −=
Q

i id
d 1 (7.4)

Schott’s metric measures the diversity of a nondominated set.

Set coverage metric

This metric is based on Zitzler (1999). The metric computes the relative spread

of solutions between two nondominated sets A and B. The set coverage metric

C(A, B) calculates the proportion of solutions in B that are weakly dominated by

solutions of A:

() { }
B

baAaBb
BA

p:∈∃∈
=,C (7.5)

The metric value C(A, B) = 1 means all members of B are weakly dominated by

A. On the other hand, C(A, B) = 0 means that no member of B is weakly

dominated by A. This operator is not symmetric, thus it is necessary to calculate

C(B, A).The set coverage metric measures convergence based on the concept of

dominance relations.

Cardinality

This metric counts the number of solutions in the nondominated set. It

measures neither diversity nor convergence.

152

7.3 Computations and Results

In order not to limit the description of the quality of a nondominated set by

using only a single metric, a multicriteria evaluation is necessary. Hence, the

computations in this chapter evaluate the quality of nondominated sets

according to four criteria, which are mentioned in Section 7.2. The multicriteria

tool employed in the computations is Decision Lab (Visual Decision, 2003). The

Decision Lab software is multicriteria decision making software, which is based

on the Preference Ranking Organization Method for Enrichment Evaluations

(PROMETHEE) and the Graphical Analysis for Interactive Assistance (GAIA). The

details of the PROMETHEE method are found in Bran and Mareschal (1986).

GAIA, which makes use of principal component analysis, is a descriptive

complement to the PROMETHEE methods (Bran and Mareschal 1994).

 Table 7.1 shows the computed values for each performance criterion in the

different multiobjective optimization problems. There are four criteria. A smaller

set cardinality is preferred. A spread that has smaller value means that the

solutions on the on-dominated front are uniformly spaced therefore this criterion

is minimized. Hypervolume and set coverage are maximized. Two nondominated

sets are compared in each MOOP. One set is generated by NSGA-II and the

other by SPEA2. Decision Lab can rank more nondominated sets but since the

set coverage is a binary quality measure, only two nondominated sets can be

evaluated each time.

 The values of the LCFS and FCFS sets (for the Container Location Problem)

are computed from a 50% space usage configuration. A 50-node of 10% density

is the basis for the computed values in both MSPP (Multi-objective Shortest Path

Problem) configurations. The Housing and the Optical Digits are used as the

nondominated sets for the Decision Tree problem. The hypervolume values for

the MSPP are blank since they cannot be computed. This reduces the number of

MSPP criteria to three.

 Figure 7.1 shows the nondominated fronts of SPEA2 and NSGA-II in the LCFS

optimization problem. By visual observation, it is not clear which front is better

because there are some overlapping solutions between the SPEA2 and NSGA-II

sets. However, the range of solutions in SPEA2 is wider than NSGA-II, which

consequently creates a larger hypervolume. SPEA2 has more solutions but

153

NSGA-II has better set coverage as some of its solutions dominate several

SPEA2 solutions.

Criterion

Nondominated
Set

Cardinality Spread Hyper-
volume

Set
Coverage

 (Minimize) (Minimize) (Maximize) (Maximize)

LCFS
NSGA-II 6 0.2 4.76 0.41
SPEA2 12 0.17 6.59 0.17

FCFS
NSGA-II 5 0.39 5.78 0.44
SPEA2 9 0.21 7.03 0.2

MSPP 2S|1M
NSGA-II 7 0.8 0
SPEA2 8 0.51 0

MSPP 3S
NSGA-II 8 0.57 0
SPEA2 5 1.14 0.38

Housing dataset
NSGA-II 5 0.43 5.47 0.17
SPEA2 6 0.38 6.98 0.6

Optical-digits
NSGA-II 5 0.36 5.96 0
SPEA2 6 0.63 7.15 0.6

Table 7.1 Computed criteria values of nondominated sets

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

161.00 162.00 163.00 164.00 165.00 166.00 167.00 168.00

Handling time

R
eh

an
d
le

s
.

spea2
nsga2

Figure 7.1 Comparison of LCFS nondominated fronts

154

Decision Lab has a visualization tool that shows the relation between the criteria

and the nondominated set, and shows a preferred solution if it exists. Figure 7.2

shows a GAIA diagram that shows how each criterion relates to each action. The

GAIA plane corresponds to the first principal components of the data, which

ensures that a maximum quantity of information is available on the plane. An

action in this case refers to a nondominated set. The orientation of the criteria

axes indicates which criteria are in agreement with each other. In this case,

cardinality and set coverage have the same orientation but opposite to

hypervolume and spread. The orientation of the position of an action indicates

its strong features. The length of the axis correspond to a criterion’s observed

deviations between actions, the longer the axis the higher the deviation. In the

example, the set coverage projects the longest axis, which means the difference

in values between two actions in this criterion is greater, compared to the other

criteria.

Figure 7.2 GAIA diagram for LCFS with equal weights

The orientation of the pi, which is the decision axis, points to the preferred

action or solution considering all the criteria. In this example, pi does not point

towards any action, which means that there is no compromise solution. This due

to the condition that NSGA-II has two strong features, SPEA2 has two strong

features, and all the criteria have the same weight. Adding different weights to

each criterion obviously changes the orientation of the pi decision axis.

155

Figure 7.3 shows the GAIA plane wherein the weights of hypervolume and set

coverage are set at 1.0, spread at 0.50, and cardinality at 0.20. Consequently,

SPEA2 becomes the compromise solution.

Figure 7.3 GAIA diagram for FCFS and LCFS with unequal weights

The criterion weight is independent from the scale of the criterion which means

the larger the value the more important the criterion. In order to compare the

different criteria independently form their measurement units, the PROMETHEE

method provides six preference functions. A preference function and a

preference threshold are associated with each criterion when a decision-maker

compares two actions.

 Table 7.2 lists the preference thresholds for the LCFS example described in

Chapter 4. The threshold represents the largest deviation that is considered as

decisive by the decision-maker. For example, the cardinality threshold means

that any difference in the number of solutions between NSGA-II and SPEA2

should be important. Smaller differences correspond to lower degrees of

preference. When the difference reaches the 75% threshold, then the set with

the smaller cardinality is preferred in this criterion. The preference function

translates the deviation between the values of two actions on a single criterion

156

in terms of a preference degree. The preference degree is an increasing function

of the deviation. The degree of preference is expressed on a percentage scale. A

linear preference function as defined by Bran and Mareschal (1986) is as

follows:

 () 




>−<
≤≤−

=
pdpd

,pdpp/d
dH

orif1

if
 7.5)

As long as d is lower than p, the preference of the decision maker increases

linearly with d. If d becomes greater than p, a strict preference exists. The linear

preference function is used in the succeeding computations and is associated

with all the criteria listed in Table 7.2 The linear preference function was chosen

since the function takes into account any difference in the values between two

alternatives.

Criterion Threshold

Cardinality 75%

Spread 50%

Hypervolume 75%

Set Coverage 50%

Table 7.2 Decision Lab preference thresholds

The criteria spread and set coverage represent diversity and convergence

respectively, and they are conflicting features. Both criteria are assigned the

same threshold of 50% to avoid any preference to diversity or convergence. The

hypervolume, which measures diversity and convergence, is assigned a

threshold of 75% to assure that there is a significant difference in the number of

dominated solutions between both nondominated sets.

 Figure 7.4 shows the GAIA plane when the preferences have been

incorporated. The orientation of cardinality and set coverage are pointing to

NSGA-II, which means that they are decisive in finding a compromise solution,

whereas the hypervolume and spread criteria are not decisive, which means that

their differences are small. In this case, the preferred solution to the LCFS

example is the NSGA-II nondominated set.

157

Figure 7.4 GAIA diagram for LCFS with preferences.

Figure 7.5 shows the nondominated fronts of SPEA2 and NSGA-II in the FCFS

optimization problem. NSGA-II has solutions that dominate the solutions of

SPEA2 when the handling time is longer than 555 minutes but has no solutions

when handling time is less than 555 minutes. The range of solutions in SPEA2 is

wider than NSGA-II. With this, the better set cannot be determined visually.

0

2

4

6

8

10

12

14

545 550 555 560 565 570 575 580

Handling time

R
eh

an
d

le
s.

spea2

nsga2

Figure 7.5 Comparison of FCFS nondominated fronts

158

The FCFS example has the same GAIA plane shown in Figure 7.2 when the

criteria have no weights, and Figure 7.6 shows the GAIA plane when the

preferences in Table 7.2 have been incorporated. The pi decision axis leans

towards the NSGA-II option but its orientation is not as much as in the LCFS

example. Still, the preferred solution is NSGA-II.

