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Abstract  Ubiquitous Knowledge Discovery is a new research area at the
intersection of machine learning and data mining with mobile and distributed
systems. In this paper the main characteristics of the objects of study are
defined. Next, a number of examples from a broad range of application areas
are reviewed and analyzed. Based on this material, important characteristics
of this field are identified and a number of research challenges are discussed.
The purpose of this chapter is to chart the territory, to identify landmarks
and challenges ahead.

2.1 Ubiquitous Knowledge Discovery
2.1.1 Introduction

Knowledge Discovery in ubiquitous environments (KDubiq) is an emerging
area of research at the intersection of the two major challenges of highly
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distributed and mobile systems and advanced knowledge discovery systems.

Today, in many subfields of computer science and engineering, being intel-
ligent and adaptive marks the difference between a system that works in a
complex and changing environment and a system that does not work. Hence,
projects across many areas, ranging from Web 2.0 to ubiquitous computing
and robotics, aim to create systems which are “smart”, “intelligent” , “adap-
tive” etc., allowing to solve problems that could not be solved before. A
central assumption of ubiquitous knowledge discovery is that what seems to
be a bewildering array of different methodologies and approaches for building
smart, adaptive, intelligent systems, can be cast into a coherent, integrated
set of key ideas centered on the notion of learning from experience.

Focusing on these key ideas, ubiquitous knowledge discovery aims to provide
a unifying framework for systematically investigating the mutual dependencies
of otherwise quite unrelated technologies employed in building next-generation
intelligent systems: machine learning, data mining, sensor networks, grids,
P2P, data stream mining, activity recognition, Web 2.0, privacy, user modeling
and others. Machine learning and data mining emerge as basic methodologies
and indispensable building blocks for some of the most difficult computer
science and engineering challenges of the next decade.

The first task is to characterize the objects of study for ubiquitous knowledge
discovery more clearly. The objects of study

1. exist in time and space in a dynamically changing environment,

2. can change location and might appear or disappear,

3. have information processing capabilities,

4. know only their local spatio-temporal environment,

5. act under real-time constraints,

6. are able to exchange information with other objects.

Objects to which these characteristics apply are humans, animals, and,

increasingly, various kinds of computing devices. It is the latter, that form
the objects of study for ubiquitous knowledge discovery.

2.1.2 Dimensions of Ubiquitous Knowledge Discovery Sys-
tems

Mainstream data mining and machine learning is focused centrally on the
learning algorithm. Algorithms are typically treated as largely independent
from the application domain and the system architecture in which the algo-
rithm is latter embedded. Thus the same implementation of a support vector
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machine can be applied to texts, gene expression data, or credit card trans-
actions; the difference is in the feature extraction during pre-processing.

Design Space. Ubiquitous knowledge discovery challenges these indepen-
dence assumptions in several ways. In the further sections it will be argued,
that often the learning algorithms have to be tailored for a specific network
topology characterized by communication constraints, reliability, or resource
availability. Thus when designing a ubiquitous knowledge discovery system,
major design decisions in various dimensions have to be taken. These choices
are mutually constraining each other. Dependencies among them have to be
carefully analyzed. For analyzing the different possible architectures of ubig-
uitous knowledge the design space of ubiquitous knowledge discovery systems
is factored into six dimensions:

e Application Area. What is the real-world problem being addressed?

o Ubiquitous Technologies. What types of sensors are used? What type
of distributed technology is used?

e Resource Aware Algorithms.Which machine learning or data mining al-
gorithms are used? What are the resource constraints imposed by the
ubiquitous technologies? How does the algorithm adapt to a dynamic
environment?

e Ubiquitous Data Collection. What issues arise from information integra-
tion of the sensors? Are the issues from collaborative data generation?

e Privacy and Security. Does the application create privacy risks?

o Human Computer Interaction (HCI) and User-Modeling. What is the
role of the user in the system? How does he interact with the devices?

Ubiquity of Data and Computing. Two important aspects of ubiquity
have to be distinguished, namely the ubiquity of data, and the ubiquity of
computing. In a prototypical application the ubiquity of computing corre-
sponds naturally to the ubiquity of the data: the data is analyzed when and
where it is generated — the knowledge discovery takes place in situ, inside the
interacting, often collaborating, distributed devices.

There exist however borderline cases that are ubiquitous in one way but not
in the other, e.g. clusters or grids for speeding up data analysis by distributing
files and computations to various computers, or track mining from GPS data
where the data are analyzed on a central server in an offline batch setting.

