
����������	��

����������	��
�����
��
������
��������������������������������

�������������������������������� ��!"�#����$%

����������������������������
 !�����������"������

&���������������������#���������'�����������#������#����
����������#�� ��������((��)�����������������������������#�#�����#���)

 �"����*+,-�+

&�������)�(���.�#�.�/���!�0����

Preface

This is the ideal opportunity to thank the people who have contributed either
directly or indirectly to this thesis.

First and foremost, I would like to thank my advisor, Frank Neven, for
his continuing guidance and support. Next to his excellent vision on scientific
work, he also is a great person whose students always come first. Needless to
say, this dissertation would not have been possible without him.

During the last years I met many very interesting persons, too many to
thank all of them personally. But thank you Thomas, Bart, Wim, Henrik,
Walied, Geert Jan, Tim, Marcel, Kurt, Jan, Volker, Natalia, Goele, Stijn,
Marc, Wenfei, Floris, . . . for pleasant collaborations (scientific as well as
teaching), interesting conversations, and good company. Among them, special
thanks go out to Wim for many fun collaborations, and Thomas for inviting
me to his group in Dortmund, which really felt like a second research group
to me.

On a more personal note, I would also like to thank my friends for their
continuing support. Last, but definitely not least, I would like to thank my
parents, brothers, and sister, for being, each in their own way, simply the best
people I know. I can not imagine growing up in a better family as I did.

Thank you all!

Diepenbeek, September 2009

i

Contents

Preface i

1 Introduction 1

2 Definitions and preliminaries 7

2.1 Regular Expressions . 7

2.2 Deterministic Regular Expressions 9

2.3 Finite Automata . 10

2.4 Schema Languages for XML . 11

2.5 Decision Problems . 12

I Foundations of Regular Expressions 15

3 Succinctness of Regular Expressions 17

3.1 A Generalization of a Theorem by Ehrenfeucht and Zeiger to a
Fixed Alphabet . 19

3.2 Complementing Regular Expressions 27

3.3 Intersecting Regular Expressions 32

4 Succinctness of Extended Regular Expressions 37

4.1 Definitions and Basic Results 40

4.2 Succinctness w.r.t. NFAs . 43

4.3 Succinctness w.r.t. DFAs . 44

4.4 Succinctness w.r.t. Regular Expressions 47

4.4.1 Kn: The Basic Language 48

4.4.2 Ln: Binary Encoding of Kn 49

4.4.3 Mn: Succinctness of RE(&) 52

5 Complexity of Extended Regular Expressions 57

5.1 Automata for RE(#, &) . 57

iii

iv CONTENTS

5.2 Complexity of Regular Expressions 66

6 Deterministic Regular Expressions with Counting 75
6.1 Preliminaries . 78
6.2 Expressive Power . 80
6.3 Succinctness . 89
6.4 Counter Automata . 92
6.5 From RE(#) to CNFA . 97
6.6 Testing Strong Determinism . 104
6.7 Decision Problems for RE(#) 109
6.8 Discussion . 110

II Applications to XML Schema Languages 111

7 Succinctness of Pattern-Based Schema Languages 113
7.1 Preliminaries and Basic Results 115

7.1.1 Pattern-Based Schema Languages 116
7.1.2 Characterizations of (Extended) DTDs 117
7.1.3 Theorems . 119
7.1.4 Succinctness . 120

7.2 Regular Pattern-Based Schemas 120
7.3 Linear Pattern-Based Schemas 126
7.4 Strongly Linear Pattern-Based Schemas 133

8 Optimizing XML Schema Languages 141
8.1 Complexity of DTDs and Single-Type EDTDs 143
8.2 Complexity of Extended DTDs 144
8.3 Simplification . 147

9 Handling Non-Deterministic Regular Expressions 151
9.1 Deciding Determinism . 155
9.2 Constructing Deterministic Expressions 157

9.2.1 Growing automata . 158
9.2.2 Enumerating Automata 158
9.2.3 Optimizing the BKW-Algorithm 161

9.3 Approximating Deterministic Regular Expressions 165
9.3.1 Optimal Approximations 165
9.3.2 Quality of the approximation 166
9.3.3 Ahonen’s Algorithm . 167
9.3.4 Ahonen’s Algorithm Followed by Grow 171
9.3.5 Shrink . 171

9.4 Experiments . 173
9.4.1 Deciding Determinism 173
9.4.2 Constructing Deterministic Regular Expressions 174
9.4.3 Approximating Deterministic Regular Expressions . . . 175

9.5 SUPAC: Supportive UPA Checker 177

10 Conclusion 179

11 Publications 181

Bibliography 183

Samenvatting 193

1
Introduction

The regular languages constitute a highly robust class of languages. They can
be represented by many different formalisms such as finite automata [92], reg-
ular expressions [67], finite semigroups [97], monadic second-order logic [18],
right-linear grammars [21], quantifier-free first-order updates [39], ... Reg-
ular languages are closed under a wide range of operations and, even more
importantly, almost any interesting problem concerning regular languages is
decidable. All kinds of aspects of the regular languages have been studied
over the past 50 years. From a practical perspective, the most widespread
way to specify regular languages is by using regular expressions (REs). They
are used in applications in many different areas of computer science, including
bioinformatics [84], programming languages [108], model checking [105], and
XML schema language [100].