Figure 7.6 GAIA diagram for FCFS with preferences.

Decision Lab is utilized for the MSPP to show which nondominated set has better

quality. Figure 7.7 shows the plane for the 2S|1M configuration. The number of

criteria has reduced to three as mentioned previously. The values for set

coverage in both sets are zero, which means that there are no weakly

dominated solutions from each set or that their solutions are similar. The pi

decision axis has no preferred solution at this point therefore preferences should

be incorporated to the Decision Lab model. Figure 7.8 shows that SPEA2 is the

preferred solution after incorporating the thresholds in Table 7.2, and the

decisive criterion is the spread of solutions. The set coverage criterion is not a

factor since both sets do not cover any weakly dominated solutions between

them.

159

 Figure 7.7 GAIA diagram for a 2S|1M configuration without preferences

Figure 7.8 GAIA diagram for a 2S1M configuration with preferences

160

In the 3S configuration as shown in Figure 7.9, the GAIA plane shows that the

SPEA2 action is preferred, even without any decision-maker preference since it

has two strong features whereas NSGA-II has only one. The result is the same

after the preferences in Table 7.2 have been added. The decisive factors are

cardinality and set coverage.

Figure 7.9 GAIA diagram for a 3S configuration without preferences

The fronts shown in Figure 7.10 are the nondominated sets from the ensembles

of trees generated in Chapter 6. The OC1 solutions are dominated by the

solutions of either SPEA2, or NSGA-II, or AP. The nondominated solutions of the

AP classifier are dominated by either SPEA2 or NSGA-II. Most of the

nondominated solutions in NSGA are dominated by solutions in SPEA2. It seems

that SPEA2 is the better nondominated set through the projection of their

nondominated sets but needs to be validated using the PROMETHEE method.

The nondominated sets of AP and OC1 need not be tested for performance

quality as their solutions are dominated by both MOEAs solutions.

161

0

5

10

15

20

25

30

35

40

45

50

60.00 70.00 80.00 90.00 100.00

Accuracy

T
re

e
si

ze

spea2

nsga2

ap

oc1

Figure 7.10 Nondominated fronts of the Housing dataset

Figure 7.11 shows the GAIA plane of the Housing dataset options, and validates

that SPEA2 is the preferred solution. The factors that favor SPEA2 are the

hypervolume, the spread, and the set coverage. The result does not change

when preference thresholds are added. In fact, the pi decision axis leans more

to the direction of SPEA2 when preferences are added than it does when without

any preferences.

Figure 7.11 GAIA plane for the Housing dataset without preferences

162

0

20

40

60

80

100

120

82 84 86 88 90 92

Accuracy

T
re

e
si

ze

spea2

nsga2

ap

oc1

Figure 7.12 Nondominated fronts of the Optical Digits dataset

Figure 7.13 GAIA diagram for the Optical Digits dataset with preferences

Figure 7.12 shows the Optical Digits fronts, and most AP and OC1 solutions are

dominated by either SPEA2 or NSGA-II, which means that AP and OC1 need not

be considered as alternatives. It is difficult to determine which front is better

163

between SPEA2 and NSGA-II by visual observation alone, which calls for a

multicriteria analysis. Similarly, a GAIA diagram (not shown) for the Optical

Digits example does not show any preferred set when there are no preferences

included in the computations. However, it shows that hypervolume and set

coverage favor SPEA2, whereas spread and cardinality favor NSGA-II. Figure

7.13, a GAIA diagram with the preferences thresholds in Table 7.2 added, shows

that the preferred alternative is SPEA2, with hypervolume and set coverage as

the decisive factors.

7.4 Summary

The chapter shows the importance of a multicriteria performance analysis in

evaluating the quality of nondominated sets. Six problem examples from

different problem domains were analyzed on four criteria of quality. These four

criteria namely cardinality of the nondominated set, spread of the solutions,

hypervolume, and set coverage do not favor any algorithm along the six

problem examples. In the CLM example, the set coverage and cardinality criteria

were the decisive factors since the nondominated set of SPEA2 and NSGA-II did

not differ much in terms of hypervolume and spread. In the MSSP examples, the

spread of solutions is the decisive factor for the 2S|1M configuration, and the

cardinality and set coverage for the 3S configuration. The difference in set

coverage values between SPEA2 and NSGA-II in the MSPP are small since both

algorithms have almost identical nondominated solutions. In the Decision Tree

examples, the decisive factors are set coverage and hypervolume.

 The computations show that the decisive criterion or criteria vary in all

examples except for the set coverage criterion. This shows the importance of a

binary measure in evaluating the quality of nondominated sets, as the measure

itself tests for dominance.

164

165

Chapter 8

Conclusions and future
work

CONCLUSIONS

The scientific objective of the dissertation is to improve the understanding of

how evolutionary algorithms work in finding efficient solutions to multiobjective

optimization problems through experimental research. The objective of the study

is twofold: (1) to describe the performance of evolutionary algorithms in terms

of stability, computational complexity, diversity and optimality of solutions in

different multiobjective optimization problems, and (2) to describe their

strengths and weaknesses in each of the MOOP considered in the study and

identify why the MOEA succeeded or failed.

 The thesis evaluated the performance of two multiobjective evolutionary

algorithms on four problem sets that have different search spaces and data

structure. The outputs of both MOEAs in each problem set were compared either

to other algorithms or with each other, and their results with respect to each

problem set were explained. The sensitivity analysis measured the effects of the

input parameters on the outputs to describe stability. The multicriteria

performance analysis evaluated the quality of nondominated sets in terms of

diversity and optimality. The essential results are:

 In terms of computational complexity, the MOEAs run in polynomial time

with respect to the size of their population and are linear with respect to the

166

problem size. Hence, their runtime complexity does not change in the different

problem sets. However, they have the worst execution time in all the problem

sets. They need a large number of generations to find good nondominated

solutions in both continuous and discrete search spaces. Furthermore,

conducting sensitivity analyses for the MOEAs is computationally demanding in

terms of execution time.

 In terms of stability, the sensitivity analysis shows varying degrees of

influence of the mutation and recombination rates on the output along all the

problem sets and within each problem set. There are instances when the

mutation rate has greater effect than the recombination rate and instances when

it is the opposite. There are instances that both have small main effects and

instances that their effects shift from low to high or high to low within the MOEA

run. Unless the sensitivity analysis shows that the input parameters have high

main effects and do not interact, fixing the values for the mutation and

recombination rates that insure a stable output is difficult.

 Similarly, the sensitivity indices between the MOEAs in all the test cases differ

given the same input parameter values. The input parameters influence the

outputs of each MOEA differently. Caution must be taken when comparing the

performance of MOEAs as using the same combination of input parameters may

favor one of the algorithms.

 In terms of the quality of solutions, the MOEAs succeeded in finding

comparable solutions to other algorithms. In the case of the decision tree

problem, the MOEAs perform better in some datasets but worse on other

datasets and the differences are not significant in the small datasets. The MOEAs

perform better in larger datasets against a greedy algorithm and a hill climbing

algorithm. In the case of the CFLP, the MOEA fails to converge to the Pareto-

optimal set. For the CLM and MSPP cases, the MOEAs are compared with each

other and their performance are comparable in terms of diversity and optimality

in their solutions. A visual projection of two-dimensional fronts is useful in

interpreting the quality of nondominated sets, but becomes worthless in higher

objective spaces. A multicriteria performance evaluation proves to be beneficial

in understanding the qualities of a nondominated set.

167

FUTURE WORK

The MOEAs did not fail to find efficient solutions to the test cases of different

search spaces and structure. However, the performance of each MOEA and the

influence of the genetic operators on its performance fluctuate, not only between

the problem sets but also within each problem set. Due to the variation in their

performance, it is difficult to characterize the problem sets on which they do well

as it is difficult to find proper combinations of input parameters to have a stable

output. The major difficulty lies in the fact that evolutionary algorithms combine

two search strategies that behave very differently (mutation and recombination)

and their behavior in searching for optimal solutions depend on the genetic

representation of the optimization problem. Another drawback of an MOEA is its

execution time.

 The sensitivity analysis proves to be an important step in analyzing the

behavior of an MOEA in terms of the main and interaction effects of its input

parameters. A sensitivity analysis in each generation step better describes the

behavior and the influence of each genetic operator. However, this requires

much computational time. Future work on designing such experiments that

reduce computing time in sensitivity analysis will be valuable.

 On the issue of MOEA-execution time, future work on embedding a heuristic

in the MOEA or hybrid methods will be beneficial, as a specific heuristic that

suits a particular optimization may reduce the execution time and may be more

efficient in finding optimal solutions for the problem sets considered in the

study.