While research on this kind of systems is in several respects highly relevant
for ubiquitous knowledge discovery, for the purpose of this chapter a more
narrow point of view is adopted, and the following characterization is as-
sumed: Ubiquitous knowledge discovery is that part of machine learning and
data mining that investigates learning in situ, inside a dynamic distributed
infrastructure of interacting artificial devices.
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2.2 Example 1: Autonomous driving vehicles

To provide a more specific description of the content of ubiquitous knowl-
edge discovery, in the next sections a number of examples is analyzed. The
following selection criteria have been used: (1) each example focuses on a
different domain; (2) it presents a challenging real-life problem; (3) there is a
body of prior technical work addressing at least some of the six dimensions of
ubiquitous knowledge discovery, while other dimensions are not covered.

Contributions from various fields are analyzed — robotics, ubiquitous com-
puting, machine learning and data mining. Work is not necessarily done
under the label of “ubiquitous knowledge discovery”, since the subject is new
and draws inspiration from work scattered around many communities. These
examples provide material for discussing the general features of ubiquitous
knowledge discovery in the next sections.

Application. Modern vehicles are a good starting point to discuss ubiquitous
knowledge discovery systems, since they exist in a dynamic environment, move
in time and space, and are equipped with a number of sensors. There are
various directions to add to the intelligence of modern cars. An ambitious
attempt is to construct autonomous driving vehicles. In the DARPA 2005
grand challenge, the goal was to develop an autonomous robot capable of
traversing unrehearsed road-terrain: to navigate a 228 km long course through
the Mojave desert in no more than 10 hours. The challenge was won in
2005 by the robot Stanley. What sets robots such as Stanley apart from
traditional cars on the hardware side is the large number of additional sensors,
computational power and actuators.

Learning Component. Machine learning is a key component of Stanley,
being used for a number of learning tasks, both offline and online [28]. An
offline classification task solved with machine learning is obstacle detection,
where a first order Markov model is used. The use of machine learning is
motivated by the fact that it would be impossible to train the system offline
for all possible situations the car might encounter.

More importantly for our discussion, a second online task is road finding:
classifying images into drivable and non-drivable areas. Drivable terrain is
globally represented by a mixture of n Gaussians defined in the RGB color
space of pixels. A new image is mapped into a small number of k local Gaus-
sians (where k << n); they are used to update the global model. This way,
a distribution that changes over time can be modeled. During learning the
mean and variance of the global Gaussian and a pixel count can be updated,
new Gaussians can be added and old ones discarded. The decision whether
to adapt or to add or forget is taken by calculating the Mahalanobis distance
d(i,5) = (i — )T (S + ;)71 (i — pj) between local and global Gaussians.
Additionally, exponential decay is used for the counters in memory. An area
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is classified as drivable, if its pixel values are close to the learned Gaussians
that characterize drivable terrain. Adapting the parameters helps to model
slow changes in the terrain, while adding and forgetting can accommodate for
abrupt changes.

The significance of Stanley for our present discussion is that it provides a
very pictorial example how acting in a dynamic environment combined with
real-time constraints demands learning algorithms that have have been a niche
topic in machine learning so far: algorithms that can adapt to concept drift,
i.e. to distributions that can change slowly or abruptly over time. In the
next examples we see that this is an almost universal feature of ubiquitous
knowledge discovery, and in sec. 2.6.2 a general discussion can be found.

Communication. Autonomous robotics puts strong emphasis on planning
and control to achieve the vision of autonomy, where for ubiquitous knowledge
discovery full autonomy is normally not the goal. Instead, collaboration and
interaction among humans and devices is stressed. The desert driving scenar-
ios is very limited in this respect if compared to a normal traffic scenario. The
robot has no knowledge about the existence of other objects similar to itself
(treating them as obstacle at best), not matching characteristic (6) above.
The DARPA 2007 urban challenge was a step in that direction, since vehi-
cles were required to navigate their way under normal traffic conditions, with
other cars present, turns etc. Thus the vehicles needed modules for tracking
other cars [27]. Yet cars were not able to communicate [7] or learn from each
other. A distributed protocol of learning among cars was outside the scope of
the challenge.

2.3 Example 2: Activity recognition — inferring trans-
portation routines from GPS-data

Application. The widespread use of GPS devices has led to an explosive
interest in spatial data. Classical applications are car navigation and location
tracking. Intensive activity, notably in the ubiquitous computing commu-
nity, is underway to explore additional application scenarios, e.g., in assistive
technologies or in building models of the mobile behavior of citizens, useful
for various areas, including social research, planning purposes, and market
research. We discuss an application from assistive technologies, analyze its
strength and shortcomings and identify research challenges from a ubiquitous
knowledge discovery perspective.

