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Abstract    

This chapter aims at identifying accident hot spots by means of a local indicator of 

spatial association (LISA), more in particular Moran’s I. A straightforward use of 

this LISA is impossible, since it is not tailor-made for applications in traffic 

safety. First of all, road accidents occur on a network, so Moran’s I needs to be 

adapted to account for this. Moreover, its regular distributional properties are not 

valid under the circumstances of Poisson distributed count data, as is the case for 

accidents. Therefore, a Monte Carlo simulation procedure is set up to determine 

the correct distribution of the indicator under study, though this can be generalized 

to any kind of LISA. Moran’s I will be adapted in such a way, that it can over-

come all the previously stated problems. Results are presented on highways in a 

province in Flanders and in a city environment. They indicate that an incorrect use 

of the underlying distribution would lead to false results. Next to this, the impact 

of the weight function is thoroughly investigated and compared in both settings. 

The obtained results may have a large impact for policy makers, as money could 

be allocated in a completely wrong way when an unadjusted LISA is used. 



1 INTRODUCTION 

Over the past decades, traffic safety has become a topic of increasing interest in 

the media, as well as for policy makers. The States General of Traffic Safety [1] 

have set the ambitious goal to reduce the number of individuals killed in traffic per 

year from 1,000 in 2006 to 500 by 2015. As opposed to most of our neighboring 

countries, Belgium’s score concerning traffic safety is still below par. The number 

of people that had a fatal accident per 1 billion vehicle kilometers equals 11.1 in 

Belgium in 2006 [2]. This figure is about 31% higher than the number in France, 

44% more than in The Netherlands and even 50% higher when compared to Ger-

many. Putting these figures in an international context only confirms Belgium’s 

poor performance (The United States have a figure of 9 persons killed per 1 billion 

vehicle-kilometer, Australia has a value of 7.9 and Japan of 10.3). Therefore, it 

only seems logical that traffic safety has become top priority in the National 

Safety Plan.  

A key issue in traffic safety analysis is determining the reason for a site to be 

hazardous, also referred to as hot spot analysis (HSA). In general, HSA can be 

split up into four phases. The first step is to identify the dangerous locations. Next, 

a ranking of these locations needs to be established. The severity of the accident, 

determined by the severity of the injuries, can be taken into account here [3, 4, 5, 

6]. Consequently, one tries to come up with an explanation why some sites are hot 

spots and others are not (i.e. profiling of hot spots). This can be verified through 

an analysis of maneuver diagrams, information from traffic accident records, char-

acteristics of the environment, of the infrastructure, etc. [7, 8]. And, finally, one 

needs to select the hot spots to be treated [9]. Very often, this turns out to be a pol-

icy decision and the choice may be based on different aspects: e.g. based on lim-

ited financial supplies, or on a cost-benefit analysis [10, 11]. Only the first phase, 

identification, will be discussed in this chapter, although the technique could be 

applied for the purpose of ranking as well. 

There exists no univocal definition of a hot spot [12]. Sometimes the number of 

accidents per vehicle-kilometer driven (VKD) or per number of vehicles is used to 

identify hot spots, other researchers use an absolute figure (accidents per km/year 

or per year), and some use a combination of both. Since the definition of a hot spot 

is already very broad in itself, there also exists a wide range of methods and tech-

niques in the domain of traffic safety to identify hazardous locations on a road 

network, ranging from simple models that are based on the observed number of 

accidents to more advanced statistical models that are based on the expected num-

ber of accidents. Hot spot safety research encapsulates localizing and treating 

crossroads and road segments with an unexpected high number of accidents. In 

order to reduce this number of collisions, it is important to know where concentra-

tions of accidents occur. Therefore, the geographical aspect is highly important to 

determine and to handle the most unsafe traffic sites in a scientifically sound and 

practical way. Although one acknowledges the importance of this geographical 



aspect, very often statistical – non-spatial – regression models are used to model 

the number of accidents. 

