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We investigate the efficiency of power generation by thermo-chemical engines. For strong coupling
between the particle and heat flows and in the presence of a left-right symmetry in the system, we
demonstrate that the efficiency at maximum power displays universality up to quadratic order in
the deviation from equilibrium. A maser model is presented to illustrate our argument.
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The concept of Carnot efficiency is a cornerstone of
thermodynamics. It states that the efficiency of a cyclic
(“Carnot”) thermal engine that transforms an amount
Qr of energy extracted from a heat reservoir at tem-
perature Tr into an amount of work W is at most
η = W/Qr ≤ ηc = 1−Tl/Tr, where Tl is the temperature
of a second, colder reservoir. The theoretical implications
of this result are momentous, as they lie at the basis of the
introduction by Clausius of the entropy as a state func-
tion. The practical implications are more limited, since
the upper limit ηc (“Carnot efficiency”) is only reached
for engines that operate reversibly. As a result, when the
efficiency is maximal, the output power is zero. By op-
timizing the Carnot cycle with respect to power rather
than efficiency, Curzon and Ahlborn found that the cor-
responding efficiency is given by ηCA = 1 −

√

Tl/Tr [1].
They obtained this result for a specific model, using
in addition the so-called endo-reversible approximation
(i.e., neglecting the dissipation in the auxiliary, work pro-
ducing entity). Subsequently, the validity of this result
as an upper bound, as well as its universal character,
were the subject of a longstanding debate. In the regime
of linear response, more precisely to linear order in ηc,
it was proven that the efficiency at maximum power is
indeed limited by the Curzon-Ahlborn efficiency, which
in this regime is exactly half of the Carnot efficiency,
η ≤ ηCA = ηc/2 + O(η2

c ) [2]. The upper limit is reached
for a specific class of models, namely, those for which the
heat flux is strongly coupled to the work-generating flux.
Interestingly, such strong coupling is also a prerequisite
for open systems to achieve Carnot efficiency [3, 4]. In
the nonlinear regime, no general result is known. Efficien-
cies at maximum power, not only below but also above
Curzon-Ahlborn efficiency, have been reported [5, 6, 7, 8].
However, it was also found, again in several strong cou-
pling models [7, 8, 9], that the efficiency at maximum
power agrees with ηCA up to quadratic order in ηc, i.e.,
η = ηc/2+η2

c/8+O(η3
c), again raising the question of uni-

versality at least to this order. In this letter we prove that
the coefficient 1/8 is indeed universal for strong coupling

models that possess a left-right symmetry. Such a univer-
sality is remarkable in view of the fact that most explicit
macroscopic relationships, for example the symmetry of
Onsager coefficients, are limited to the regime of linear
response. The interest in strong coupling is further moti-
vated by the observation that it can naturally be achieved
in nano-devices [10, 11, 12]. To complement our theoret-
ical discussion, we also present a detailed study of a ther-
mal nano-machine based on the operation of a maser [13].
It can be solved analytically and illustrates all the above
mentioned features. Depending on the value of the Ein-
stein coefficients, the efficiency of the maser at maximum
power may be above or below Curzon-Ahlborn. However,
when the Einstein coefficients are equal, the predicted
universality is observed, with the universal value 1/2 for
the linear coefficient, and the quadratic coefficient equal
to 1/8.

In view of the interest of our analysis for small scale
systems, and in order to establish the connection with the
subsequent discussion of the maser model, we derive the
main results on the basis of a stochastic thermodynamic
analysis as formulated for a master equation description
of a driven open system [14, 15]. As we will show in pass-
ing, this formalism is fully consistent with macroscopic
thermodynamics.