XML is the lingua franca and the de facto standard for data exchange
on the Web. When two parties exchange data in XML, the XML documents
usually adhere to a certain format. Thereto, XML schema languages are used
to describe the structure an XML document can have. The most common
XML schema languages are DTD, XML Schema [100], both W3C standards,
and Relax NG [22]. From a formal language theory point of view each of these
is a grammar-based formalism with regular expressions at their right-hand
sides. These expression, however, differ from the standard regular expressions
in that they are extended by additional operators but are also restricted by the
requirement to be deterministic. Although these requirements are recorded in
W3C and ISO standards, it is not clear what their impact on the different

2 Introduction

schema languages is. The goal of this thesis therefore is a study of these
consequences; in particular, we study the complexity of optimization in the
presence of additional operators, illustrate the difficulties of migrating from
one schema language to another, and study the implications of the determinism
constraint (also in the presence of additional operators) and try to make it
accessible in practice.

Although the questions we ask are mainly inspired by questions about
XML, we believe that the answers are also interesting for the general the-
oretical computer science community as they answer fundamental questions
concerning regular expressions. Therefore, this thesis consists of two parts.
In the first part, we study fundamental aspects of regular expression. In the
second, we apply the former results to applications concerning XML schema
languages. Although most of the work is of a foundational nature, we also
developed software to bring these theoretical insights to practice (cf. Chap-
ter 9).

Foundations of Regular Expressions

In Chapter 3, we address succinctness of regular expressions. In particular,
we consider the following questions. As usual L(r) denotes the language de-
fined by regular expression r. Given regular expressions r, r1, . . . , rk over an
alphabet Σ,

1. what is the complexity of constructing a regular expression r¬ defining
Σ∗ \ L(r), that is, the complement of r?

2. what is the complexity of constructing a regular expression r∩ defining
L(r1) ∩ · · · ∩ L(rk)?

In both cases, the naive algorithm takes time double exponential in the size
of the input. Indeed, for the complement, transform r to an NFA and de-
terminize it (first exponential step), complement it and translate back to a
regular expression (second exponential step). For the intersection there is a
similar algorithm through a translation to NFAs, taking the crossproduct and
a retranslation to a regular expression. Note that both algorithms do not
only take double exponential time but also result in a regular expression of
double exponential size. We show that these naive constructions can not be
substantially improved by exhibiting classes of regular expressions for which
this double exponential size increase can not be avoided. The main technical
contribution of this chapter is a generalization of a result by Ehrenfeucht and
Zeiger [30]. In particular, we construct a family of languages over a two-letter
alphabet which can not be defined by small regular expressions. The latter

3

also allows to show that in a translation from automata to regular expression
an exponential size-increase can in general not be avoided, even over a binary
alphabet.

In addition, we consider the same questions for two strict subclasses:
single-occurrence and deterministic regular expressions. A regular expres-
sion is single-occurrence when every alphabet symbol occurs at most once.
For instance, (a + b)∗c is a single-occurrence regular expression (SORE) while
a∗(a + b)∗ is not. Despite their apparent simplicity, SOREs nonetheless cap-
ture the majority of XML schemas on the Web [9]. Determinism (also called
one-unambiguity [17]) intuitively requires that, when matching a string from
left to right against an expression, it is always clear against which position in
the expression the next symbol must be matched. For example, the expression
(a + b)∗a is not deterministic, but the equivalent expression b∗a(b∗a)∗ is. The
XML schema languages DTD and XML Schema [100] require expressions to
be deterministic. In short, for both classes complementation becomes easier,
while intersection remains difficult.

While Chapter 3 investigates the complexity of applying language opera-
tions to regular expressions, Chapter 4 investigates the succinctness of ex-
tended regular expressions, i.e. expressions extended with additional opera-
tors. In particular, we study the succinctness of regular expressions extended
with counting (RE(#)), intersection (RE(∩)), and interleaving (RE(&)) op-
erators. The counting operator allows for expressions such as a2,5, specifying
that there must occur at least two and at most five a’s. These RE(#)s are
used in egrep [58] and Perl [108] patterns and XML Schema [100]. The class
RE(∩) is a well studied extension of the regular expressions, and is often re-
ferred to as the semi-extended regular expressions. The interleaving operator
allows for expressions such as a & b & c, specifying that a, b, and c may occur
in any order, and is used in the XML schema language Relax NG [22] and, in
a very restricted form, in XML Schema [100]. We give a complete overview of
the succinctness of these classes of extended regular expressions with respect
to regular expressions, NFAs, and DFAs.

The main reason to study the complexity of a translation from extended
regular expressions to standard expressions is to gain more insight in the power
of the different operators. However, these results also have important conse-
quences concerning the complexity of translating from one schema language to
another. For instance, we show that in a translation from RE(&) to standard
RE a double exponential size increase can in general not be avoided. As Relax
NG allows interleaving, and XML Schema only allows a very restricted form
of interleaving, this implies that also in a translation from Relax NG to XML
Schema a double exponential size increase can not be avoided. Nevertheless,
as XML Schema is a widespread W3C standard, and Relax NG is a more flex-

4 Introduction

ible alternative, such a translation would be more than desirable. Second, we
study the succinctness of extended regular expressions to finite automata as,
when considering algorithmic problems, the easiest solution is often through a
translation to finite automata. However, our negative results indicate that it
is often more desirable to develop dedicated algorithms for extended regular
expressions which avoid such translations.