The OpportunityKnocks prototype [21] consists of a mobile phone equipped
with GPS and connected to a server in a mobile client/server setup. The
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mobile phone can connect to a server via GPRS and transmit the GPS signals,
thus tracking the person’s behavior. The server analyzes the data, utilizing
additional information about the street network or bus schedules from the
Internet. Using this information the person is located and the system makes
inferences about his current behavior and gives suggestions what to do next.
This information is sent back to the client and communicated to the user with
the help of an audio/visual interface.

The system is able to give advice to persons, e.g., which route to take or
where to get off a bus, and it can warn the user in case he commits errors, e.g.,
takes the wrong bus line. The purpose of the system is to assist cognitively
impaired persons in finding their way through city traffic.

This application meets the main criteria for ubiquitous systems: the device
is an object moving in space and time in a changing and unknown environ-
ment; it has computing power, and has a local view of its environment only;
it reacts in real-time and it is equipped with GPS-sensors and exchanges in-
formation with other objects (e.g., satellites, the server). Compared to the
last example, the current one does not aim for an autonomous device but is
designed for interaction with a human.

Learning components. Since both the environment and the behavioral pat-
terns are not known in advance, it is impossible to solve this task without the
system being able to learn from a user’s past behavior. Thus, machine learning
algorithms are used to infer likely routes, activities, transportation destina-
tions and deviations from a normal route. The basic knowledge representation
mechanism is a hierarchical dynamic Bayesian network. The topology of the
network is manually build and creates a hierarchy, with the upper level de-
voted to novelty detection, the middle layer responsible for estimating user’s
goals and trip segments, the lowest level representing mode of transportation,
speed, and location. Time is represented by arcs ¢ and ¢t — 1 connecting time
slices. While the generic network design is specified in advance and is the same
for every user, the specific parameters of the distribution are learned from the
data in an unsupervised manner. Data comes in streams, but apparently the
full information is stored in a database. For efficient online inference of the
hidden variables given the GPS data, a combination of particle and Kalman
filtering is employed [21].

Although innovative, the architecture of this prototype will face a number
of practical problems. Thus in absence of a phone signal, communication
with the server is impossible, and the person may get lost. Similarly, when
there is no reliable GPS signal, e.g., in urban canyons, or indoors, guidance
is impossible. A further problem is that communicating via a radio network
with a server consumes a lot of battery power, so that the system works only
4 hrs under continuous operation. Finally, continuously tracking of a person
and centrally collecting the data creates strong privacy threats.

An implicit assumption of the prototype seems that sensing is always pos-
sible, that communication between client and server is generally reliable, and
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that power consumption does not play an important role. In other words, it
assumes a setting as is appropriate in a local network. But these assump-
tions are invalid to a degree that would prevent a real-world deployment of
the system. It should be noted that cognitive assistance is more demanding
here than e.g. usual car navigation, because the the people may be helpless
without the device.

Moving the learning to the device. The significance of this example is
that on the one hand it describes a highly interesting scenario for ubiquitous
knowledge discovery and advanced machine learning methods, but on the
other hand the design of the overall system does not match the constraints
of a ubiquitous environment. Ubiquitous knowledge discovery starts with the
observation a learning algorithm cannot be designed in abstraction from the
characteristics of the systems on which it is deployed (see sec. 2.6.3).

The ubiquitous knowledge discovery paradigm asks for distributed, intel-
ligent and communicating devices integrating data from various sources. A
“KDubiq Upgrade” would result in a much more satisfactory design for the
prototype. It would be guided by the imperative to move the machine learning
to the mobile device. If the major part of the learning is done on the mobile
device — especially that part that refers to localization on the street map —
there is no need for constant server communication, and assistance becomes
more reliable.

Splitting the computation into an energy and computationally efficient on-
board part yielding highly compressed models, transmitting only this com-
pressed information and performing computationally intensive parts on the
server would be a favorable solution. Section 2.5 discusses this in more detail.

Industrial application. A GPS device that can do data mining in situ
and on-the-fly has important industrial applications. Here we describe one
such scenario. The “Arbeitsgemeinschaft Media-Analyse” (ag.ma) — a joint
industry committee of around 250 principal companies of the advertising and
media industry in Germany — commissioned in 2007 a nationwide survey about
mobile behavior of the German population. This is the basis for determining
performance characteristics in outdoor advertising — e.g. the percentage of
the population that has had contact with a poster network within one week.
The basic input are mobility data in form of GPS trajectories. Nationwide,
the daily movements of about 30.000 people have been surveyed for up to
seven days.

