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Samenvatting 

Het doel van dit rapport is het bestuderen van de literatuur met betrekking tot modellen 
die het aantal ongevallen op kruispunten voorspellen. Meerdere modellen werden 
geëvalueerd waaronder meervoudige logistische regressies, meervoudige lineaire 
regressies, Poisson modellen, negatief binomiaal modellen, random effects modellen en 
classificatie- en regressietechnieken (CART). De data, methodologie en resultaten van 
verschillende studies worden beschreven. De richting van het effect van significante 
verklarende variabelen wordt besproken en aanbevelingen worden gedaan. 
 

Verschillende modellen die het aantal ongevallen voorspellen voor verscheidene 
kruispunttypes en ongevaltypes werden ontwikkeld in de literatuur. Een apart model 
fitten voor een bepaald kruispunt- en ongevaltype (indien specifieke data beschikbaar 
zijn) verdient hierbij de voorkeur aangezien dit tot een betere fit en beschrijving van de 
data leidt vergeleken met één model (Reurings et al., 2005; Turner en Nicholson, 1998).  
 

Verschillende kruispunttypes in landelijke en stedelijke omgevingen werden beschouwd. 
In de literatuur kunnen meerdere modelstructuren gevonden worden. De meerderheid 
van de kruispuntmodellen is van de vorm hieronder gegeven en op basis van dit rapport, 
raden we het volgende model aan voor het voorspellen van ongevallen op kruispunten:  
 

∑= ijj x
MAMIoi eQQ ββββµ *** 21  met 

 

iµ  = verwacht aantal ongevallen op kruispunttype i 

MAQ  = aantal voertuigen dat het kruispunt oprijdt via de hoofdweg 

MIQ  = aantal voertuigen dat het kruispunt oprijdt via de zijweg 

ijx  = vector van verklarende variabelen, j, verschillend van de verkeersstroom op 

kruispunt i 

oβ  = intercept 

21 ,ββ   = effect van verkeersvolume op het verwacht aantal ongevallen (elasticiteit) 

jβ  = regressiecoefficient die het effect van de jde verklarende variabele weergeeft. 
 

De elasticiteit toont de procentuele verandering in het verwacht aantal ongevallen dat 
geassocieerd kan worden met een 1% verandering in verkeersvolume. De effecten van 
risicofactoren die de kans op een ongeval beïnvloeden gegeven een mate een 
blootstelling worden gemodelleerd als een exponentiële functie. Deze keuze hangt samen 
met de kenmerken van de Poisson verdeling: kruispuntongevallen zijn gebeurtenissen die 
zelden voorkomen en bovendien positieve getallen (Reurings et al., 2005). 
 

De keuze van het model hangt af van de aard van de afhankelijke variabele en het doel 
van het onderzoek. Indien het de bedoeling is conclusies te trekken voor de hele 
populatie dan zijn modellen gebaseerd op populatiegemiddeldes geschikt (H 2, 3 en 4). 
Anderzijds moeten onderzoekers geïnteresseerd in locatiespecifieke conclusies opteren 
voor random effects modellen (H 5). Voor onderzoekers die ongevallen wensen te 
groeperen op basis van bepaalde criteria is CART een plausibele keuze (H 6). 
 

De variabelen jaarlijks gemiddeld dagelijks verkeer op hoofd- en zijwegen, totaal aantal 
voertuigen en voetgangers die het kruispunt oversteken, verlichting en timing van 
verkeerslichten bleken statistisch significant in de meeste modellen. Daarom is het 
wenselijk deze variabelen op te nemen in een kruispuntenmodel. Overige relevante 
variabelen worden opgesomd in hoofdstuk 7. In het algemeen had tenminste één 
verklarende variabele in de categorieën verkeersstroom, verkeerscontrole, geometrie, 
eigenschappen van de bestuurders, het voertuig en de omgeving en ruimtelijke ordening 
een significant effect op het gebeuren van een ongeval. Alle categorieën zijn bijgevolg 
van belang bij het voorspellen van ongevallen op kruispunten.  
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English summary 

The objective of this report is to review accident prediction models for intersections used 
in literature to identify which variables have a significant effect on accident occurrence so 
that we can have a starting point for future research. Several models have been 
reviewed including multiple logistic regression, multiple linear regression, Poisson 
models, negative binomial models, random effects models and, classification and 
regression trees (CART) technique. The data, methodology and results of several studies 
are described. The direction of the effect of several significant explanatory variables is 
discussed and recommendations are made. 
 

Different APMs for different intersection types and accident types have been developed in 
the literature. It is recommended that fitting separate models for different intersection 
types and accident types gives a better fit and description of the data than one model for 
all intersection types. Provided data on intersection and accident types are available, it is 
recommended to fit disaggregated models rather than aggregated models (Reurings et 
al., 2005; Turner and Nicholson, 1998).  
 

Although similar techniques were applied on rural and urban road intersections, in 
literature a different model structure was used. Nevertheless, the majority of the models 
discussed on rural and urban road intersections were of the form given below and based 
on this report, we would prefer a model for intersections to be of the following form:  
 

∑= ijj x
MAMIoi eQQ ββββµ *** 21  with 

 

iµ  = expected number of accidents at intersection type i 

MAQ  = number of vehicles entering an intersection from the major road 

MIQ  = number of vehicles entering an intersection from the minor road 

ijx  = vector of explanatory variables, j, other than traffic flow on intersection i 

oβ  = intercept 

21 ,ββ   = effect of traffic volume on the expected number of accidents (elasticity)  

jβ       = regression coefficient representing the effect of the jth explanatory 

          variable other than traffic flow 
 

The elasticity shows the percentage change in the expected number of accidents 
associated with a 1% change in traffic volume. The effects of risk factors that influence 
the probability of accidents given exposure are modelled as an exponential function. The 
choice of an exponential form is logical in the view of the characteristics of the Poisson 
distribution since accident counts are positive and rare events at intersections (Reurings 
et al., 2005). 
 

However, the choice of the model depends on the nature of the response and the 
objective of the research. If interest is in making inference on the entire population, 
population average based models (chapters 2, 3 and 4) are suitable. In contrast, 
researchers interested in location specific inference would opt for random effects models 
(chapter 5). Researchers who wish to group accidents based on particular criteria, the 
CART is a credible choice (chapter 6). 
 

The variables annual average daily traffic (AADT) on major and minor roads, total vehicle 
counts and pedestrians crossing all arms, lighting and signal timing were statistically 
significant in most models. Therefore, it is desirable that APMs for intersections include 
these variables. The other variables are listed in chapter seven of the report. Generally, 
atleast one explanatory variable in the categories of traffic flow, traffic control, geometry, 
driver characteristics, vehicle type or features, environmental factors and land use had a 
significant effect on accident occurrence. Therefore, all categories are essential in 
predicting accidents at intersections.  
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1.  INTRODUCTION 

Accident prediction models (APMs) are used for a variety of purposes; most frequently to 
estimate the expected accident frequencies from various roadway entities (highways, 
intersections, interstates, etc) and also to identify geometric, environmental and 
operational factors that are associated with the occurrence of accidents. It is important to 
examine the nature of relationships between roadway, environmental and operational 
factors and, accidents to understand the causal mechanisms involved in accidents on the 
one hand and to better predict their occurrence on the other hand. APMs are one path of 
inquiry often used to gain these insights (Reurings et al., 2005).  
 
In this report, focus is on APMs for road intersections. Intersections are a common place 
for accidents, which may be due to the fact that there are several conflicting movements 
as well as many different intersection design characteristics. Intersections also tend to 
experience severe accidents due to the fact that some of the injury crashes such as angle 
and left turn collisions commonly occur at intersection. Therefore, there is a need to 
identify the methodologies to assess the effects that geometric, traffic flow, traffic 
control, environmental and operational characteristics have on the safety of intersections 
(Abdel-Aty and Keller, 2005). Since different roads meet at an intersection, different 
types of accidents occur as a result. This calls for separate models to assess factors 
associated with different accident types and the safety of different intersections types. 
Examples of types of intersections studied in this report include signalized intersections, 
stop controlled intersections, intersections with cameras, etc.  
 
Several approaches have been developed to identify elements that affect the safety of 
road intersections. These include the multiple logistic regression models, multiple linear 
regression models, Poisson regression models, negative binomial regression models, 
random effects models and the classification and regression tree (CART) technique. 
These regression approaches focus on predicting total accidents with fatalities, injuries, 
etc for assessing the safety effects of various factors. However, effective road safety 
management requires knowledge of the present safety performance and what it is likely 
to be in future if proposed actions are taken. In effect, reliable methods for estimating 
safety performance of an existing or planned roadway are required (Harwood et al., 
2000). As one of the main methods, APMs which describe relationships between the 
number of accidents and factors that are believed to be related to accident occurrence 
have been developed by several authors to estimate current or future road safety 
performance.  

1.1. Objective of the report 

Since APMs provide an estimate of road safety performance, this report aims at reviewing 
APMs employed in literature to predict the number of accidents on road intersections so 
that appropriate actions are taken in the future. Moreover, we will focus on the variables 
considered and significant findings from these models so that one can know which 
variables had significant effects on accident occurrence.  
 
In this report, the estimates of the coefficients of variables will not be presented as our 
objective is to identify which variables have a significant effect on accident occurrence so 
that we can have a starting point for further research (i.e. the development of an 
appropriate accident prediction model for intersections in Flanders). In addition, in a 
number of reviewed papers (e.g Harnen et al., 2003, Bauer and Harwood, 2000, Vogt, 
1999 and Chin and Quddus, 2003), the authors provided the values of the coefficients for 
some variables while for others the coefficients were not given. The authors just 
mentioned whether a variable was significant or not. For reasons of consistency, we 
decided to only indicate the direction of the significant explanatory variables in terms of 
road safety in all the studies reviewed in this report. 
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1.2. Organization of the report 

The report is organized according to the different classes of statistical methodologies 
applied in previous studies. Chapters 2, 3, 4, 5 and 6 of the report describe the data, 
statistical methodologies and results obtained from these methodologies. First, we shall 
present multiple logistic regression models in chapter 2, this will be followed by multiple 
linear regressions in chapter 3, Poisson and negative binomial regression models in 
chapter 4, random effects models in chapter 5 and we shall conclude with the CART 
technique in chapter 6. Discussion and conclusions will be presented in chapter 7. 
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2.  MULTIPLE LOGISTIC  REGRESSION MODELS 

The term multiple refers to many explanatory variables. Explanatory variables refer to 
characteristics whose effect on the outcome is being investigated. Multiple logistic 
regression model is a function describing associations between a binary outcome and a 
set of explanatory variables (Agresti, 2002). 
 
In this chapter we describe a study in which this technique was applied. More specifically, 
we investigate the accident tendency at signalized intersections for striking and struck 
vehicles to identify risk factors related to traffic environment, driver characteristics and 
vehicle types.  

2.1 Study 1 

The study described in this section aimed at investigating the accident propensity at 
signalized intersections for striking and struck vehicles and identified the significant risk 
factors related to the traffic environment, the driver characteristics and the vehicle types. 
Both rural and urban signalized intersections were considered in the study. The study 
was done in the state of Florida and utilized the 2001 Florida traffic accident data 
obtained from the Florida Department of Highway Safety and Motor Vehicles (DHSMV). In 
this investigation, Yan et al. (2005) used the Quasi-induced exposure concept in section 
2.1.2.1 (Stamatiadis and Deacon, 1995, 1997) and multiple logistic regression technique 
(section 2.1.2.2).  
 
The DHSMV data comprise a relational database that contains seven files. Each file 
handles a specific feature of a traffic accident. The data in these files can be linked to 
obtain the required information. In this study, three files were used and included the 
event file (containing the characteristics and environment of the accident), the drivers’ 
file (containing the drivers’ characteristics) and the vehicles’ file (information about the 
vehicles’ characteristics and vehicles’ actions in the traffic accident). 
 
Vehicle accidents occurring at signalized intersections were categorized into two groups: 
rear-end accidents and non-rear-end accidents. Rear-end accidents include information 
of struck drivers/vehicles and striking drivers/vehicles at fault, as well as the 
corresponding road environment conditions. Non-rear-end accidents include information 
on drivers/vehicles that had proper driving action but were involved in accidents, as well 
as their corresponding road environment conditions. There were 7666 two-vehicle rear-
end accidents and 15,734 non rear-end accidents involved by not-at-fault drivers. The 
response was coded 1 for rear-end and 0 for non rear-end accidents. Three models were 
fitted and they included: road environment factors, striking drivers/vehicle characteristics 
and struck drivers/vehicle characteristics. 

2.1.1 Explanatory variables 

Data were collected on road environmental factors, driver characteristics and vehicle 
types. Also, data on annual average daily traffic were collected. The explanatory 
variables in each of these categories are given in Table 1 below. In addition, Table 1 
provides the direction of the effects of explanatory variables on the accident risk. 
However, only results from the road environment factors and striking drivers/vehicle 
characteristics models are presented. The results from the struck drivers/vehicle 
characteristics model are not presented in Table 1 but they are explained in section 
2.1.3.3. 
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Table 1: Explanatory variables in each category 

Category of explanatory variables Variable levels Effect 
Causes more 
rear end 
accidents 

1. Road environment factors 
Others vs. 2-lane /  
6-lane vs. 2-lane /  Number of lanes 
4-lane vs. 2-lane - 2-lane 

Divided/undivided highway Undivided vs. divided - Divided 
Accident time  Night vs. daytime - Day time 

Wet vs. dry + Wet 
Road surface condition 

Slippery vs. dry + Slippery 
Urban/rural urban vs. rural + Urban 

curveupgrade/downgrade 
vs. straight-level  

+ 
curveupgrade/ 
downgrade 

curve-level vs. straight-
level  

+ curve-level Highway character 

straightup/downgrade vs. 
straight-level  

+ 
straightup/  
downgrade 

55 mph vs. 25 mph + 55 mph 
50 mph vs. 25 mph + 50 mph 
45 mph vs. 25 mph + 45 mph 
40 mph vs. 25 mph + 40 mph 
35 mph vs. 25 mph + 35 mph 

Speed limit 

30 mph vs. 25 mph + 30 mph 
2. Striking drivers - Driver characteristics 

Alcohol under influence 
vs. No 

+ 
Alcohol under 
influence 

Drug under influence vs. 
No 

+ 
Drug under 
influence 

Alcohol-Drug under 
influence vs. No 

+ 
Alcohol-Drug 
under influence 

Alcohol/drug use 

Had been drinking vs. No + 
Had been 
 drinking 
alcohol 

26–35 vs. <26 - <26 
36–45 vs. <26 - <26 
46–55 vs. <26 - <26 
56–65 vs. <26 - <26 
66–75 vs. <26 - <26 

Age 

>75 vs. <26 /  
live in the local county 
vs. other county 

- Other county 

elsewhere in the state of 
Florida vs. other county 

- Other county Residence 

other state vs. other 
county 

- Other county 

Gender Male vs. female + Male drivers 
Vehicle type 

passenger van vs. 
passenger car 

+ passenger van 

pickup/light truck vs. 
passenger car 

+ pickup/light 
truck 

Accident vehicles 

large size vehicle vs. 
passenger car 

+ large size 
vehicle 

AADT Average daily traffic flow + 
Higher traffic 
volume 

+ = Positive effect, - = Negative effect, * = Significant (direction of effect unknown), / = Not significant 
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2.1.2 Model structure 

This comprises the quasi-induced exposure and multiple logistic regression techniques 
described in sections 2.1.2.1 and 2.1.2.2 respectively.  

2.1.2.1 Quasi-induced exposure technique 

In the Quasi-induced exposure analysis, the relative accident involvement ratio (RAIR) is 
used as the measure of accident causing propensity. The plot of RAIR versus each 
explanatory variable indicates whether a variable has a positive or negative effect on the 
occurrence of accidents. 
 
Three types of relative accident involvement ratios were calculated to test the main 
effects of driver, vehicle and environment factors related to rear-end accidents. RAIRs 
were calculated using the formula (Stamatiadis and Deacon, 1995, 1997) as follows:  
 

)//()/( 2211 ∑∑= iiiii DDDDRAIR  or )//()/( 2211 ∑∑= iiiii VVVVRAIR  or  

 
)//()/( 2211 ∑∑= iiiii EEEERAIR  with 

 

iRAIR  = relative accident involvement ratio for type i drivers or vehicles or environments  

iD1  = number of striking drivers of type i in rear-end accidents  

iD2  = number of not-at-fault drivers of type i in non-rear-end accidents 

iV1   = number of striking vehicles of type i in rear-end accidents  

iV2  = number of not-at-fault vehicles of type i in non-rear-end accidents 

iE1  = number of rear-end accidents involving environment type i 

iE2  = number of non-rear-end accidents involving environment type i 

 
Furthermore, to test the interaction between type i drivers/vehicles/ environments and 
type j drivers/vehicles/environments, the RAIR can be defined as below: 
 

/1( ,, jiji NRAIR = ∑∑ )1 , jiN / )2/2( ,, ∑∑ jiji NN  with 

 

ijRAIR  =relative accident involvement ratio for types i and j drivers/ 

vehicles/environments 

ijN1  = number of rear-end drivers, vehicles, environments of types i and j in rear-end 

accidents 

ijN2  = number of not-at-fault drivers, vehicles, environments of types i and j in non-

rear-end accidents 

2.1.2.2 Multiple logistic regression technique 

Since the dependent variable Y (accident classification) can only take on two values: Y = 
1 for rear-end accidents and Y = 0 for non-rear-end accidents, the probability that a 
rear-end accident will occur is modelled by a multiple logistic regression as below: 
 
[ ] nn xxxxIn βββππ +++=− ...))(1/()( 110  with 

 
)(xπ  = conditional probability of a rear-end accident given values of explanatory 

variables, x, are observed 
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jx  = vector of explanatory variables describing the jth characteristic of drivers, 

vehicle type or the environment  

jβ  = model coefficients which determine odds ratios involved in the rear-end accident 

when the jth characteristic of drivers, vehicle type or the environment is observed 
 
Further, separate models were fitted for striking and struck vehicles in accidents.  

2.1.3 Results 

Results obtained from applying the quasi-induced exposure and multiple logistic 
regression techniques are explained in this section. First, results on road environment 
will be presented, next results on striking drivers/vehicle characteristics and we close 
with results on struck drivers/vehicle characteristics. However, we start with a remark on 
number of lanes and AADT. The number of lanes and AADT were positively correlated. 
This is because roadways with larger daily traffic have more lanes to handle heavy traffic. 
As a result, AADT was dropped in this analysis and the number of lanes was used to fit 
the model. However, a univariate logistic regression model was fitted for AADT and 
higher traffic volumes were significantly associated with an increase in rear-end 
accidents. 

2.1.3.1 Road environment factors 

Seven road environment factors including number of lanes, divided/undivided highway, 
accident time, road surface condition, highway character, urban/rural and speed limit 
showed significant associations with the risk of rear-end accidents. 
 
The risk of rear-end accidents happening on 4-lane highways was lower than on 2-lane 
ones. However, there was no significant difference between 6-lane highways and 2-lane 
highways and, 6-lane highways and other highways. The risk for undivided highways was 
lower than that of divided highways.  
 
The rear-end accident risk for the night condition was lower than that for the daytime 
condition. This may be due to the higher traffic volume during daytime than during the 
night. The morning and afternoon peaks may affect driving attitude and contribute to 
accident occurrence. The rear-end accident risk on wet and slippery surfaces was higher 
compared to a dry road surface. The wet and slippery surfaces reduce drivers’ braking 
ability and as a result accidents occur. 
 