In Chapter 5, we investigate the complexity of the equivalence, inclusion,
and intersection non-emptiness problem for various classes of regular expres-
sions. These classes are general regular expressions extended with counting
and interleaving operators, and CHAin Regular Expressions (CHAREs) ex-
tended with counting. The latter is another simple subclass of the regular
expressions [75]. The main motivation for studying these classes lies in their
application to the complexity of the different XML schema languages and,
consequently, these results will further be used in Chapter 8, when studying
the complexity of the same problems for XML schema languages.

In Chapter 6, we study deterministic regular expressions with counting,
as these are essentially the regular expressions allowed in XML Schema. The
commonly accepted notion of determinism is as given before: an expression
is deterministic when matching a string against it, it is always clear against
which position in the expression the next symbol must be matched. However,
one can also consider a stronger notion of determinism in which it additionally
must also always be clear how to go from one position to the next. We refer to
the former notion as weak and the latter as strong determinism. For example,
(a∗)∗ is weakly deterministic, but not strongly deterministic since it is not
clear over which star one should iterate when going from one a to the next.

For standard regular expressions this distinction is usually not made as
the two notions almost coincide for them. That is, a weak deterministic ex-
pression can be translated in linear time into an equivalent strong determin-
istic one [15].1 This situation changes completely when counting is involved.
Firstly, the algorithm for deciding whether an expression is weakly determin-
istic is non-trivial [66]. For instance, (a2,3 + b)2,2b is weakly deterministic, but
the very similar (a2,3 + b)3,3b is not. So, the amount of non-determinism in-
troduced depends on the concrete values of the counters. Second, as we show,
weakly deterministic expressions with counting are strictly more expressive
than strongly deterministic ones. Therefore, the aim of this chapter is an in-
depth study of the notions of weak and strong determinism in the presence of
counting with respect to expressiveness, succinctness, and complexity.

1Brüggemann-Klein [15] did not study strong determinism explicitly. However, she does
give a procedure to transform expressions into star normal form which rewrites weakly
determinisistic expressions into equivalent strongly deterministic ones in linear time.

5

Applications to XML Schema Languages

In Chapter 7, we study pattern-based schema languages. This is a schema
language introduced by Martens et al. [77] and equivalent in expressive power
to single-type EDTDs, the commonly used abstraction of XML Schema. An
advantage of this language is that it makes the expressiveness of XML Schema
more apparent: the content model of an element can only depend on regu-
lar string properties of the string formed by the ancestors of that element.
Pattern-based schemas can therefore be used as a type-free front-end for XML
Schema. As they can be interpreted both in an existential and universal way,
we study in this chapter the complexity of translating between the two seman-
tics and into the formalisms of DTDs, EDTDs, and single-type EDTDs, the
common abstractions of DTD, Relax NG, and XML Schema, respectively

Here, we make extensive use of the results in Chapter 3 and show that
in general translations from pattern-based schemas to the other schema for-
malisms requires exponential or even double exponential time, thereby reduc-
ing much of the hope of using pattern-based schemas in its most general form
as a useful front-end for XML Schema. Therefore, we also study more re-
stricted classes of schemas: linear and strongly linear pattern-based schemas.
Interestingly, strongly linear schemas, the most restricted class, allow for ef-
ficient translations to other languages, efficient algorithms for basic decision
problems, and yet are expressive enough to capture the far majority of real-
world XML Schema Definitions (XSDs). From a practical point of view, this
is hence a very useful class of schemas.

In Chapter 8, we study the impact of adding counting and interleaving
to regular expressions for the different schema languages. We consider the
equivalence, inclusion, and intersection non-emptiness problem as these con-
stitute the basic building blocks in algorithms for optimizing XML schemas.
We also consider the simplification problem: Given an EDTD, is it equivalent
to a single-type EDTD or a DTD?

Finally, in Chapter 9, we provide algorithms for dealing with the require-
ment in DTD and XML Schema that all regular expressions are deterministic,
i.e. the Unique Particle Attribution constraint in XML Schema. In most
books (c.f. [103]), the UPA constraint is usually explained in terms of a simple
example rather than by means of a clear syntactical definition. So, when after
the schema design process, one or several regular expressions are rejected by
the schema checker on account of being non-deterministic, it is very difficult
for non-expert2 users to grasp the source of the error and almost impossible
to rewrite the expression into an admissible one. The purpose of the present
chapter is to investigate methods for transforming nondeterministic expres-

2In formal language theory.

6 Introduction

sions into concise and readable deterministic ones defining either the same
language or constituting good approximations. We propose the algorithm
supac (Supportive UPA Checker) which can be incorporated in a responsive
XSD tester which in addition to rejecting XSDs violating UPA also suggests
plausible alternatives. Consequently, the task of designing an XSD is relieved
from the burden of the UPA restriction and the user can focus on designing
an accurate schema.

2
Definitions and preliminaries

In this section, we define the necessary definitions and notions concerning
regular expressions, finite automata and XML schema languages.