In order to model the behavior of the overall German population from this
sample, a number of data mining and modeling tasks had to be solved by
Fraunhofer. Using techniques based on survival analysis and simulation tech-
niques the mobile behavior for all German cities is estimated [1]. A second
data source is a sample of approx. 100.000 video measurements on traffic fre-
quencies in German cities. A k-NN-based spatial data mining algorithm has
been developed that derives traffic frequency predictions for 4 Mio. street seg-
ments in German cities ([23], sec.9.6). Track data and frequency estimates are
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combined in a data fusion step. Other tasks are related to spatial clustering.
The application described so far is about analyzing data collected with ubig-
uitous mobile devices. Collectively it took several month and several project
partners to complete the data preparation. This project has a high impact
because the pricing of posters is based these models and a whole branch of
German industry is based on the data mining predictions.

A future scenario is to do all the track related data preparation online.
We are currently working on a scenario where data mining is done in the
GPS-device and annotated tracks are inferred on the fly. For applications
where the user has agreed to make his data available, not the raw GPS data,
but annotated diaries of activities are send to a server via a radio network
and processed using a Grid infrastructure [30]. This would not only shorten
development time dramatically, but allows the possibility to derive a snapshot
of a population’s mobility with very short delay.

2.4 Example 3: Ubiquitous Intelligent Media Organiza-
tion

While the first example did not match the collaborative aspect of ubiquitous
knowledge discovery and the second did not investigate learning in situ, the
next two examples, while very different from each other, match all criteria of
ubiquitous knowledge discovery.

Application. With the advent of Web 2.0, collaborative structuring of large
collections of multi-media data based on meta-data and media features has
become a significant task. Nemoz (NEtworked Media Organizer) [9] is a Web
2.0-inspired collaborative platform for playing music, browsing, searching and
sharing music collections. It works in a loosely-coupled distributed scenario,
using P2P technology. Nemoz combines Web 2.0-style tagging, with automatic
audio classification using machine learning techniques. This application is a
representative of a innovative subclass of applications in a Web 2.0 environ-
ment. Whereas most Web 2.0 tagging applications use a central server where
all media data and tags are consolidated, the current application is fully dis-
tributed.

The application differs from the preceding ones in that the (geo)spatio-
temporal position of the computing devices does not play an important role;
the devices and the media file collections they contain are stored somewhere on
some node in the network. Yet it is a defining characteristic of the application
that two collections C; and C; are stored at different places, and it is important
whether or not two collections are connected via a neighborhood graph.

Also in contrast to the other examples the fully distributed nature of the
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problem is a defining characteristic of the application. In a P2P environment
computing devices might be connected to a network only temporarily, commu-
nication is unreliable and the collections are evolving dynamically; items are
added and deleted, and also classifications can change. In many distributed
data mining applications, originally centralized data are distributed for im-
proving the efficiency of the analysis. The current application is different
because, firstly, the data are inherently distributed, and secondly, there is no
intention to come up with a global model. Thus it is, as discussed in the in-
troduction, a system where the ubiquity of computing naturally corresponds
to the ubiquity of data.

Learning components. Nemoz is motivated by the observation that a glob-
ally correct classification for audio files does not exist, since each user has its
own way of structuring the files, reflecting his own preferences and needs.
Still, a user can exploit labels provided by other peers as features for his own
classification: the fact that Mary, who structures here collection along mood,
classifies a song as melancholic might indicate to Bob, who classifies along
genre, that it is not a Techno song. To support this, Nemoz nodes are able
to exchange information about their individual classifications. These added
labels are used in a predictive machine learning task. Thus the application
is characterized by evolving collections of large amounts of data, scattered
across different computing devices that maintain a local view of a collection,
exchanging information with other nodes. It is a crucial aspect of this appli-
cation that the nodes maintain a local view, incorporating information from
other nodes. We are not aware of other solutions that are able to automatically
learn from other user’s classifications while maintaining a local or subjective
point of view.

The significance of this example is that Nemoz introduces a new class of
learning problems: the collaborative representation problem and localized al-
ternative cluster ensembles for collaborative structuring (LACE) [33]. From
the perspective of ubiquitous knowledge discovery this is important, since in a
non-distributed environment, these new learning scenarios would be very hard
to motivate. This new class is relevant for both examples discussed above. If
a mobile device is used in city traffic, it could be very helpful if the device
would be able to exchange information with other devices. In this case each
device would maintain a local model of the surrounding traffic partially by
exchanging information with other devices. It can also be imagined that a fu-
ture competition on autonomous vehicle driving that includes communication
among cars would include learning of local, subjective views in a collaborative
setting.