The accident risk in urban area was higher than rural area. This is because urban areas 
are more dominated by signalized intersections and have complex mobility patterns. 
 
Accident risk on straight up / downgrade (S-U/D), curve-level (C-L) and curveup grade / 
downgrade (C-U/D) was higher than straight-level (S-L) highway characters. If both 
curve and grade were present at the same time, the rear-end risk was twice as high as 
that for normal straight highways. This is because motorists may not account for vehicle 
mass and momentum which will require a longer stopping time while approaching the 
intersection on a downhill grade. Further, if the intersection is located on a horizontal 
curve, there is possible sight obstruction on the inside of curves, such as cut slopes, 
walls, buildings, bridge piers and longitudinal barriers. These obstructions limit stop sight 
distance and result in rear-end accidents. 
 
As the speed limit at intersections increased, the risks of getting involved in rear-end 
accidents increased. At signalized intersections with higher speed limits, drivers are more 
likely to fall into the dilemma zone (where they can neither execute the intersection 
crossing nor execute the stopping maneuver safely and comfortably at the onset of 
yellow). This condition may result in rear-end accidents due to relatively higher operation 
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speeds. On the other hand, at the lower operation speed, the following driver can easily 
change lane or brake to avoid striking the lead vehicle. 
 
For all findings, similar trends were exhibited by plots of RAIR vs. independent variables 
except for the comparison between 6- and 2-lane highways. Plots of RAIRs showed that 6 
lane highways had higher risk while results from the logistic model did not show a 
significant difference.  

2.1.3.2 Striking driver/vehicle characteristics 

Vehicle type and four factors related to driver characteristics including drivers’ age, 
alcohol/drug use, drivers’ residence and gender showed significant associations with the 
risk of rear-end accidents. 
 
Results from the model and RAIR indicated that drivers under influence of alcohol, drugs, 
or alcohol and drugs and those that had been drinking legal levels of alcohol had higher 
accident involvement risk than non-drinking drivers. These results were expected since 
alcohol reduces alertness, interferes with judgment and impairs vision. In addition, most 
drugs that affect the central nervous system may have the potential to impair driving 
ability. 
 
Results from the model revealed that there was no significant difference between the 
oldest (>75 years) and youngest drivers (<26 years). However, results from the 
comparison of the oldest and youngest drivers using RAIR revealed a higher accident risk 
for drivers >75 years than drivers <26 years. The remaining age categories of drivers 
showed lower accident risks than the youngest group. Also, the plot of RAIRs showed a 
decreasing trend of drivers involved in rear-end accidents with an increase in age until 
56–65 years. The oldest group (>75 years) had the highest risk, possibly because of 
age-related deterioration of their physical and cognitive abilities. The younger group has 
a larger accident propensity, presumably because of risk-taking and attitudinal factors. 
 
Findings from the model and RAIR plots showed that as the degree of drivers’ familiarity 
with the driving environment decreases, the more they were likely to be involved in rear-
end accidents. The local drivers benefit from their driving experiences with the familiar 
traffic environments so as to avoid the adverse traffic conditions. 
 
Male drivers had a higher risk of accident involvement than female drivers. The analysis 
is consistent with the study of Ulleberg (2001) in which gender was significant in 
predicting the involvement in accidents. Further, these findings are in line with what 
Storie (1977) found: men were involved more often than women in accidents caused by 
speeding and driving under the influence of alcohol while women were more frequently 
involved in accidents caused by judgment errors. 
 
The RAIRs for passenger vans, pickup/light trucks and large size vehicles are higher than 
passenger cars. Similarly, the logistic regression model revealed that accident risks 
increase with vehicle size. The reason for this result could be that trucks strike other 
vehicles in the rear much more often than they are struck by other vehicles. Further, 
truck drivers sit up much higher than passenger vehicle drivers and can see much further 
down the road, but they may have difficultly responding to the brake light of the leading 
car with a small headway hence resulting in accidents (Yan et al., 2005). 

2.1.3.3 Struck drivers/vehicle characteristics 

Based on the results of logistic regression, four factors including vehicle type, driver age, 
driver residence and gender were found to be associated with rear-end accidents. 
 
Compared to drivers younger than 26 years and older than 75 years, middle age drivers 
had higher chances on the conditional probability of being struck. The probable reason is 
that for middle age drivers, better driving experience and physical performance may be 
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helpful to detect a potential conflict earlier than younger and older drivers, but their 
emergent stop could contribute to their struck role in a rear-end accident.  
 
Female divers were more likely to be in the struck role compared to the male drivers, 
presumably because the female drivers are more likely to brake when faced with critical 
traffic events (for example, a yellow signal) than male drivers. 
 
Light trucks were more likely to be in the struck role as compared to the passenger cars 
while the risk of large size vehicles and vans was lower than passenger cars. These 
results are consistent with Abdel-Aty and Abdelwahab (2004) who explained that light 
truck vehicles obscure drivers’ visibility of other passenger cars. They may prevent 
drivers in cars behind them from being aware of traffic situation ahead, therefore more 
susceptible to collide with the light trucks in case of a sudden application of breaks. 
Moreover, the results indicated that the risk of large size vehicles was lower than 
passenger cars. This is because large size vehicles are slowly and noticeable in the traffic 
stream, their deceleration rate is lower than automobiles and aggressive drivers dislike 
following a large size vehicle. So, the large size vehicles are less likely to be in the struck 
role. 
 
Like striking drivers, struck drivers are more likely to be involved in the accidents if they 
are unfamiliar with the driving environment. The non-local drivers have more difficulties 
to find their destination and possibly have abnormal behaviors at intersections, such as 
improper lane changing or sudden stop for right/left-turn, which may contribute to rear-
end accidents. Similar results were obtained from the Quasi-induced exposure and 
multiple logistic regression techniques.  

2.1.4 Conclusion and Recommendation 

The results showed that seven road environment factors (number of lanes, 
divided/undivided highway, accident time, road surface condition, highway character, 
urban/rural and speed limit), five factors related to striking role (vehicle type, driver age, 
alcohol/drug use, driver residence and gender) and four factors related to struck role 
(vehicle type, driver age, driver residence and gender) were significantly associated with 
the risk of rear-end accidents. 
 
The analysis showed that the risk of rear-end accidents for 2-lane highways was higher 
than 4-lane. The rear-end accidents were more likely to happen at divided highways than 
undivided highways. The risk of accidents during the night was lower than daytime; 
compared to a dry road surface, the wet and slippery road surfaces significantly 
contributed to rear-end accidents; furthermore, as the highway character becomes more 
complex, rear-end accidents were more likely to occur. When horizontal curve and grade 
were present at the same time, the rear-end risk could be twice as high as that for 
normal straight highways. Moreover, the analysis showed a clear trend that as the speed 
limit increases, the risk of the rear-end accidents increases, especially when the speed 
limit is higher than 40 mph. Finally, the results confirmed that higher traffic volumes 
contribute to a higher rear-end risk. 
 
Related to the unfavorable road environment factors, Yan et al. (2005) suggest to 
consider appropriate engineering countermeasures to reduce the rear-end crash rate. 
From the perspective of the intersection design and operation, improvement of 
geometrics will contribute to reducing reaction and stopping times, eliminating motorist 
confusion and improving visibility of traffic control devices. It is suggested to avoid 
designing intersections located on a horizontal curve and vertical curve where possible. 
For existing intersections with a curve or up/down grade, adequate sight distance not 
only to the signal head but also to the other approaches should be considered so that 
drivers going-through the intersection can detect potential conflicting vehicles in time.  
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In addition, motorist information countermeasures such as advanced warning signs 
installed upstream at the intersection will provide in advance information to the driver 
about the signal ahead. This will reduce sudden-stop behaviors because of insufficient 
reaction time due to a signal change in the dilemma zone.  
 
In areas where drivers frequently drive in rainy weather condition, the drainage design 
should ensure that the rainwater is removed from the intersection surface in time. If 
intersections with a 50 or 55 mph speed limit have been identified to have higher rear-
end crash rates, reducing the speed limit to 40 or 45 mph will efficiently contribute to the 
lower accident rate. 
 
Corresponding to the higher risk driver populations, younger drivers have less driving 
experience and tend to drive in conditions that increase their risk. An education program 
to emphasize the rear-end risk at signalized intersections is strongly suggested for the 
younger group. According to a previous study (Eby and Molnar, 1998), some of these 
young drivers may engage in risky driving behaviors because they are risk taking and 
others engage in this behavior because they are risk ignorant. Those who are risk 
ignorant may benefit from the education countermeasure and become safer drivers by 
having a better understanding of the risk inherent in their driving behaviors. 
 
For the older drivers, their higher rear-end risk may result from deteriorating physical 
conditions, decreasing judgment ability and vision problem. It is necessary to make a 
further analysis of the criteria of issuing driving license related to driver age and health 
condition. 
 
Lastly, drivers who had been drinking under legal alcohol use level were more involved in 
a rear-end accident than non-drinking drivers. This strongly suggests that the threshold 
of legal alcohol use level on the road should be reduced. If the data of illegal blood 
alcohol concentration (BAC) were available in traffic accident database, further 
quantitative analysis of relationship between BAC and accident risk (not limited in rear-
end accident) is strongly suggested. 

2.2 Summary of multiple logistic regression models 

In this section, multiple logistic regression models which capture associations between 
binary accident outcomes and explanatory variables are summarized. In the study 
described in the report, the Quasi-induced exposure analysis and multiple logistic 
regression were used to evaluate the effect of variables on the accident causing 
propensity. One disadvantage of the Quasi-induced exposure is that it treats each 
variable independently. This approach is right if one is interested in the effect of only one 
variable without controlling for other variables. However, if we wish to study the effect of 
one variable while controlling for other variables, the multiple logistic regression 
technique is suitable. Apart from the multiple logistic regression technique, several other 
methods are used to model binary outcomes and an example of such methods is the 
Probit model. The Probit and the logistic models share some properties, for example, the 
range of their functions is between 0 and 1. This makes it suitable for their use as 
probability models representing individual risk. Despite the existence of other methods, 
the logistic regression has the advantage that its regression effects can be interpreted 
using odds ratios. Therefore, the logistic regression model is preferred to other methods 
(Agresti, 2002).    
 
From the results above, it seems that traffic control, traffic flow, vehicle type, geometric 
and driver characteristics have an effect on accident occurrence at road intersections. We 
would like to remark that the goodness of fit of the models was not mentioned in the 
study.  However, we assume that the results are valid and provide us with insight into 
the effect of variables on accidents. Goodness of fit statistics that can be used for this 
type of model are the deviance and Pearson’s Chi-square since the explanatory variables 
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studied are discrete. The deviance statistic compares the likelihood ratio statistic for a 
given model versus that of a saturated model. The Pearson Chi-square is used to look at 
the goodness of fit of a given model versus the saturated model. The values of these 
statistics are compared with a Chi-square with the degrees of freedom being the 
difference in the degrees of freedom of a given model and a saturated model. If the 
values of these statistics are larger than the Chi-square value, then there is evidence of 
lack of fit (Agresti, 2002).    
 
Although one study in which the multiple logistic regression technique was applied has 
been described, the technique is widely used (e.g Wang et al., 2007; Al Ghamdi, 2002) 
utilized the logistic regression model to investigate the influence of explanatory variables 
on accident occurrence at intersections.  
 
The multiple logistic regression technique described in this chapter is used to analyze 
only accident binary outcomes. However, there are studies in which accident outcomes 
are continuous. In such cases, multiple linear regression analysis which describes 
relationships between continuous outcomes and explanatory variables are more credible. 
Thus, in chapter 3 several studies in which the accident outcome was continuous and 
multiple linear regression analysis was applied are described. 
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3.  MULTIPLE LINEAR REGRESSION MODELS 

Multiple refers to many explanatory variables. Explanatory variables are characteristics 
whose effect on the outcome is being assessed. Multiple linear regression is a statistical 
methodology describing relationships between a continuous outcome and a set of 
explanatory variables (Kutner et al., 2005). 
 
In this chapter, two studies in which this technique was used are presented. In the first 
study, the analysis of accident data from four-arm (STOP-controlled and signalized) and 
three-arm/STOP controlled intersections is presented and in the second study, we 
investigate relationships between roundabout geometry and accident rates.  

3.1 Study 1 

Bauer and Harwood (2002) developed APMs for urban at-grade intersections in California. 
The data used involved collision types from 1990-1992. Three types of urban 
intersections were discussed, namely four-arm/STOP controlled, three-arm/STOP 
controlled and four-arm/signalized intersections. The response variable was the number 
of accidents at the intersections. Multiple linear regression was used to analyze data from 
four-arm (STOP-controlled and signalized) intersections while Poisson and negative 
binomial regression models were used for three-arm/STOP controlled intersections. 
Therefore, analysis of three-arm/STOP controlled intersections will be presented in 
chapter 4 on Poisson and negative binomial regression models.  

3.1.1 Explanatory variables 

Data were collected on geometric characteristics, traffic control and traffic volume. Based 
on engineering judgement, a decision on which explanatory variables should be used in 
the model was made. However it should be noted that selecting variables based on 
subjective judgement may lead to biased results. Applying statistical model selection 
procedures would yield a better model. Depending on the objective of the model, 
procedures such as adjusted R-square, Mallow’s Cp or the prediction sum of squares 
(PRESS) could be used (Kutner et al., 2005). Not only are these procedures used for 
variable selection, they are also used to assess the quality of the model. For example, if 
the purpose is to determine the explanatory power of the variables in the model, the 
adjusted R-square criterion is used, if it is about how well the fitted values can predict 
the observed responses, the prediction sum of squares (PRESS) is a good measure, etc. 
(Kutner et al., 2005). Table 2 below presents the variables collected on each type of 
intersection. In addition, the directions of the effects of the variables on the number of 
accidents are provided. 
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Table 2: Explanatory variables in each category 

Category of explanatory variables Variable levels Effect 
Causes 
more 
accidents 

1. Four-arm/STOP controlled intersections 

AADT on major and minor roads continuous + 
Increased 
AADT 

Design speed of major roads continuous /  
Outside shoulder width on major roads continuous /  
Average lane width on major road continuous - Narrow width 
Terrain  /  

Major collector vs. 
Principal arterial 

/  

Functional class of the major road 
Minor arterial vs. Principal 
arterial 

/  

Lighting yes =0, no = 1 - Lighting 
Major road left-turn channelization Discrete /  
Major road right-turn channelization Discrete /  

Major road left-turn prohibition 
Left turn prohibited vs. 
Left turns permitted 

- 
Left turns 
permitted 

3 vs. ≥ 6 + 3 
Number of lanes on major road 

4 or 5 vs. ≥ 6 /  
Minor road left-turn channelization Discrete /  

Minor road right-turn channelization 
No free right turns vs. 
free right turns 

- Free right 
turns 

Presence of median on major road yes =0, no = 1 /  

Access control on the major road None vs. Partial - 
Partial access 
control on 
major roads 

2. Four-arm/signalized intersections 

AADT on major and minor roads continuous + 
Increased 
AADT 

Design speed of major roads continuous + 
Increased 
speed 

Outside shoulder width on major roads continuous /  
Average lane width on major road continuous - Narrow width 
Terrain  /  

Major collector vs. 
Principal arterial 

/  

Functional class of the major road 
Minor arterial vs. Principal 
arterial 

/  

Major road left-turn channelization Discrete /  

Major road right-turn channelization 
No free right turns vs. 
free right turns 

- 
Free right 
turns 

Number of lanes on minor road ≤ 3 vs. ≥ 4 - ≥ 4 
≤ 3 vs. ≥ 6 - ≥ 6 

Number of lanes on major road 
4 or 5 vs. ≥ 6 - ≥ 6 

Minor road left-turn channelization Discrete /  
Minor road right-turn channelization Discrete /  
Presence of median on major road Discrete /  

Access control on the major road None vs. Partial - 

Partial access 
control on 
the major 
roads 

Fully actuated vs. Semi 
actuated 

+ 
Fully actuated 

Signal timing  
Pretimed vs. Semi 
actuated 

/ 
 

Signal phase  Multiphase vs. Two-phase - 
Two-signal 
phase 

Presence of a Minor road signal mast arm Yes =1, no= 0 /  
+ = Positive effect, - = Negative effect, * = Significant (direction of effect unknown), / = Not significant 
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 3.1.2 Model structure 

A log-linear regression model was fitted to the four-arm intersections (STOP-controlled 
and signalized). In this case, the logarithm of the number of accidents is supposed to be 
normally distributed and the parameters are estimated by the least square method. 
Separate models were fitted for the total number of accidents and, fatal and injury 
accidents and all models were of the form below: 
 

iqqii xxx
i e ββββµ ++++= ...22110 , with 

 

iµ  = mean of the number of accidents at intersection type i  

ijx   = vector of explanatory variables collected from the jth characteristic at the             

intersection i 

jβ  = parameters describing the effect of explanatory variables, j, on the mean 

number of accidents at intersection i 

1ix  = log of traffic flow in AADT on major roads at intersection i 

2ix  = log of traffic flow in AADT on minor roads at intersection i 

3.1.3 Results 

Only results of four-arm/signalized and four-arm/STOP controlled intersections are 
presented. The analysis for three arm stop controlled intersections will be presented in 
chapter four since the Poisson and negative binomial regression models were used for its 
analysis. The results for four-arm/signalized intersections are described first and those 
for four-arm/STOP controlled intersections are explained after. 

3.1.3.1 Four-arm/ signalized intersections 

Findings from the four-arm/signalized models for all accidents showed a positive 
relationship between increased AADT on major and minor road and, signal timing on the 
total number of accidents. Fully actuated signal timing increased accident numbers 
compared to semi actuated signal timing. On the other hand, increased average lane 
width on the major road, multiphase signal phasing compared to two phase signal 
phasing, the absence of free right turn channelization on the major road, the absence of 
access control on major road, the existence of three or fewer than three lanes on minor 
road and having three or fewer than three lanes and four or five lanes compared to six or 
more than six lanes on the major road had a negative effect on the number of accidents.  
 
The four-arm/signalized models for fatal and injury accidents disclosed a positive 
relationship between AADT on major and minor road and design speed on major road. 
Fully actuated signal timing increased accident numbers compared to semi actuated 
signal timing. On the other hand, multiphase signal phasing compared to two phase 
signal phasing, the absence of access control on major road, the existence of three or 
fewer than three lanes on minor road and four or five lanes compared to six or more than 
six lanes on the major road had a negative effect on the number of fatal and injury 
accidents. 

3.1.3.2 Four-arm/STOP controlled intersections 

Results from four-arm/STOP controlled models for the total number of accidents 
indicated that increased AADT on the major and minor road and number of lanes on 
major road had a positive effect on the total number of accidents. Having three or fewer 
than three lanes on the major road compared to six or more than six lanes increased the 
number of accidents. On the other hand, an increase in the average lane width on major 
road, presence of major road left-turn prohibition, absence of access control on major 
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road, absence of minor-road right-turn channelization and absence of lighting reduced 
the total number of accidents.  
 
The four-arm/STOP controlled intersections model for fatal and injury accidents included 
an extra variable of outside shoulder width on the major road but excluded lighting. The 
effects of variables common to the fatal and injury accident model for four-arm/STOP 
controlled intersections as well as a model for total accidents were similar. The extra 
variable of outside shoulder width on the major road in the fatal and injury accidents’ 
model reduced accidents.  
 