2.1 Regular Expressions

By N we denote the natural numbers without zero. For the rest of this thesis,
Σ always denotes a finite alphabet. A Σ-string (or simply string) is a finite
sequence w = a1 · · · an of Σ-symbols. We define the length of w, denoted by
|w|, to be n. We denote the empty string by ε. The set of positions of w is
{1, . . . , n} and the symbol of w at position i is ai. By w1 · w2 we denote the
concatenation of two strings w1 and w2. As usual, for readability, we denote
the concatenation of w1 and w2 by w1w2. The set of all strings is denoted by
Σ∗. A string language is a subset of Σ∗. For two string languages L, L′ ⊆ Σ∗,
we define their concatenation L · L′ to be the set {ww′ | w ∈ L, w′ ∈ L′}. We
abbreviate L ·L · · ·L (i times) by Li. By w1 & w2 we denote the set of strings
that is obtained by interleaving w1 and w2 in every possible way. That is, for
w ∈ Σ∗, w & ε = ε & w = {w}, and aw1 & bw2 = ({a}(w1 & bw2))∪ ({b}(aw1 &
w2)). The operator & is then extended to languages in the canonical way.

The set of regular expressions over Σ, denoted by RE, is defined in the
usual way: ∅, ε, and every Σ-symbol is a regular expression; and when r1 and
r2 are regular expressions, then so are r1 ·r2, r1+r2, and r∗1. By RE(&,∩,¬, #)
we denote the class of extended regular expressions, that is, REs extended with
interleaving, intersection, complementation, and counting operators. So, when

8 Definitions and preliminaries

r1 and r2 are RE(&,∩,¬, #) expressions then so are r1&r2, r1∩r2, ¬r1 and rk,ℓ
1

for k ∈ N∪{0}, ℓ ∈ N∪{∞} and k ≤ ℓ. Here, k <∞ for any k ∈ N∪{0}. For
any subset S of {&,∩,¬, #}, we denote by RE(S) the class of extended regular
expressions using only operators in S. For instance, RE(∩,¬) denotes the
set of all expressions using, next to the standard operators, only intersection
and complementation. To distinguish from extended regular expressions, we
often refer to the normal regular expressions as standard regular expressions.
All notions defined for extended regular expressions in the remainder of this
section also apply to standard regular expressions, in the canonical manner.

The language defined by an extended regular expression r, denoted by
L(r), is inductively defined as follows:

• L(∅) = ∅;

• L(ε) = {ε};

• L(a) = {a};

• L(r1r2) = L(r1) · L(r2);

• L(r1 + r2) = L(r1) ∪ L(r2);

• L(r∗) = {ε} ∪⋃∞
i=1 L(r)i;

• L(r1 & r2) = L(r1) & L(r2)

• L(r1 ∩ r2) = L(r1) ∩ L(r2);

• L(¬r1) = Σ∗ \ L(r1); and

• L(rk,ℓ) =
⋃ℓ

i=k L(r)i.

By r+,
⋃k

i=1 ri, r?, and rk, with k ∈ N, we abbreviate the expressions
rr∗, r1 + · · · + rk, r + ε, and rr · · · r (k-times), respectively. For a set S =
{a1, . . . , an} ⊆ Σ, we abbreviate by S the regular expression a1 + · · · + an.
When rk,l is used in a standard regular expression, this is an abbreviation
for rk(r + ε)l−k, unless mentioned otherwise. Note also that in the context
of RE(#), r∗ is an abbreviation of r0,∞. Therefore, we sometimes omit ∗ as
a basic operator when counting is allowed. Note also that, in the absence of
complementation, the operator ∅ is only necessary to define the language ∅ and
can be removed in linear time from any extended regular expression defining
a language different from ∅. Therefore, we assume in the remainder of this
thesis that the operator ∅ is only used in the expression r = ∅, and not in any
other expression not containing complementation.

2.2. Deterministic Regular Expressions 9

For an extended regular expression r, we denote by Char(r) the set of Σ-
symbols occurring in r. We define the size of an extended regular expression r
over Σ, denoted by |r|, as the number of Σ-symbols and operators occurring in
r plus the sizes of the binary representations of the integers. This is equivalent
to the length of its (parenthesis-free) reverse Polish form [112]. Formally,
|∅| = |ε| = |a| = 1, for a ∈ Σ, |r1r2| = |r1 ∩ r2| = |r1 + r2| = |r1 & r2| =
|r1∩r2| = |r1|+ |r2|+1, |r∗| = |¬r| = |r|+1, and |rk,ℓ| = |r|+⌈log k⌉+⌈log ℓ⌉.

Other possibilities considered in the literature for defining the size of a
regular expression are: (1) counting all symbols, operators, and parentheses
[2, 59]; or, (2) counting only the Σ-symbols. However, it is known (see, for
instance [31]) that for standard regular expressions, provided they are prepro-
cessed by syntactically eliminating superfluous ∅- and ε-symbols, and nested
stars, the three length measures are identical up to a constant multiplicative
factor. For extended regular expressions, counting only the Σ-symbols is not
sufficient, since for instance the expression (¬ε)(¬ε)(¬ε) does not contain any
Σ-symbols. Therefore, we define the size of an expression as the length of its
reverse Polish form.