168

169

Bibliography

Abraham, A., L. C. Jain, and R. Goldberg (2005). Evolutionary Multiobjective

Optimization: Theoretical Advances and Applications. London, UK: Springer.

Benson, H.P. (1978) Existence of efficient solutions for vector maximization

problems. Journal of Optimization Theory and Applications 26:569–580.

Beyer, H.G., and K. Deb (2000). On the desired behavior of self-adaptive

evolutionary algorithms. In M. Schoenauer, K. Deb, G.Rudolph, X.Yao,

E.Lutton,; J.J. Merelo, and H.P. Schwefel, eds. Parallel Problem Solving from

Nature VI. Heidelberg:Springer. pp. 59-68.

Bleuler, S., E. Zitzler, M. Laumanns, and L. Thiele (2003). PISA - a platform and

programming language independent interface for search algorithms. Zurich:

Swiss Federal Institute of Technology TIK-Report No. 154.

Blicke, T. and L. Thiele (1995). A comparison of selection schemes used in

genetic algorithms. Zurich: Swiss Federal Institute of Technology. Technical

report nr 11.

Blum, A.L. and P. Langley (1997). Selection of relevant features and examples in

machine learning. Artificial Intelligence 97(1):245–271.

Bosman, P. A., and D. Thierens (2003). A balance between proximity and

diversity in multiobjective evolutionary algorithms. IEEE Transactions on

Evolutionary Computation 7(2), pp. 174-88.

Bot, M. and W. Langdon (2000). Application of genetic programming to induction

of linear classification trees. In Proceedings of the European Conference on

Genetic Programming. Edinburgh, Scotland, UK, April 2000.

NewYork:Springer. pp. 247-258.

Brans, J. and B. Mareschal (1986). How to select and how to rank projects the

PROMETHEE method. European Journal of Operational Research 24:228-238.

Brans, J. and B. Mareschal. (1994). The PROMCALC and GAIA Decision Support

System for Multicriteria Decision Aid. Decision Support Systems(12):297-

310.

170

Breiman, L. (1990). Bagging Predictors. Berkley (CA): Department of Statistics

University of California. Technical report 421.

Breiman, L., J. Friedman, R. Olshen, and C. Stone (1984). Classification and

Regression Trees. Belmont, Calif.: Wadsworth.

Bryson, N. (2004). Evaluation of decision trees: a multicriteria approach.

Computers and Operations Research 31:1933-1945.

Buntine, W. (1992). Learning classification trees. Statistics and Computing 2:63-

73.

Cantu-Paz E. and C. Kamath (2003). Inducing oblique decision trees with

evolutionary algorithms. IEEE Transactions on Evolutionary Computation

7(1):54-68.

Carrizosa, E. and F. Plastria (1995). On minquantile and maxcovering

optimization. Mathematical Programming 71:101-112.

Chaiyaratana, N., T. Piroonratana, and N. Sankawelert (2007). Effects of

diversity control in single-objective and multiobjective genetic algorithms.

Journal of Heuristics 13(1):1-34.

Chan, K., S. Tarantola, A. Saltelli (1997). Sensitivity analysis of model output:

variance-based methods make a difference. In Proceedings of the 1997

Winter Simulation Conference. Atlanta, GA, USA. pp. 261-268.

Chen, P., Z. Fu, A. Lim, and B. Rodrigues (2004). Port yard storage

optimization. IEEE Transactions on Automated Science and Engineering

1(1):26-37.

Chen, T. (1999). Yard operations in the container terminal-a study in the

‘unproductive moves’. Maritime Policy and Management 26:27-38.

Coello, C. (2000). An updated survey of GA-based multiobjective optimization

techniques. ACM Computing Surveys 32(2):109–143.

Coello, C., D. Veldhuizen, and Lamont G. (2002). Evolutionary Algorithms for

Solving Multiobjective Problems. Boston: Kluwer.

Collette Y. and P. Siarry (2003). Multiobjective Optimization. Berlin: Springer.

Corne, D. W., J. D. Knowles, and M. J. Oates (2000). The Pareto envelope-based

selection algorithm for multiobjective optimization. Lecture Notes in

Computer Science 1917:839-848.

Corne, D. W., N. R. Jerram, J. D. Knowles, and M. J. Oates (2001). PESA-II:

region-based selection in evolutionary multiobjective optimization. In

Proceedings of the Genetic and Evolutionary Computation Conference, San

Francisco, CA, July 2001. pp. 283-290.

Coutinho-Rodrigues, J., J. Climaco, and J. Current (1999). An interactive bi-

objective shortest path approach: searching for unsupported non-dominated

solutions. Computers & Operations Research 26(8):789-798.

171

Crichigno, J. and B. Baran (2004). A multicast routing algorithm using

multiobjective optimization. In Lecture Notes in Computer Science 3124, pp.

1107-1113.

Czyzak P. and A. Jaszkiewicz (1998). Pareto simulated annealing- a meta-

heuristic technique for multiobjective combinatorial optimization. Journal of

Multi-Criteria Decision Analysis 7(1):34–37.

Das, I. and, J. Dennis (1997). A closer look at drawbacks of minimizing weighted

sums of objectives for Pareto set generation in multicriteria optimization

problems. Structural Optimization 14(1), 63–69.

Dash, M. and H. Liu (1997). Feature selection for classification. Intelligent Data

Analysis 1(4), 131–156.

Deb, K. (1999). Evolutionary algorithms for multicriterion optimization in

engineering design. In K. Miettinen, Marko M., Neittaanm, P., and Periaux, J.

eds. Evolutionary Algorithms in Engineering and Computer Science,

UK:Wiley. pp. 135-169.

Deb, K. (2001). MultiObjective Optimization Using Evolutionary Algorithms.

Chichester, UK: Wiley.

Deb, K., and S. Agrawal (1999). Understanding interactions among genetic

algorithm parameters. In W. Banzhaf and C. Reeves, Eds. Foundations of

Genetic Algorithms 5. CA:Morgan Kaufmann. pp. 265-268.

Deb, K., M. Mohan, and S. Mishra (2005). Evaluating the ∈-domination based

multiobjective evolutionary algorithm. Evolutionary Computation 13(4):501-

525.

Deb, K., S. Agrawal, A. Pratap, and T. Meyarivan (2002). A fast elitist

multiobjective genetic algorithm: NSGA-II. IEEE Transactions on

Evolutionary Computation 6(2):182-197.

Decision Lab 2000. Decision Lab 2000 Executive Edition Manual. Montreal,

Canada:Visual Decision Inc.

Dekker, R., P. Voogd, and E. van Asperen (2006). Advanced methods in

container stacking. OR Spectrum 28(4):563-586.

Drezner Z. (1981). On a modified one-center problem, Management Science

27(7):848-851.

Drezner, T. (1994). Locating a single new facility among existing, unequally

attractive facilities. Journal of Regional Science 34(2):237-252.

Dumitrescu, D., B. Lazzerini, L.C. Jain, and A. Dumitrescu (2000). Evolutionary

Computation. Boca Raton (FA): CRC Press.

Ehrgott, M. (2005). Multicriteria Optimization 2nd ed. Berlin: Springer.

172

Ehrgott, M. and D. Ryan (2002). Constructing robust crew schedules with

bicriteria optimization. Journal of Multicriteria Decision Analysis 11(3):139-

150.

Ehrgott, M. and X. Gandibleux (2000). A survey and annotated bibliography of

multiobjective combinatorial optimization. OR Spektrum 22(4):425-460.

Eiselt H.A. and G. Laporte (1988). Location of a new facility on a linear market

in the presence of weights. Asia-Pacific Journal of Operational Research

5:160-165.

Eiselt H.A. and G. Laporte (1989). The maximum capture problem in a weighted

network. Journal of Regional Science, 29(3):433-439.

Eiselt, H.A., G. Laporte, and J-F. Thisse (1993). Competitive Location Models: A

Framework and Bibliography. Transportation Science 27(1):44-54.

Engau,A. and M. Wiecek (2007). Generating ε-efficient solutions in

multiobjective programming. European Journal of Operational Research

177(3):1566-1579.

Eshelman, L.J., R. Caruana, and J.D. Schaffer (1989). Biases in the crossover

landscape. In Proceedings of 3rd International Conference on Genetic

Algorithms,Virginia, USA. pp. 10-19.

Fayyad, U. and K. Irani (1990). What should be minimized in a decision tree?.

In Proceedings of the National Conference on Artificial Intelligence. Boston,

USA. pp. 749-754.

Fogel, D.B. (1992). Evolving Artificial Intelligence. Ph, D. Thesis, San Diego ,CA:

University of California.