In this study, we would like to mention that the multiple linear regression model used is 
not the best approach as the response variable was a count and takes on only 
nonnegative numbers. This method may predict negative numbers of accidents. Further, 
the information on how good the fitted model is, was not provided. For the goodness of 
fit, the approaches described in section 3.1.1 of this study can be used depending on the 
aim of the model. On the other hand, if the analysis was to be redone, we recommend 
the use of methods for analysing count data, for example, the Poisson and negative 
binomial models. All the same, the results provide us with an insight of which variables 
have an effect on the number of accidents despite the shortfalls of the methodology used 
for the analysis. 

3.1.3 Conclusion and recommendation  

It appears from this study that increased AADT on major and minor roads, fewer number 
of lanes on the major road, higher design speeds of major roads and fully actuated signal 
timing increased the number of accidents. Therefore, it is suggested to reduce the design 
speed of major roads and to control the AADT on major and minor roads, for example by 
channelization.             

3.2 Study 2 

Arndt and Troutbeck (1998) applied multiple linear regression analysis to determine how 
much variation in the number of accidents was explained by roundabout geometry 
variables and accident rates in rural and urban areas of Queensland and Australia. A total 
of 492 accidents and 100 roundabouts on rural and urban arterial roads were studied. 
Data on geometric design, traffic volume, traffic control and accidents were collected for 
a five year period (1986 to 1990). Three types of accidents including single vehicle, 
approaching rear-end collisions and entering/circulating collisions were considered and a 
separate model was fitted for each type.  

3.2.1 Explanatory variables, model structure and results 

The variables and model fitted to the single vehicle type of accidents are described first, 
followed by a model fitted to approaching rear-end collisions and finally a model fitted to 
entering/circulating collisions.  

3.2.1.1 Single vehicle accident 

The single vehicle model includes traffic flow, length of driver path on geometric element, 
85th percentile speed on previous geometric element and radius of geometric element as 
explanatory variables. The following equation was fitted: 
 

( ))4.47/()()(***10*63.3)( 5.13214
sin +∆+∆+= − RSSSSLQE gleµ  with 

 
)( sin gleE µ  = expected annual single-vehicle accident frequency 

Q       = annual average daily traffic (AADT) in the direction considered  

L       = length of vehicle path on the geometric element (m) 
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S  = 85th percentile speed on the geometric element (km/h) 
S∆  = decrease in S at the start of the geometric element (km/h)  

R  = radius of the geometric element 
 
Explanatory variables in this model explained 18.1% of the observed variance in the 
expected annual single-vehicle accident frequency. 

3.2.1.2 Approaching rear-end collisions  

The approach rear-end collision model includes approaching and circulating flows, and 
relative speed between entering and circulating vehicles as explanatory variables. The 
model fitted to the data was of the form below: 
 

25.011 ***10*62.0)( acarearend SQQE −=µ  with 

 
)( rearendE µ  = expected annual rear-end accident frequency 

aQ     = AADT on the approach (one-way traffic) 

cQ  = AADT on the circulating carriageway adjacent to the approach (one-way  

traffic)  

aS   = 85th percentile speed on the approach curve (km/h)  

 
Explanatory variables in this model explained 30.6% of the variations in the expected 
annual approaching rear-end accident frequency. 

3.2.1.3 Entering/circulating collisions 

The entering/circulating collision model includes approaching and circulating flows and 
relative speed between entering and circulating vehicles as explanatory variables. 
Relationships between accident rates and these explanatory variables were studied using 
the following equation: 
 

∑−= )*(**10*45.3)( 212
riciaentering SQQE µ  with 

 
)( enteringE µ = expected annual accident frequency involving entering and circulating  

                  vehicles              

aQ       = AADT on the approach (one-way traffic)  

ciQ       = AADT for each of the i movements on the approach entrance curve and on 

                  the circulating carriageway adjacent to the approach          

riS       = 85th percentile speed for each of the i movements on the approach entrance 

                  curve and on the circulating carriageway adjacent to the approach (km/h) 
  
The variables in this model explained 10.7% of the variance in the expected annual 
accident frequency involving entering and circulating vehicles.  

3.2.2 Conclusion and recommendation 

The results from this study enable the design and construction of roundabouts at a 
similar cost to minimize accidents. In addition these results may be applied to all 
intersection and roadway types to minimize accidents (Arndt and Troutbeck, 1998). 
 
The adjusted R-square values of the above models imply a rather low quality as the 
variables in the models explain a small proportion in the variation of the response. It was 
also noted that there was no selection procedure used to enter the variables in the 
models. This might be one of the possible reasons for the low quality of the models. 
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Using model selection procedures helps to choose a good model depending on the 
purpose of the research. For example, if the purpose is to determine the explanatory 
power of the variables in the model, the adjusted R-square criterion is used, if it is about 
how well the fitted values can predict the observed responses, the prediction sum of 
squares (PRESS) is a good measure, etc. (Kutner et al., 2005). However, considering the 
objective of this report, the variables are related to the number of accidents and have a 
significant effect. Therefore, the results are retained taking the low quality of the model 
into account. 

3.3 Summary of multiple linear regression analysis  

In this section, the multiple linear regression technique is summarized. This technique is 
appropriate to describe relationships between continuous accident outcomes and 
explanatory variables. It appears from the previous studies that traffic flow, traffic 
control and geometric characteristics play a big role in the accident risk at intersections. 
 
Although multiple linear regression models have been applied in the previous studies, the 
response variables were the numbers of accidents. We would like to comment that the 
multiple linear regression modelling is not appropriate for count data since counts are 
positive numbers yet the response variable in multiple linear regression analysis is 
assumed to follow a normal distribution which covers all numbers on a real interval. This 
method has limitations of predicting negative numbers of accidents which is not logical. 
This undesirable statistical property limits multiple linear regression models to describe 
adequately the random, discrete and nonnegative accident events (Chin and Quddus, 
2003). For such reasons, there is need to utilize techniques which can sufficiently 
describe the specific characteristics of accident events. Such techniques include Poisson 
regression, negative binomial regression and others as described in the subsequent 
chapters. 
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4.  POISSON AND NEGATIVE  BINOMIAL 

MODELS 

Since accident occurrences are unavoidably discrete and more likely random events, the 
family of Poisson regression models appears to be more suitable than multiple linear 
regression models. The Poisson regression model is used when discrete response 
variables have counts as possible outcomes, for example, the number of accidents. 
However, Poisson models have potential problems; one constraint is that the mean must 
equal to the variance. If this assumption is not valid, that is, the accident data are 
significantly overdispersed (the variance is much greater than the mean), the standard 
errors usually estimated by the maximum likelihood method, will be biased and the test 
statistics derived from the model will be incorrect. This results in incorrect estimation of 
the likelihood of accident occurrence (Chin and Quddus, 2003).  
 
To solve the problem of overdispersion, the negative binomial distribution has been 
employed instead of the Poisson. To establish the negative binomial regression model, an 
overdispersion parameter is introduced into the relationship of the mean and the 
variance. By relaxing the condition of mean equal to variance, the negative binomial 
regression models have more desirable properties than Poisson models to describe the 
relationship between accident occurrence and road characteristics (Chin and Quddus, 
2003). Hence, in the successive sections Poisson and negative binomial regression 
models are presented as a more credible alternative to multiple linear regression 
analysis. The majority of the authors presented results from only the negative binomial 
models although the Poisson model was also fitted.  
 
There are intersections at which zero accidents are recorded on a number of occasions. 
When there is a zero accident record over a period of time, it may indicate either that the 
intersection is nearly safe, or that the zero record is a chance occurrence or accidents are 
not reported. Since the standard Poison and negative binomial models do not help to 
identify accident contributory factors in this case, it becomes necessary to model the two 
states. Moreover if the two states are modelled as a single state, the estimated models 
may be biased as there may be an overrepresentation of zero accidents. Hence the 
presence of excess zeros in the accident count data may be mistakenly regarded as the 
presence of overdispersion in the data set, which arises because of an incorrectly 
specified model. To handle count data with excess zeros, the zero-inflated negative 
binomial or Poisson models are employed (Kumara and Chin, 2003). This helps to 
distinguish safe intersections with little probability of accident occurrence from those with 
zero accident record due to chance or when accidents are not reported. Only the zero-
inflated negative binomial model by Kumara and Chin (2003) is presented in section 4.8. 
 
In this chapter, we will discuss eight studies in which Poisson and negative binomial 
models were applied. All these studies investigated relationships between the number of 
accidents and traffic volume, traffic control, geometric, land use and environmental 
characteristics. 

4.1 Study 1 

Salifu (2004) developed negative binomial regression models to study the relationships 
between the number of accidents and, traffic flow, traffic control and geometric 
characteristics of urban intersections in Ghana. The study comprised of 91 intersections 
of which 57 were three-arm and 34 were four-arm unsignalized urban junctions. A total 
of 354 accidents and 238 accidents were recorded at three-arm and four-arm junctions 
respectively for the period 1996 to 1998 inclusive. These accidents account for more than 
60% of intersection accidents in Ghana. Accident types covered include property-damage 
as well as person-involved collisions. The data used in this study were retrieved from the 
national accident database at the Building and Road Research Institute. The database is 
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compiled from police files using a standard accident report form, which contains 
information on about 90 variables relating to the time, place, circumstances, the parties 
involved, etc.  

4.1.1 Explanatory variables 

Data on traffic flow, traffic control and geometric design features were collected for each 
junction. Table 3 below provides the variables in each category and the direction of their 
effects on accident occurrence. 
 

Table 3: Explanatory variables in each category 

Category of explanatory variables Variable levels Effect 
Causes more 
accidents 

1. Four-arm intersections 
Traffic flow 

Vehicle counts & pedestrians crossing all arms 
(AADT) 

continuous + 
Increased 
vehicles &  
pedestrians 

Proportion of heavy good vehicles as a 
percentage of the total traffic flow 

Proportion + 

Increased 
proportion of 
heavy 
good 
vehicles 

Traffic control 
Spot speeds of vehicles approaching the 
intersection along the major road 

continuous + 
High spot 
speed 

Geometric design features 
Junction layout  /  
Type of major and minor roads  /  
Type and width of lanes  /  
Types of control  /  
Road markings  /  

Street lighting  present =0, absent = 1 + 
Absence of 
street lights 

Status of crossing facilities  /  

Left turn lane on major road present =0, absent = 1 + 
Absence of 
left-turn lanes 

Width of the minor roads at neck of  
Intersections 

continuous + 
Wider width 
at neck of 
intersections 

2. Three-arm intersections 
Traffic flow 

AADT on major and minor roads continuous + 

Increased 
AADT on 
major and 
minor roads 

Traffic control 
Spot speeds of vehicles approaching the 
intersection along the major road 

continuous + 
High spot 
speed 

Traffic control of level 2 (yield on minor road)  present =1, absent = 0 - 
Absence of 
traffic control 
level 2 

Traffic control of level 3 (No control on minor 
road) 

present =1, absent = 0 - 
Absence of 
traffic control 
level 3 

Geometric design features 

Average width of median on major roads continuous - 
Narrower 
width of 
median 

+ = Positive effect, - = Negative effect, * = Significant (direction of effect unknown), / = Not significant 
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4.1.2 Model structure 

The general form of the fitted models was as follows:  
 

∑= ijj x
majororoi eAADTAADTE ββββµ ***)( 21

min  with 

 
)( iE µ   = expected number of accidents at the ith intersection 

orAADTmin  = traffic flow on minor roads 

majorAADT  = traffic flow on major roads 

oβ   = intercept to be estimated 

1β   = effect of traffic flow on minor roads on the expected number of accidents 

2β   = effect of traffic flow on major roads on the expected number of accidents 

ijx   = vector of explanatory variables, j, other than traffic flow on intersection i 

β j   = regression coefficient representing the effect of the jth explanatory 

variable other than traffic flow  
 
The above model is transformed using a log-link function as follows: 
 

∑+++= ijjmajororoi xAADTAADT ββββµ lnln)ln()ln( 2min1  

4.1.3 Results 

The findings obtained from the analysis of four-arm and three-arm intersections are 
explained in the following sections. First, findings from four-arm intersections are 
described, followed by results from three-arm intersections. The Freeman-Tukey test was 
used to assess the adequacy of the models (Kulmala, 1995). For the model of four-arm 
intersections, the value of Freeman-Tukey was 0.91. This means the variables in the 
model explained about 91% of the variation in the number of accidents. For the model of 
three-arm intersections, the value of Freeman-Tukey was 0.50. These results show that 
the variables in the model explained about half of the variation in the number of 
accidents.  

4.1.3.1 Four-arm intersections  

The model for four-arm intersections revealed a positive relationship between the 
number of accidents and the variables crossing flow products (AADT), absence of left 
turn lane on major road, proportion of heavy good vehicles as a percentage of the total 
traffic flow, average width of the minor road at the neck of the junction, absence of 
streetlights and standard deviation of average spot speeds on major approaches.  

4.1.3.2 Three-arm intersections  

Results from three-arm intersections showed that the variables major and minor road 
daily traffic and standard deviation of average spot speeds on major approaches had a 
positive effect on the number of accidents while the variables average width of median 
on major roads, traffic control of level 2 (Yield) on minor road and traffic control of level 
3 (No control) on minor road had a negative effect on the number of accidents. These 
findings are in line with those of Harnen et al. (2003). 

4.1.3  Conclusion and recommendation  

The results showed that increased vehicle counts and pedestrians crossing all arms, high 
speeds of vehicles approaching the intersection along the major road, the absence of 
street lighting, the absence of left-turn lanes and wider width of the minor roads at the 
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neck of intersections increased the number of accidents. From these results, we 
recommend the provision of street lights, narrowing the width of the minor roads at the 
neck of intersections, reducing speeds of vehicles approaching the intersection along the 
major road and regulating traffic flow on all intersecting arms. 

4.2 Study 2 

Harnen et al. (2003) fitted Poisson and negative binomial regression models to 
investigate the relationships between motorcycle crashes on urban unsignalized 
intersections and several explanatory variables in Malaysia. In Malaysia, half of the 
registered motor vehicles are motorcycles and more than 60% of all casualties are 
motorcycle casualties. Therefore, traffic safety for motorcyclists is important in Malaysia. 
A total of 53 urban unsignalized intersections were considered in Selangor, Malaysia. 
Data were collected over the period 1997 – 2000.  
 
Only intersections which had marginal land use changes, had not undergone major 
modifications and had an equal number of lanes on the major and minor-road 
approaches were selected. In addition, intersections were required to have a history of 
personal injury accidents. Due to this, some bias might have been introduced into the 
model. To minimise this problem, sampling techniques are suggested as an alternative. 
This would reduce bias in a sense that intersections are chosen randomly and entirely by 
chance. Each intersection will have the same probability of being included in the study 
regardless of its history (Yates et al., 2008). 

4.2.1 Explanatory variables  

Data were collected on traffic flow, traffic control and intersection geometry. Table 4 
below presents the variables in each category and the direction of their effects on the 
number of accidents. 
 

Table 4: Explanatory variables in each category 

Category of explanatory variables 
Variable 
labels 

Effect Causes more accidents 

Traffic flow 

Non-motorcycle on major  roads QNMm + 
Increased non-motorcycle 
traffic on major roads 

Non-motorcycle on minor  roads QNMn + 
Increased non-motorcycle 
traffic on minor roads 

Motorcycle flows on major roads QMm + 
Increased motorcycle  
traffic on major roads 

Motorcycle flows on minor roads QMn + 
Increased non-motorcycle 
traffic on minor roads 

Total pedestrian flow on major & minor 
roads 

QPED * 
 

Traffic control 
Approach speed on major and minor 
road 

SPEED + High approach speed 

Intersection geometry 
Average Lane width on major roads LWm - Narrow width 
Average Lane width on minor roads LWn - Narrow width 
No. of lanes on major road LNm - Few lanes on major road 
No. of lanes on minor road Lnn - Few lanes on minor road 
Average shoulder width on major & 
minor roads 

SHDW - Narrow width 

No. of intersection arms NL /  
Land use 
commercial or non-commercial LU *  

+ = Positive effect, - = Negative effect, * = Significant (direction of effect unknown), / = Not significant 
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4.2.2 Model structure 

The general form of the fitted model was: 
 

******)( 54321 ββββββµ QPEDQMnQMmQNMnQNMmE oi =
LnnLUSHDWNLLNmLWnLWmSPEEDe ******** 131211109876 ββββββββ +++++++  , with 

 
)( iE µ  = mean number of motorcycle crashes on intersection type i 

jβ  = parameters to be estimated and indicate the effect of explanatory variable j on 

the mean number of motorcycle crashes 
 
The remaining abbreviations in the model are defined in Table 4 above.  

4.2.3 Results 

In this section, only results from the negative binomial model are presented. The scaled 
deviance was used to test the fit of the model. Its value (4.52 on 10 degrees of freedom) 
indicated a good fit.  
 
All the variables in the traffic flow and traffic control categories increased the number of 
motorcycle crashes. They included non-motorcycle flow on the major road, non-
motorcycle flow on the minor road, motorcycle flow on the major road, motorcycle flow 
on the minor road and approach speed on the major and minor roads.  
 
All intersection geometry characteristics reduced the number of motorcycle crashes. They 
included average lane width on major road, average lane width on minor road, number of 
lanes on major road, number of lanes on minor road and average shoulder width on 
major and minor roads.  

4.2.4 Conclusion and recommendation  

The model developed in this study can be used to determine appropriate intervention 
measures for intersections with respect to motorcycle crashes. Using this model, suitable 
design measures of unsignalized intersections can be specified. The treatment could be 
the provision of non-exclusive motorcycle lane facilities at intersections. However, this 
model might only be valid in developing countries like Malaysia where the proportion of 
motorcycles using unsignalized intersections constitutes 50% of all vehicles. 

4.3 Study 3 

Bauer and Harwood (2002) developed a log linear regression model for three-arm/STOP-
controlled urban at-grade intersections in California. The accident data used were 
collected from collision types from 1990 to 1992. Their aim was to study the relationships 
between the number of accidents and, geometric characteristics, traffic control and traffic 
volume.  