For an RE(#) expression r, the set first(r) (respectively, last(r)) consists
of all symbols which are the first (respectively, last) symbols in some string
defined by r. These sets are inductively defined as follows:

• first(ε) = last(ε) = ∅ and ∀a ∈ Char(r), first(a) = last(a) = {a};

• If r = r1 + r2: first(r) = first(r1) ∪ first(r2) and last(r) = last(r1) ∪
last(r2);

• If r = r1 · r2:

– If ε ∈ L(r1), first(r) = first(r1) ∪ first(r2), else first(r) = first(r1);

– If ε ∈ L(r2), last(r) = last(r1) ∪ last(r2), else last(r) = last(r2);

• If r = rk,ℓ
1 : first(r) = first(r1) and last(r) = last(r1).

2.2 Deterministic Regular Expressions

As mentioned in the introduction, several XML schema languages restrict reg-
ular expressions occurring in rules to be deterministic (also sometimes called
one-unambiguous [17]). We introduce this notion in this section.

A marked regular expression Σ is a regular expression over Σ×N in which
every (Σ × N)-symbol occurs at most once. We denote the set of all these
expressions by MRE. Formally, r ∈ MRE if Char(r) ⊂ Σ × N and, for every
subexpression ss′ or s + s′ of r, Char(s) ∩Char(s′) = ∅. A marked string is a

10 Definitions and preliminaries

string over Σ×N (in which (Σ×N)-symbols can occur more than once). When
r is a marked regular expression, L(r) is therefore a set of marked strings.

The demarking of a marked expression is obtained by deleting these in-
tegers. Formally, the demarking of r is dm(r), where dm : MRE → RE is
defined as dm(ε) := ε, dm((a, i)) := a, dm(rs) := dm(r)dm(s), dm(r + s) :=

dm(r) + dm(s), and dm(rk,ℓ) := dm(r)k,ℓ. Any function m : RE→ MRE such
that for every r ∈ RE it holds that dm(m(r)) = r is a valid marking func-
tion. For conciseness and readability, we will from now on write ai instead of
(a, i) in marked regular expressions. For instance, a marking of (a + b)a + bc
is (a1 + b1)a2 + b2c1. The markings and demarkings of strings are defined
analogously. For the rest of the thesis, we usually leave the actual marking
and demarking functions m and dm implicit and denote by r a marking of the
expression r and, conversely, by r the demarking of r. Likewise w will denote
a marking of a string w. We always use overlined letters to denote marked
expressions, symbols, and strings.

Definition 1. An expression r ∈ RE is deterministic (also called one-unambi-
guous) if, for all strings u, v, w ∈ Char(r)∗ and all symbols a, b ∈ Char(r), the
conditions uav, ubw ∈ L(r) and a 6= b imply that a 6= b.

Intuitively, an expression is deterministic if, when matching a string against
the expression from left to right, we always know against which symbol in the
expression we must match the next symbol, without looking ahead in the
string. For instance, (a + b)∗a is not deterministic, while (b∗a)(b∗a)∗ is.

2.3 Finite Automata

A non-deterministic finite automaton (NFA) A is a 4-tuple (Q, q0, δ, F) where
Q is the set of states, q0 is the initial state, F is the set of final states and
δ ⊆ Q × Σ × Q is the transition relation. By δ∗ we denote the reflexive-
transitive closure of δ, i.e. δ∗ is the smallest relation such that for all q ∈ Q,
(q, ε, q) ∈ δ∗, δ ⊂ δ∗ and when (q1, u, q2) and (q2, v, q3) are in δ∗ then so is
(q1, uv, q3). So, w is accepted by A if (q0, w, q′) ∈ δ∗ for some q′ ∈ F . We also
sometimes write q ⇒A,w q′ when (q, w, q′) ∈ δ∗. The set of strings accepted
by A is denoted by L(A). The size of an NFA is |δ|. An NFA is deterministic
(or a DFA) if for all a ∈ Σ, q ∈ Q, it holds that |{(q, a, q′) ∈ δ | q′ ∈ Q}| ≤ 1.
When A is a DFA we sometimes write δ and δ∗ as a function instead of a
relation, i.e. δ(q, a) = p when (q, a, p) ∈ δ. For a transition (q, a, p) ∈ δ, we
say that q is its source state and p its target state.

A state q ∈ Q is useful if there exist strings w, w′ ∈ Σ∗ such that (q0, w, q) ∈
δ∗, and (q, w′, qf) ∈ δ∗, for some qf ∈ F . An NFA is trimmed if it only contains

2.4. Schema Languages for XML 11

useful states. For q ∈ Q, let symbols(q) = {a | ∃p ∈ Q, (p, a, q) ∈ δ}. Then,
A is state-labeled if for any q ∈ Q, |symbols(q)| ≤ 1, i.e., all transitions to a
single state are labeled with the same symbol. In this case, we also denote this
symbol by symbol(q). Further, A is non-returning if symbols(q0) = ∅, i.e., q0

has no incoming transitions.
We will make use of the following well-known results concerning finite

automata and regular expressions.

Theorem 2. Let A be an NFA over Σ with m states, and let |A| = n and
|Σ| = k.

