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Zeolites are aluminosilicate minerals with rigid, 3-dimensional crystalline structure consisting 
of a network of interconnected cavities.  The framework aluminum and silicon are bound to 
each other through shared oxygen atoms. The SiO4 units are neutral but the AlO4 results in a 
net negative charge. This negative charge is balanced by mobile cations that are present 
during the formation. 

Mobile cations and water molecules present in the structural framework of zeolite can be 
exchange to other cationic species, such as heavy metals in ion-exchange process.  Another 
special aspect of this structure is that the pore and channel sizes are nearly uniform, allowing 
the crystal to act as a molecular sieve.  

Many other applications of natural zeolites are known. Natural zeolites are used as catalysts 
for example during refining of crude oil. Pütün reported positive effect of natural zeolite on 
bio-oil yield during pyrolysis of cottonseed cake [1]. Miskolczi reported positive effects of 
clinoptilolite on composition of bio-oil and temperature of thermal degradation of 
polyethylene and polystyrene [2]. 

The zeolite under investigation in our study is a natural Slovakian zeolite clinoptilolite with 
empirical formula: (Ca, K2, Na2, Mg)4Al8Si40O96.24H2O. Sludge used in our experiments was 
special treated dried excessive activated sludge from wastewater treatment plant Pardubice.   

Effect of this natural zeolite on flash pyrolysis of sewage sludge will be discussed in this 
presentation. The cracking mechanism of sewage sludge over natural catalyst clinoptilolite 
was investigated by TGA, TG-FTIR and pyrolysis GC-MS. Influence of dose and 
pretreatment procedures of natural zeolite – as calcination and acidification on flash pyrolysis 
were also investigated.  
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