Analyzing hot spots always occurs within in a certain time frame and a large 

number of locations will show no accidents for that period of time. This is recog-

nized in the literature as sparseness. This abundance of zeroes causes estimation 

problems in most prediction models. Negative binomial models have been devel-

oped to solve this problem and in the recent past this was often countered by using 

Zero-Inflated Poisson (ZIP) models [13]. It is assumed that a location can find it-

self in two conditions: either the location is inherently safe (state of zero acci-

dents), or there is a chance that an accident occurs at that location (i.e. the location 

has a strictly positive mean number of accidents, but the probability of having zero 

accidents at that location is larger than zero). Modeling accident data through this 

type of models often yields better results than using an ordinary Poisson regres-

sion model. Though, recently this was criticized in the literature [14, 15], because 

there is no theoretical underpinning to believe that there exists a location that is 

inherently safe. Namely, an accident is not necessarily caused by infrastructural 

characteristics, the state of the driver (inattention, drunk driving, etc.) often plays a 

very big role. Because of this, it is unrealistic to believe that there exists even just 

one inherently safe location. Very often will the abundance of zeroes be caused by 

a low exposure (low traffic volumes) and/or by an ill-considered selection of acci-

dents in time and/or space. This can be solved on the one hand by enlarging the 

time frame or the geographical window or by using a better set of explanatory 

variables and/or by taking non-observed heterogeneity effects into account to ex-

plain the model or by applying methods for small area estimation (e.g. Poisson-

lognormal models). 

Next to applying a frequentist’s approach, traffic safety researchers are inclined 

to use Bayesian models, since they can make use of prior information in an effi-

cient way. An example that is widely used in traffic safety literature is the Pois-

son-gamma model [3, 4, 12, 16, 17, 18, 19]. Researchers tend to prefer it to the 

Poisson regression model, because this model can handle the problem of overdis-

persion [20]. The Poisson distribution, underlying the regression model, assumes 

that the mean and variance are equal to each other and since the mean number of 

accidents usually is very low, accident data often show a larger variance. Very re-

cently [21,22], research was conducted on the effect of low means and small sam-

ple sizes in traffic safety and this has led to the conclusion that the Poisson-

lognormal model often achieves better results than the Poisson-gamma model.  

The advantage of using regression techniques is that one has a ‘normal’ number 

of accidents for a certain location at one’s disposal and as a consequence one can 

determine the effect of treating that specific location (i.e. safety potential, [23]. 

This is expressed in terms of the difference between the expected number of acci-

dents according to the (Bayesian) model and the number of accidents that is 

judged to be ‘normal’ for a similar location, i.e. the potential of accident reduction 

(PAR). This leads us to what is judged to be the model-based definition of a hot 

spot [24]: a hot spot is a location with an observed number of accidents that is 



higher than expected in comparison with similar locations as a consequence of lo-

cal risk factors. 

Most of the techniques discussed above ignore the existing geographical rela-

tionship between the different locations. However, it seems only logical that the 

structure of the underlying road network can play an important role in determining 

hazardous locations. For example crossroads, on and off ramps on a highway, the 

existence of one-way streets, it all may have direct implications on the number of 

accidents on a location nearby. Next to that, there is a recent trend to examine road 

segments instead of dangerous locations, because of the obvious spatial interaction 

between accident locations that are close to one another. Spatial techniques allow 

to account for this. These spatial methods usually exist in one dimension and in 

two dimensions, but often they are not suited to be used alongside a network. This 

chapter displays the use of Moran’s I to identify hot spots on highways and on re-

gional roads, hereby taking into account the structure of the road network. How-

ever, as indicated above, due to the nature of road accidents (sparseness), a 

straightforward use of the indicator has serious flaws and adaptations are required 

to apply it in this context. Section 2 gives a background on spatial autocorrelation 

in general and it explains the use of Moran’s I. The second part of this section de-

notes the required adaptations and the changing distributional properties when 

Moran’s I is applied to a traffic safety context. The impact of using different 

weight functions is also discussed. Section three gives a description of the data, 

together with the results on highways in Flanders on the one hand and on regional 

roads in a city context on the other hand. Conclusions and some ideas for future 

research are given in Section 4. 