4.3.1 Explanatory variables 

The explanatory variables used were collected on traffic flow, traffic control, geometric 
design and the environment of an intersection. Engineering judgement was used to 
decide on which explanatory variables to feed in the model. The variables in each 
category and the direction of their effects on the mean number of accidents are given in 
Table 5 below. 
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Table 5: Explanatory variables in each category 

Category of explanatory variables Variable levels Effect 
Causes more 
accidents 

1. Total number of accidents 
Traffic flow 
AADT on major & minor roads continuous + Increased AADT 
Geometric features 
Average lane width on major road continuous - Narrow width 

Presence of median on major road Yes = 1, no = 0 - 
Absence of 
median 

Traffic control 

Major road left-turn prohibition 
Left turn prohibited vs. 
Left turns permitted 

- Left turns 
permitted 

Minor road right-turn channelization 
No free right turns vs. free 
right turns 

- Free right turns 

Design speed of major roads continuous + High speed 
    
2. Fatal and injury accidents 
Traffic flow 
AADT on major & minor roads continuous + Increased AADT 
Traffic control 
Design speed of major roads continuous + High speed 

Major road left-turn prohibition 
Left turn prohibited vs. 
Left turn permitted 

- 
Left turn 
permitted 

Access control on the major road 
None vs. Partial 

- Partial access 
control on the 
major road 

Geometric design features 
Outside shoulder width on major roads  /  
Average lane width on major road continuous - Narrow width 

Major collector vs. 
Principal arterial 

/  

Functional class of the major road 
Minor arterial vs. Principal 
arterial 

/  

Lighting 
 yes =0, no = 1 

- Presence of 
lights 

Major road left-turn channelization Discrete /  

Major road right-turn channelization 
No free right turns vs. free 
right turns 

- Free right turns 

Minor road left-turn channelization Discrete /  

Minor road right-turn channelization 
No free right turns vs. free 
right turns 

- Free right turns 

Presence of median on major road 
yes =1, no = 0 

- Absence of 
median 

Number of lanes on minor road ≤ 3 vs. ≥ 4 - ≥ 4 
≤ 3 vs. ≥ 6 - ≥ 6 

Number of lanes on major road 
4 or 5 vs. ≥ 6 - ≥ 6 

Environmental factors 
Terrain  /  

+ = Positive effect, - = Negative effect, * = Significant (direction of effect unknown), / = Not significant 

4.3.2 Model structure 

A log linear regression model which assumes the number of accidents to follow a Poisson 
or a negative binomial distribution was fitted and the coefficients were estimated using 
maximum likelihood method. For this study, the accidents were assumed to follow a 
negative binomial distribution. Separate models were fitted for the total number of 
accidents (fatal, injury and non-injury) and, fatal and injury accidents. Both models were 
of the form below: 
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ijji xx
i eE βββµ +++= ...110)( , with 

 
)( iE µ  = mean number of accidents at intersection type i 

ijx  = vector of explanatory variables from the jth characteristic at intersection type i 

other than traffic flow 

jβ  = parameters describing the effect of explanatory variables, j, on the mean 

number of accidents at intersection i 
 
Generally, xi1 and xi2 represent the log of the traffic flow in AADT on minor and major 
roads at intersection i respectively. Therefore, the model can be written as: 
 

ijjimajoror
xxAADTAADT

i eEA
βββββµ

+++++=
...)()( 3321min0)(   

4.3.3 Results  

In this section, the obtained results from the fitted models are described. First, we 
present the analysis of the total number of accidents and in the next section results from 
the analysis of fatal and injury accidents are explained. The scaled deviance and Pearson 
Chi-square statistics were used to test the fit of the models. The scaled deviance and 
Pearson Chi-square statistics of the model for the total number of accidents were 1 and 
1.08 respectively while those   of the model for fatal and injury accidents were both 1.  
These statistics indicate a good fit.  

4.3.3.1 Analysis of total number of accidents 

The results from the model fitted on the total number of accidents are in Table 5 under 
the subheading of total number of accidents. Models for all accidents (total) revealed 
positive relationships between the total number of accidents and AADT on the major and 
minor roads and, design speed of the major road. In contrast, wider average lane width 
on major road, major road left-turn prohibition, none free minor road right-turn 
channelization and presence of median on major road reduced the total number of 
accidents.  

4.3.3.2 Analysis of fatal and injury accidents 

The results from the model fitted on the fatal and injury accidents are under the 
subheading of fatal and injury accidents in Table 5. The fatal and injury accident model 
showed that increased AADT on major and minor road and the design speed of major 
roads increased the number of accidents. However, wider average lane width on major 
road, lighting, non-free major road right-turn channelization, non-free minor road right-
turn channelization, the presence of median on major road, having three or fewer than 
three lanes compared to four or more than four lanes on minor roads, having three or 
fewer than three lanes compared to six or more than six lanes  on the major roads and 
having four or five lanes on the major roads compared to six or more than six lanes 
reduced the number of accidents. 

4.3.4 Conclusion and recommendation 

The results from this study indicate that increased AADT on major and minor roads and 
higher design speeds of major roads increased the number of accidents.  Thus, reducing 
design speeds of major roads and controlling AADT on major and minor roads may result 
in a reduced number of accidents. 
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4.4 Study 4 

Bauer and Harwood (2000) used a negative binomial model to investigate the 
relationship between traffic accidents and geometric design, traffic control and traffic 
volume variables for at-grade intersections on rural single carriageway two-lane roads. 
Data were collected from 1,434 four-leg intersections and 2,692 three-leg intersections. 
They studied 5,631 accidents on four-leg intersections of which 2,759 were non-fatal 
injury accidents and the remaining fatal. A total of 6,399 accidents were considered on 
three-leg intersections including 2,905 injury accidents. Accident and traffic data used in 
this study for analysis were collected for the period 1990 to 1992. The response variable 
was total number of accidents.  

4.4.1 Explanatory variables 

The categories of explanatory variables considered included traffic flow, traffic control, 
geometric design and environmental factors. The variables in each category and the 
direction of their effects on the number of accidents are presented in Table 6 below. 
 

Table 6: Explanatory variables in each category 
Category of explanatory variables Effect 
Traffic flow 
AADT on major and minor roads * 
Traffic control 
Design speed of major road * 
Major road left-turn prohibition * 
Type of access control on major road * 
Geometric features 
Number of lanes on major roads * 
Width of major road outside shoulder * 
Presence of major road and crossroad right- 
turn channelization 

* 

Presence of a median * 
Presence of a major road left-turn 
channelization 

* 

Average lane width on major road * 
Functional class of major road * 
Presence of night lighting at intersection * 
Environmental factors 
Type of terrain * 

+ = Positive effect, - = Negative effect, * = Significant (direction of effect unknown), / = Not significant 

4.4.2 Model structure 

Models were fitted using a Poisson and negative binomial regression. However only the 
results from the negative binomial model were presented. The general model form is 
stated by the following equation: 
 

∑= +++ ijjmajororo xAADTAADT
i eE ββ ββ

µ
21

min)(  with 

 
)( iE µ      = expected number of accidents on intersection type i 

AADT major  = incoming annual average daily traffic on the major road 

AADT ormin  = incoming annual average daily traffic on the minor road 

 ijx       = vector of explanatory variables, j, on intersection i other than AADT  

jβ       = vector of coefficients to be estimated and indicate the effect of explanatory 

variable, j, on the number of accidents 
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4.4.3 Results 

The model explained between 34 – 39% of the observed variability in the number of 
accidents. Statistically significant explanatory variables (the direction of the effects not 
given) from this model included: number of lanes on major roads, presence of major 
road left-turn prohibition, type of access control on major road, width of major road 
outside shoulder, presence of major road and crossroad right-turn channelization, design 
speed of major road, presence of a median, presence of a major road left-turn 
channelization, average lane width on major road, type of terrain, functional class of 
major road and presence of night lighting at intersection.  

4.4.4 Conclusion  

From this study, it appears that AADT in the major and minor road accounted for most of 
the variability in the expected number of accidents. Geometric design variables 
accounted for a small proportion of the observed variability.  
 
It was noted that in this study, the directions of the effects of explanatory variables were 
not indicated in this study. This limits the potential for direct use of these results for 
researchers interested in the direction of the effect. Nevertheless, for the objective of this 
review these results provide information on which variables have a significant effect on 
the number of accidents.  

4.5 Study 5 

Vogt (1999) describes the development of a negative binomial regression model for three 
types of intersections on rural roads in California and Michigan. Three types of 
intersections were studied and they were: three-leg intersections between four-lane 
major roads and two-lane stop controlled minor roads; four-leg intersections between 
four-lane major and two-lane stop controlled minor road; and signalized intersections 
between two-lane roads.  Traffic and accident data were collected for the period 1993 to 
1995. 
 
The study involved 84 three-leg intersections, 72 four-leg intersections and 49 signalised 
intersections. Data collected on accidents included the total number of accidents, the 
number of accidents by severity class (fatal, injury and property damage only) and by 
accident type (head-on, sideswipe, rear end, overturned, pedestrian, hit object and other 
accidents). 
 
Two criteria were used to define an accident as an intersection accident:  

1. Any accident occurring at the intersection or within 76m of the intersection centre 
along the major road or within 30.5m (76m in California) of the intersection 
centre along the minor road. 

2. Any accident that occurs within 76m of the intersection centre and that meets one 
of the following additional control conditions: 

a. Vehicle-pedestrian accident, 
b. An accident in which one of the vehicles involved in a crash is making a left 

turn, a right turn, or a U-turn. 
c. A multiple-vehicle accident, in which the accident type is either sideswipe, 

rear-end, broadside or angle. 
 
Four response variables were considered: the total number of intersection accidents 
(both criteria) and the total number of intersection injury accidents (both criteria). 

4.5.1 Explanatory variables 

Data were collected on more than 40 explanatory variables covering important issues 
such as, traffic volume, roadside characteristics, channelization, intersection geometry, 
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characteristics of major and minor road alignments and other characteristics. Examples 
are posted speed limits, type of signal, number of signal phases, road lighting, type of 
terrain and state. Table 7 below provides all variables and the direction of their effects on 
the total number of accidents. 

 
Table 7: Explanatory variables in each category 

Category of explanatory variables Effect Causes more accidents 
1. Three leg intersections 
Traffic flow 
AADT on major and minor roads + Increased volumes 
Percentage of traffic turning left on the major 
road 

* 
 

Geometric design features 
Median width on major road - Narrow medians on major road 
Number of driveways in major road + Many driveways on major road 
Angle between road & Vertical alignments *  
2. Four-leg intersections 
Traffic flow 
AADT on major and minor roads + Increased volumes 
Percentage of incoming major traffic turning 
left during peak hours 

+ 
Increased incoming major traffic 
turning left during peak hours 

Geometric design features 

Presence of left-turn lanes on major road - 
Absence of left-turn lanes on major 
road 

Grade and sight distance *  
Traffic control 
Posted speed limit on the minor road *  
3. Signalized intersections 
Traffic flow 
AADT on major and minor roads + Increased volumes 
Average absolute percent grade change per 
100m along the major and minor road 
approaches, within 244m of distance from the 
centre of the intersection 

+ 

Increased % grade change per 
100m along major & minor road 
approaches 

Percentage of all incoming truck traffic in peak 
hours 

+ 
More incoming truck traffic in 
peak hours 

Percentage of incoming minor traffic turning 
left during peak hours 

- 
Lower percentage of incoming 
minor traffic turning left during 
peak hours 

Geometric features 
Vertical curves on major and minor road *  
Number of driveways on the major road *  
Traffic control 
Protected left turn lanes on major road *  

+ = Positive effect, - = Negative effect, * = Significant (direction of effect unknown), / = Not significant 

4.5.2 Model development 

Negative binomial models were developed for each intersection type and the general 
model form is given by the following equation: 
 

∑= + jjo x
i eE ββµ )( , with 

 
)( iE µ  = expected number of accidents on intersection i 

jx  = vector of explanatory variables, j 

jβ  = vector of coefficients to be estimated and indicate the effect of the explanatory 

variable, j, on the number of accidents 
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4.5.3 Results 

In the following paragraphs, a brief explanation of the results found by applying the 
model developed in section 4.5.2 is given. We shall first present the results from three-
leg intersections analysis, followed by four leg intersections and finally findings from 
signalized intersections. 

4.5.3.1 Three-leg intersections analysis 

Results from three-leg intersection analysis indicated that AADT on major and minor 
roads and the number of driveways on the major road increased the total number of 
accidents. On the other hand, the median width of the major road had a negative effect 
on the total number of accidents. Also the percentage of traffic turning left on the major 
road had a significant effect on the total number of accidents. Models for the number of 
injury accidents revealed that the angle between road alignments and vertical alignments 
had a significant effect on the number of accidents.   

4.5.3.2 Four-leg intersection analysis 

From four-leg intersection analysis, AADT on each road and the percentage of incoming 
major traffic turning left during peak hours had a positive effect while the presence of 
left-turn lanes on major road had a negative influence on the total number of accidents. 
Grade and limited sight distance had an effect on the total number of accidents. Models 
for the number of injury accidents showed that posted speed limit on the minor road was 
a significant variable. 

4.5.3.3 Signalized four-leg intersections 

It was observed from the model for total accidents at signalized four-leg intersections 
that AADT on major and minor road, the percentage of all incoming truck traffic in peak 
hours and average absolute percent grade change per 100m along the major and minor 
road approaches (within 244m of distance from the centre of an intersection) increased 
the total number of accidents while the presence of major road left turn lane and the 
percentage of incoming minor traffic turning left during peak hours reduced the total 
number of accidents. Further, protected left turn lanes on the major road, vertical curves 
on major and minor road and the number of driveways on the major road were 
significant.   
 
Injury accident models indicated that the percentage of truck traffic and the percentage 
of turning movements were significantly associated with the number of injury accidents.  

4.5.4 Conclusion and recommendation 

Increased AADT on major and minor roads, many driveways on the major road, 
increased incoming major traffic turning left during peak hours, increased % grade 
change per 100m along major and minor road approaches and total incoming truck traffic 
in peak hours influenced accident occurrence. The reduction of AADT on major and minor 
roads, for instance by providing public means such as buses which carry many 
passengers, may result in a reduced number of vehicles on roads.   
 
Although the above models were used to draw inferences on the number of accidents, 
the information on how good they are was not provided. Thus, the users of these results 
need to be cautious with their interpretation. As a suggestion, the deviance and Pearson 
Chi-square statistics are examples of the tests we can use to assess the fit of these 
models. 

4.6 Study 6 

Sayed and Rodriguez (1999) developed Poisson and negative binomial regression models 
for urban unsignalized but stop-sign controlled intersections. The study was done in 
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Greater Vancouver Regional District, Vancouver Island and British Columbia. Data were 
available for the years 1993 to 1995 for each intersection. There were 186 three-arm and 
233 four-arm intersections. The number of accidents was recorded for each intersection. 
An accident was considered to be an intersection accident if it occurred within 30m of the 
intersection.  

4.6.1 Explanatory variables 

Data were collected on traffic volumes only. They included annual average daily traffic on 
major and minor roads.  

4.6.2 Model structure and results 

Separate models for each intersection type were fitted using multiplicative models in 
which the number of accidents was assumed to vary around the expected value 
according to the negative binomial distribution. The model relates the number of 
accidents to the product of traffic flows entering the intersection raised to a certain power 
and takes the form below.    
 

21 **)( min
βββµ majororoi AADTAADTE = , with 

 
)( iE µ   = expected accident frequency at intersection type i 

majorAADT  = major road traffic volume  

orAADTmin  = minor road traffic volume  

jβ   = parameters to be estimated and represent the effect of traffic volume, j, 

on the expected accident frequency at intersection type i 
 
The Pearson Chi-square was used to test the fit of the models. For both types of 
intersections, the Pearson Chi-square statistics (205 and 214 for three-arm intersections) 
and (246 and 265 for four-arm intersections) were smaller than the tabulated ones. This 
implied that the null hypotheses stating that the models fit the data could not be 
rejected. Both major and minor road traffic volume increased the expected accident 
frequency at three-arm and four-arm intersections. 

4.7 Study 7 

Kulmala (1995) studied the safety of rural intersections on Finnish main roads using 
Poisson and negative binomial regression models. There were 915 three-arm and 847 
four-arm intersections on single carriageway rural roads. A total of 1749 accidents in the 
three-arm intersections, of which 566 were injury accidents (912 victims) and 2,325 
accidents in the four-arm intersections, of which 826 were injury accidents (1,325 
victims) were studied. Traffic and police-reported accidents were collected from 1983 to 
1987. During this period, the operational and geometric characteristics of the selected 
intersections were not subject to change or modification. The intersection area was 
defined as the 200m length of major road adjacent to the centre of the intersecting 
alignments and the 100m length of the minor road.  
 
Response variables included the number of all injury accidents, single accidents, crossing 
accidents, turning accidents, rear-end accidents, injury accidents involving motor 
vehicles only, injury accidents involving unprotected road users and accident victims. 

4.7.1 Explanatory variables 

Explanatory variables were collected on geometric characteristics, traffic control and 
traffic volumes. Table 8 below presents the explanatory variables in each category and 
their effects on the frequency of accidents. The author did not distinguish between which 
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variables were considered for the three-arm or four-arm intersections. However, the 
significant variables for each type of intersection were mentioned. 
 

Table 8: Explanatory variables in each category 
Category of explanatory variables Variable levels Effect Causes more accidents 
Three-arm intersections 
Traffic flow 
Total number of vehicles continuous + Number of increased 

vehicles 
Proportion of traffic from minor road  + Increased volumes 
Traffic control 
Speed limits on major and minor roads Continuous (km/hr) + High speed >70km/hr 
Geometric design features 

Minor road descends to intersection Yes = 1, no = 0 + 
Presence of minor road 
descends to intersection 

Minor approach width Continuous (m) + 
Wider approach width 
≥15m 

Intersection on hilltop along major road Yes = 1, no = 0 + 
Presence of intersection 
on hilltop along major 
road 

Existence of right-turn lane on major 
road 

Yes = 1, no = 0 - 
Absence of right-turn 
lane on major road 

Sight distance from the minor road Continuous (m) + 
Short sight distance 
<100m 

Existence of pedestrian facility on 
minor road 

Yes=1, no = 0 + 
Presence of a pedestrian 
facility on minor road 

Four-arm intersections    
Four-arm intersections 
Traffic flow 
Total number of vehicles continuous + Increased vehicles 
Proportion of traffic from minor road  + Increased volumes 
Traffic control 
No variable was significant 
Geometric design features 
Presence of traffic islands Yes = 1, no = 0 - Absence of traffic islands 

Minor approach width Continuous (m) + 
Wider approach width 
≥15m 

Intersection on hilltop along major road Yes = 1, no = 0 + 
Presence of intersection 
on hilltop along major 
road 

Existence of right-turn lane on major 
road 

Yes = 1, no = 0 - 
Absence of right-turn 
lane on major road 

Sight distance from the minor road Continuous (m) + 
Short sight distance 
<100m 

Existence of painted island on the 
major road 

Yes = 1, no = 0 - 
Absence of painted 
island on the major road 

Curve on minor road before 
intersection 

Yes=1, no = 0 + 
Presence of curve on 
minor road before 
junction 

+ = Positive effect, - = Negative effect, * = Significant (direction of effect unknown), / = Not significant 

4.7.2 Model structure 

The safety of rural intersections on Finnish main roads was studied using Poisson and 
negative binomial regression models but only results from the negative binomial models 
were presented. Multiplicative models were fitted to the data and were of the form 
below:  
 

ijji xx
ioroi eTTAADTE βββββµ ++= ...

min
1121 ***)(  with  
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)( iE µ   = expected accident frequency on intersection i, for a given period 

iTT   = total number of vehicles (millions) entering an intersection, i, in a given 

period  

orAADTmin  = traffic on the minor road, expressed as a percentage of total intersection 

flow 

ijx   = vector of explanatory variables, j, describing the geometry, environment 

and operation of intersection i 

jβ   = parameters to be estimated and represent the effect of the geometric, 

environmental and operational characteristics, j, at intersection i on the 
expected accident frequency 

4.7.3 Results 

In this section we present the results from three-arm and four-arm intersections. First, 
results from three-arm intersections will be presented and results from four-arm 
intersections will follow. 

4.7.3.1 Three-arm intersection analysis 

Results from three-arm intersections showed that the variables total number of vehicles, 
proportion of traffic from minor road, intersection on hilltop along major road, minor 
approach width ≥ 15m, speed limit on minor road > 70km/h, speed limit on major road 
> 70km/h, minor road descends to intersection, sight distance from minor road at < 
100m and existence of pedestrian facility on minor road increased the number of injury 
accidents. On the contrary, the existence of a right-turn lane on the major road had a 
negative effect on the number of injury accidents at three-arm intersections. 