1. A regular expression r, with L(r) = L(A), of size O(mk4m), can be
constructed in time 2O(n) [82, 31].

2. A DFA B with 2m states, such that L(B) = L(A), can be constructed
in time O(2n) [110].

3. A DFA B with 2m states, such that L(B) = Σ∗\L(A), can be constructed
in time O(2n) [110].

4. Let r ∈ RE. An NFA B with |r|+ 1 states, such that L(B) = L(r), can
be constructed in time O(|r| · k) [15].

2.4 Schema Languages for XML

We use unranked trees as an abstraction for XML documents. The set of
unranked Σ-trees, denoted by TΣ, is the smallest set of strings over Σ and
the parenthesis symbols “(” and “)” containing ε such that, for a ∈ Σ and
w ∈ (TΣ)∗, a(w) is in TΣ. So, a tree is either ε (empty) or is of the form
a(t1 · · · tn) where each ti is a tree. In the tree a(t1 · · · tn), the subtrees t1, . . . , tn
are attached to the root labeled a. We write a rather than a(). Notice that
there is no a priori bound on the number of children of a node in a Σ-tree;
such trees are therefore unranked. For every t ∈ TΣ, the set of nodes of t,
denoted by Dom(t), is the set defined as follows: (i) if t = ε, then Dom(t) = ∅;
and (ii) if t = a(t1 · · · tn), where each ti ∈ TΣ, then Dom(t) = {ε} ∪⋃n

i=1{iu |
u ∈ Dom(ti)}. For a node u ∈ Dom(t), we denote the label of u by labt(u).
In the sequel, whenever we say tree, we always mean Σ-tree. We denote by
anc-strt(u) the sequence of labels on the path from the root to u including
both the root and u itself, and ch-strt(u) denotes the string formed by the
labels of the children of u, i.e., labt(u1) · · · labt(un). Denote by t1[u← t2] the
tree obtained from a tree t1 by replacing the subtree rooted at node u of t1 by
t2. By subtreet(u) we denote the subtree of t rooted at u. A tree language is
a set of trees.

12 Definitions and preliminaries

We make use of the following definitions to abstract from the commonly
used schema languages [77]:

Definition 3. Let R be a class of representations of regular string languages
over Σ.

1. A DTD(R) over Σ is a tuple (Σ, d, sd) where d is a function that maps Σ-
symbols to elements of R and sd ∈ Σ is the start symbol. For notational
convenience, we sometimes denote (Σ, d, sd) by d and leave the start
symbol sd and alphabet Σ implicit.

A tree t satisfies d if (i) labt(ε) = sd and, (ii) for every u ∈ Dom(t) with
n children, labt(u1) · · · labt(un) ∈ L(d(labt(u))). By L(d) we denote the
set of trees satisfying d.

2. An extended DTD (EDTD(R)) over Σ is a 5-tuple D = (Σ, Σ′, d, s, µ),
where Σ′ is an alphabet of types, (Σ′, d, s) is a DTD(R) over Σ′, and µ
is a mapping from Σ′ to Σ.

A tree t then satisfies an extended DTD if t = µ(t′) for some t′ ∈ L(d).
Here we abuse notation and let µ also denote its extension to define a
homomorphism on trees. Again, we denote by L(D) the set of trees
satisfying D. For ease of exposition, we always take Σ′ = {ai | 1 ≤ i ≤
ka, a ∈ Σ, i ∈ N} for some natural numbers ka, and we set µ(ai) = a.

3. A single-type EDTD (EDTDst(R)) over Σ is an EDTD(R) D = (Σ, Σ′, d,
s, µ) with the property that for every a ∈ Σ′, in the regular expression
d(a) no two types bi and bj with i 6= j occur.

We denote by EDTD (respectively, EDTDst) the class EDTD(RE) (respec-
tively, EDTDst(RE)). Similarly, for a subset S of {&,∩,¬, #} we denote by
EDTD(S) and EDTDst(S) the classes EDTD(RE(S)) and EDTDst(RE(S)),
respectively. As explained in [77, 85], EDTDs and single-type EDTDs cor-
respond to Relax NG and XML Schema, respectively. Furthermore, EDTDs
correspond to the unranked regular languages [16], while single-type EDTDs
form a strict subset thereof [77].

2.5 Decision Problems

The following decision problems will be studied for various classes of regular
expressions, automata, and XML schema languages.

Definition 4. Let M be a class of representations of regular string or tree
languages:

2.5. Decision Problems 13

• inclusion forM: Given two elements e, e′ ∈M, is L(e) ⊆ L(e′)?

• equivalence for M: Given two elements e, e′ ∈M, is L(e) = L(e′)?

• intersection forM: Given an arbitrary number of elements e1, . . . , en ∈
M, is

⋂n
i=1 L(ei) 6= ∅?

• membership for M: Given an element e ∈M and a string or a tree f ,
is f ∈ L(e)?

• satisfiability for M: Given an element e ∈ M, does there exist a
non-empty string or tree f such that f ∈ L(e)?

• simplification for M: Given an element e ∈ M, does there exist a
DTD D such that L(e) = L(D)?

Part I

Foundations of Regular
Expressions

15

3
Succinctness of Regular
Expressions

The two central questions addressed in this chapter are the following. Given
regular expressions (REs) r, r1, . . . , rk over an alphabet Σ,

1. what is the complexity of constructing a regular expression r¬ defining
Σ∗ \ L(r), that is, the complement of r?

2. what is the complexity of constructing a regular expression r∩ defining
L(r1) ∩ · · · ∩ L(rk)?