The system under consideration is characterized by a
set of states i of energy ǫi and number of particles Ni. It
exchanges particles and energy with two reservoirs µ =
l, r, with inverse temperatures βµ and chemical potentials
µµ, respectively. The probability of finding the system
in state i at time t is denoted by pi(t). The state of the
system evolves in time according to a stochastic process
which is described by the master equation

ṗi(t) =
∑

j

Wijpj(t). (1)

As a result of conservation of total probability, the
stochastic rate matrix obeys the usual condition
∑

i Wij = 0. Wij is the probability per unit time to make
a transition to state i from state j. We assume that these
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transition rates are expressed as sums of independent

contributions from the two reservoirs, Wij =
∑

ν W
(ν)
ij

(ν = l, r). To reproduce the correct properties at equi-
librium, it follows that each of the separate rate matrices

W
(ν)
ij satisfies detailed balance with respect to the grand

canonical distribution at the prevailing temperature and
chemical potential,

W
(ν)
ji

W
(ν)
ij

= exp

{

βν

[(

ǫi − ǫj

)

− µν(Ni − Nj)
]

}

. (2)

The average energy and matter currents entering the sys-
tem from the reservoir ν are given by

I
(ν)
E (t) =

∑

i,j

W
(ν)
ij pj(t)(ǫi − ǫj), (3)

I
(ν)
M (t) =

∑

i,j

W
(ν)
ij pj(t)(Ni − Nj). (4)

The rate of change of the total energy of the system and
the (chemical) work per unit time on the system read

Ė(t) =
∑

i

ṗi(t)ǫi =
∑

ν

I
(ν)
E (t),

Ẇ(t) =
∑

ν

µνI
(ν)
M (t). (5)

The corresponding total average heat flow follows from
energy conservation, Q̇(t) =

∑

ν Q̇
(ν)(t) = Ė(t) − Ẇ(t).

In particular, the (average) heat flow from the reservoir
ν into the system is given by

Q̇
(ν)(t) = I

(ν)
E (t) − µνI

(ν)
M (t). (6)

The entropy of the system is taken to be the usual sys-
tem entropy S(t) = −

∑

m pm(t) ln pm(t) (Boltzmann’s
constant kB = 1). Using the master equation (1), one
easily verifies that the rate of change of this entropy can
be written in the form of a balance equation, namely,
Ṡ(t) = Ṡi(t)+ Ṡe(t). Here, Ṡi(t) is the non-negative total
entropy production for the physical processes represented
by the master equation,

Ṡi(t) =
∑

i,j,ν

W
(ν)
ij pj(t) ln

W
(ν)
ij pj(t)

W
(ν)
ji pi(t)

≥ 0. (7)

Using Eq. (2), one verifies that the entropy flow into the
system is given by the familiar thermodynamic expres-
sion in terms of the heat fluxes, Ṡe(t) =

∑

ν Q̇
(ν)(t)/Tν .

We focus on the case of a nonequilibrium steady state.
From Ṡ = 0 we have that Ṡi = −Ṡe. Also, current conser-

vation at steady-state implies that
∑

ν I
(ν)
E =

∑

ν I
(ν)
M =

0. As a result, the entropy production can now be written
in the traditional bilinear force-flux form [16]

Ṡi = FEI
(r)
E + FMI

(r)
M ≥ 0, (8)

with the standard expressions for the thermodynamic
forces,

FE =
1

Tl

−
1

Tr

, FM = (−
µl

Tl

) − (−
µr

Tr

). (9)

We are interested in the operation of the device as a
heat engine that carries particles uphill in the chemical
potential, driven by a heat current from the hot to the
cold reservoir. With no loss of generality, we henceforth
assume that Tr > Tl and µr < µl. As mentioned before,
we focus on the power generated by the device, which,
due to current conservation in the steady-state, reads:

P = −Ẇ = −(µr − µl)I
(r)
M . (10)

The resulting efficiency of producing chemical work from
the heat pumped out of the hot reservoir r is [see Eq. (6)]

η =
−W

Q(r)
=

−Ẇ

Q̇(r)
=

µr − µl

µr − I
(r)
E /I

(r)
M

. (11)

The above formalism can be further simplified for the
case of strong coupling between the energy and matter
flux, defined as

I
(r)
E = εI

(r)
M ≡ εI. (12)

This condition implies that energy is exclusively trans-
ported by particles of a given energy ε. Such a selec-
tion is quite natural in quantum nano-devices such as
the maser [13] (see also below), and in thermo-electrical
nano-devices [11], but it can also occur in the classical
context, for example for Kramers’ escape, where the par-
ticles that cross the barrier have precisely the minimum
energy needed to do so [9]. Using Eq. (12), one can now
rewrite the entropy production (8) in the simple form
Ṡi = FI. Here I is the current introduced in Eq. (12)
and the associated thermodynamic force F can be ex-
pressed in terms of dimensionless scaled energies xl and
xr,