This potential transfer of learning scenarios from seemingly very unrelated
areas mobile assistive technology, autonomous robots and music mining is
made possible by analyzing the applications in a common framework.
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2.5 Example 4: Real-Time Vehicle Monitoring

Application. The Vehicle Data Stream Mining System VEDAS [18] is a
mobile and distributed data stream mining application. It analyzes and mon-
itors the continuous data stream generated by a vehicle. It is able to identify
emerging patterns and reports them back to a remote control center over a
low-bandwidth wireless network connection. Applications are real-time on-
board health monitoring, drunk-driving detection, driver characterizations,
and security related applications for commercial fleet management.

VEDAS uses a PDA or other light weight mobile device installed in a ve-
hicle. It is connected to the On Board Diagnostic System (OBD-II); other
sensory input comes from a GPS device. Significant mining tasks are carried
out on board, monitoring the state of transmission, engine and fuel systems.
Only aggregated information is transmitted to a central server via a wireless
connection. The data-mining has to be performed on-board using a streaming
approach, since the amount of data that would have to be transmitted to the
central server is too huge.

Learning components. The basic idea of the VEDAS data mining module
is to provide distributed mining of multiple mobile data sources with little
centralization. The data mining algorithms are designed around the following
ideas: minimize data communication; minimize power-consumption; minimize
on-board storage; minimize computing usage; respect privacy constraints.

VEDAS implements incremental PCA, incremental Fourier transform, on-
line linear segmentation, incremental k-means clustering and several lightweight
statistical techniques. The basic versions of these algorithms are of course
well-known and precede the data mining age. The innovation lies here in
adapting to a resource-constrained environment, resulting in new approxi-
mate solutions.

A comparison of this example with the activity recognition scenario re-
veals resources to improve the latter scenario. It offers a solution that locally
computes and pre-aggregates results and communicates only few data via the
radio network, splitting the computation into an energy and computationally
efficient on-board part yielding highly compressed models, transmitting only
this compressed information and performing computationally intensive parts
on the server.

However, an additional price is paid: for the on-board part new algorithms
are necessary that trade accuracy against efficiency. The specific trade off
is dictated by the application context, and the choice made in the vehicle
monitoring application would be hard to motivate in an offline-context (or
even for the current application).
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The significance of this example is as a template how to design resource
aware mobile data mining solutions and it avoids some of the pitfalls of the
activity recognition scenario.

2.6 Research Challenges

The ubiquitous knowledge discovery paradigm asks for distributed, intelli-
gent and communicating devices integrating data from various sensor sources.
The learning takes place in situ. Privacy has to be addressed.

The examples discussed match that paradigm to various degrees. Example
1 showed the importance of algorithms that are able doing inference in real-
time, inside the device, paying attention to concept drift. To turn this into
a realistic scenario, communication among cars would be needed. Example
2 used a mobile client server scenario. However for a realistic deployment
it would be necessary to move the algorithms to the device. Additionally,
privacy constraints have to be addressed. Example 3 was an example for a
fully distributed scenario in which nodes learn from each other and build a
local subjective model. Example 4 finally provided a template for building
resource-aware approximate algorithms for monitoring the state of a system.

In the following section the general characteristics and challenges that
emerge for research in ubiquitous knowledge discovery are discussed.

2.6.1 Resource Constraints

In applications comprising mobile and/or small devices limitations in stor-
age, processing and communication capabilities, energy supply and band-
width, combined with a dynamic and unreliable network connectivity are a
major constraining factor. Optimizing a learning algorithm for such systems
often leads to a coupling of application semantics and the system layers.

In many cases the best available algorithm might be too demanding in
terms of computational or memory resources to be run on the designated de-
vice. Thus an approximation has to be designed. The approximation might
depend on the exact configuration of the system and on specifics about the ap-
plication. E.g. in example 4, the state of the vehicle is monitored in real-time.
To monitor a set of variables, a principal component analysis is performed.
Changes in driving characteristics result in changes in the eigenvectors of the
covariance matrix. Because constant recomputation would be too costly, the
system determines only the upper bounds on changes in eigenvalues and eigen-
vectors over time, and initiates a recomputation only if necessary [18]. Other
examples for the use of approximation in order to save resources are [26],
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Table 2.1: Violating the iid assumption gives rise to different areas of machine
learning and statistics.

independent not independent

identical Statistical Learning | Simple Kriging,
Theory, PAC, Stationary Time Series,
Mainstream DM Statistical Relational Learning,

Markov Chains
not identical, PAC online learning | ARIMA,

slowly changing State Space Models,
Kalman Filter
not identical Concept Drift Piecewise ARIMA

abrupt changes | CUSUM

where a trade-off between accuracy and communication load for monitoring
threshold functions in various kinds of distributed environments is discussed.
For a general overview on resource-aware computing in sensor networks, see
Zhao & Guibas [34].