Folino, G., C. Pizzuti, and G. Spezzano (2000). Genetic Programming and

Simulated Annealing: a Hybrid Method to Evolve Decision Trees. In

Proceedings of the European Conference on Genetic Programming.

Edinburgh, Scotland, UK. pp. 294-303.

Fonseca, C. and P. Fleming (1993). Genetic algorithms for multiobjective

optimization: formulation, discussion, and generalization. In Proceedings of

the 5th international conference on genetic algorithms. Urbana-Champaign,

IL, USA. pp. 416 – 423.

Gandibleux, X., F. Beugnies, and S. Randriamasy (2006). Martins' algorithm

revisited for multiobjective shortest path problems with a MaxMin cost

function. 4OR A Quarterly Journal of Operations Research 4:47-59.

Gandibleux, X., N. Mezdaoui, and A. Fréville. (1997). A Multiobjective tabu

search procedure to solve combinatorial optimization problems. In R.

Caballero, F. Ruiz, and R. Steuer eds. Advances in Multiple Objective and

Goal Programming. Springer. pp. 291-300.

173

Garey, J. (1979). Computers and Intractability: A Guide to the Theory of NP-

completeness. San Francisco, CA:Freeman.

Gelfand, S., C. Ravishankar, and E. Delp (1991). An iterative growing and

pruning algorithm for classification tree design. IEEE Transactions on Pattern

Analysis and Machine Intelligence 13(2):163-174.

Gen, M. and L. Lin (2004). Multiobjective genetic algorithm for solving network

design problem. Presented at the 20th Fuzzy Systems Symposium,

Kitakyushu, Japan.

Glover, F. (1989). Tabu search - Part I. ORSA Journal on Computing 1:190-206.

Goh, C. K. and K. C. Tan (2007). An investigation on noisy environments in

evolutionary multiobjective optimization. IEEE Transactions on Evolutionary

Computation 11(3):354-381.

Goldberg, D. E. (1989). Genetic Algorithms for Search, Optimization, and

Machine Learning. MA: Addison Wesley.

Goldberg, D.E. (1985). Optimal initial population size for binary-coded genetic

algorithms. Tuscaloosa: University of Alabama. Technical report nr TCGA

Report 85001.

Goldberg, D.E. and K. Deb (1991). A comparison of selection schemes used in

genetic algorithms. In Foundations of Genetic Algorithms 1, pp. 69-93.

Goldberg, D.E., K. Deb, and D. Thierens (1993). Toward a better understanding

of mixing in genetic algorithms. Journal of the Society of Instruments and

Control Engineers 32(1), 10-16.

Goldberg, D.E., K. Deb, and J.H.Clark (1992). Genetic algorithms, noise, and

sizing of populations. Complex Systems 6:333-362.

Granat, J. and F. Guerriero (2003). The interactive analysis of the multicriteria

shortest path problem by the reference point method. European Journal of

Operational Research 151(1):103-111.

Guddat, J., F. Guerra Vasquez, K. Tammer and K. Wendler (1985).

Multiobjective and stochastic optimization based on parametric optimization.

Berlin:Akademie-Verlag.

Guerriero, F. and R. Musmanno (2001). Label correcting methods to solve

multicriteria shortest path problems. Journal of Optimization Theory and

Applications 111(3):589-613.

Guyon, I. and A. Elisseeff (2003). An introduction to variable and feature

selection. Journal of Machine Learning Research 3:1157–1182.

174

Haimes, Y., L. Lasdon, and D. Wismer (1971). On biobjective formulation of the

problem of integrated system identification and system optimization. IEEE

transactions on System, Man, and Cybernetics 1:296-297.

Hajela, P. and C. Y. Lin (1992). Genetic search strategies in multicriterion

optimal design. Structural Optimization 4(2):99-107.

Hansen, P. (1979). Bicriteria path problems. In Lecture Notes in Economics and

Mathematical Systems 177, pp.109-127.

Hansen, M. (1997). Tabu search for multiobjective optimization: MOTS. 13th

International Conference on Multiple Criteria Decision Making. Cape Town,

South Africa.

Harik, G., E. Cantu-Paz, D. Goldberg, and B. Miller (1999). The gamblers ruin

problem, genetic algorithms, and the sizing of populations. Evolutionary

Computation 7(3): 231–253.

Heath, D., S. Kasif , and S. Salzberg (1993a). k-DT: A multitree learning

method. In Proceedings of the 2nd International Workshop on Multistrategy

Learning, May 1993, West Virginia, USA. pp. 138-149.

Heath, D., S. Kasif , and S. Salzberg (1993b). Induction of oblique decision

trees. In International Joint Conference on Artificial Intelligence. September

1993, Chambery, France pp 1002-1007.

Holland, J. H. (1976). Adaptation. In Progress in Theoretical Biology 4, New

York: Academic Press.

Homma, T. and A. Saltelli (1996). Importance measures in global sensitivity

analysis of nonlinear models. Reliability Engineering and System Safety

52:1-17.

Horn, J., N. Nafptlois and D. Goldberg (1993). A niched Pareto genetic algorithm

for multiobjective optimization. In Proceedings of the First IEEE Conference

on Evolutionary Computation, June 1994, Florida ,USA. pp.82-87.

Jain, A. and D. Zongker (1997). Feature selection: Evaluation, application, and

small sample performance. IEEE Transactions on Pattern Analysis and

Machine Intelligence 19(2):153–158.

Janssens, G.K. and J.M. Pangilinan (2008). Robustness analysis of parameter

settings in a genetic algorithm for the multiobjective shortest path problem.

In Proceedings of the International Conference on Information Technologies

(InfoTech-2008) 2. Varna, Bulgaria. pp. 115-124.

Kim, D. (2004). Structural Risk Minimization on decision trees using an

evolutionary multiobjective optimization. In Lecture Notes in Computer

Science 3003. p338-348.

175

Kim, K.H. and K. Park (2003). A note on a dynamic space-allocation method for

outbound containers. European Journal of Operational Research 148(1):92-

101.

Kim, K.H., and J.W. Bae (1998). Re-marshalling export containers in port

container terminals. Computers and Industrial Engineering 35(3-4):665-658.

Kim, K.H., and K.Y. Kim (1999). An optimal routing algorithm for a transfer

crane in port container terminals. Transportation Science 33(1):17-33.

Kim, K.H., J.S. Kang, and K.R. Ryu (2004). A beam search algorithm for the load

sequencing of outbound containers in port container terminals. OR Spectrum

26(1):93-116

Kim, K.H., Y.M. Park, and K.R. Ryu (2000). Deriving decision rules to locate

export containers in container yards. European Journal of Operational

Research 124(1):89-101.

Knowles, J. D. and D.W. Corne (2000a). Approximating the non-dominated front

using the Pareto archived evolutionary strategy. Evolutionary Computation

8(2):149-172.

Knowles, J. D. and D.W. Corne (2000b), M-PAES: a memetic algorithm for

multiobjective optimization. In Proceedings of the 2000 Congress on

Evolutionary Computation, July 2000, San Diego, CA. pp.325-332

Konak, A., D. Coit, and A. Smith (2006). Multiobjective optimization using

genetic algorithms: a tutorial. Reliability Engineering & System Safety

91(9):992-1007.

König, F. and M. Lübbecke (2008). Sorting with Complete Networks of Stacks. In

Proceedings of the 19th International Symposium on Algorithms and

Computation, December 2008, Gold Coast, Australia. pp.895-906.

Kononenko I., and I. Bratko (1991). Information based evaluation criterion for

classifier’s performance. Machine Learning 6(2):67-80.

Koza, J. (1989). Hierarchical genetic algorithms operating in populations of

computer programs. In Proceedings of the 11th International Joint

Conference on Artificial Intelligence, San Mateo, CA. pp. 768-774.

Koza, J. (1991). Concept Formation and decision tree induction using the genetic

programming paradigm. In Parallel Problem Solving from Nature.

Berlin:Springer. pp. 124-128.

Kozan, E. and P. Preston (2001). An approach to determine storage locations of

containers at seaport terminals. Computers & Operations Research

28(10):983-995.

Kumar, R. and N. Banerjee (2003). Multicriteria network design using

evolutionary algorithm. In Lecture Notes in Computer Science 2193.

Springer. pp. 343-352.

176

Kwok, S., and C. Carter (1990). Multiple decision trees. In Proceedings on the

Fourth Annual Conference on Uncertainty in Artificial Intelligence, July 1990

MIT, Cambridge, MA . pp. 327-325.

Laumanns, M., L. Thiele, K. Deb, and E. Zitzler (2002). Combining convergence

and diversity in multiobjective optimization. Evolutionary Computation

10(3):263-282.