4.7.3.2 Four-arm intersection analysis 

Findings from four-arm intersections indicated that the total number of vehicles, 
proportion of traffic from minor road, intersection on hilltop along major road, minor 
approach width ≥ 15m, sight distance from minor road at < 100m and curve on the 
minor road before intersection (straight, bend) increased the number of injury accidents. 
In contrast, the existence of painted island on the major road and existence of a right-
turn lane on the major road reduced the number of injury accidents. 

4.7.4 Conclusion and recommendation 

Results from this study showed the importance of minor road traffic operational 
characteristics on intersection safety. Two conditions closely related to high accident 
rates at intersections were revealed: too high approaching speeds and very short sight 
distances before the intersection on the minor road.  
 
The study lacked data on turning movements and pedestrians. This resulted in 
insufficient disaggregation of exposure data. It is recommended to collect data on turning 
movements and pedestrians for future research. 
 
Secondly, it is recommended to examine hundreds of road elements, intersections in this 
case, in order to detect systematic patterns in the road safety picture. Further more if 
the amount of data is not large enough, the standard errors of the parameter estimates 
will be too large for variables to be statistically significant. 
 
While the results from this study give an insight into which variables have an effect on 
the expected accident frequency, it was not mentioned how good the fitted models were. 
Hence, the quality of the results should not be overestimated. The deviance and Pearson 
Chi-square tests could be utilized as measures for goodness of fit. 
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4.8 Study 8 

Kumara and Chin (2003) used the zero-inflated negative binomial (ZINB) model to 
identify variables affecting accident occurrence at signalized T-intersections in Singapore 
while taking into account the presence of excess zeros. A total of 104 three-legged 
signalized tee intersections over a period of 9 years (1992 - 2000) were used to develop 
the model.  

4.8.1 Explanatory variables 

Data were collected on traffic volume, traffic control measures and geometric design 
elements. Table 9 below contains explanatory variables in each category and their effect 
on the occurrence of accidents. 
 

Table 9: Explanatory variables in each category 

Category of explanatory variables Variable levels Effect 
Causes more 
accidents 

Traffic flow 
Total approach volume in AADT continuous + Increased volumes 
Total left-turn volume in AADT continuous + Increased volumes 
Right-turn volume in AADT continuous /  
Traffic control 
Surveillance camera Yes = 1, no = 0 /  

Median railings Yes = 1, no = 0 - 
Absence of median 
railings 

Number of signal phases per cycle continuous + 
Larger number of 
signal phases per 
cycle 

Permissive right turn Yes = 1, no = 0 + 
Presence of  
permissive right turn 

Geometric design features 
Sight distance (m) >100m = 1, else = 0 - < 100m 
Existence of 5% gradient Yes = 1, no = 0 + 5% gradient 
Number of approach lanes continuous /  
Median width  continuous(m) /  
Horizontal curve Yes = 1, no = 0 + Horizontal curve 

Right-turn channelization Yes = 1, no = 0 - 
Absence of right-turn 
channelization 

Uncontrolled left-turn channelization Yes = 1, no = 0 /  

Uncontrolled left-turn slip road Yes = 1, no = 0 + 
Uncontrolled left-turn 
slip road 

Length of left-turn slip road  continuous (m) /  

Acceleration section on left-turn lane Yes = 1, no = 0 - 
Absence of 
acceleration section 
on left-turn lane 

More than 5% approach gradient Yes = 1, no = 0 - Grades ≥ 8% 
+ = Positive effect, - = Negative effect, * = Significant (direction of effect unknown), / = Not significant 

4.8.2 Model development 

Zero inflated models are based on the assumption that there are two states for the 
accident generating process: a normal state corresponding to the usual assumption of a 
constant expected number of accidents per unit of time and a safe state in which 
accidents will not occur (Reurings et al., 2005). The resulting probability distribution for 
the number of accidents will be a distribution of the Poisson family (the negative binomial 
distribution) and a distribution containing zero outcomes only (no accidents recorded). 
Then, the resulting probability distribution will contain an excessive number of zeros 
compared to the standard Poisson or negative binomial distribution. This motivates the 
use of two distributions: a standard count distribution and a distribution for the zero 
case. In the case of accident studies, this dual state system can be expressed as a 
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probability function by assuming iq  as the probability that intersection approach i  will 

exist in the zero accident state and ( )iq−1  as the probability that a zero accident 

observation actually follows a suitable count distribution such as Poisson or negative 
binomial. Therefore, 
 

 

 
With 

in  = the annual number of recorded accidents on intersection approach i 

iR  = the probability mass function of occurrence of in  accidents corresponding to the 

standard distribution to be modified by the zero state  
 

( )
( )β
β

'

'

exp1
exp

i

i
i x

x
q

+
=  with 

 
β  = vector of regression coefficients 

ix  = vector of explanatory variables describing the characteristics of the approach i 

 
In the zero inflated negative binomial (ZINB) models, iR  corresponds to the negative 

binomial distribution with mean iλ , that is,  
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Zero-inflated models can be formulated in one of two ways either assuming a single 
parameter vector for iq  and iλ  or separate parameter vectors. For this study, only the 

former approach is presented (see Lambert, 1992, for more extensive literature).  
 
From p(ni) the model parametersβ , α  and τ  are estimated. The probability density 

function for the observed random variable in  is ( ) ( ) ( ) iiiiii qznRqnp +−= 1  with 1=iz  

when in  is observed to be zero and 0=iz  for all other values of in . The indicator 

variable iz  eases the maximization of the loglikelihood function given 

by ( ) ( )∑ =
=

N

i inpL
1
log,, ταβ . Since the negative binomial distribution is specified, the 

maximum likelihood method is used for parameter estimation. The overdispersion 
parameter α  was found to be statistically significant, which seems to imply at first 
glance that the negative binomial distribution is appropriate. However, when tested 
against the alternative ZINB, ( )τ , by the Vuong statistic , it could be concluded that the 
ZINB model was a better representative model than the negative binomial model in 
detecting excess zeros after controlling for overdispersion (Kumara and Chin, 2003).  
 
The Vuong statistic distinguishes between the overdispersion of the negative binomial 
model and the force of the splitting mechanism in the ZINB part of the model (Vuong, 
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1989). The Vuong statistic is distributed as a standard normal distribution, hence, its 
value is compared to the critical value for standard normal distribution. Therefore it is 
taken that V > 1.96 distinctly favors the zero-inflated count models while V ≤ -1.96 
distinctly favors the parent negative binomial model otherwise the test is indecisive. The 
selection of the relevant model is therefore established by evaluating the Vuong statistic, 
V and the t- statistic for the negative binomial overdispersion parameter α  as shown in 
Table 10 (Shankar et al., 1997). The complementary condition of selecting the zero-
inflated Poisson or ZINB model is that the shape parameter τ must be statistically 
significant. 
  

Table 10: Decision rule for model selection using the Vuong statistic and negative 
binomial overdispersion parameter criteria 

 t Statistic of α  
Vuong statistic <2 >2 
V < -1.96 Poisson NB 
V > 1.96 ZIP models ZINB models 

NB = negative binomial, ZINB = zeroinflated negative binomial, ZIP = zero-inflated Poisson 
 
The primary advantage is that Vuong's statistic makes use of information about the 
entire distribution, not just the zero outcomes. However, this statistic makes probabilistic 
statements about two models. It tests the null hypothesis that the two models are as 
close to the actual model against the alternative that one model is closer. It cannot make 
any decision whether the closer model is the true model. Other methods have been used 
for testing standard Poisson and negative binomial regression models against zero inflated 
alternatives. For example, Ridout et al. (2001) applied the score and log-likelihood ratio 
tests.  

4.8.3 Results 

Results indicated that increased total approach volume, increased left-turn volume, 
existence of a horizontal curve, permissive right-turn phase, short sight distances, large 
number of signal phases and uncontrolled left-turn slip road increase accident 
occurrence. On the other hand however, right-turn channelization, acceleration section 
on the left-turn lane, median railings and more than 5% approach gradient reduce the 
accident occurrence.  
 
Increased volumes imply greater interaction between vehicles and perhaps more 
conflicts. Furthermore, as volumes increase, there are fewer gaps in traffic for right-
turning as well as left-turning drivers. This results in increased accidents due to greater 
exposure. The existence of a horizontal curve increased accident occurrence. Another 
study by Poch and Mannering (1996) also indicated that the horizontal curve on an 
intersection approach would increase all types of accidents. The permissive right-turn 
phase also increased accident occurrence. Permissive right-turn phasing makes right-
turning vehicles proceed with through vehicles when there is a gap. This increases the 
likelihood of collisions resulting from the right-turning vehicles failing to give way to 
oncoming vehicles. Shorter sight distance (shorter than 100 m) increased accident 
frequency. Short sight distances reduce the drivers’ abilities to judge the traffic 
conditions at the intersection. In his study about safety at rural three- and four-arm 
junctions, Kulmala (1995) also concluded that the short sight distances increase accident 
occurrence. The results indicated that accident occurrence increases with more phases 
per cycle. In general the number of phases is higher for busy intersections with more 
conflicting demands on the intersection (Poch & Mannering, 1996). The result is not 
surprising since most accidents occur during the phase-change period. 
 
The right-turn channelization, acceleration section on the left-turn lane, median railings 
and more than 5% approach gradient were found to reduce accident occurrence.  
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The provision of right-turn slip road may reduce accident occurrence and increase the 
zero accident state. This exclusive lane lowers speed among approaching vehicles; 
hence, a possible reduction in conflicts. In their study of intersection accident 
frequencies, Poch and Mannering (1996) concluded that, without an exclusive lane, right-
turning vehicles that are required to slow in a lane shared with speed-maintaining 
vehicles may cause a speed differential that tends to cause rear-end accidents. The 
provision of an acceleration section in the left-turn lane reduced accident occurrence as it 
enables drivers to merge more easily and reduce accidents. There was evidence that the 
presence of a median railing reduced accident occurrence. Median railings are installed to 
prevent pedestrians from crossing the road where there are no designated pedestrian 
crossings. Although grades with 8% and above are known to be more hazardous 
(Thagesen, 1996), grades from 5% to 8% may be safer because of reduced speed. In 
addition, there are improvement factors such as signs and markings at these gradients. 
All approach gradients at the intersections considered in the current study were less than 
8%.  
 
The reduction in accident occurrence over time is attributed to engineering advances in 
vehicles, roads, lighting systems, more advanced driver training and vehicle checking 
systems that have been introduced in Singapore over the years. 

4.8.4 Conclusion and recommendation 

The purpose of this study was to identify the factors affecting road accident occurrence at 
signalized tee intersection approaches in Singapore, taking into account cases of records 
of no accidents. The results indicated the significance of several highway geometric 
characteristics, traffic control measures and traffic characteristics and also the effects of 
excess zeros on accident modeling. It was found that the presence of right-turn 
channelization, an acceleration section on the left-turning lane, median railing and 
existence of a more than 5% gradient reduce accident occurrence while increased total 
and left-turn volumes, an uncontrolled left-turn slip road, signal phases per cycle, 
existence of a horizontal curve and a permissive right-turn phase would increase accident 
occurrence.  
 
From this study, the provision of right-turn slip road at intersections is recommended 
since right-turn slip roads reduce accident occurrence and increase the zero accident. 
Also, it was observed that the uncontrolled left-turn lane, allows left-turning vehicles to 
merge into the cross traffic stream which may also increase the likelihood of sideswipe 
and head-to-side accidents since drivers fail to yield to oncoming traffic. However, if an 
acceleration section is provided in the left-turn lane, drivers may be able to merge more 
easily and reduce accidents. Hence, acceleration sections are recommended in the left-
turn lanes at intersections. Further, median railings were found to reduce accident 
occurrence. Therefore, the installation of median railings is recommended as one of the 
most important accident control devices at intersections.  

4.9 Summary of Poisson and negative binomial models 

The Poisson regression model is used when discrete response variables have counts as 
possible outcomes, for instance, the number of deaths on motorways in Flanders in a 
particular year. There is no fixed upper limit for the outcome. Since the outcome must be 
a nonnegative integer, its distribution should cover a nonnegative range and the simplest 
of such a distribution is a Poisson distribution. The Poisson distribution is used for counts 
of events that occur randomly over time or space. A key feature of the Poisson 
distribution is that its variance equals its mean, which implies that sample counts vary 
more when their mean is higher. In a standard Poisson model, the variance to mean ratio 
is one. However, in practice, it is a common phenomenon for this ratio to exceed one. In 
the given example of death, a standard Poisson model assumes that each person has the 
same probability of dying in a motorway accident in Flanders in a particular year. In 
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reality, these probabilities vary due to factors such as amount of time spent driving, 
whether a person wears a seatbelt, etc. Such variation causes death counts to display 
more variation than predicted by the Poisson model. This phenomenon is called 
overdispersion and has implications on the results. If the variance-mean ratio exceeds 
one, the analysis which assumes a standard Poisson model underestimates standard 
errors and thus wrongly inflates the test statistics and the level of significance. However, 
in the absence of overdispersion, a Poisson model is a credible choice for count data. We 
can measure overdispersion by the scaled deviance and scaled Pearson Chi-square 
statistics. When the values of these statistics are much larger than one, the data are said 
to exhibit overdispersion. In cases of overdispersed data, the negative binomial is a 
distribution for count data that permits the variance to exceed the mean (Agresti, 2002). 
That way, the mean is permitted to depend on explanatory variables. 
 
There are intersections at which zero accidents are recorded on a number of occasions. 
When there is a zero accident record over a period of time, it may indicate either that the 
intersection is nearly safe, or that the zero record is a chance occurrence or accidents are 
not reported. Since the standard Poison and negative binomial models do not help to 
identify accident contributory factors in this case, it becomes necessary to model the two 
states. Moreover if the two states are modelled as a single state, the estimated models 
may be biased as there may be an overrepresentation of zero accidents. Hence the 
presence of excess zeros in the accident count data may be mistakenly regarded as the 
presence of overdispersion in the data set, which arises because of an incorrectly 
specified model. To handle count data with excess zeros, the zero-inflated negative 
binomial model was employed (Kumara and Chin, 2003).  
 
The results from all models indicated that atleast one variable in each category of traffic 
flow, traffic control, geometric, environmental and land use characteristics has a 
significant effect on accident occurrence. Thus, one can conclude that all these categories 
should be given attention in accident risk analysis at intersections. Although eight studies 
have been used to illustrate these techniques, the Poisson and negative binomial 
regression models are still applied in other studies, for example Wong et al. (2007) and 
Wang and Abdel-Aty (2006). 
 
Despite the desirable properties of negative binomial regression models, they presuppose 
that the accident counts at any intersection are independent. However, as the data 
contain location-specific effects and are likely to be serially correlated, it is suggested to 
consider techniques which adjust for variations in accident counts due to locations. Such 
techniques are random effects models (Kim et al., 2007) presented in the following 
chapter.  
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5.  RANDOM EFFECTS  MODELS 

Models presented in the preceding sections (multiple logistic regression, multiple linear 
regression, negative binomial and Poisson regression) assume independent residuals 
across the number of accidents. These models are to some extent problematic to 
estimate when the data structure is characterized by correlated responses within clusters 
(intersections). The correlation within clusters violates the assumption of residual 
independence made by earlier statistical methods. Due to serial correlation in the 
accident data, non-hierarchical models seem to be inappropriate since accident data 
variables are likely to have location specific effects. Further, if significant correlation 
within clusters is not modelled, the consequence is attenuation of effects (parameter 
estimates tend toward zero), biased parameter estimates, under-estimated standard 
errors and incorrect statistical inferences. To overcome these problems, a more suitable 
alternative is random effects models which account for correlation within clusters by 
introducing random effects in the population based models (Kim et al., 2007). As a 
result, we describe random effects models in this section.  
 
In this chapter, three studies in which the random effects models have been applied are 
discussed. In the first study, we study the associations between different types of 
crashes and, crash-level characteristics and intersection-level characteristics. In the 
second study, the relationships between accident occurrence and, traffic volume, traffic 
control and geometric characteristics of an intersection will be investigated. The third 
study describes a hierarchical binomial logistic model to identify the significant factors 
affecting the severity level of driver injury and vehicle damage in traffic crashes at urban 
signalized intersections in Singapore. 

5.1 Study 1  

Kim et al. (2007) fitted a random effects binomial logistic regression model (random 
intercept model) on intersection accident data in the state of Georgia to identify variables 
that affect the probability that certain types of crashes will occur by exploiting the 
hierarchical structure of intersection crashes. There were 548 motor vehicle crashes 
collected from 91 two-lane rural intersections from 38 counties in the state of Georgia for 
2 years (1996–1997). Crashes were coded as intersection related when they occurred 
within 76m (250 ft) of an intersection. Crash prediction models were estimated for angle, 
head-on, rear-end and sideswipe (both same direction and opposite direction) crashes. 
The crashes represent the lower level of the hierarchy, while the intersection at which the 
crash occurred represents the higher-level of hierarchy or cluster. All dependent variables 
were dummies and are presented in Table 11 below. 
 