2.6.2 Beyond identically distributed data

An important challenge is that ubiquitous knowledge discovery focuses on
learning beyond identically distributed data. Although work in this area ex-
ists, this implies a significant shift in focus from the current mainstream in
data mining and machine learning. At the core of the problem is the follow-
ing observation: In a ubiquitous setting, we cannot assume anymore to have
an independent and identically distributed sample of the underlying distribu-
tion. The reason is that inference takes place under real-time constraints in
a dynamically changing environment, as has been describe in example 1.

A collection of random variables X1, ..., X,, is said to be independent and
identically distributed (iid) if each X; has the same distribution function f
and the X; are mutually independent. Each of the two conditions — indepen-
dence and identical distribution — may be violated separately, or both may be
violated at the same time. This gives rise to distinct areas of machine learning
and statistics (table 2.1).

Most practical and theoretical results in machine learning depend on the
iid assumption (top left corner of the table). The main body of PAC learning
[15] and statistical learning theory [29] are crucially based on it. The reason
is that if we sample independently from a distribution that is supposed to
be fixed and invariant with respect to time (i.e. if the process is iid), all
necessary information about the future behavior of a signal can in principle
be obtained from a (sufficiently large) sample of past or present values. This
justifies to attempt forecasting. Moreover, techniques such as cross-validation
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can be used to assess the prediction error on future instances.

Dependent data. If the independence assumption is invalid but the distri-
bution is fixed, sampling instances become autocorrelated (top right corner
of table). Traditionally, the theory of stationary time series [5] and spatial
statistics (e.g. simple Kriging) [6] deal with temporally and spatially autocor-
related variables, respectively. Markov chains are widely employed to model
sequential data, and some extensions of PAC learning for this setting exist
[11]. More recently, statistical relational learning starts investigating scenar-
ios that violate the independence assumption [13, 22].

Slowly changing distributions. Some extensions of learning theory cover
slowly changing sequences of concepts [16], where the instances of a concept
are drawn at random (middle left cell of table). It derives bounds on how fast
a concept can change so that learning is still possible.

Very common in econometrics and engineering are approaches that combine
both autocorrelation and slowly changing distributions, especially ARIMA
(Auto-Regressive Integrated Moving Average) and state space models [5]
(middle right cell). In an ARIMA model, although the input signal can have
a trend or cycles, it is assumed that after taking differences finitely many
times (usually just one or two), the signal becomes stationary. So there is at
least some component of the original signal, that gives information useful for
forecasting. The trick is here that we can recover stationarity in some way,
so that stationary time series analysis becomes applicable again.

Abrupt changes. The least explored but for ubiquitous knowledge discovery
most relevant and interesting part of the table is where we face abrupt changes
in the distribution (bottom row of table).

An important distinction concerns the available information: are only the
past values available (forecasting), a measurement of the current value (fil-
tering) or past, future and present values (smoothing)? As we move down
the table, prediction becomes increasingly difficult, and for the case of abrupt
changes, the typical setting is that of monitoring or filtering, instead of pre-
diction. Thus examples 1, 2, 4 are all cases for monitoring or filtering. Breaks
are detected but not predicted. All examples use online algorithms.

A body of work in machine learning on concept drift addresses this scenario.
It assumes non-stationarities — breaks — but assumes the data in between to
be independent [19, 31]. The predictive accuracy is monitored and once it
drops a new model is learned. The main objective is to automatically keep
an up-to-date model over time, e.g. in a spam filtering scenario. A streaming
scenario is explicitly addressed in [12, 17]. Although designed for scalability
in terms of data size, the various approaches assume sufficient compute power
and are not designed e.g. for a mobile solution.

Control charts and the CUSUM method (that calculates the CUMulative
SUM of differences between the current and average value) are more tradi-
tional approaches to this problem for univariate data [2], often used to monitor
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industrial processes. Example 4 [18] discusses vehicle monitoring and break
detection in a multivariate setting.

Severo and Gama [25] combine machine learning and traditional approaches
in a generic scenario where a regression algorithm, e.g. a regression tree, is
used as a basic learner, its residuals are monitored and thresholds adapted
using a Kalman filter; CUSUM is used for deciding whether a break occurred.
If the performance degrades, a new tree is learned.