In both cases, the naive algorithm takes time double exponential in the size
of the input. Indeed, for the complement, transform r to an NFA and de-
terminize it (first exponential step), complement it and translate back to a
regular expression (second exponential step). For the intersection there is a
similar algorithm through a translation to NFAs, taking the crossproduct and
a retranslation to a regular expression. Note that both algorithms do not only
take double exponential time but also result in a regular expression of double
exponential size. In this chapter, we exhibit classes of regular expressions for
which this double exponential size increase cannot be avoided. Furthermore,
when the number k of regular expressions is fixed, r∩ can be constructed in
exponential time and we prove a matching lower bound for the size increase.
In addition, we consider the fragments of deterministic and single-occurrence
regular expressions relevant to XML schema languages [9, 11, 43, 77]. Our
main results are summarized in Table 3.1.

18 Succinctness of Regular Expressions

complement intersection intersection
(fixed) (arbitrary)

regular expression 2-exp exp 2-exp

deterministic poly exp 2-exp

single-occurrence poly exp exp

Table 3.1: Overview of the size increase for the various operators and sub-
classes.

The main technical part of the chapter is centered around the generaliza-
tion of a result in [30]. They exhibit a class of languages (Kn)n∈N each of
which can be accepted by a DFA of size O(n2) but cannot be defined by a
regular expression of size smaller than 2n−1. The most direct way to define
Kn is by the DFA that accepts it: it consists of n states, labeled 0 to n − 1,
where 0 is the initial and n − 1 the final state, and which is fully connected
with the edge between state i and j carrying the label ai,j . Note that the
alphabet over which Kn is defined grows quadratically with n. We generalize
their result to a fixed alphabet. In particular, we define Hn as the binary
encoding of Kn using a suitable encoding for ai,j and prove that every regular
expression defining Hn should be at least of size 2n. As integers are encoded
in binary the complement and intersection of regular expressions can now be
used to separately encode H2n (and slight variations thereof) leading to the
desired results.

Although the succinctness of various automata models have been investi-
gated in depth [46] and more recently those of logics over (unary alphabet)
strings [47], the succinctness of regular expressions had, up to recently, hardly
been addressed. For the complement of a regular expression an exponential
lower bound is given in [31]. For the intersection of an arbitrary number of
regular expressions Petersen gave an exponential lower bound [90], while [31]
mentions a quadratic lower bound for the intersection of two regular expres-
sions. In fact, in [31], it is explicitly asked what the maximum achievable size
increase is for the complement of one and the intersection of two regular ex-
pressions (Open Problems 4 and 5), and whether an exponential size increase
in the translation from DFA to RE is also unavoidable when the alphabet is
fixed (Open Problem 3).

More recently, there have been a number of papers concerning succinctness
of regular expressions and related matters [53, 48, 49, 50, 51, 52]. Most related
is [48], where, independently, a number of problems similar to the problems
in this chapter are studied. They also show that in constructing a regular
expression for the intersection of two expressions, an exponential size-increase
can not be avoided. However, we only give a 2Ω(

√
n) lower bound whereas

3.1. A Generalization of a Theorem by Ehrenfeucht and Zeiger to
a Fixed Alphabet 19

they obtain 2Ω(n), which in [49] is shown to be almost optimal. For the com-
plementation of an RE we both obtain a double exponential lower bound.

Here, however, they obtain 22Ω(
√

n log n)
whereas we prove a (tight) 22Ω(n)

lower

bound. However, in [51] they also prove a 22Ω(n)
lower bound. Finally, as

a corollary of our results we obtain that in a translation from a DFA to an
RE an exponential size increase can not be avoided, also when the alphabet

is fixed. This yields a lower bound of 2Ω(
√

n/ log n) which in [48] is improved
to the (tight) bound of 2Ω(n). All results mentioned here involve fixed binary
alphabets, and, together, these results settle open problems 3, 4, and 5 of [31].

As already mentioned in the introduction, the main motivation for this
research stems from its application in the emerging area of XML-theory [72,
86, 98, 106]. The lower bounds presented here are utilized in Chapter 7 to
prove, among other things, lower bounds on the succinctness of existential
and universal pattern-based schemas on the one hand, and single-type EDTDs
(a formalization of XSDs) and DTDs, on the other hand. As the DTD and
XML Schema specification require regular expressions occurring in rules to be
deterministic, formalized by Brüggemann-Klein and Wood in terms of one-
unambiguous regular expressions [17], we also investigate the complement and
intersection of those. In particular, we show that a deterministic regular ex-
pressions can be complemented in polynomial time, whereas the lower bounds
concerning intersection carry over from unrestricted regular expressions. A
study in [9] reveals that most of the deterministic regular expression used in
practice take a very simple form: every alphabet symbol occurs at most once.
We refer to those as single-occurrence regular expressions (SOREs) and show
a tight exponential lower bound for intersection.

Outline. In Section 3.1 we extend the results of Ehrenfeucht and Zeiger to
languages over a fixed alphabet. Then, in Sections 3.2 and 3.3 we investigate
the succinctness of the complement and intersection of regular expressions,
respectively.