Loh, W. and N. Vanichsetakul (1988). Tree structured classification via

generalized discriminant analysis. Journal of the American Statistical

Association 83(403):715-725.

Loh, W. and Y. Shih (1997). Split selection methods for classification trees.

Statistica Sinica 7(4): 815-840.

Lu, H. and G. G. Yen (2003). Rank-density-based genetic algorithm and

benchmark test function study. IEEE Transactions on Evolutionary

Computation 7(4):325-343.

Lutsko, J.F. and B. Kuijpers (1994). Simulated annealing in the construction of

near-optimal decision trees. In P. Chessman and R. W. Oldford Eds.,

Selecting Models from Data: AI and Statistics IV. Springer. pp. 453-462.

Martin, J. and D. Hirschberg (1995). The time complexity of decision tree

induction. Irvine (CA):Department of Information and Computer Science

University of California. Technical Report ICS-TR-95-27.

Martins, E. and J. Santos (1999). The labeling algorithm for the multiobjective

shortest path problem. Portugal: Departamento de Matematica,

Universidade de Coimbra. Technical report nr TR-99/005.

Menzies, T. and Y. Hu (2003). Data mining for very busy people. IEEE Computer

36(11):22-29.

Miettinen, K. (1998). Nonlinear Multiobjective Optimization. New York: Springer.

Miller, B. and D. Goldberg (1996). Genetic algorithm selections schemes, and

the varying effects of noise. Evolutionary Computation 4(2):113-131.

Mooney, P. and A. Winstanley (2006).An evolutionary algorithm for multicriteria

path optimization problems. International Journal of Geographical

Information Science 20(4):401-423.

Moret, B. (1982). Decision tree and diagrams. Computing Surveys 14(4):593-

623.

Morgan, J. and R. Messenger (1973). THAID: A sequential analysis program for

the analysis of nominal scale dependent variables. Ann Arbor: Institute of

Social Research, University of Michigan.

Mühlenbein, H. and D. Schlierkamp-Voosen (1993). Predictive models for the

breeder genetic algorithm: continuous parameter optimization. Evolutionary

Computation 1(1): 25-49.

177

Müller-Hannemann M., and K. Weihe (2001). Pareto shortest paths is often

feasible in practice. In Lecture Notes in Computer Science 2141, pp. 185-

198.

Murthy S., S. Kasif, and S. Salzberg (1994). A system for induction of oblique

decision trees. Journal of Artificial Intelligence Research 2:1-32.

Murthy, S. (1998). Automatic construction of decision trees from data: a

multidisciplinary survey. Data Mining and Knowledge Discovery 2(4):345-

398.

Murthy, S. and S. Salzberg (1995). Look-ahead and pathology in decision tree

induction. In International Joint Conference on Artificial Intelligence. August

1995, Montreal, Canada. pp.1025-1033.

Murty, K. G., J. Liu, Y. Wan, and R. Linn (2005). A decision support system for

operations in a container terminal. Decision Support Systems 39(3):309-

332.

Pangilinan J.M. and G.K. Janssens (2009), A genetic algorithm for the storage

location of containers at a seaport terminal. In Proceedings of ASIMMOD

2009, Bangkok, Thailand. pp. 179-184.

Pangilinan, J.M. A. and G.K. Janssens (2007a). Evolutionary algorithms for the

multiobjective shortest path problem. International Journal of Applied

Science, Engineering and Technology 4(1):205-210.

Pangilinan J.M. and G.K. Janssens (2007b). Multiobjective Optimization and

Evolutionary Algorithms. Saint Louis University Research Journal 38(1):87-

117.

Pangilinan, J.M., G.K. Janssens and A. Caris (2005). A multiobjective

evolutionary algorithm for finding efficient solutions to a competitive facility

location problem. In Proceedings of the BIVEC-GIBET Transport Research

Day 2005, Diepenbeek, Belgium. pp. 359-372.

Pangilinan, J.M., G.K. Janssens and A. Caris (2008). Sensitivity analysis of a

genetic algorithm for a competitive facility location problem. In K. Elleithy

ed., Innovations and Advanced Techniques in Systems, Computing Sciences

and Software Engineering, Springer-Verlag, Berlin, pp. 266-271.

Papagelis A. and D. Kalles (2001). Breeding decision trees using evolutionary

techniques, In Proceedings of the 18th International Conference on Machine

Learning. Williamstown, MA, USA. pp. 393-400.

Plastria, F. (2001). Static competitive facility location: an overview of

optimisation approaches. European Journal of Operations Research

129(3):461-470.

Plastria, F. and E. Carrizosa (2004). Optimal location and design of a competitive

facility. Mathematical Programming 100(2):247-265.

178

Quinlan R. (1986). Induction of Decision Trees. Machine Learning 1:81-106.

Qureshi A. (1997). GPsys software,

http://www.cs.ucl.ac.uk/external/A.Qureshi/gpsys.html

Rechenberg, I. (1973). Evolutionsstrategie-Optimierung technischer Systeme

nach Prinzipien der biologischen Evolution. Ph.D. Thesis, Stuttgart,

Germany:Frommann-Holzboog.

Reeves, C.R. (1993). Modern Heuristic Techniques for Combinatorial Problems.

New York: Wiley.

Reeves, C.R. and J.E. Rowe (2003). Genetic Algorithms – Principles and

Perspectives A Guide to GA theory. London:Kluwer.

Richardson, J., M. Palmer M, G. Liepins G, and M. Hilliard (1989). Some

guidelines for genetic algorithms with penalty functions. In Proceedings of

the third international conference on genetic algorithms, June 1989, San

Mateo, CA. pp. 191–197.

Saltelli A., K. Chan, and M. Scott (2000). Sensitivity Analysis. Probability and

Statistics Series. New York, NY :Wiley.

Saltelli, A. (2002a). Sensitivity analysis for importance assessment. Risk

Analysis 22(3): 1-12.

Saltelli, A. T. H. Andres, and T. Homma (1993). Sensitivity of model output: an

investigation of new techniques. Computational Statistics and Data Analysis

2(15):211-239.

Saltelli, A., M. Saisana, and S. Tarantola (2005). Uncertainty and sensitivity

analysis techniques as tools for the quality assessment of composite

indicators. Journal of the Royal Statistical Society –A 168(2):1-17.

Saltelli, A., S. Tarantola, F. Campolongo, and M. Ratto (2004). Sensitivity

Analysis in Practice, a Guide to Assessing Scientific models. Chichester,

UK:Wiley.

Schaffer, J. D. (1984). Some Experiments in Machine Learning Using Vector

Evaluated Genetic Algorithms. Ph. D. Thesis, Nashville, TN: Vanderbilt

University.

Schott, J. (1995). Fault tolerant design using single and multicriteria genetic

algorithm optimization. Master thesis, Cambridge, MA: Massachusetts

Institute of Technology.

Serafini, P. (1994). Simulated annealing for multiple objective optimization

problems. In Proceedings of the 10th International Conference on Multiple

Criteria Decision Making. Berlin: Springer-Verlag. pp. 283–294.

Shlien S. (1992). Nonparametric classification using matched binary decision

trees. Pattern Recognition Letters 13(2):83-88.

SIMLAB 2.2 (2004). Reference Manual. European Commission-ISPC.

179

Sörensen K. and G.K. Janssens (2003). Data mining with genetic algorithms on

binary trees. European Journal of Operations Research 151(2):253-264.

Srinivas, N. and K. Deb (1994). Multiobjective optimization using non-dominated

sorting in genetic algorithms. Evolutionary Computation 2(3):221-248.

Steenken, D., S. Voss, and R. Stahlbock (2004). Container terminal operation

and operations research – a classification and literature review. OR

Spectrum 26(1):3-49.

Street, N. (2005). Oblique Multicategory decision trees using nonlinear

programming. Journal of Computing 17(1):25-31.

Surry, P.D. and N.J. Radcliffe (1996). Inoculation to initialize evolutionary

search. In Evolutionary Computing: AISB Workshop, pp. 269-265.

Tan, K. C., T. H. Lee, and E. F. Khor (2002). Evolutionary algorithms for

multiobjective optimization: performance assessments and comparisons.

Artificial Intelligence Review 17(4):253-290.

Tsaggouris, G. and C. Zaroliagis (2006). Multiobjective optimization: improved

FPTAS for shortest paths and non-linear objectives with applications.

Greece: Computer Technology Institute, University of Patras. Technical

Report nr TR 2006/03/01.

Ulungu, E., J. Teghem, P. Fortemps, and D. Tuyttens (1999). MOSA method: A

tool for solving multiobjective combinatorial optimization problems. Journal

of Multi-Criteria Decision Analysis 8(4):221–236.