The most general setting allows data to be dependent and distributions to
be non-stationary, with both slow and abrupt changes. There is recent work
that combines elements from statistics and machine learning on piecewise
ARIMA models that can model both slow and abrupt changes [8]. The breaks
are identified using genetic algorithms and the Minimum Description Length
principle. However, it presupposes that the full series is available, so breaks
can be modeled only a posteriori; thus is not applicable in a typical ubiquitous
knowledge discovery scenario.

In contrast, the drivable terrain detection algorithm that has been described
in section 2.2 allows for an evolving stream of data, since it detects both slow
and abrupt changes in an online setting. Also the activity recognition would
fall under this scenario, since a person might abruptly change her behavior
(e.g. her daily routine after changing job), but also more gradually (e.g.
undertaking longer walks when it becomes summer).

This shows how common and important this last scenario is. A more sys-
tematic and unified approach is needed in the Machine Learning and Data
Mining community to develop methods for detecting slow and abrupt changes
in possibly dependent data. It would be important to address this in a typical
data mining scenario where a large number of variables can be included, and
no a priori knowledge about their relevance is available.

2.6.3 Locality

A third central feature are various forms of locality. Locality and the sta-
tionarity assumption are in fact closely linked. The assumption that a process
is spatio-temporally stationary implies that we can make a translation on the
time scale or in the spatial coordinates and the autocorrelation structure re-
mains invariant. Thus we can take a sample at some place on earth at the
beginning of the 21st century and can draw valid inferences about the pro-
cess in some distant galaxy, from stone age to the end of days. While this
proved to be a powerful assumption for fundamental physical processes, it
leads into trouble for areas related to human activities. Assuming iid data
is a way of removing spatio-temporal boundaries from our inference capabili-
ties. Embracing dependent data and non-stationary distributions with breaks
leads us to inference in temporally and/or spatially local environments. The
associated challenges are discussed in this section.

Temporal Locality. A first aspect is temporal locality. In a typical scenario
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for ubiquitous knowledge discovery the learner has access to past and maybe
present data from a time-varying distribution (see last section), and has to
make inferences about the present (filtering) or future (forecasting). In a
memory constrained environment typically a data stream setting is assumed.
This setting leads to incremental and online learners, time window approaches,
weighting etc. (for an overview on data streams see [10]), as already discussed
in various examples.

Spatial Locality. There is a second aspect of locality that derives from
spatial locality and distributedness. For example, in a sensor network the
reach of a sensor is restricted so that it can sense only the local environment.
In the case of terrain finding example 1, the vehicle is moving, having just a
local snapshot of the terrain. The nodes in Nemoz have full access only to
their own collection.

If the task is to have a global model about the whole terrain, locality is
related to the iid assumption. None of the nodes has access to the full dis-
tribution. Instead each node has (often highly autocorrelated) measurements
coming from a small range of the full distribution. In P2P networks, neigh-
boring nodes will in some case share other relevant features as well (e.g. the
kind of music they like in the Nemoz application) so that sampling values
from neighbor nodes gives a biased sample.

To share this local view with others and to come up finally with a global
model, a node has to communicate. But for small devices dependent on bat-
tery power communication is costly. It has been shown that in many scenarios
a fully centralized solution involves too much communication overhead to be
feasible. Along the same lines fully reliable, globally synchronized networking
is is not attainable in many P2P scenarios [32].

Distributed learning algorithms. Under this condition, the task is to
find a near optimal solution to the inference problem that takes account of
specific constraints in communication and reliability. Solutions may be either
exact or approximate. Local communication lead in some cases to totally
different algorithms than their counter parts in centralized scenarios. As a
result, algorithms appear that would make no sense in a globally centralized,
static environment.

An example is the large-scale distributed association-rule mining algorithm
by Wolff and Schuster [32]. It relies on a distributed local majority voting pro-
tocol to decide whether some item is frequent. It is applicable to networks of
unlimited size. Distributed monitoring of arbitrary threshold functions based
on geometric considerations is described in Sharfman et al. [26]. The case is
considered where X1, X, ..., X4 are frequency counts for d items and where
we are interested to detect whether a non-linear function f(X;, Xa,..., X4)
rises or falls below a threshold. It is pointed out that for a non-linear function
in general it is not possible to deduce if e.g. the average of two counts at X,
and Xo, if they are passed through the function f, by just looking at the local
values. This observation is e.g. relevant for a distributed spam-filter, where



16 Research Challenges in Ubiquitous Knowledge Discovery

a system of agents is installed on a number of distributed mail servers. The
task is to set up the learning systems in such a way that by monitoring the
threshold at local nodes, we can be sure that if the constraints are met at
all local nodes, no global violation has occurred, and thus no communication
across nodes is necessary. The solution is based on a geometric approach to
monitor threshold violations. Further examples for local inference algorithms
that depend on network characteristics and involve either geometric or graph
theoretic considerations are described in [34].