2 THE METHOD: MORAN’S I 

2.1 Background on Spatial Association 

Recently, there is a tendency to use spatial data analysis techniques next to sta-

tistical (Bayesian) regression models in HSA [25]. This enables to account for the 

spatial character of a location. In this chapter, a spatial autocorrelation index is 

used. It aims at evaluating the level of spatial (inter-)dependence between the val-

ues xi of a variable X under investigation, among spatially located data [26]. If the 

idea of temporal autocorrelation is extended, then a simple representation of spa-

tial dependence can be formulated as follows: 

∑ +=
j

ijiji uxwx ρ , 



where ρ measures the spatial autocorrelation between the xi ‘s, wij are the 

weights that represent the proximity between location i and j and ui are independ-

ent and identically distributed error terms with mean zero and variance σ². How-

ever, in contrast to temporal autocorrelation, the spatial neighborhood is multidi-

rectional, making it more complex and leading to specific indices for spatial 

autocorrelation. Specifically, spatial correlation analysis determines the extent to 

which the value of the variable X at a certain location i is related to the values of 

that variable at contiguous locations. This assessment involves analyzing the de-

gree to which the value of a variable for each location co-varies with values of that 

variable at nearby locations. When the level of co-variation is higher than ex-

pected, neighboring locations have similar values (both high or both low) and 

autocorrelation is positive. Opposite, when the level of co-variation is lower than 

expected, high values of the variable are contiguous to low values and the autocor-

relation is negative. The lack of significant positive or negative co-variation sug-

gests absence of spatial autocorrelation [25]. 

Global measures of spatial autocorrelation have been applied for several dec-

ades and mainly stem from the work of Moran [27][see e.g. 28, 29]. Moran’s I is 

most often used and its usefulness for transport fluxes and traffic accident analysis 

has been thoroughly discussed in the literature [30, 31]. Next to the global meas-

ure that gives an idea about the study area as a whole, it may also be interesting to 

limit the analysis to a smaller part of it. It might happen that smaller parts of the 

study area show spatial autocorrelation, but that it has not been picked up by the 

global measure. Though, also when global autocorrelation is present, the local in-

dices can be useful to point at the contribution of smaller parts of the investigated 

area. The use of these local indices is more recent [25, 32, 33]. Each location is 

now characterized by one value of the index that denotes the individual contribu-

tion of the location in the global autocorrelation measure. 

These local indices are considered to be Local Indicators of Spatial Association 

(LISA’s) if they meet two conditions: 

– It needs to measure the extent of spatial autocorrelation around a particular 

observation, and this for each observation in the data set; 

– The sum of the local indices needs to be proportional to the global measure 

of spatial association. 

2.2. General Use of Moran’s I 

The global version of Moran’s I was first discussed in Moran [27], however, in 

this chapter its local version will be applied. The LISA version of Moran’s I that 

satisfies the two requirements as stated in 2.1 can be written down as follows: 
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with 

• xi representing the value of interest of variable X for point i, 

• x  the average value of X, 

• wij representing the proximity of point i’s and point j’s locations, with wii = 0 

for all points, 

• n representing the total number of points, and 
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, the variance of the observed values. 

A nice property of Moran’s I is the fact that it looks relative with respect to an 

average value. Because of computational issues, it is often impossible to compute 

the index for the study area as a whole in one time, and it needs to be split into 

smaller parts. By plugging in the average of the entire study area as x  (instead of 

just the average of the smaller part), all results can easily be combined. So, x  

might serve as a reference value for the study area under investigation (see also 

2.3). 

Anselin [33] derives the mean and variance of Ii under the randomization as-

sumption for a continuous X-variable. The expected value of Ii is, for example 

[34]:  
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The exact distributional properties of the autocorrelation statistics are elusive, 

even in the case of a Gaussian random field. The Gaussian approximation tends to 

work well, but the same cannot necessarily be said for the local statistics [34]. 

Anselin [33] recommends randomization inference, e.g. by using a permutation 

approach. However, Besag and Newell [35] and Waller and Gotway [36] note that 

when the data have heterogeneous means or variances, a common occurrence with 

count data such as accidents, the randomization assumption is inappropriate. In-

stead, they recommend the use of Monte Carlo testing. 

2.3 Adaptations 

It can be observed that some kind of proximity measure wij is used to denote 

the distance between location i and location j in the calculation of Moran’s I. In 

general, geo-referenced x and y coordinates are attached to each location and dis-

tances are determined by means of a bird’s-eye view. However, accidents take 

place on a road network, and it may happen that locations are very close to each 

other in space, though, via the network, they cannot be reached easily (e.g. be-

cause one of them is located in a one-way street). A logical step is then to consider 

the distance traveled alongside the road network. Every location can be pinpointed 

at the road network map and distances can be determined via the network. This 



also takes care of junctions and on and off ramps in a proper way and encapsulates 

the whole network structure in its measure. This is the first extension that is used 

in this chapter in comparison to the ‘normal’ use of LISA’s. 