F = xl − xr; xr =
ε − µr

Tr

, xl =
ε − µl

Tl

. (13)

Hence the two flows and forces collapse into a single flux
I and a single corresponding thermodynamic force F ,
respectively. Note that equilibrium, that is, zero entropy
production, is reached for F = 0. This does not require
that the forces FE and FM be zero separately. In fact in
the vicinity of F = 0 the device can operate at Carnot
efficiency, see for example [3, 4, 11]. Using Eq. (12), the
power (10) becomes

P = −Ẇ = (Trxr − Tlxl)I = −Tr(F − ηcxl)I, (14)

and the thermodynamic efficiency (11) reads

η =
µl − µr

ε − µr

= 1 − (1 − ηc)
xl

xr

. (15)
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The properties of the system are contained in the de-
pendence of the flux I on the variables xl and xr,
I = I(xr, xl). Its explicit expression is obtained by
inserting the steady state solution of the master equa-
tion (1) into the expression (4) for the mass flux.

To identify the regime of maximum power, we proceed
in two steps. The extremum of power with respect to F

is determined by the condition

T−1
r

∂Ẇ

∂F
= I + (F − xlηc)∂FI = 0. (16)

Since we are interested in the behavior around equilib-
rium, including the first nonlinear correction term to the
linear regime, we expand the current I(xr , xl) = I(xl −

F , xl) to quadratic order in F , I = LF +MF2 +O(F3).
The Onsager coefficients are given by L = −I ′

1(xl, xl)
and M = I ′′

11(xl, xl)/2. The primes denote the num-
ber of derivatives and the sub-indices indicate whether
these derivatives are taken with respect to the first or sec-
ond variable. Furthermore, since F has to become zero
when ηc goes to zero, we can write, again to quadratic
order, that F = b1ηc + c1η

2
c + O(η3

c ). Insertion in the
extremum condition (16) allows us to identify the coef-
ficients b1 = xl/2 and c1 = Mx2

l /(8L). The resulting
expression for the efficiency (15) reads

η =
ηc

2
+ (

1

4
−

Mxl

8L
)η2

c + O(η3
c ). (17)

Next, we maximize power with respect to xl,

T−1
r

∂Ẇ

∂xl

= −ηcI + (F − xlηc)∂xl
I = 0. (18)

It suffices to find the result to lowest order in ηc. Inserting
the expansions I = LF+O(η2

c ) and F = ηcxl/2+O(η2
c),

one finds that xl = −2L/∂xl
L. Combined with Eq. (17),

we finally arrive at the following result for the efficiency
at maximum power, valid up to quadratic order in ηc:

η =
ηc

2
+ (1 +

M

∂xl
L

)
η2

c

4
+ O(η3

c ). (19)

We conclude that, while we recover the universal value of
the coefficient 1/2 in the linear term, the coefficient of the
quadratic term is in general model dependent. However,
as we now proceed to show, the appearance of the coeffi-
cient 1/8 in several previously studied models [7, 8, 9] de-
rives from the fact that these models possess a left-right
symmetry. More precisely, such a symmetry implies that
the switching of temperatures βν and chemical potentials
µν leads to an inversion of the flux,

I(xr , xl) = −I(xl, xr). (20)

By deriving both sides with respect to xr and xl and then
setting xr = xl, one finds that I ′′

12(xl, xl) = 0. Together
with ∂xl

L = −I′′
11(xl, xl) − I′′

12(xl, xl), we conclude that

1

2

3

LT

RT

ST

FIG. 1: Illustration of the maser model

the condition 2M = −∂xl
L is verified and universality

of the coefficient 1/8 is established under the symmetry
specified in Eq. (20).