Vadera, S. (2005). Inducing safer oblique trees without costs. Expert Systems

22(4):206-221.

Visual Decision (2003). Decision Lab and Decision Lab 2000. Montreal, Canada:

Visual Decision Inc.

Wang, Q. and C. Suen (1984). Analysis and design of a decision tree based on

entropy reduction and its application to large character set recognition. IEEE

Transactions on Pattern Analysis and Machine Intelligence 6(4):406-417.

Warburton, A. (1987). Approximation of Pareto-optima in multiple-objective

shortest path problems. Operations Research 35(1):70-79.

Yen, G. G. and H. Lu (2003). Rank-density-based genetic algorithm and

benchmark test function study. IEEE Transactions on Evolutionary

Computation 7(3):253-274.

Zhang, C., J. Liu, Y. Wan, K. Murty, and R. Linn (2003). Storage space allocation

in container terminals. Transportation Research Part B 37(10):883-903

Zhao, H. (2007). A multiobjective genetic programming approach to developing

Pareto-optimal decision trees. Decision Support Systems 43:809-806.

180

Zitzler, E. and L. Thiele (1999). Multiobjective evolutionary algorithms: a

comparative study and the strength Pareto approach. IEEE Transactions on

Evolutionary Computation 3(4):257-271.

Zitzler, E. and L. Thiele (2000). Comparison of multiobjective evolutionary

algorithms: empirical results. Evolutionary Computation 8(2):125-148.

Zitzler, E., M Laumanns, and L. Thiele (2002). SPEA2: Improving the strength

Pareto evolutionary algorithm for multiobjective optimization. In

Evolutionary Methods for Design, Optimization and Control, pp. 19-26.

181

Appendix A

The Sobol’ method and
SIMLAB

Sensitivity analysis (SA) is the study of how the variation in an observed

response can be apportioned to different possible sources or factors. Variation in

SA, is the randomness in a given dataset. It tries to determine how variable the

output Y is to changes in the inputs. Sensitivity analysis is often performed using

regression techniques. The regression coefficient for a given factor plays the role

of a sensitivity measure for that factor. One advantage of regression methods is

that they explore the entire interval of definition of each factor. Another is that

each effect for a factor is in fact an average over the possible values of the other

factors. Moreover standardized regression coefficients (SRC) also give the sign

of the effect of an input factor on the output providing a simplified model of the

input-output mapping. Methods of this type are called global to distinguish them

from local methods wherein only one point of the factor space is explored, and

factors are changed one at a time. A disadvantage of regression-based methods

is that their performance is poor for non-linear models and can be misleading for

non-monotonic models (Saltelli et al 2004).

Model-free sensitivity analysis

Many techniques have been developed that can be considered as a model-free

extension of the regression methods as they can be applied to non-linear, non-

monotonic models. This subsection presents a general introduction to variance-

182

based techniques, with cases of non-correlated input variables and of correlated

input variables.

 Consider a deterministic model represented by Y = f(X) where X = (X1, X2,…,

Xd) is a vector of d input variables and Y is the model output. Methods of

sensitivity analysis can be defined in terms of the decomposition of the function

Y=f(X) into main effects and interactions. A high dimensional model

representation (HDMR) of f(X) can be written as,

() () () () ...X,X,XfX,XfXfConstf
kji

kjiijk

ji

jiij

i

ii ++++= ∑∑∑
<<<

X (A.1)

This procedure is called decomposition of f(X) into terms of increasing

dimensionality, wherein each first order term is a function of a single input

variable, each second order term is a function of two variables, and so on. This

decomposition is not unique as the lower order terms can be selected arbitrarily

and the highest order term can be written as the difference between f(X) and

the terms of lower order.

 If each term in the HDMR is chosen with a zero average, then all pairs of

terms in the HDMR are orthogonal to each other and the HDMR decomposition is

unique. Being unique, each term can be defined by the conditional averages of

f(X).

() () ()YEXYEXf iii −=

() () () ()jjiijijiij XfXfX,XYEX,Xf −−=

() () () () ()kjjkkiikjiijkjikjiijk X,XfX,XfX,XfX,X,XYEX,X,Xf −−−=

The ()ii Xf are referred to as main effects of Xi, the ()jiij X,Xf are two-way

interactions between the pairs ()ji X,X , etc.

 One measure of sensitivity of Y to an individual input variable Xi that is often

used is V[E(Y| Xi)], the expected amount of variance that would be removed

from the total output variance when the true value of Xi is known (called as

main effect). Dividing the main effect by the total unconditional variance, the

first-order sensitivity index for variable Xi can be obtained and is defined as

183

()[]
()YV

XYEV
S

i

i = (A.2)

This measure indicates the relative importance of an individual input variable Xi

in driving the uncertainty, and directs the effort to reduce uncertainty in the

future. This type of measure is used before conducting a calibration experiment

on a given input. A high value for the main effect of a given input variable

indicates that the variable is a good candidate for being calibrated via

observations of the model output. The term 1- Si can be interpreted as the

minimum value of the expected quadratic loss when approximating f(X) with the

function E(Y|Xi). If Xi is important, then the approximating function E(Y| Xi)

explains much of the variance of f(X) and Si is high.

 If f(X) is approximated by a two variable function E(Y |Xi, Xj), then the

minimum expected quadratic loss is V(Y)-V[E(Y |Xi, Xj)]. This corresponds to the

maximum value of V[E(Y |Xi, Xj)], which is the reduction in expected output

variance when the true value of the pair (Xi, Xj) is known. It may be interpreted

as the fraction of the output variance that is removed when the true value of Xi

and Xj is known, or the fraction of the output variance that is explained by the

function E(Y |Xi, Xj).

 The total effect for the input variable Xi is linked to E[V(Y|X-i)], which is the

expected amount of output variance that would remain unexplained (residual

variance) if only Xi and Xj were left free to vary over its uncertainty range and

all the other variables are known. The term X-i represents all the input variables

except Xi. Dividing the total effect by the total unconditional variance, the total

sensitivity index (TSI) for variable Xi can be obtained and is defined as

()[]
()YV

XYVE
S

i

Ti

−= (A.3)

The total sensitivity indices are used in model building to identify unessential

variables - those that are unimportant either singularly or in combination with

others. All the input variables having a low total index can be frozen to any

value within their range of uncertainty. Total sensitivity indices should be

employed to reduce the number of uncertain model inputs.

184

 When the input variables are mutually orthogonal, independent, or non-

correlated then it is possible to decompose (or partition) the variance of f(X) into

terms of increasing dimensionality

() ∑∑∑∑ ++++=
<<<

d,...,

kji

ijk

ji

ij

i

i V...VVVYV 21 (A.4)

 This decomposition is called ANOVA-HDMR and it is unique. The single terms

Vi, Vi j, Vi jk,…, are called partial variances and they are orthogonal. No

covariances are involved in the decomposition. The single terms Vi, Vij, Vi jk,…,

can be computed by suitably integrating the corresponding terms in the

decomposition.

()[]ii XYEVV =

()[] jijiij VVX,XYEVV −−=

()[] jkikijkjiijk VVVX,X,XYEVV −−−=

Hence:

Vi / V(Y) = Si are the first order sensitivity indices (also called main

effects).

Vi j / V(Y) = Sij are the second order sensitivity indices (also called two-

way interactions)

Vi jk / V(Y) = Sijk are the third order sensitivity indices (also called three-

way interactions)

The total sensitivity index STi for a given Xi in the orthogonal case is the sum of

all sensitivity indices that include the input variable Xi.

 There are several variance-based techniques for sensitivity analysis and one

such method is by Sobol’(Chan et al. 1997). The Sobol’ method (Saltelli et al

2000) is a variance-based global sensitivity analysis method based upon total

sensitivity indices that take into account interaction effects. The TSI of an input

is defined as the sum of all the sensitivity indices involving that input. The TSI

includes both the main effect as well as interaction effects (Homma and Saltelli,

1996). For example, if there are three inputs X1, X2 and X3, the TSI of input X1 is

given by S(X1) + S(X1 X2) + S(X1 X2 X3), where S(Xi) is the sensitivity index of

Xi. S(X1) refers to the main effect of X1. S(X1 X2) refers to the interaction effect

185

between X1 and X2. S(X1 X2 X3) refers to the interaction effect between X1, X2,

and X3. Effort has been made to reduce the computational complexity associated

with the calculation of Sobol’ indices (Saltelli 2002a). The method of Sobol’ in its

improved version uses quasi-random sampling of the input factors The pair (Si,

STi) give a fairly good description of the model sensitivities at a reasonable cost,

which for the improved Sobol’ method is of 2n(k+1) model evaluations, where n

represents the sample size that is required to approximate the multidimensional

integration to a plain sum. n can vary in the 100–1000 range (Saltelli et al.,

2005).