Four other adaptations to previous uses of local Moran’s I in traffic safety have 

been proposed here. First of all, it is important to use the index in a correct way. 

One needs to account for zero observations as well (instead of only taking into ac-

count locations with at least one accident, see e.g. [25]). Otherwise the average 

value would clearly be overestimated. Moreover, all locations with accidents 

would be judged to be of a too high importance.  

Second, as already indicated in the previous paragraph, any reference value can 
be used for x . In normal use of the index, this is just the average of the area under 

study, however, if - e.g. for computational purposes - the area needs to be split up, 

the average of the total area can still be used here, so that comparisons between 

small parts are straightforward. If one wants to compare different countries to each 

other, a global average can be computed and in this way all countries can be com-

pared to that global average. From a traffic safety point of view, it might be inter-

esting to compare e.g. to the average for that type of road, the average of a region 

or a country. 

Third, this local measure of spatial association can be regarded as being a traf-

fic safety index, since for each basic spatial unit (BSU) of road the local Moran 

index can be regarded as a measure of association between the BSU under study 

and the neighboring BSU’s that are similar to the one under study concerning the 

number of accidents. A negative value of the local autocorrelation index at loca-

tion i indicates opposite values of the variable at location i compared to its 

neighboring locations. A positive value, on the contrary, points at similar values at 

location i and its neighborhood. This means that location i and its weighted 

neighborhood can both have values above the average value or both can have val-

ues below the average. In the application area of traffic safety, however, one is 

only interested in locations that have: 

1. a high number of accidents in regard to the total average number of acci-

dents (i.e. 0>− xxi ), 

2. and where the neighborhood also shows more accidents than was expected 

on average (i.e. ( )∑ >−

j

jij xxw 0 ). 

It might be argued that it is also important to look at locations with a high num-

ber of accidents at location i and a very low number in the surrounding area (i.e. a 

spike). In this case, very negative values of Moran's I would occur. However, al-

though conceptually appealing, this gives very contradictory effects as illustrated 

by the following example. Suppose that the global average over a certain area 
equals one accident ( x =1). Then, if 7 accidents occurred at location i and none in 

its surrounding, this would lead to a negative value of Moran's I and possibly a 

significant negative autocorrelation. However, adding one accident to every sur-

rounding point of location i, hence making the surrounding area more hazardous, 



would lead to a Moran's I of zero, indicating no significant autocorrelation. This 

would mean that a more dangerous location has a less significant Moran’s I when 

compared to a more ‘safe’ location. This is really counterintuitive, so therefore it 

was opted to look only at points where a high number of accidents is contiguous 

with high values in the neighborhood (the location and its surrounding area rein-

force each other in a positive way). 

Finally, since the distributional properties of Moran’s I are intangible, as, sug-

gested by [35, 36] a Monte Carlo approach was applied to arrive at cut-off values 

for the local Moran’s I above which the location can be considered to be a hot 

spot. To this end, the total number of accidents for the study area will be spread 

randomly over the total available locations. Note that locations are allowed to 

have more than one accident, otherwise, high concentrations of accidents cannot 

be determined. For each location, the local Moran’s I is then calculated. This 

simulation will be repeated 500 times to end up with an approximate distribution 

of the local Moran index for the particular situation at hand. Next, to determine the 

hot spots, it was decided upon to filter out the locations with a high number of ac-

cidents contiguous with high neighboring values. For this subsample of locations, 

the 95% percentile (P95) of the distribution of the remaining Moran values is de-

termined. This value will be utilized as the cut-off value to determine an accident 

hot spot in the study area. If the local Moran’s I value of a location of the true data 

also has similar high values between the location under study and its contiguous 

locations ànd it exceeds this 95% percentile (i.e. if Ii > P95), then this location is 

considered to be hazardous, and hence a hot spot location.  

A real world example for 506 accidents at 3,252 locations is shown in Figure 1. 

It is obvious that a Gaussian approximation would not work well in these circum-

stances. The black curve indicates the simulated density for Moran’s I, while the 

red curve shows the Gaussian approximation with the mean and variance as they 

are expected to be under randomization. 



 

Fig. 1 Simulated density of local Moran’s I. 