Table 11: Dependent variables 
Dependent variable Levels of dependent variables 
Angle 1 if angle crash, 0 otherwise 
Head on 1 if head-on crash, 0 otherwise 
Rear-end 1 if rear-end crash, 0 otherwise 
Side same direction  1 if sideswipe crash (same direction), 0 otherwise 
Side opposite direction 1 if sideswipe(opposite direction) crash, 0 otherwise 

5.1.1 Explanatory variables 

Data on crash-level and intersection-level characteristics were collected. The crash-level 
characteristics included a clear weather indicator, a surface condition indicator, a daylight 
indicator, a curve indicator and a grade indicator. The intersection-level characteristics 
comprised of a shoulder indicator, a signal indicator, a driveway indicator and an 
intersection angle indicator. The variables collected in each category and the directions of 
their effects are presented in Table 12 below. 
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Table 12: Explanatory variables in each category  
Category of 
explanatory 
variables 

Variable levels Effect 
Causes more 
accidents 

Angle crash model 
Clear weather 
indicator 

1 if crash occurred during clear 
weather condition, 0 otherwise 

+ Clear weather 

Surface condition 
indicator 

1 if crash occurred on a wet road-
surface, 0 otherwise 

- 
Not wet surface 
condition 

Daylight indicator 
1 if crash occurred during  
daylight, 0 otherwise 

+ Daylight 

Curve indicator 
1 if crash occurred on a 
 horizontal curve, 0 otherwise 

+ Horizontal curve 

Signal indicator  
1 if signalized intersection, 0 
unsignalized intersection 

- 
Unsignalized 
intersection 

Rear-end crash model 

Daylight indicator 
1 if crash occurred during 
 daylight, 0 otherwise 

+ Daylight 

Signal indicator  
1 if signalized intersection, 0 
unsignalized intersection 

+ 
Signalized 
intersection 

Sideswipe same direction model 

Curve indicator 
1 if crash occurred on a 
horizontal curve, 0 otherwise 

- 
Non horizontal 
curve 

Shoulder indicator  
1 if shoulder exists on either 
major or minor roads, 0 otherwise - 

Absence of 
shoulder exists on 
either major or 
minor roads 

Intersection angle 
indicator  

1 if the degree of intersection 
angle is 90, 0 otherwise 

+ 
Intersection angle 
= 90 

Sideswipe opposite direction model 
Clear weather 
indicator 

1 if crash occurred during clear 
weather condition, 0 otherwise 

- Not clear weather 

Surface condition 
indicator 

1 if crash occurred on a wet road-
surface, 0 otherwise 

- 
Not wet surface 
condition 

Daylight indicator 
1 if crash occurred during 
daylight, 0 otherwise 

- Night time 

Curve indicator 
1 if crash occurred on a horizontal 
curve, 0 otherwise 

- 
Non horizontal 
curve 

Grade indicator 
 

1 if crash occurred on a vertical 
curve, 0 otherwise 

- 
Non vertical curve 

 
Table 13 below provides summary statistics of the intersection crash data. A total of 548 
crashes represent the lower level of hierarchy: 274 (50%) occurred at unsignalized 
intersections and 274 (50%) occurred at signalized intersections while 91 rural 
intersections represent the higher level of hierarchy: 64 unsignalized intersections and 27 
signalized intersections of two-lane roads. 
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Table 13: Summary statistics of the intersection crash data 

 
 
 

Signalized 
intersections 

Unsignalized 
intersections 

 
Variable 

 
Total 

 

 
Number 

 
% 

 
Number 

 
% 

Number of crashes 548 274 50.0 274 50.0 
Number of intersections 91 27 32.3 64 67.7 
Dependent variables 
Angle 239 107 19.5 132 24.1 
Headon  16 8 1.5 8 1.5 
Rearend 144 104 19.0 40 7.3 
Sidesame 33 19 3.5 14 2.5 
Sideopposite 20 8 1.4 12 2.2 
Crash-level characteristics 
Clear 333 177 32.3 156 28.5 
Surface 116 49 8.9 67 12.2 
Daylight 424 229 41.8 195 35.6 
Curve 504 263 48.0 241 44.0 
Grade 208 77 14.1 131 23.9 
Intersection-level characteristics 
Shoulder 67 22 24.2 45 49.4 
Signal 27 27 29.7 0 0.0 
Driveway 26 14 15.4 12 13.2 
Intersection angle  12 10 11.0 2 2.2 

5.1.2 Model structure 

Five separate random intercept binomial logistic models were estimated: one for each 
crash type. The models fitted to the data are well described in Guo and Zhao (2000) and 
are of the form below:  
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ijπ  = probability that a type of crash i will occur at intersection j 

00β  = intercept  

qiw  = vector of intersection-level characteristic q at intersection j 

pijx  = vector of crash-level characteristic p at crash level i at intersection j 

q0β  = regression coefficients associated with intersection-level characteristics 

0pβ  = regression coefficients associated with crash-level characteristics 

ju0  = random effect due to intersection level j 

ju0  ˜ ( )2,0 uN σ  

5.1.3 Results 

The findings obtained are presented in this order: first, results from head-on crash 
model, followed by results from angle crash model, rear-end crash model, sideswipe 
same direction model and lastly the sideswipe opposite direction model. 

5.1.3.1 Head-on crash model 

In the head-on crash model no statistically significant variables were discovered. This is 
attributed to the small number of head-on crashes in the population of crashes (16 head-
on crashes). This was too small to yield statistically meaningful results. 
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5.1.3.2 Angle crash model 

Results from the angle crash model revealed that angle crashes were more likely to occur 
during clear weather conditions relative to other weather conditions such as rainy, snowy 
days, more likely to occur during the daytime compared to the night-time and were more 
likely to occur on horizontal curves compared to straight sections. More angle crashes 
during daylight might be due to higher traffic volumes especially during peak hours 
compared to other times of the day. Angle crashes were less likely on wet road surface 
and at intersections with signals. The random intercept was significant, implying that 
there was evidence of variation in angle crashes between intersections. 
 
The effects of clear weather conditions and daytime are likely to be capturing exposure 
since greater numbers of vehicles pass through the intersections during daytime and 
clear weather. The horizontal curve effect is due to the restricted sight distance. Angle 
crashes in this study represent vehicles turning in the intersection (before or after the 
intersection into driveways) or vehicles entering near the intersection (with horizontal 
curves) from driveways and thus restricted sight distance. On wet road surfaces, drivers 
tend to reduce speeds and drive carefully which reduces crash occurrence.   

5.1.3.3 Rear-end crash model  

Rear-end crashes were more likely during daytime and at intersections with signals. The 
significant random intercept indicated that variation in rear-end crashes exists between 
intersections.  
 
The probability of rear-end crashes is significantly greater at signalized intersections 
compared to unsignalized intersections. This finding is consistent with the results of a 
previous study (Greibe, 2003). Wang et al. (2003) suggested that this might be due to 
the combination of the leading vehicle’s unexpected deceleration by a signal and the 
ineffective response of the following vehicle’s driver to this deceleration. Another 
explanation would be sight restrictions caused by large leading trucks, buses, etc. which 
result in rear-end collisions from a sudden stopping of lead vehicles. 

5.1.3.4 Sideswipe same direction model 

The sideswipe same direction model revealed that crashes occurring on horizontal curves 
(near an intersection) and intersections with shoulders were less likely to result in 
sideswipe same direction crashes. The likely reason is that same direction sideswipe 
crashes are associated with lane changing, which may arise from avoidance of conflicts in 
a busy intersection such as sudden right- and left-turning movements by nearby vehicle 
drivers. Further, intersections with shoulders provide more room for vehicle collision 
avoidance. In contrast, same direction sideswipe crashes were more likely to occur at 
right-angled intersections (i.e. the angle of intersection is 90◦) than at skewed 
intersections. This is probably due to higher volume intersections having less probability 
of being skewed and thus greater exposure. The random intercept was significant, 
indicating variation in sideswipe same direction crashes between intersections. The 
remaining variables were not significant. 

5.1.3.5 Sideswipe opposite direction model 

The sideswipe opposite direction model showed that all crash level characteristics were 
statistically significant variables and were less likely to result in sideswipe opposite 
direction crashes. On the other hand, none of the intersection-level characteristics was 
significant. The random intercept was significant, indicating variation in sideswipe 
opposite direction crashes between intersections. 
 
All of the crash-level characteristics revealed negative relationships sideswipe with 
opposite direction crashes. Sideswipe opposite direction crashes were less likely to occur 
during daytime and clear weather conditions. It is assumed that drivers can determine 
potential conflicts during the daytime more easily, that is, an opposing vehicle’s 
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trajectory is more readily determined and can be constantly tracked. At night-time, in 
contrast, vehicle headlights prohibit the constant tracking of opposing vehicle trajectories 
and so conflicts are reasonably more likely (compared to daylight conditions and 
compared to same-direction sideswipe crashes). In addition, crashes occurring on wet 
roads, horizontal curves and vertical curves were less likely to be involved in sideswipe 
opposite direction crashes. This might be due to the fact that drivers travelling on wet 
roads, horizontal curves, and vertical curves are forced to decelerate their speeds by 
posted speed limit signs or for safety.  

5.1.4 Conclusion and recommendation 

The findings of this study suggest that all types of crashes at rural intersections in 
Georgia were indeed hierarchical in structure. This was observed from the significant 
random intercepts. However, it is not mentioned how well the models fitted the data. 
This means that users of the findings from this study need to be cautious with the 
interpretations since the quality of these models is not known. However, with respect to 
the objective of this review, the results throw light on which variables have a significant 
effect on the number of accidents while taking location specific effects in account. To 
have an idea of the goodness of fit, we suggest comparing the plots of the observed and 
predicted number of accidents (Reurings et al., 2005). 
 
Angle crashes were more likely to occur during clear weather conditions, daytime and on 
horizontal curves compared. Angle crashes were less likely on wet road surface and at 
intersections with signals. Rear-end crashes were more likely during daytime and at 
intersections with signals. The horizontal curves and intersections with shoulders were 
less likely to result in sideswipe same direction crashes and more likely to occur at right-
angled intersections than at skewed intersections. Sideswipe opposite direction crashes 
were less likely to occur during daytime, clear weather conditions, on wet roads, on 
horizontal curves and on vertical curves. 
 
There is need to introduce the hierarchical structure of the data in future investigations 
since random intercepts suggest significant variations in the probability of specific types 
of crashes occurring at intersections. Also, it is recommended to compare effects for 
crash level and intersection level characteristics across crash types rather than assessing 
the effects independently since exposure is constant across crash types. 
 
In addition to variables employed in this study, it is believed that particular types of 
crash outcome probabilities may also be associated with personal characteristics (e.g. 
driver attentiveness, reaction times, vision, aggressiveness, etc.) and vehicle 
characteristics (braking characteristics, mass, steering characteristics, condition of tires, 
etc.). Thus, including these variables into the models may improve the accuracy of the 
prediction models (Kim et al., 2007).  

5.2 Study 2  

Chin and Quddus (2003) applied a random effects negative binomial regression model to 
investigate the relationship between accident occurrences and, geometric, traffic and 
control characteristics of signalized intersections in the Southwestern part of Singapore. 
Accident data from 1992 to 1999 were used in the analysis. They studied a total of 52 
four-legged intersections and 3000 accidents in which 90 were fatal and 150 accidents 
with serious injuries. The response was the total number of annual accidents on each 
road.  

5.2.1 Explanatory variables 

Data were collected with respect to traffic volumes, geometric elements and regulatory 
control measures. The variables considered in each category and their effects are 
provided in Table 14 below. 
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Table 14: Explanatory variables in each category 
Category of explanatory 
variables 

Variable levels Effect 
Causes more 
accidents 

Traffic flow 

Total approach volume from 
loop detectors 

Thousands of vehicles 
(1.416-53.84) + 

Increased total 
approach volume 
from loop 
detectors volume 

Right-turn volume from loop  
detectors 

Thousands of vehicles (0.5-28.78) + 
Increased right- 
turn volume from 
loop detectors 

Cycle time  Seconds *  
Red-time in pedestrian 
crossing  

Seconds * 
 

Number of phases per cycle continuous (2-5) + Large number 
Traffic control 
Approach speed limit  continuous (km/hr) *  
Number of bus stops at 
approach road 

continuous (0-4) + More stops 

Signal control type  Adaptive=1, pre-timed=0 - 
Pre-timed signal  
control 

Existence of surveillance 
camera  

yes=1, no=0 + 
Existence of  
surveillance 
camera 

Geometric design features 
Curvature on the approach 
road  

Yes=1, otherwise=0 * 
 

Approach median width 
greater than 2m  

Yes=1, otherwise=0 + 
Wider approach 
median width 
>2m 

Acceleration section on left 
turn lane Yes=1, otherwise=0 - 

Absence of 
acceleration 
section on left 
turn lane 

Existence of median  yes=1, otherwise=0 *  
Pedestrian refuges  yes=1, otherwise=0 *  
Exclusive right-turn lane  yes=1, otherwise=0 *  

Uncontrolled left-turn lane  yes=1, otherwise=0 + 
Uncontrolled left-
turn lane 

Number of bus bays continuous (0-4) - Fewer bus bays 
Approach road width  continuous (7.2-36m) /  
Distance of pedestrian 
crossing from the intersection  

continuous (64.75-500m) / 
 

Distance of downstream bus 
stop from intersection  

continuous (45.73-495.5m) / 
 

Distance of upstream bus 
stop From intersection  

continuous (5.36-400m) / 
 

Diagonal distance on left-turn 
slip road  

continuous (0-52.5m) / 
 

Intersection sight distance  continuous (65-400)m +  
+ = Positive effect, - = Negative effect, * = Significant (direction of effect unknown), / = Not significant 

5.2.2 Model structure 

A random effects negative binomial model was adopted by introducing a random 
location-specific effects term into the relationship between the expected number of 
accidents ( )itµ  and explanatory variables, itX  of an intersection i in a given time 

period, t  i.e. iitit δµµ =  where iδ  is a random location-specific effects term. To ensure a 

positive value, the term, itµ  can be rewritten as ( )iitiitit uX +== βδµµ exp  where, β is 

the coefficient vector to be estimated and iu  the random effects across locations.  
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In this random effects model, the random effect is added to the negative binomial model 
by assuming that the overdispersion parameter is randomly distributed across groups. 
This formulation is better able to account for the unobserved heterogeneity across 
locations and time. 
 
To avoid multicollinearity between highly correlated variables, only the most significant 
variable was taken from among the highly correlated variables in the model. 
Multicollinearity biases the standard error of the coefficients and as a result wrong signs 
or unlikely magnitudes in the coefficients are obtained. For example, the presence of 
curvature and the intersection sight distance were found to be correlated; the former was 
dropped as it was less significant than the latter. The random effects negative binomial 
regression of the total annual accident frequency on the intersection geometric, traffic 
and regulatory control characteristics was estimated by the maximum likelihood 
algorithm. All explanatory variables in the data set were put in the model and the t-
statistic was used to test the hypotheses that β = 0 for each variable. The insignificant 
ones were dropped one by one. In addition, odds ratios were calculated to facilitate the 
interpretation of the variables.  

5.2.3 Results 

The log-likelihood ratio index and log-likelihood ratio were used to evaluate the model. 
The log-likelihood ratio index was used to test if the model had a good fit. This index 
compares the log-likelihoods of the fitted model against that of the zero model. The log-
likelihood ratio was used to measure how much the explanatory variables in the model 
explained the variation in the response variable (Chin and Quddus, 2003). The log-
likelihood ratio index was found to be 0.318. This indicates that the model fits well. The 
value of the log-likelihood ratio was 0.65, implying that the variables in the model 
explained about 65% of the variations in the number of accidents at the intersections.   
 
Findings indicated that the variables total approach volume in thousand, right-turn 
volume in thousand, uncontrolled left-turn lane, intersection sight distance (m), median 
width greater than 2m, number of bus stops, number of phases per cycle and existence 
of surveillance camera had a positive impact while acceleration section on left-turn lane, 
number of bus bays and signal control type had a negative impact on the total annual 
number of accidents on each road. Also, engineering judgments confirmed the validity 
and practicality of these results. 
 
As total approach volume increases, there are fewer available gaps for the right-turn 
opposing traffic as well as left-turn merging traffic. As a result of fewer turning 
opportunities, drivers may be more willing to take risks when making the turn. In the 
same way, higher right-turn volumes result in more conflicts between right-turn and 
straight-through vehicles.  Several studies, e.g. Kulmala (1995), Abdel-Aty and Radwan 
(2000), Poch and Mannering (1996), have also indicated that traffic volume increases 
accident occurrence. 
 
The uncontrolled lane allows left-turn vehicles to merge into the cross traffic stream. This 
increases the likelihood of accidents, possibly of the sideswipe and head-to-side types. 
One reason is that the uncontrolled lane gives greater opportunities for drivers to merge 
into the cross-stream traffic when the latter has right-of-way.  
 
Intersection sight distance, which ranges from 65 to 400m in the sample, is associated 
with higher accidents. This may seem surprising at first since higher risks are expected 
with restrictive sight distances, as suggested in studies, such as Poch and Mannering 
(1996). However, such cases may be confined to very short sight distances, possibly 
below the observed range in the sample. For the range covered, increases in the sight 
distances may allow drivers to have greater freedom of manoeuvre and may increase 
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their vehicle speeds thus resulting in possibly greater accident frequencies and severity 
risks. Kulmala (1995) also found similar results in his study on four-legged intersections. 
 
Approach median widths greater than 2m were associated with high accidents. This is 
because wider approach median widths allow greater degrees of freedom for right-
turning vehicles. Near the stop line, wider median widths may also create more conflicts 
as the number of conflict points is higher and movements of through vehicles are less 
channelized. 
 
The presence of bus stops near the intersection was found to increase the total accident 
frequency at the intersection. The presence of bus stops decreases the width of the 
approach road, resulting in higher conflicts because standing buses become obstacles to 
the moving traffic. On the other hand, there is a decrease in accident occurrence when 
bays are provided at the bus stops. This is because bus bays separate the stationary 
buses from the other moving vehicles and exposure to accidents is reduced or 
eliminated.  
 
The number of phases per cycle had the biggest positive effect among the traffic control 
factors that affect the safety of intersections. Having a higher number of phases per cycle 
increases the number of accidents. This is not surprising since most accidents occur 
during the phase change periods. In a similar study, Poch and Mannering (1996) found 
that eight-phase signal controls increase rear-end and approach turn accidents. 
 
The presence of a surveillance camera along the approach was found to associate with an 
increase in the total accident frequency on the approach. It may be reasoned that the 
positive correlation may be because these intersections already have high accident rates 
even before the cameras were installed. Further, the surveillance camera may increase 
head-to-rear accidents on the approach due to greater traffic instability. Thus, an overall 
higher accident rate may have resulted from the presence of the camera. 
 
When an intersection is under signal control, the number of long gaps in the opposing 
traffic may be reduced and in turn this forces the traffic to follow a more regular 
discharge pattern with well-defined right-of-way. Consequently, conflicts between traffic 
streams may be reduced and these are generally limited to periods during phase 
changes. This may contribute to reducing cross-traffic accidents and appears to support 
the findings of Poch and Mannering (1996), who found that intersections with signal 
control are safer than those without signal control. 

5.2.4 Conclusion and recommendation 

The log-likelihood ratio index used in this study has the undesirable characteristic that for 
the same data set, it will increase whenever new variables are added to the model. This 
index is intended to identify a point where adding more variables to the model is not 
worthwhile. As a solution, the number of variables in the model could be considered 
through the degrees of freedom to give the adjusted log-likelihood ratio index. This index 
seeks to find subsets of variables for which it is at maximum or so close to the maximum 
that adding more variables is not worthwhile (Kutner et al., 2005). 
 
It was found that increased total approach volumes, increased right-turn volumes, the 
presence of uncontrolled left-turn lane, median widths above 2m, the presence of bus 
stops, intersection sight distance together with the presence of a surveillance camera and 
the number of phases per cycle are associated with a higher total accident occurrence. 
On the other hand, the presence of an acceleration section and the provision of bus bays 
as well as the use of adaptive signal control reduce accident occurrence. 
 
Longer sections on the left-turn lane for acceleration prior to the merge should be 
provided. This is because the acceleration section reduces the speed differential between 
the left-turn merging and cross traffic. This allows vehicles to take up better positions 
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prior to the merge which leads to improvements in safety. Narrower approach median 
widths (≤ 2m) are recommended. This will reduce the degree of freedom for right-
turning vehicles and reduce conflicts near the stop line, thus, a reduction in accident 
occurrence. Bus bays should be provided at the bus stops since bus bays separate the 
stationary buses from the other moving vehicles and exposure to accidents is reduced or 
eliminated. Signal controls should be provided at intersections since they allow the traffic 
to follow a more regular discharge pattern with well-defined right-of-way. This reduces 
conflicts between traffic streams and cross-traffic accidents. 

5.3 Study 3  

Huang et al. (2007) developed a hierarchical binomial logistic model to identify the 
significant explanatory variables affecting the severity level of driver injury and vehicle 
damage in traffic crashes at urban signalized intersections. They used Bayesian inference 
to estimate the effects of the variables. Although these authors claim to have used the 
Bayesian methods, their application is not clearly explained in their study. They just used 
the Bayesian confidence intervals to test the significance of fixed effects’ parameters. The 
significance of the fixed effects could also be obtained without applying the Bayesian 
methods. We feel that a small part of the Bayesian methods were applied and we 
propose that this study should not be considered to a detailed extent as a Bayesian 
application.  
 
The study was carried in Singapore, a heavily urbanized island country with an area of 
about 700 km2 and 3235 km of roads (in 2005). Crash data used in the analysis were 
collected from 2003 to 2005. A total of 19,832 crashes were reported in this period. Of 
these, 4,095 cases occurred at signalized intersections and were used in the analysis. A 
total of 7,840 driver–vehicle units were involved. 
 