 The Sobol’ method is used in the study because of the following features:

(1) It can cope with both nonlinear and non-monotonic models, and provide

a truly quantitative ranking of inputs and not just a relative qualitative

measure.

(2) The types of influence of an input that are captured by Sobol’ method

include additive, nonlinear or with interactions.

(3) The Sobol’ method can be smoothly applied to categorical variables

without re-scaling.

(4) It can explore the whole range of variation in the input factors instead of

just sampling factors over a limited number of values.

SIMLAB

SIMLAB (2004) is a program designed for global uncertainty and sensitivity

analysis based on Monte Carlo methods. It offers several techniques for sample

generation, sensitivity analysis, and a link to external model execution. The link

allows execution of complex models that can hardly be coded as simple

mathematical functions such as genetic algorithms (see Figure A.1).

 In general, a Monte Carlo sensitivity analysis involves five steps. In the first

step, a range and distribution are selected for each input variable (input factor).

If the analysis is primarily of an exploratory nature, then quite rough distribution

assumptions may be adequate. In the second step, a sample of points is

generated from the distribution of the inputs specified in the first step. The

result is a sequence of samples (input sample). In the third step, the model is

fed with the samples and a set of model outputs is produced. In essence, these

model evaluations create a mapping from the input space to the space of the

186

results. This mapping is the basis for subsequent uncertainty and sensitivity

analysis. In the fourth step, the results of model evaluations are used as the

basis for uncertainty analysis. Uncertainty is characterized statistically by the

mean value and the variance. In the fifth step, the results of model evaluations

are used as the basis for sensitivity analysis.

Figure A.1 External model execution.

Input
Generation
SIMLAB

Sensitivity
Analysis SIMLAB

Model
Execution

Genetic
Algorithm

Sample File Output

creates

creates reads

executes

 reads

187

Appendix B

SPEA2 and NSGA-II

Appendix B presents the complete pseudo code of SPEA2 and NSGA-II to show

their differences in terms of finding nondominated solutions and runtime

complexity (see Table A.1). The main reference of SPEA in literature is found in

Zitzler et al. (2002). The main reference of NSGA-II is found in Deb et al.

(2002). Among several reports that evaluate MOEAs as enumerated in Chapter

2, the technical report by Deb et al. (2001) which compares the performance of

both algorithms on scalable multiobjective optimization test problems is most

significant.

Strength Pareto Evolutionary Algorithm 2 (SPEA2)

Input: N : population size

 N : archive size

 T : maximum number of generations

Output: A : non-dominated set

Step 1: Initialization.

Initialize(P0) generate an initial population of size N

0P = ∅ create the empty archive (external set)

 t = 0.

Step 2: Fitness assignment:

{ }jiPPjji p∧+∈= +1tt|)(S calculate strength of individual i (B.1)

188

∑
+∈

=
ijPPj

ji
p,tt

)(S)(R calculate raw fitness of individual (B.2)

;)(D

σ
k

i
2 +

1
=i calculate density of individual i (B.3)

NNk += is a density parameter

σ
k

i
 is the distance between solution i

and its kth nearest neighbor

)(D)(R)(F iii += calculate fitness of individual i (B.4)

Step 3: Environmental Selection.

 1+tP = Pt + tP copy all non-dominated individuals

 if (| 1+tP | > N)then

 reduce(1+tP) use truncation operator to reduce the

size of 1+tP to N ,

 else if (| 1+tP |< N)

 then fill(1+tP) add dominated individuals from tP and

1+tP .

Step 4: Termination.

 if (t ≥ T) or

 (other stopping criterion)

 then return(A) return the nondominated set A

 Stop.

Step 5: Mating selection.

 Select(1+tP) perform binary tournament selection

with replacement

Step 6: Variation.

variate(mating_pool) apply recombination the mating pool

mutate(mating_pool) apply mutation to the mating pool

t = t +1 increment generation counter

 go to Step 2

189

SPEA2 first assigns a strength value S(i), to each individual i from the archive

(N) and population (N) representing the number of solutions i dominates.

Refer to (B.1) Then the raw fitness R(i) of each individual i is calculated which

measures the strength of i’s dominators. The raw fitness acts as a niching

mechanism but poorly performs when most individuals in N+N are non-

dominated, i.e. the population forms new solutions in only a few clusters, in

effect compromising exploration of the search space. Refer to (B.2). This

phenomenon is called genetic drift. SPEA2 introduces a density estimator (B.3),

a fitness sharing mechanism to avoid genetic drift. The density estimator is

defined as the inverse of the distance of an individual in objective space to the

k-th nearest neighbor. The density value is then added to the raw fitness value

to give the final fitness function (B.4). The computing run-time of the fitness

function is governed by the density estimator which is O(N2log N).

 SPEA2 offers two selection procedures, environmental and mating selection.

The environmental selection is concerned with choosing individuals that will have

to move on to the next generation archive 1+tP from the current archive tP and

population Pt. SPEA2 maintains an archive tP in each generation and is

composed of the “best” individuals of a fixed size N which is equal to the

population size N. Two usual situations may occur in selection. First, the number

of non-dominated solutions in 1+tP is less thanN . SPEA2 resolves this by

adding the “best” dominated individuals from tP + Pt to 1+tP . Second, the

number of non-dominated solutions for the next generation is greater thanN .

SPEA2 uses a truncation procedure whereby the individual with the minimum

distance to another individual is truncated until | 1+tP |= N . SPEA2 implements

binary tournament selection with replacement to fill in the mating pool. This

type of mating selects two solutions at a time in each tournament. Their fitness

values are evaluated and the better solution is placed in the mating pool. The

truncation operator dominates the runtime complexity of the selection procedure

and takes O(N2log N)on the average and O(N3) on the worst case.

Nondominated Sorting Genetic Algorithm II (NSGA-II)

Input: N : population size

 T : maximum number of generations

Output: A : non-dominated set

190

Step 1: Initialization.

Initialize(P0) Generate a population of size N

 t = 0.

Q0 = variate(P0) recombine and mutate P0 and create

offspring population Q0

 Sort(Fk, p)

Step 2: Termination

if (t ≥ T) or
(other stopping criterion)

Then A = Pt

return(A) return the nondominated set A

Stop.

Step 3: Environmental Selection

Rt = Pt U Qt combine parent and offspring

population

F = fast-nondominated-sort(Rt) create all nondominated fronts of Rt

Pt+1= ∅ and k = 1

while (|Pt+1| + |Fk |) ≤ N

 crowding-distance(Fk) calculate crowding distance

 Pt+1 = Pt+1 U Fk add members of Fk to new parent

population

 k = k + 1

Sort(Fk, p) sort in descending order using p

Pt+1 = Pt+1 U Fk[1: (N − |Pt+1|)] choose first (N − |Pt+1|) of Fk

Step 4: Mating Selection and Variation

Qt+1 = create(Pt+1) apply selection, crossover, and

mutation to create new offspring

population

t = t + 1 increment generation counter

goto Step 2

In NSGA-II, an initial random parent population P0 is created. The population is

sorted based on nondomination. Each solution is assigned a fitness (or rank)

equal to its nondomination level (1 is the best level, 2 is the next-best level, and

so on). Thus, minimization of fitness is assumed. At first, the usual binary

191

tournament selection, recombination, and mutation operators are used to create

an offspring population Q0 of size N. The step-by-step procedure shows that

NSGA-II algorithm is simple and straightforward. First, a combined population

Rt= Pt U Qt of size 2N is formed and sorted according to nondomination. Since

all previous and current population members are included in Rt, elitism is

ensured. The solutions belonging to the best nondominated set F1 are the best

solutions in the combined population and must be emphasized more than any

other solution in the combined population. If the size of F1 is smaller than N, all

members of the F1 are chosen for the new population Pt+1. The remaining slots

of the next population Pt+1 are chosen from subsequent nondominated fronts (F2,
F3, …, Fk) in the order of their ranking. This procedure is continued until no more

sets can be accommodated. In general, the count of solutions in all sets from F1

to Fk would be larger than the population size. The solutions of the last front are

sorted using the crowded-comparison operator in descending order to fill N

population members. The new population Pt+1 is subjected to selection,

crossover, and mutation to create a new offspring population Qt+1 of size N. The

algorithm uses a binary tournament selection operator but the selection criterion

is based on the crowded-comparison operator p. Since this operator requires

both the rank and crowded distance of each solution in the population, these

quantities are calculated while forming the new parent population Pt+1.