2.4 Impact of the Weights 

An important disadvantage of spatial autocorrelation in general is that this 

measure is not uniquely defined. There is no optimal specification for the weights 

and this proves to be one of the most difficult and controversial methodological is-

sues in spatial econometrics [37]. One needs to consider two different aspects, i.e. 

the number of neighbors (level of connection) and the value of the weights. Con-

cerning the level of connection, it seems impossible to define an optimal distance 

between two BSU’s for which both BSU’s would still show any connection. This 

optimal distance will vary with the type and the characteristics of the road under 

investigation, but probably also with the road configuration, the posted speed 

limit, etc. 

Additionally, the choice of weights is not uniquely defined. Getis and Ord sug-

gested [32] to assign all locations in the neighborhood of a certain location a 

weight equal to one and the remaining locations a weight value of zero, though 

this does not account for the fact that the locations are not uniformly spread. It 

seems only natural to account for the distance between the locations to determine 

the local autocorrelation. Often the inverse of the squared distance is used. This 

entails that the less nearby a location is to the location under study, the less weight 

it receives. Note that at the end of a road, one only accounts for the neighbors that 



exist. In general, the weights are row-standardized, meaning that the sum of the 

weights at each location sums up to 1. Figure 2 shows the impact of using differ-

ent weight functions. Note that the functions are truncated at zero, or else three of 

the four functions would go to infinity. The black solid line indicates an Epanech-

nikov-like kernel (E-like) which is often used in kernel density estimation. This is 

shown to point at the contrast when compared to powers of the distance between 

locations. The green dashed line equals 1 over the squared distance. One may ob-

serve that after 150m the weights are almost equal to zero. The blue dotted line is 

the inverse of the distance, this allows some weight to be given at locations up to 

about 750m from the site under investigation. The red line shows 1 over the 

square root of the distance. This clearly gives some weight at all contiguous loca-

tions. For the choice of weight function, just as for the choice for the number of 

neighbors, there does not exist one optimal choice. It preferably changes per set-

ting, depending on the road configuration of the area under study and it interacts 

with the number of neighbors. Perhaps different simulation settings together with 

some expert knowledge can help to provide some more insight in this matter. Al-

though not the main focus of this chapter, some results on different weight func-

tions are shown in Section 3. 

 
Fig. 2 Impact of different weight functions. 



3 ANALYSES AND RESULTS 

This Section illustrates the use of Moran’s I for two different configurations. A 

first application comprises accidents on highways in Limburg, a province in Bel-

gium. A second data set consists of accidents on regional roads in the city of Has-

selt (capital of the province of Limburg) and its surroundings. Both data sets are 

provided by the Belgian Federal Police. 

Variability, i.e. the fact that the yearly number of accidents on a road segment 

varies from year to year, is an important issue for accident analysis. This can be 

explained by the inherent accident risk of a road segment. The randomness in the 

number of accidents is typical, because of the nature of accidents and because of 

unpredictable factors, such as the weather. Therefore it is of great importance that 

the study period is long enough to ensure representative accident samples. Based 

on a large number of studies, it is generally agreed upon that the period of three to 

five years is sufficient to guarantee the reliability of the results [18]. For both 

analyses, data on accidents were collected from 2004 to 2006. 

3.1 Data 

The first analysis is carried out on the province of Limburg in Belgium. Figure 

3 indicates the location of the province of Limburg within Flanders (the upper, 

Dutch speaking part of Belgium). 

 

Fig. 3 Limburg within Flanders. 

The second analysis is carried out on regional roads. Figure 4 indicates the road 

network of the city of Hasselt and it’s surroundings, together with the BSU’s 



where accidents occurred. Note that many accidents occurred on the inner and the 

outer ring way of the city and at the arterial roads towards the city. In the upper 

left corner, one can observe the clover leaf junction of the two highways in Lim-

burg, the E314 and the E313. This is expected to be a hazardous location, though 

one needs to take care in which setting. It may be true that this proves to be dan-

gerous when analyzing highways separately, while on regional roads (they actu-

ally comprise of provincial roads, regional roads and highways), it may prove not 

to be a hot spot after all. 

For both settings, the basic spatial unit is defined to be about 100m. Accidents 

occurring at highways are assigned to the closest hectometer pole, so they are re-

garded as BSU, both for highways as for regional roads. The initial weights that 

are used are the inverse of the squared distance, where the distance was deter-

mined from one BSU to the next one on the network. The number of neighbors is 

also distance based. For each BSU, BSU’s within a 1km range of the BSU under 

investigation are included as neighbors. So each point, not located near the end of 

any highway, has approximately 20 neighboring points (more neighbors are possi-

ble for the city environment configuration). Nearby the junction of both highways, 

it may happen that BSU’s from the second highway are within the predefined 

number of neighbors for a location at the first highway. To account for them in a 

proper way, distances need to be network-based. In the city environment, this be-

comes even more important since there are much more small roads within the 

neighborhood of each other. 