To illustrate these findings, we turn to the analysis
of the maser model introduced in [13], see Fig. 1. The
system possesses three energy levels ǫi, i = 1, 2, 3. It ex-
changes photons with three equilibrium black bodies R,
L and S (temperatures Tr, Tl and Ts) with correspond-
ing specific frequencies hνr = ǫ3 − ǫ1, hνl = ǫ3 − ǫ2 and
hνs = ǫ2−ǫ1. The reservoirs R, L and S control the tran-
sitions 1−3, 2−3 and 1−2, respectively. The stochastic
dynamics of these transitions are described by the master
equation (1), with rates corresponding to the processes of
absorption, spontaneous emission, and stimulated emis-

sion of the photons. They are given by W
(r)
31 = Γrn(xr)

(absorption of a photon from R) and W
(r)
13 = Γr[1+n(xr)]

(spontaneous and stimulated emission of a photon into
R), and identical expressions for transitions 2 − 3 and
1 − 2, with the indices r replaced by l and s respec-
tively. Here, we introduced the Bose-Einstein distribu-
tion n(x) = [exp(x) − 1]−1, with the scaled energies
xr = hνr/Tr, xl = hνl/Tl and xs = hνs/Ts, and the
reduced Einstein coefficients Γν .

To transform the system into a thermal engine, we
consider the high temperature limit Ts → ∞ (xs → 0).
The reservoir S effectively becomes a repository of work,
since heat stored in a reservoir at infinite temperature
can be recuperated at 100% (the corresponding Carnot
efficiency being equal to 1). We next note the cyclic na-
ture of the transitions: Starting from state 1, in order
to deposit the amount −w = hνs as work into the S-
reservoir (transition 2 → 1), the system first needs to
absorb a photon q(r) = hνr from the hot reservoir (tran-
sition 1 → 3) and next deposit −q(l) = hνl into the
cold reservoir (transition 3 → 2). This (with the reverse
process) is the only available cycle. The corresponding
efficiency of the cycle reads:

η =
−w

q(r)
=

ǫ2 − ǫ1
ǫ3 − ǫ1

= 1 − (1 − ηc)
xl

xr

. (21)

At steady state, the system will, on average, run through
I such cycles per unit time, with corresponding heat flows
Q̇(r) = qrI and Q̇(l) = qlI. The power of the device is
given by

P = −wI = Q̇(r) + Q̇(l) =
(

Trxr − Tlxl

)

I. (22)



4

0.0

0.2

0.4

0.6

0.8

1.0
HAL

Ηc

Η

Gl�Gr=0

Gl�Gr=1

Gl�Gr=¥

ΗCA

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ηc

HBL

10P�Tl

xl

xr

Gl=1 Gr=¥

Gl=1 Gr=1

Gl=¥ Gr=1

FIG. 2: (Color online) (A) Efficiency at maximum power
compared with Carnot efficiency (straight dashed line) and
Curzon-Ahlborn efficiency (dotted line). (B) Scaled energies
xl and xr and maximum power P (note that xl and xr only
depend on the ratio Γl/Γr but P not).

We thus recover the previously derived results of the
strong coupling regime, cf. Eqs. (14) and (15). To com-
plete the analysis, we need to evaluate the steady-state
current I. This is a matter of algebra, involving the
steady state solution of the master equation using the
transition rates given above. One finds:

I =
(exl − exr)ΓlΓr

(1 + 2exl)(exr − 1)Γl + (1 + 2exr)(exl − 1)Γr

. (23)

Concerning efficiency of the device at maximum power,
we can now invoke the general conclusions mentioned
earlier. The symmetry criterion (20) for the current is
only satisfied when Γl = Γr. Under this condition, the
efficiency at maximum power displays the universal co-
efficient 1/8 for the quadratic term, in addition to the
universal linear coefficient 1/2. This observation is con-
firmed by an explicit calculation for the model under con-
sideration. We find:

η =
ηc

2
+

(

1 −
3(Γl − Γr)

(Γl + Γr)(3 coshα + sinhα)

)

η2
c

8
+ O(η3

c ),

where α = 1.77676, solution of a transcendental equation
2+α+2eα+2(α−2)e2α = 0, is also the asymptotic value
of xl and xr when ηc → 0. To complete the picture, we

have reproduced, in Fig. 2(A), the efficiency at maximum
power as a function of η, with η ∈ [0, 1], for the cases
Γl/Γr = 0, 1 and ∞ [17]. All three curves are remark-
ably close to the Curzon-Ahlborn efficiency, even though
the efficiency is slightly larger in the first two cases and
slightly less in the last case. In view of their technological
interest, we also include in Fig. 2(B) the corresponding
maximum power and the operational conditions of the
scaled energies xl and xr.
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