Two categorical severity indicators were of interest and they included driver injury 
severity and vehicle damage severity. Driver injury severity was coded as: (a) fatal or 
serious injury, DI(A), (b) slight or no injury, DI(B); and vehicle damage severity was 
coded as: (a) extensive damage, VD(A), (b) slight or no damage, VD(B). To yield a net 
effect estimate of each potential factor on individual severity, a binary dependent 
variable was defined by combining the two severity indicators: (a) DI(A) and VD(A) 
denoted as IS(A), representing high individual severity (b) otherwise is low individual 
severity denoted as IS(B). A summary of severity statistics is given for three years in 
Table 15. 
 

Table 15: Summary of crash severity at signalized intersection by years 

Year DI(A) DI(B) 
% of 

DI(A) 
VD(A) VD(B) 

% of 
VD(A) 

IS(A) IS(B) 
% of 

IS(A) 
2003 39 2622 1.49 491 2170 22.63 508 2153 23.59 
2004 37 2885 1.28 398 2524 15.77 412 2510 16.41 
2005 36 2221 1.62 173 2084 8.30 192 2065 9.30 
Total 112 7728 1.45 1062 6778 15.67 1112 6728 16.53 

DI(A): driver with fatal/serious injury; VD(A): vehicle with extensive damage; IS(A): DI(A) and VD(A); DI(B): 
driver with slight or no injury; VD(B): vehicle with slight or no injury; IS(B): otherwise. 

5.3.1 Explanatory variables 

Data were collected on geometric features, traffic conditions, driver and vehicle 
characteristics. A total of 25 variables were coded for each intersection crash. To avoid 
multi-collinearity as well as wrong signs or implausible magnitudes in the estimated 
coefficients, a correlation matrix for all variables which were hypothesized to relate to the 
severity levels was checked. For the highly correlated variables, only the most significant 
variable was retained in the analysis; for example, weather condition was excluded 
because of its high correlation with road surface. Finally, a total of 10 explanatory 
variables in the crash-level were used, i.e. day of week, time of day, intersection type, 
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nature of lane, road surface, street lighting, road speed limit, vehicle movement, 
presence of red light camera and pedestrian involved. 
 
It should be noted that the correlation coefficients used to check for multicollinearity in 
this study were misused as these coefficients are used when pairs of explanatory 
variables are continuous. For discrete variables as is the case here, other tests such as 
the Fisher’s exact and Chi-Square tests should have been used. Further, the ordinality of 
the variables could have been taken into account, as done by the linear trend test 
(Agresti, 2002). 
 
To explore how driver–vehicle characteristics affected the severity levels, vehicle type, 
driver age, driver gender, involvement of offending party and passenger involved were 
selected. Unfortunately, several vehicle safety features such as airbags and anti-lock 
brakes are not included in the crash dataset. Although those variables may be important 
to affect the individual severity, they are not so useful in Singapore since most vehicles 
were less than 6 years old and are hence equipped with the latest protective features in 
modern cars. Moreover, the strict compulsory annual inspection on all vehicles to ensure 
they are road worthy means that these features are in serviceable conditions. 
 
The definitions of the selected variables are presented in Table 16. All these variables 
were split as groups of dummy variables based on the engineering experiences or 
existing findings in previous studies. For example, vehicle type was categorized as three 
groups of two-wheel vehicle, light vehicle and heavy vehicle, since the vehicle weight had 
been identified relevant to injury severity (Evans and Frick, 1994). Time of the day was 
classified as: day time; if crash occurred at 10 a.m.–5 p.m., Night time; if crash occurred 
at 8 p.m.–7 a.m. and Peak time; if crash occurred at 7 a.m.–10 a.m. or 5 p.m.–8 p.m. 
 
 Table 16: Explanatory variables and their summary statistics 

Variable 
Variable levels 

Effect 
Reduces chances of 

drivers’ severity 

Day of week If crash at weekend = 1, otherwise = 0  /  

Night time vs. Day time  + Night time 
Time of day 

Peak time vs. Day time - Day time 
X vs. Other types /  

Intersection type 
T/Y vs.  Other types + T/Y intersections 
Single lane vs. Centre lane  /  
Left-most lane vs. Centre lane  /  Nature of lane 
Right-most lane vs. Centre lane  + Right-most lane 

Road surface  If road surface is dry = 0, otherwise = 1  /  

Street lighting  If street lighting is fine = 0, otherwise = 1  - 
Bad condition of street 
lighting 

Presence of red 
light camera 

If a red light camera is present = 1, 
otherwise = 0 

+ 
Red light camera at 
risky intersections 

Pedestrian 
involved  

If passengers involved = 1, otherwise = 0 - 
Passengers not 
involved 

Two-wheel vehicle vs. light vehicle + Two-wheel vehicle 
Vehicle type 

Heavy vehicle vs. light vehicle - Light vehicle 
≤25 vs. 26–45  + ≤25 
46–65 vs. 26–45 /  Driver age 
>65 vs. 26–45 + >65 

Involvement of 
offending party  

If driver is likely at fault = 1, otherwise = 0  + Drivers at fault 

+ = Positive effect, - = Negative effect, * = Significant (direction of effect unknown), / = Not significant 

5.3.2 Model structure 

In this section, the model structure and inference are described. A description of the 
hierarchical binomial logistic model is given first, this is followed by the Bayesian 
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inference and an assessment of random effects using intra-class correlation coefficient is 
finally discussed. 

5.3.2.1 Hierarchical binomial logistic model 

Crash was considered as cluster (level 2) and there were a number of sub-clusters (level 
1) per cluster, i.e. driver–vehicle units involved in a crash. For the development of the 
hierarchical binomial logistic model, a similar methodology was used as in section 5.1 
study 1 (Kim et al., 2007). The only difference is that in the present study crashes are at 
the higher-level of hierarchy (clusters) and driver–vehicle units are at the lower-level of 
hierarchy (sub-clusters).  

5.3.2.2  Bayesian inference 

In Bayesian models, given model assumptions and parameters, the likelihood of the 
observed data are used to modify the prior beliefs of the unknowns, resulting in the 
updated knowledge summarized in posterior densities. Hence, the distinctions between 
fixed and random effects disappear since all effects are now considered random. In case 
prior information for the model unknowns is not known, uninformative priors were 
assumed for all regression coefficients. These priors were assumed to follow normal 
distributions, (0, 1000), and the variance of the normally distributed random effects was 
assumed to follow an inverse Gamma distribution (0.001, 0.001). The model was 
computed via the Gibbs sampler, a Markov chain Monte Carlo (MCMC) technique (Gilks et 
al., 1995) using Win BUGS software (Spiegelhalter et al., 2003a). The 95% Bayesian 
confidence interval (95% BCI) was used to examine the significance of explanatory 
variables, which provides probability interpretations with normality assumption on 
unknowns and confidence interval estimations (Gelman et al., 2003). The coefficient 
estimations were considered significant if the 95% BCIs of their odds ratios did not 
include “1”. In addition, engineering judgment confirmed the validity and practicality of 
the sign of each variable. 

5.3.2.3 Assessment of random effects using intra-class correlation coefficient 

An intra-class correlation coefficient ρ (ICC) examines the proportion of specific crash-
level variance (level 2) in overall residual variance (Jones and Jorgensen, 2003; Kim et 
al., 2007). Since the logistic distribution for the individual-level (level 1) residual implies 

a variance of 29.33/2 =π , it is inferred that for a two-level logistic random intercept 

model with an intercept variance of 20
2τ  , the ICC for between-crash residual is given by  

the expression below. 
 

 
3/22
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2
20

πτ
τρ
+

=  

 
The ICC is an indicator of the magnitude of the within-crash correlation. A value of ρ 
close to zero means that there is a very small variation between the different crashes, 
indicating that an ordinary binomial model may be adequate for the data. On the other 
hand, a relative large value of ρ implies a favour for hierarchical model. 
 

In this study, the magnitude of the between-crash variance, 2
20π  was 1.34. Hence, the 

ICC was obtained as 0.3. This means that 30% of the unexplained variations in individual 
severity resulted from between-crash variance, which suggests the use of a hierarchical 
model structure.  If an ordinary binomial model was used, the results would be biased. 

5.3.3 Results 

The results obtained from the technique applied in section 5.3.2 are explained in this 
section. The results indicated nine significant variables and they included time of the day, 
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intersection type, nature of lane, street lighting, presence of red light camera, pedestrian 
involved, vehicle type, driver age and involvement of offending party. 
 
The time of crash occurrence was categorized into three periods, i.e., day time (10 a.m.–
5 p.m.), night time (8 p.m.–7 a.m.) and peak time (7 a.m.–10 a.m. or 5 p.m.–8 p.m.). 
Compared with crash occurrences during day time, crashes which occur at night time had 
a higher chance of high severity.  This finding is consistent with Simoncic (2001) who 
found that crashes at night were more serious than those during daytime. This may be 
expected since speeding and alcohol use resulting in higher crash severity are more likely 
at night. Also, the high probability of high severity in night time is consistent with 
previous studies for severities of motorcycle crashes (Quddus et al., 2002) and single 
vehicle crashes (Rifaat and Chin, 2005) in Singapore. Furthermore, chances of high 
severity during peak time were found to be lower compared to crashes during day time. 
It can be reasoned that due to the higher traffic volume, the vehicle speeds during peak 
time are considerably reduced compared to off-peak time, hence resulting in lower crash 
severity.   
 
It was found that crashes occurring at T/Y type intersections increase the chances of high 
severity in contrast to other type of intersections. Vehicles merging into the major road 
from the minor road at T/Y type of intersections have a higher probability to collide with 
going-through vehicles on the major road, which may result in serious crashes. In 
addition, a shorter sight distance, commonly associated with T/Y type intersections, may 
also cause more severe crashes. 
 
Another significant geometric factor was the nature of lane, where the right-most lane 
(left driving) increased the chance of severe crashes compared to the central lane. This 
result is consistent with the Khorashadi et al. (2005) who found that for right driving, if 
the location of collision is on the left lane, the likelihood of injury severity increased. The 
higher severity risk may be caused by higher speed on right-most lane than on other 
lanes.  
 
Also, bad street lighting condition increased the chances of severe crash. This result was 
expected because drivers may have more reaction time and better perception ability on 
crash risk in good street lighting environments. This finding implies that improving the 
street lighting can substantially improve the safety condition at intersections. 
 
The presence of red light camera was associated with higher severity level. This may 
seem surprising compared to findings in many studies in which the red light camera was 
found to reduce crash frequencies, as well as relieving the crash severity e.g. Huang et 
al., (2006). Although red light camera itself may not increase the risk of severe crashes, 
the result from the current study is associated with high risk intersections. In particular, 
intersections with red light camera may have already been placed in sites with more 
severe crashes since traffic authorities always install cameras at hazardous intersections. 
Moreover, this result supports the findings by Chin and Quddus (2003), where the 
presence of a surveillance camera was found to be associated with an increase in the 
total crash frequency at intersections.  
 
The involvement of pedestrians reduced the chances of drivers’ severity. This is 
reasonable since pedestrians, are easier to injure than drivers in the collisions. It is also 
supported by Chang and Wang (2006), who found that pedestrians were more likely to 
have higher risks of being injured than other types of vehicle drivers in traffic crash.  
 
Vehicle type was classified as two-wheel vehicle, light vehicle and heavy vehicle. It was 
found that two-wheel vehicles increased while heavy vehicles reduced individual severity 
compared to light vehicles. The severity risk in two-wheel vehicle (e.g. motorcycles) is 
expected as two-wheel riders do not have the facility of safety protections that are 
available in light vehicle (e.g. cars), such as seatbelt, airbag etc. Again the two-wheel 
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riders may be thrown off from the vehicle at the time of collision while in the case of car 
crashes this may rarely happen. This result agrees with that of Kocklelman and Kweon 
(2002) who found that riding a motorcycle is causing more severe injury than driving a 
car.  
 
Driver age was found to be significant.  Both the young group (≤ 25 years) and the aged 
group (> 65 years) increased individual severity. It is likely because young drivers drive 
more recklessly (Rifaat and Chin, 2005; Kocklelman and Kweon, 2002) while aged 
drivers have relatively weak risk detecting and reacting abilities. Another reason for 
young drivers to be involved in severe crashes may be that they represent a large 
proportion of riders of two-wheel vehicles, which have been proven to be associated with 
a higher risk of being involved in more severe crashes (Rifaat and Chin, 2005; Quddus et 
al., 2002). Furthermore, as indicated by Rifaat and Chin (2005), decrease of visual 
power, deterioration of muscle strength and reaction time may be responsible for the 
aged drivers to be involved in severe crashes. Yan et al. (2005) also found that drivers 
under 26 years of age had a higher risk of accident involvement because they are willing 
to take on risks. 
 
Lastly, the involvement of an offending party significantly affected crash severity. The at-
fault driver–vehicle unit had a higher chance of individual severity than the not-at-fault 
party.  

5.3.4 Conclusions and recommendation 

In this study, no statistical test on the goodness of fit of the fitted model was provided. 
However, Huang et al. (2007) suggest that the adequacy of the model can be checked by 
assessing the underlying assumptions of the hierarchical binomial logistic model. The 
model is considered fitting if the probability plots do not deviate strongly from normality, 
if there is a constant variance, if the residuals average to zero or close to zero and if the 
independence assumption is satisfied. Further, we also suggest the comparison of the 
observed and predicted accident counts (Reurings et al., 2005). 
 
The estimation of random effects using intra-class correlation showed that 30% of the 
unexplained variation in severity level resulted from between-crash variance. Therefore, 
it is useful to account for the severity correlation of driver–vehicle units involved in the 
same multi-vehicle crashes.  
 
The study identified nine significant variables using 95% Bayesian confidence interval. 
Among these were time of the day, intersection type, nature of lane, street lighting, 
presence of red light camera and pedestrian involved.  
 
In particular, it was found that crashes occurring in peak time, in good street-lighting 
condition and in the case of pedestrians involved were associated with lower severity 
while those occurring in night time, at T/Y type intersections, on right-most lane and in 
the presence of red light cameras had higher chances of being severe. Vehicle type, 
driver age and involvement of offending party were also found to affect severities of 
driver injury and vehicle damage significantly. Specifically, results indicated that heavy 
vehicles have a better resistance on serious injury or extensive damage, while two-wheel 
vehicles, young or aged drivers, with the involvement of an offending party have a higher 
risk of being severe. 
 
The higher chance of the at-fault driver–vehicle unit to be involved in individual severity 
provides evidence for educating drivers to keep away from risk-taking manoeuvres. Also, 
the lower severity of crashes occurring in good street-lighting condition implies that 
improving the street lighting can substantially improve the safety condition at 
intersections. 
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5.4 Summary of random effects models 

Random effects models assume that intersection accidents’ data are hierarchical in 
nature, with accident-level and intersection-level hierarchies. Hierarchical structure is 
basically a statistical description of a data structure that is characterized by correlated 
responses within hierarchical clusters. Random effects models are justified by the 
presence of correlation within clusters; otherwise population average based modeling 
methods are appropriate (traditional logistic regression, negative binomial, Poisson, 
linear regression, etc.). The hierarchy in these intersection accident data are proposed as 
follows. The accidents themselves represent the lowest level of the hierarchy, while the 
intersection at which the accidents occurred represents the higher-level hierarchy or 
cluster. It is reasonable to claim that correlation exists among accidents occurring at the 
same intersection, since these accidents may share unobserved or unrecorded 
characteristics of the intersection. These unobserved factors might include poor 
pavement condition, low pavement friction, poor reflectivity of road signs or lane striping, 
excessive distractions at the site, nearby drinking establishments, heavy animal 
populations, etc. Because of such factors, accident frequencies and types observed at a 
particular location may be correlated. The correlation within clusters (higher-level units) 
violates the assumption of residual independence assumed in population average based 
methods. If significant correlation within clusters is left unchecked, that is, without 
considering hierarchy, the consequence is biased parameter estimates and biased 
standard errors (Kim et al., 2007). This leads to misleading conclusions on accident 
occurrence. To overcome these problems, random effects models are used to capture all 
unobserved heterogeneity. 
 
From the previous studies, it seems that traffic flow, traffic control, geometric, driver 
characteristics, vehicle types and environmental characteristics contribute to the risk of 
accidents at intersections. Thus, it is advantageous that future research of risk analysis 
at road intersections considers these characteristics. 
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6.  CART 

The CART technique is used to group accidents according to the intersection and accident 
types. This technique involves splitting the data into branches on a tree diagram based 
on given data. This chapter briefly describes the classification and regression tree 
technique (CART). One study has been described to illustrate this technique. 

6.1 Study 1  

Lau et al. (1989) developed a three-level accident prediction model based on a grouping 
and classifying technique called Classification and Regression Trees (CART) for urban 
intersections. This methodology included a three-level prediction procedure with a “tree” 
structure for easy interpretation and applications. It also involved an adjustment 
procedure to adjust for various reporting levels of property damage only accidents in 
different police authorities. Table 17 below presents an overview of the application of 
APMs developed in this study. 
 

Table 17: An overview of the application of accident prediction models 
 Models 
 Injury PDO Fatal 
 
Adjust under-reporting 

 
N.A 

 
YES 

 
N.A 

 
Level 1  
 
Traffic intensity 

 
Linear relation 
by least square 

 
 

N.A 

 
Level 2 
 
Control, Design & Environmental 
factors 

 
 

Tree by CART 

 
Level 3 
 
Individual accident history 

 
Linear combination 

history + group 

N.A = Not applicable, PDO = Property damage only 
 
Level 1: Generation of the base model 
At this level of analysis, only traffic intensity expressed in millions of vehicles entering an 
intersection from all approaches is required for the injury and PDO accident models. A 
constant is used for fatal accidents at this level of analysis. The following equation was 
derived to estimate the forecasted number of injury accidents per year (FIACCYR) at an 
intersection with the number of vehicles entering an intersection from all approaches per 
year (MVYR). 
 
FIACCYR = 0.61856 + 0.16911*MVYR.  
Results from this equation only provide a crude estimate of the safety of intersections. 
 
Level 2: Grouping intersections by CART 
For this analysis, detailed data such as design, control and environmental features of the 
intersection is required. Estimates from this analysis are refinements of estimates from 
Level 1 using this detailed data.  
 
The CART program is used to analyse the residuals of the base model of injury and PDO 
accidents and to group intersections with similar accident patterns. This grouping of 
intersections is referred to as Level 2 prediction. 
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Level 3: Adjustment by Accident History 
In addition to information from Levels 1 and 2, the individual accident history of an 
intersection is also required for an analysis done at this level.  
 
Results from Level 3 represent future safety estimates of existing intersections. These 
estimates are based on the concept of a linear combination of the accident history of an 
intersection and the accident history of a group of intersections. The following equation is 
used to predict the level of safety of an individual intersection: 
 

xmEaZ *)1()(* α−+=  with 
 

1

)(
)(1(

−

⎥
⎦

⎤
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⎡ +
=

mE
mVarα  

 
)(mE  = the expected number of accident 

x   =  the accident count 
 
In summary, the CART technique is used to cluster the number of accidents based on a 
particular criterion.  For example, the technique can be used to obtain the number of 
accidents for each injury severity, the number of accidents for each intersection type and 
etc. 
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7.  DISCUSSION AND CONCLUSION  

The aim of this report was to review APMs used in literature to identify which variables 
have a significant effect on accident occurrence so that we can have a starting point for 
further research. Having identified the significant variables, our next step is the 
development of an appropriate accident prediction model for road intersections in 
Flanders. Several techniques have been reviewed including multiple logistic regression, 
multiple linear regression, Poisson and negative binomial regression models, random 
effects models and the CART technique. In this chapter, these are discussed in order to 
derive the most appropriate technique and significant explanatory variables in assessing 
the safety of road intersections.  
 