 

 

Fig. 4 Road network around Hasselt. 



Because the idea is to compare the results of Limburg with other provinces in 
Flanders, the number of accidents for Flanders was set as a reference value ( x ) in 

both analyses. 

Limburg has 3,252 hectometer poles alongside its two highways (E313 and 

E314) and 506 accidents occurred on these highways between 2004 and 2006. In 

the second configuration, 1,678 collisions took place on one of the 3,856 possible 

hectometer sites. 

As stated above, since accidents form a Poisson process instead of a Gaussian 

process and because of the sparseness (most locations have a zero accident count), 

the distribution of the local autocorrelation statistics proves to be far from Gaus-

sian. Moreover, count data often suffer from the problem of overdispersion and 

means and variances tend to be heterogeneous, so as stated in [34, 35, 36]. There-

fore, the Monte Carlo approach is applied to derive the distribution of the local 

autocorrelation statistic. 

3.2 Analyses and Results 

For the setting on highways, the 506 accidents are spread randomly over the 

3,252 hectometer poles to determine the distribution of the local version of 

Moran’s I. This density is illustrated in Figure 1. Since we decided to look only at 

the locations that show a positive reinforcement with their contiguous locations in 

the calculation of the local autocorrelation index, these values need to be filtered 

out of the 500 x 3,252 values. From these remaining values, the 95% percentile 

was calculated and this value, i.e. P95 = 4.32 was utilized as cut-off value to deter-

mine which location is a hot spot and which not. Only 5 of the 3,252 locations ap-

peared to be hot spots on highways in Limburg. For reasons of comparison, the 

standard used Gaussian approximation was also applied to investigate the differ-

ence in results. Using also the 95% percentile (of the Gaussian distribution!) as 

cut-off value, now 46 locations proved to be hot spots according to this method. 

The previous 5 are part of them, however, about 87% of the points are falsely 

identified as belonging to the 5% most extreme Moran index values. From a pol-

icy point of view, this might lead to a wrong allocation of the funds to ameliorate 

traffic safety and thus it indisputably shows the importance of using the right dis-

tributions. 

For the more urban configuration, the 95% percentile proved to be much lower, 

P95 now yields 2.14. 48 sites are determined as hot spots by the local Moran index, 

while again more than twice as much (114) locations were pinpointed as hazard-

ous if the Gaussian approximation would have been used. 

Figure 5 shows the resulting hot spots for both configurations. The left figure 

shows the province of Limburg and its two highways, while the right figure shows 

Hasselt and its surrounding area. The hot spots are indicated in red, while the un-

derlying road network is drawn in black. 

 



 

Fig. 5 Hotspots for the both configurations. 

Next, four different weight functions are compared to each other. The determi-

nation of neighbors stays the same. The previously discussed results are denoted 

as setting 1. Setting 2 indicates the version where the inverse of the distance is 

used as weight function, in setting 3 the inverse of the square root of the distances 

is applied and in setting 4 the Epanechnikov-like function. Table 1 and 2 will dis-

play the number of locations and their corresponding accident figure over three 

years and how many of these locations are determined to be hot spots (HS) for 

each setting. Table 1 shows the results on highways, whereas Table 2 gives the re-

sults in the city environment. 

Table 1 Results on highways for different weight functions.  

Loc. with 

… accid. 

Nr. of lo-

cations 

HS in set-

ting 1 

HS in set-

ting 2 

HS in set-

ting 3 

HS in set-

ting 4 

0 2,871 0 0 0 0 

1 318 0 4 8 6 

2 50 3 8 10 10 

3 5 0 0 0 0 

4 2 1 1 1 1 

5 1 0 0 0 0 

7 2 1 1 1 1 

8 1 0 0 0 0 

14 1 0 1 1 1 

24 1 0 0 0 0 

Total --- 5 15 21 19 



Most locations that proved to be hot spots for the inverse quadratic weight func-

tion remain hot spots for all other 3 settings. Furthermore, those locations that are 

hazardous in setting 2 are almost always HS in setting 3. The hot spots that are re-

trieved in setting 4 appear to be a mixture of those of setting 2 and 3. It has to be 

noted that the Gaussian approximation leads to at least 3 times as much ‘so-called’ 

hot spots in each of the applied settings. Often this difference is even much larger. 