 NSGA-II uses a fast nondominated sorting approach which requires O(N2)

computations. For each solution, NSGA-II calculates two entities: 1) domination

count ni, the number of solutions which dominate the solution i, and 2) a set of

solutions Si that the solution i dominates. This requires O(N
2) comparisons.

 All solutions in the first nondominated front have their domination count as

zero. For each solution i with ni = 0, NSGA-II visits each member j of its set Si

and reduces its domination count by one. If for any member j, the domination

count becomes zero, j is added in a separate list Q. These individuals belong to

the second nondominated front. This procedure is continued with each member

of Q and the third front is identified. The process continues until all fronts are

identified. For each solution in the second or higher level of nondomination, the

domination count ni can be at most N−1. Each solution is visited at most N−1

times before its domination count becomes zero. At this point, the solution is

assigned a nondomination level and is never be visited again. Since there are at

most N−1 such solutions, the total complexity is O(N2). Thus, the overall

complexity of the procedure is O(N2). Another way to calculate this complexity is

to realize that the body of the first inner loop (for each i ∈ Fk) is executed

192

exactly N times as each individual can be the member of at most one front and

the second inner loop (for each j ∈ Si) can be executed at maximum N−1 times

for each individual results in the overall O(N2) computations.

Fast-nondominated-sort (P)

for each i ∈ P

 Si = ∅

 ni = 0

 for each j ∈ P

 if (i p j) then

 Si = Si U { j} Add j to solutions dominated by i

 else if (j p i) then

 ni = ni + 1 Increment the domination counter of i

 if (ni = 0) then i belong to the first front

irank = 1

F1 = F1 U {i}

k = 1 Initialize the front counter

while Fk ≠ ∅

 Q = ∅ Used to store the members of the next

front

 for each i ∈ Fk

 for each j ∈ Si

 nj = nj − 1

 if (nj = 0) then j belongs to the next front

 jrank = k + 1

 Q = Q U {j}

 k = k + 1

 Fk = Q

NSGA-II uses a crowded-comparison approach. This approach does not require

any user-defined parameter for maintaining diversity among population

members. An estimate of the density of solutions surrounding a particular

solution in the population is calculated, which is the average distance of two

points on either side of a particular solution along each of the objectives. This

quantity serves as an estimate of the perimeter of the cuboid formed by using

the nearest neighbors as the vertices and is called the crowding distance. The

crowding-distance computation requires sorting the population according to each

objective function value in ascending order of magnitude. Thereafter, for each

193

objective function, the boundary solutions (solutions with smallest and largest

function values) are assigned an infinite distance value. All other intermediate

solutions are assigned a distance value equal to the absolute normalized

difference in the function values of two adjacent solutions. This calculation is

continued with other objective functions. The overall crowding-distance value is

calculated as the sum of individual distance values corresponding to each

objective. Each objective function is normalized before calculating the crowding

distance. The complexity of this procedure is governed by the sorting algorithm

which is O(NlogN). After all population members in the nondominated set are

assigned a distance metric, two solutions are compared for their proximity with

other solutions. A solution with a smaller value of this distance measure means

it is more crowded by other solutions.

 The crowded-comparison operator (p) guides the selection process at the

various stages of the algorithm toward a uniformly-spread Pareto-optimal front.

Assume that every individual in the population has two attributes:

nondomination rank (irank) and crowding distance (idistance). A partial order p can

be defined as

i p j if (irank < jrank) or ((irank = jrank) and (idistance > jdistance))

That is, between two solutions with differing nondomination ranks, preference is

given to the solution with the lower (better) rank. Otherwise, if both solutions

belong to the same front, then preference is given to the solution that is located

in a lesser crowded region.

 SPEA2 NSGA-II

• Creates a single non-

dominated front

• Fitness is based on one

attribute

– a function of dominators

and density

• O(N2logN)

• Creates subsequent non-

dominated fronts

• Fitness is based on two separate

attributes.

– non-domination rank

– crowding distance

• O(N2)
Figure B.1 Differences between SPEA2 and NSGA-II

194

195

Appendix C

PISA – A Platform and
Programming Language
Independent Interface for
Search Algorithms

Bleuler et al. (2002) proposed a platform and programming language

independent interface for search algorithms (PISA) that uses a text file format

for data exchange. PISA allows developers to maintain collections of precompiled

optimization algorithms and applications which can be arbitrarily combined.

Application developers with little knowledge in optimization can easily try

different optimization strategies for the problem at hand whereas algorithm

developers have the opportunity to test optimization techniques on various

applications without the need to program the problem-specific parts. The

interface is simple to use, and most existing optimizers and applications can be

adapted to the interface specification with several modifications

Control Flow

The model ensures that there is a consistent control flow state for the whole

optimization process and that only one module is active at any time. Whenever a

module reads a state that requires some action on its part, the operations are

performed and the next state is set.

196

Figure C.1 The control flow and data flow specifications of PISA.

The core of the optimization process consists of state 2 and state 3: In each

generation the selector chooses a set of parent individuals (µ) and passes them

State 0

State

0

State

State 2

State 3

Common
parameter

s

Offspring

Variator Selector

Start variator
Set state 0

Create initial population
Set state 1

Create sample
Set state 2

Start selector

Initial
solutions

Archive

Sample

Variate sample
Set state 3

Read offspring
Create sample
Set state 2

α

µ

α

λ

µ

µ

λ

197

to the variator. The variator generates new individuals (λ) on the basis of the
parents, computes the objective function values of the new individuals, and

passes them back to the selector. In addition to the core states, two more states

are shown in Figure C.1. State 0 and state 1 trigger the initialization of the

variator and the selector, respectively. In state 0 the variator reads the

necessary parameters. Then, the variator creates an initial population (α),

calculates the objective values of the individuals and passes the initial

population to the selector. In state 1, the selector also reads the required

parameters, then selects a sample of parent individuals and passes them to the

variator. The abovementioned states provide the basic functionality of the

optimization.

Data Flow

The data transfer between both modules introduces some overhead compared to

a traditional monolithic implementation. Thus, the amount of data exchange for

each individual must be minimized. Since all representation specific operators

are located in the variator, the selector does not have to know the

representation of the individuals. Therefore, it is sufficient to convey only the

following data to the selector for each individual: an index, which identifies the

individual in both modules, and one objective vector. In return, the selector only

needs to communicate the indices of the parent individuals to the variator. The

proposed scheme allows restricting the amount of data exchange between both

modules to a minimum. An individual is superior to another in regard to one

objective, if the corresponding element of the objective vector is smaller, i.e.,

objective values are to be minimized. Furthermore, the two modules need to

agree on the sizes of the three collections of individuals passed between each

other: the initial population, the sample of parent individuals, and the offspring

individuals. These sizes are denoted as α, µ and λ in Fig. C.1. Instead of using

some kind of automatic coordination, which would increase the overhead for

implementing the interface, the sizes are specified as parameter values. Setting

µ and λ as parameters requires that they are constant during the optimization
run. Most existing algorithms comply with this requirement. A collection of

parent individuals is passed from the selector to the variator and a collection of

offspring individuals is returned. The actual individuals are stored on the

variation side.

198

Synchronization

In order to reach the necessary separation and compatibility, the selector and

the variator are implemented as two separate processes. These two processes

can be located on different machines with possibly different operating systems.

A common state variable is used for synchronization, which both modules can

read and write. Both processes regularly read this state variable and perform the

corresponding actions. If no action is required in a certain state, the respective

process sleeps for a specified amount of time and then rereads the state

variable. The common state variable is implemented as an integer written to a

text file. File access is completely portable and familiar to all programmers. The

only requirement is access to the same file system. All data exchange is

established through text files. Using text files with human readable format

allows the user to monitor data exchange easily. A separate file is used for each

collection of individuals shown in Fig. C.1. Several parameters are necessary for

both modules and each module specifies its own parameter set. However,

parameters that are common to both modules are written in a common

parameter file. This prevents users from setting different values for the same

parameter on the variation and the selection side. The set of common

parameters consists of the number of objectives and the sizes of the three

different collections of individuals that are passed between the two modules.

 The authors of PISA maintain a website at http://www.tik.ethz.ch/~sop/pisa/.

The website provides documentation, downloads for variator and selector

modules, and PISA beginner modules among others. The source code of the

modules is written in the C programming language in a Linux environment but

the modules come with binary files that run in Linux, Solaris, and Windows. For

Windows users, the original C code must be ported to a C compiler that runs in

DOS. Since PISA uses a text file format for data exchange, collections of

precompiled optimization algorithms and applications can be arbitrarily

combined independent of their platform. However, the data exchange via files

increases the execution time but this overhead is small compared to the benefits

of PISA.

	binnenpag[1]
	pamoea1_aug26_09