It is claimed that in sensor networks, the topology of the network can not be
decoupled from application semantics [34]. This statement takes over to ubiq-
uitous knowledge discovery: the network topology, the information processing,
and the core learning algorithms become mutually dependent. This fact is a
deeper reason why we cannot design ubiquitous learning algorithms indepen-
dently from considerations about the underlying distributed technology, the
specific data types, privacy constraints and user modeling issues.

2.6.4 Further challenges

In this section, further challenges are shortly summarized. From the discus-
sion it emerges that ubiquitous knowledge discovery requires new approaches
in spatio-temporal data mining, privacy-preserving data mining, sensor data
integration, collaborative data generation, distributed data mining, and user
modeling. The most successful approaches will be those, that combine sev-
eral aspects. Thus ubiquitous knowledge discovery holds the potential as an
integrated scenario for various otherwise fragmented directions of current re-
search.

Spatio-Temporal Mining Case studies 1 and 2 highlighted the central role
of spatio-temporal data mining, especially GPS track data. For an overview
on recent developments in this area, see [23] [20].

Data collection. On the data collection side two major issues arise. The
first one is collection and integration of data collected from heterogeneous
sensors as in case studies 1 and 2, and 4. Example 3 highlights data collection
issues in a collaborative Web 2.0 environment.

Privacy. All case studies proved to be privacy sensitive, since ubiquitous
devices reveal highly sensitive information about the persons that carry them.
Privacy-preserving data mining in a distributed, spatio-temporal environment
poses many challenges [24] [4]. Privacy issues will become even more pressing
once the application migrate from a research prototype status to real products.

User Modeling. Finally, user modeling, and HCI are particularly challeng-
ing, for examples since not only experts but technically non-skilled end users
will be confronted with those systems [3]. For example, once autonomous cars
would go into production, HCI and user modeling (as well as privacy) will play
a central role: There are many questions starting from user acceptance (the
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autonomy of the car diminishes the autonomy of the user!) to liability and
legal issues.

2.7 Summary

In this section common lessons from the case studies are drawn and research
challenges identified.

We reviewed examples from data mining, machine learning, probabilistic
robotics, ubiquitous computing, and Web 2.0. Collectively, these applications
span a broad range of ubiquitous knowledge discovery applications from ve-
hicle driving, assistive technologies, transportation, and leisure. This showed
that across a large sector of challenging application domains, further progress
depends on advances in the fields of machine learning and data mining; in-
creasing the ubiquity sets the directions for further research and improved
applications.

Ubiquitous knowledge discovery investigates learning in situ, inside dis-
tributed interacting devices and under real-time constraints. From this char-
acterization the major challenges follow:

e Devices are resource constrained. This leads to a streaming setting and
to algorithms that may have to trade-off accuracy and efficiency by using
sampling, windowing, approximate inference etc.

e Data is non-stationary, non-independent. The distribution may be both
temporally and spatially varying, and it may change both slowly or
abruptly.

e Locality. Temporal locality combined with real-time properties leads to
online algorithms and to a shift from prediction to monitoring, change
detection, filtering or short-term forecasts. Spatial locality (combined
with resource constraints) leads to distributed algorithms that are tai-
lored for specific network topologies and that make use of graph theoretic
or geometric properties.

At the heart of the algorithmic challenges for KDubiq is thus local inference
beyond iid data in resource constrained environments. While inference on iid
data occupies only one sixth of the cells in table 2.1, by far the most amount
of work in data mining and machine learning is devoted to this topic so far.
There are large areas of unexplored terrain that wait for research from the
data mining and machine learning community.

From a systems perspective, the challenge consists in building learning algo-
rithms for distributed, multi-device, multi-sensor environments. While par-
tial suggestions exist on how to implement privacy-preserving, distributed,
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collaborative algorithms, respectively, there is hardly any existing work that
properly addresses all the dimensions at the same time in an integrated man-
ner. Yet as long as one of these dimensions is left unaddressed, the ubiquitous
knowledge discovery prototype will not be fully operational in a real-world envi-
ronment. We need both new algorithms — including analysis and proof about
their complexity and accuracy — and an engineering approach for integrating
the various partial solutions — algorithms, software and hardware — in working
prototypes.
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