This once again emphasizes the necessity to apply the Monte Carlo approach to 

end up with proper results. The largest difference in the number of hot spots oc-

curs between setting 1 and 2. Although there is a remarkable difference in shape 

of the weight function (concave versus convex) between settings 3 and 4, the re-

sulting hot spot locations do not differ a lot. This is probably due to the fact the 

differences occur predominantly at locations further away from the investigated 

BSU. It also shows that for the accidents on highways not all locations with a high 

number of accidents turn out to be hot spots, whereas this does happen to be the 

case for the city environment. It is obvious that the denser the road network is in 

the study area, the more these dangerous locations show up in the analysis. Only 

one highway location turns out to be a hot spot location for the analysis in the city 

environment, and this is a location at the junction of both highways in Limburg. 

This clearly indicates that the context plays an important role. When considering 

an urban environment of this type (city with ring ways and arteries), one might ar-

gue that it suffices to consider only accidents at provincial and regional roads to 

determine the most dangerous locations; However, one needs to be careful in gen-

eralizing this result, since it is only based on one particular example. 

Table 2 Results in city environment for different weight functions.  

Loc. with 

… accid. 

Nr. of lo-

cations 

HS in set-

ting 1 

HS in set-

ting 2 

HS in set-

ting 3 

HS in set-

ting 4 

0 3,064 0 0 0 0 

1 494 2 1 0 0 

2 163 4 6 11 9 

3 62 10 11 12 14 

4 23 5 6 6 6 

5 15 8 8 7 8 

6 9 3 4 4 4 

7 10 3 4 4 4 

8 1 0 0 0 0 

9 2 1 1 1 1 

12 1 1 1 0 0 

14 3 2 3 3 3 

17 1 1 1 1 1 

20 1 1 1 1 1 

21 2 2 2 2 2 

24 2 2 2 2 2 



30 1 1 1 1 1 

67 1 1 1 1 1 

78 1 1 1 1 1 

Total --- 48 54 57 58 

4 CONCLUSIONS AND DISCUSSION 

The aim of this chapter was to apply a local indicator of spatial association, 

more in particular Moran's I, to identify hazardous locations on highways and on 

regional roads. First of all, it needs to be acknowledged that accidents occur on a 

network, and this should be accounted for by using the correct network-based dis-

tances between locations under study.  

Moreover, accident data in general stem from a Poisson random process, rather 

than a Gaussian random process and locations with zero counts are very frequent, 

so the normal use of the indicators seemed very elusive. To account for these 

characteristics, a simulation procedure was set up to arrive at the distribution of 

Moran’s I, so as to determine the 5% most extreme observations. Two different 

settings were regarded, the highway network of the province of Limburg in Bel-

gium and the network around the city of Hasselt, the capital of Limburg. To con-

struct the distribution of the improved Moran’s I, a Monte Carlo simulation ex-

periment was set up where the reported number of accidents was spread randomly 

over the population of possible locations to arrive at the distribution of the local 

indicator. Sites that showed a local index above the 95% cut-off value of the den-

sity are then regarded as hot spots. 

For comparison purposes, the same analysis was carried out using the Gaussian 

approximation for Moran’s I instead of the simulated distribution. Now at least 

twice as much locations were defined as hot spots, including the ones obtained by 

a correct use. Blindly using the Gaussian approximation is certainly not an option, 

and one absolutely needs to take into account the nature of the data under study. 

This is a very relevant result for policy makers, since they usually do not have ac-

cess to an unlimited budget to treat hot spots. To allocate their funds in the best 

possible way, it is important to know which locations are true hot spots. The im-

pact of different weight functions in both settings has also been investigated. This 

illustrates that the context and the density of the road network is very important 

when choosing a good weight function. Further research combined with expert 

knowledge seems required to come up with some rules of thumb to be used for 

analyses in the future. 

A next step to be taken is to investigate how these hot spots can be combined 

into hot zones. A possible way forward has been suggested by Loo [38]. 

An important avenue for future research is to apply and compare the results of 

this and other (spatial) techniques (such as network-based K-function) to identify 

hot spots on other road types (e.g. local roads). 
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