The multiple logistic regression technique described in chapter two is used to analyze 
only accident binary outcomes. However, there are many studies in which accident 
outcomes are continuous. In such cases, multiple linear regression analysis which 
describes relationships between continuous outcomes and explanatory variables are more 
credible. Although multiple linear regression models are used widely in traffic accident 
studies, they have limitations to describe adequately the random, discrete and 
nonnegative accident events. These include the presence of undesirable statistical 
properties, such as the possibility of negative accident counts, and the lack of 
distributional properties, such as the condition of normally distributed accident 
occurrence (Chin and Quddus, 2003). For such reasons, there is need to employ 
techniques which can sufficiently describe discrete and nonnegative accident events. 
Such techniques include Poisson regression and negative binomial regression. 
 
Since accident occurrences are unavoidably discrete and more likely random events, the 
Poisson regression models appear to be more suitable than the multiple linear regression 
models. However, these models have potential problems; one constraint is that the mean 
must be equal to the variance. If this assumption is not valid, that is, the accident data 
are significantly overdispersed (the variance is much greater than the mean), the 
standard errors usually estimated by the maximum likelihood method will be biased and 
the test statistics derived from the model will be incorrect. This results in incorrect 
estimation of the likelihood of accident occurrence (Chin and Quddus, 2003). 
 
To solve the problem of overdispersion, the negative binomial distribution has been 
employed instead of the Poisson. To establish the negative binomial regression model, an 
overdispersion parameter is introduced into the relationship between the mean and the 
variance. By relaxing the condition of mean equal to variance, the negative binomial 
regression models have more desirable properties than the Poisson to describe the 
relationship between accident occurrence and road characteristics (Chin and Quddus, 
2003). However, if there is no overdispersion, the Poisson regression models are also 
suitable.  
 
There are intersections at which zero accidents are recorded on a number of occasions. 
When there is a zero accident record over a period of time, it may indicate either that the 
intersection is nearly safe, or that the zero record is a chance occurrence or accidents are 
not reported. Since the standard Poison and negative binomial models do not help to 
identify accident contributory factors in this case, it becomes necessary to model the two 
states. Moreover if the two states are modelled as a single state, the estimated models 
may be biased as there may be an overrepresentation of zero accidents. Hence the 
presence of excess zeros in the accident count data may be mistakenly regarded as the 
presence of overdispersion in the data set, which arises because of an incorrectly 
specified model. To handle count data with excess zeros, the zero-inflated negative 
binomial or Poisson models are employed (Kumara and Chin, 2003). This helps to 
distinguish safe intersections with little probability of accident occurrence from those with 
zero accident record due to chance or when accidents are not reported.  
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Despite the desirable properties of negative binomial regression models, they presuppose 
that the accident counts at any intersection are independent. Negative binomial models 
ignore the correlation and treat within-intersection accidents the same as between-
intersection accidents, thereby producing biased results. However, as the data contain 
location-specific effects and are likely to be serially correlated, it is suggested to consider 
techniques which adjust for variations in accident counts due to locations. Such 
techniques are random effects models (Kim et al., 2007). In addition, multiple logistic 
regression, multiple linear regression, negative binomial and Poisson regression models 
assume independent residuals across units. These models are to some extent 
problematic to estimate when the data structure is characterized by correlated responses 
within clusters (intersections). The correlation within clusters violates the assumption of 
residual independence made by earlier statistical methods. Due to serial correlation in 
the accident data, non-hierarchical models seem to be inappropriate since accident data 
variables are likely to have location-specific effects. Further, if significant correlation 
within clusters is not modelled, the consequence is attenuation of effects (parameter 
estimates tending toward zero), biased parameter estimates, under estimated standard 
errors and incorrect statistical inferences. To overcome these problems, a more suitable 
alternative are random effects models which account for correlation within clusters (Kim 
et al., 2007). As a result, random effects models are a more plausible choice if data are 
serially correlated. 
 
Further, random effects models assume that intersection accidents’ data are hierarchical 
in nature, with accident-level and intersection-level hierarchies. Hierarchical structure is 
basically a statistical description of a data structure that is characterized by correlated 
responses within hierarchical clusters. The hierarchy in these intersection accident data is 
proposed as follows. The accidents themselves represent the lowest level of the 
hierarchy, while the intersection at which the accidents occurred represents the higher-
level hierarchy or cluster. It is reasonable to claim that correlation exists among 
accidents occurring at the same intersection, since these accidents may share 
unobserved or unrecorded characteristics of the intersection. These unobserved factors 
might include poor pavement condition, low pavement friction, poor reflectivity of road 
signs or lane striping, excessive distractions at the site, nearby drinking establishments, 
heavy animal populations, etc (Chin and Quddus, 2003). Because of such factors, 
accident frequencies and types observed at a particular location may be correlated. To 
take into account this correlation, random effects models are used to capture all 
unobserved heterogeneity (Chin and Quddus, 2003). 
 
The techniques discussed so far are not used to classify accidents according to a 
particular criterion. This necessitates the use of the CART technique. This is used to 
classify the number of accidents in different groups based on a given rule, for example, 
according to intersection type.  
 
Different APMs for different intersection types and accident types have been developed 
by several authors. Generally, it is recommended that fitting separate models for 
different intersection types and accident types gives a better fit and description of the 
data than one model for all intersection types. Provided data on intersection types and 
accident types are available, it is recommended to fit disaggregated models rather than 
aggregated models (Reurings et al., 2005; Turner and Nicholson, 1998). For example 
Vogt (1999) fitted separate models for three-leg intersections and four-leg intersections 
(chapter 4, section 4.5). 
 
Several authors considered different types of intersections on rural and urban roads. 
Among the considered intersections on urban roads were four-arm stop controlled, three-
arm stop controlled, four-arm signalized intersections, four-arm unsignalized, three-arm 
unsignalized, four-arm unsignalized but stop controlled, three-arm unsignalized but stop 
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controlled intersections and roundabouts. For rural roads, four-leg, three-leg, signalized, 
two-lane intersections and roundabouts were studied. 
 
Although similar techniques were applied on rural and urban road intersections, a 
different model structure was used. Nevertheless, the majority of the models discussed 
on rural and urban road intersections were of the form given below and based on this 
report, we would prefer a model for intersections to be of this form. 
 

∑= ii x
MAMIoi eQQ ββββµ *** 21  with 

 

iµ  = expected number of accidents at intersection type i 

MAQ  = number of vehicles entering an intersection from the major road 

MIQ  = number of vehicles entering an intersection from the minor road 

ix  = vector of values of risk factors, i , other than number of vehicles  

oβ  = intercept 

21 ,ββ   = effect of traffic volume on the expected number of accidents and is modelled as 
elasticity  

iβ  = parameters to be estimated and represent the effect of risk factors, i, on the        

expected number of accidents other than traffic volume 
 
The elasticity shows the percentage change in the expected number of accidents 
associated with a 1% change in traffic volume. The effects of risk factors that influence 
the probability of accidents given exposure are modelled as an exponential function, that 
is as e (the base of natural logarithms) raised to the sum of the product of 
coefficients, iβ , and values of the explanatory variables, ix , denoting risk factors. The 

choice of an exponential form is logical in the view of the characteristics of the Poisson 
distribution since accident counts are positive and rare events at intersections (Reurings 
et al., 2005). The preferred form of the model is population average based but it can be 
extended to a hierarchical form if random effects are believed to provide valuable 
information. This can be done by incorporating a random intercept in the model or a 
random slope if the study is longitudinal. 
 
Moreover, the choice of the model depends on the nature of the response and the 
objective of the research. If interest is in making inference on the entire population, 
population average based models (chapters 2, 3 and 4) are suitable. In contrast, 
researchers interested in location specific inference would opt for random effects models 
(chapter 5). Researchers who wish to group accidents in different types the CART 
technique is a plausible choice.  
 
Different methods were used to assess the goodness of fit of the reviewed APMs models. 
They include the deviance statistic, the Pearson Chi-square statistic, the Freeman-Tukey 
index, the adjusted R-square, log-likelihood ratio index and log-likelihood ratio. The 
deviance and the Pearson Chi-square statistics compare the fitted model versus a 
saturated model. The degree of freedom for these statistics is the difference between the 
parameters in the saturated model and the fitted model. The fitted model fits the data if 
these statistics are greater than the values from the Chi-square tables (Agresti, 2002). 
The log-likelihood ratio index was used to test if the model had a good fit. This index 
compares the log-likelihoods of the fitted model against that of the zero model. The log-
likelihood ratio was used to measure how much the explanatory variables in the model 
explained the variation in the response variable (Chin and Quddus, 2003). The Freeman-
Tukey index and the adjusted R-square are used to describe how much of the variation in 
the response is explained by the explanatory variables in the model. It is hard to 
compare the goodness of fit of the discussed models because different measures are 
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used and the fitted models had different objectives. Further, the tests for some models 
were not mentioned.  However, all models for which goodness of fit tests were mentioned 
fitted well. We would like to comment that tests for goodness of fit are vital and should 
be done and reported for all models since they provide information on how good the 
fitted model is and the quality of the results. 
 
There are several possibilities for explanatory variables. The variables annual average 
daily traffic (AADT) on minor roads, AADT on major roads, total vehicle counts and 
pedestrians crossing all arms (AADT), lighting and signal timing were used in almost all 
models and were statistically significant. Therefore, it is desirable that APMs for 
intersections include these variables. Generally traffic flow, traffic control, geometric 
characteristics, driver characteristics, land use and, vehicle types and features were 
statistically significant. 
 
The selection of explanatory variables appears to depend on data availability. A first step 
is to include variables that have been found in previous studies to exert a major influence 
on the number of accidents, are not very highly correlated with other explanatory 
variables included and can be measured in a valid and reliable way  (Reurings et al., 
2005).  
 
It appears that in majority of the reviewed studies, the explanatory variables were 
included in the models without a variable selection procedure. This implies that the 
selection of the variables is done on a subjective basis which might lead to biased results. 
Thus, for future research, we would like to recommend the use of variable selection 
procedures to minimize such bias and misleading results.  A number of variable selection 
procedures are used including adjusted R-square, Mallow’s Cp, the prediction sum of 
squares (PRESS), etc. (Kutner et al., 2005), the likelihood ratio test, the Wald test, etc. 
(Agresti, 2005) and many other tests can be used depending on the kind of model being 
fitted and its objective. 
 
The list below provides all explanatory variables used in one of the discussed models. The 
number in brackets indicates the number of studies in which the variable was used and 
was statistically significant. A list of explanatory variables for urban intersections is 
presented first in section 7.1 after which that of rural intersections is given in section 7.2. 

7.1 Significant explanatory variables for urban intersections 

The variables have been grouped into traffic flow, traffic control, geometric 
characteristics, driver characteristics, vehicle type/features, environmental factors and 
land use. 

7.1.1 Traffic flow 

AADT on minor road (5) 
AADT on major road (5) 
Total vehicle counts and pedestrians crossing all arms (AADT) (4) 
AADT on intersecting roads per lane (2) 
Total left-turn volume in AADT (1) 
Right-turn volume from loop detectors (1) 
Turning vehicles (2) 
Pedestrian-bicycle interaction (1) 
Pedestrian involved in accident (1) 

7.1.2 Traffic control 

Major road left-turn lane road (controlled) (1) 
Major road left-turn lane road (uncontrolled) (1) 
Major road left-turn prohibition (2)  



 

Steunpunt Mobiliteit & Openbare Werken   RA-MOW-2008-004 
Spoor Verkeersveiligheid 

62

Permissive right turn (1)  
Access control on major road (2) 
Design speed of major road (1) 
Spot speeds of vehicles approaching the intersection along the major road (1) 
Approach speed on minor road (1) 
Approach speed limit at intersections (2) 
Signal timing (4) 
Signal phasing (3) 
Camera installed (1) 
Signal control type (1) 
Signal indicator (2) 
Number of bus stops at approach road (1) 
Traffic control of level 2 (yield on minor road) 
Traffic control of level 3 (No control on minor road) 

7.1.3 Geometric characteristics 

Average lane width on major road (3) 
Average lane width on minor road (1) 
Average width of the minor road (1) 
Total number of lanes on all intersecting roads (2) 
Number of lanes on major road (3) 
Number of lanes on minor road (2) 
Presence of median on major road (3) 
Average width of median on major road (1) 
Approach median width >2m (1) 
Major road right-turn channelization (2) 
Uncontrolled left-turn road slip (1) 
Minor road right-turn channelization (2) 
Right-turn channelization (1) 
Controlled/exclusive right-turn lane (1) 
Lighting (4) 
Outside shoulder width of major road (1) 
Outside shoulder width of minor road (1) 
Pedestrian facility/ refuges (1) 
Sight distance from stop-line (3) 
Horizontal curve (2) 
5% gradient (1) 
More than 5% approach gradient (1) 
Acceleration section on left-turn lane (2) 
Number of bus bays (1) 
Divided/undivided highway (1) 
Intersection type (1) 
Nature of the lane (1) i.e. single lane, left-most lane, right-most lane, centre lane. 

7.1.4 Driver characteristics 

Alcohol/drug use (1) 
Age (1) 
Residence of driver (1) 
Gender (1) 

7.1.5 Vehicle type/features 

Passenger car (1) 
Van (1) 
Light trucks (2) 
Heavy vehicles (2) 
Two-wheel vehicle (1) 
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7.1.6 Environmental factors 

Accident time (2) 
Wet road surface condition (1) 
Urban/rural roads (1) 

7.1.7 Land use 

Land use category (1) 

7.2 Significant explanatory variables for rural intersections 

Similar categorization as in section 7.1 has been done for explanatory variables of rural 
intersections, that is, traffic flow, traffic control, geometric characteristics, driver 
characteristics, vehicle type/features and environmental factors. 

7.2.1 Traffic flow 

AADT on minor road (3) 
AADT on major road (2) 
Total vehicle counts and pedestrians crossing all arms (AADT) (1) 
Percentage of traffic turning left on the major road (1) 
Percentage of incoming minor traffic turning left during peak hours (1) 
Percentage of all incoming traffic during peak hours (1) 
Average absolute percent grade change per 100m along the major and minor road 
approaches, within 244m of distance from the centre of the intersection (1) 

7.2.2 Traffic control 

Speed limit on major road (2) 
Speed limit on minor road (2) 
Design speed of major road (1) 
Type of access control on major road (1) 
Major road left-turn prohibition (1) 

7.2.3 Geometric characteristics 

Average lane width on major road (1) 
Skew angle (1) 
Intersection angle = 90o (1) 
Number of lanes on all intersecting roads (2) 
Number of lanes on major road (2) 
Presence of right-turn lane on major road (1) 
Presence of left-turn lanes on major road (2) 
Sight distance (3) 
Existence of a horizontal curve (2) 
Functional class of major road (1) 
Outside shoulder width on major roads (2) 
Outside shoulder width on minor roads (1) 
Lighting (1) 
Intersection on hilltop along major road (1) 
Minor approach width (1) 
Minor road descends to intersection (1) 
Vertical curve on major and minor roads (3) 
Existence of pedestrian facility on minor road (1) 
Median width of major road (1) 
Major road right-turn channelization (1) 
Crossroad right-turn channelization (1) 
Presence of major road left-turn channelization (1) 
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Presence of traffic islands (1) 
Existence of painted islands on major road (1) 

7.2.4 Driver characteristics 

Alcohol/drug use (1) 
Age (1) 
Driver residence (1) 
Gender (1) 

7.2.5 Vehicle type/features 

Passenger car (1) 
Van (1) 
Light trucks (1) 
Heavy vehicles (1) 

7.2.6 Environmental factors 

Type of terrain (1) 
Clear weather (1) 
Daylight (1) 
Wet surface condition (1) 
Divided/undivided highways (1) 
Accident time (1)  
Urban/rural roads (1) 
 
Despite the significance of some measures in the reviewed studies, their effectiveness is 
not consistent: it might increase, decrease or have no impact at all on the number of 
accidents. Below, we explain the likely cause of this inconsistency in some of the results 
across the studies. Nevertheless, the genuine reasons of these results are not well-
known.  
 
AADT 
Increased volumes imply greater interaction between vehicles and perhaps more 
conflicts. Furthermore, as volumes increase, there are fewer gaps in traffic for right-
turning as well as left-turning drivers. This results in increased accidents due to greater 
exposure. On the other hand, putting more vehicles on roads which are already 
characterised by many vehicles results in limited space to drive. The drivers tend to 
reduce speed and this results in fewer chances to collide and thus fewer accidents. This 
might explain why AADT increases accidents in some studies while in others it decreases 
them. Nonetheless, increased AADT on roads has been revealed to increase accidents in 
majority of the reviewed studies.  
 
Presence of surveillance and light cameras 
The camera may be installed at a location where the probability of an accident to happen 
is small. In such cases, the effectiveness of a camera may not be realized. On the other 
hand, a camera can be placed at a location characterised by a high probability of accident 
occurrence which might result in increased accidents. All these scenarios lead to different 
directions of this variable in terms of accidents. As stated before in the text, it is 
important that the locations are chosen at random without considering the accident 
history as this might bias the results and lead to inconsistencies.  
 
Number of lanes 
A possible explanation of the inconsistency is that more traffic lanes lead to higher 
speeds and that changing lanes represents a new hazard. Increased speed can occur 
particularly where the capacity of the road was previously small, but which then becomes 
adequate when the number of traffic lanes is increased. On roads with intersections, the 
crossing becomes wider and more complicated when the number of traffic lanes 
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increases and this results in more accidents at intersections connecting roads with more 
lanes than those connecting roads with fewer lanes. In most of the studies reviewed in 
this report, a higher number of lanes on roads joined at an intersection resulted in more 
accidents. 
 
Curves on intersections 
Horizontal curves cause sight obstruction on the inside of the curves such as buildings 
and a wall which limits stop sight distance and increases the chances of accidents. On the 
contrary, drivers travelling on horizontal curves may experience some uncertainty due to 
a limited sight and reduce speed (Kim et al., 2007). In that case, the occurrence of 
accidents is reduced. 
 
Lighting (daylight and lighting of roads at night) 
A possible reason for the conflicting results of lighting is that during the daylight, there is 
increased exposure due to more traffic. This increases accident occurrence. Further, road 
lighting can increase the number of accidents where collisions with lampposts are 
involved. In addition, some drivers tend to drive fast and aggressive since they can see 
the road clearly, which might increase accident occurrence. On the contrary, seeing the 
road clearly can result in reduced number of accidents as drivers can clearly see the 
obstacles and take appropriate action, hence, the inconsistency in the effect of lighting. 
Daylight and lighting of roads at night increased the number of accidents in almost all the 
studies reviewed in this report.  
 
Presence of median  
The existence of a median on some roads, reduces vision, hinders overtaking and can, if 
constructed using concrete barriers increase exposure resulting in more accidents. In 
urban areas, medians prevent turning manoeuvres at intersections. Also, crossing traffic 
can be reduced in urban areas through the construction of medians.  This lowers the 
chances of accidents and as a result the effect of the presence of medians on the number 
of accidents becomes inconsistent. In this report, the presence of medians reduced the 
number of accidents in most of the studies. 
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