3.1 A Generalization of a Theorem by Ehrenfeucht
and Zeiger to a Fixed Alphabet

We first introduce the family (Kn)n∈N of string languages defined by Ehren-
feucht and Zeiger [30] over an alphabet whose size grows quadratically with
the parameter n:

Definition 5. Let n ∈ N and Σn = {ai,j | 0 ≤ i, j ≤ n − 1}. Then, Kn

contains exactly all strings of the form a0,i1ai1,i2 · · · aik−1,n−1 where k ∈ N.

20 Succinctness of Regular Expressions

q0

q1

q2

a1,2

a0,0

a1,1

a2,2

a0,2

a1,0
a2,1

a0,1

a2,0

Figure 3.1: The DFA AK
3 , accepting K3.

A way to interpret Kn is to consider the DFA with states {q0, . . . , qn−1}
which is fully connected, whose start state is state q0 and final state is qn−1

and where the edge between state qi and qj is labeled with ai,j . Formally, let
AK

n = (Q, q0, δ, F) be defined as Q = {q0, . . . , qn−1}, F = {qn−1}, and for all
i, j ∈ [0, n− 1], (qi, ai,j , qj) ∈ δ. Figure 3.1 shows AK

3 .
Ehrenfeucht and Zeiger obtained the succinctness of DFAs with respect to

regular expressions through the following theorem:

Theorem 6 ([30]). For n ∈ N, any regular expression defining Kn must be of
size at least 2n−1. Furthermore, there is a DFA of size O(n2) accepting Kn.

We will now define the language Hn as a binary encoding of Kn over a
four-letter alphabet, and generalize Theorem 6 to Hn. Later, we will define
H2

n as an encoding of Hn over a binary alphabet.
The language Hn will be defined as the straightforward binary encoding of

Kn that additionally swaps the pair of indices in every symbol ai,j . Thereto,
for ai,j ∈ Σn, define the function ρn as

ρn(ai,j) = enc(j)$enc(i)#,

where enc(i) and enc(j) denote the ⌈log(n)⌉-bit binary encodings of i and j,
respectively. Note that since i, j < n, i and j can be encoded using only
⌈log(n)⌉-bits. We extend the definition of ρn to strings in the usual way:
ρn(ai0,i1 · · · aik−1,ik) = ρn(ai0,i1) · · · ρn(aik−1,ik).

We are now ready to define Hn.

Definition 7. Let ΣH = {0, 1, $, #}. For n ∈ N, let Hn = {ρn(w) | w ∈ Kn}.

For instance, for n = 5, w = a0,2a2,1a1,4a4,4 ∈ K5 and thus

ρn(w) = 010$000#001$010#100$001#100$100# ∈ H5.

Remark 8. Although it might seem a bit artificial to swap the indices in
the binary encoding of Kn, it is definitely necessary. Indeed, consider the

3.1. A Generalization of a Theorem by Ehrenfeucht and Zeiger to
a Fixed Alphabet 21

q2

f2,0

f2,1

f2,2

f2,3

0

1

0

1

0

1

1 0

1 0

1 0

1 0

$

$

$

$

Figure 3.2: The automaton B2, for n = 4.

language H′
n obtained from Kn like Hn but without swapping the indices of

the symbols in Kn. This language can be defined by a regular expressions of
size O(n log(n)):

enc(0)$
(⋃

i<n

enc(i)#enc(i)$
)∗

enc(n− 1)#.

Therefore, H′
n is not suited to show exponential or double exponential lower

bounds on the size of regular expressions.

We now show that, by using the encoding that swaps the indices, it is
possible to generalize Theorem 6 to a four-letter alphabet as follows:

Theorem 9. For any n ∈ N, with n ≥ 2,

1. there is a DFA An of size O(n2 log n) defining Hn; and,

2. any regular expression defining Hn is of size at least 2n.

We first show (1). Let n ∈ N and n ≥ 2. We compose An from a number
of subautomata which each will be able to read one block of a string. That
is, strings defined by the regular expression (0 + 1)⌈log n⌉$(0 + 1)⌈log n⌉. For
any i < n, let Bi = (Qi, qi, δi, {fi,0, . . . , fi,n−1}), with L(Bi) = {w$w′ | w, w′ ∈
(0 + 1)⌈log n⌉ ∧ enc(w′) = i}, such that for any j < n, q ⇒Bi,w$w′ fi,j whenever
enc(w) = j. That is, Bi reads strings of the form w$w′, checks whether w′ en-
codes i and remembers the value of w in its accepting state. The construction
of these automata is straightforward. We illustrate the construction of B2, for
n = 4, in Figure 3.2.

Now, let An = (Q, q0, δ, qn−1) where Q =
⋃

i<n Qi and δ contains
⋃

i<n δi

plus for every i, j < n, (fi,j , #, qj) ∈ δ. So, An works as follows: first A0

22 Succinctness of Regular Expressions

reads the first block of the string, checks whether the second integer is 0 and
remembers the first integer of the block, say j. Then it passes control to Bj

which reads the next block in which it remembers the first integer, say k, and
checks whether the second integer is j. If so, it passes control to Bk, and so
on. Whenever An reaches the initial state of Bn−1, a valid string has been
read and An can accept.

Finally, for the size of An, consider the subautomata Bi as illustrated in
Figure 3.2. The first, tree-like, part consists of at most n + n/2 + n/4 +
· · · + 1 nodes and transitions, which is bounded by 2n. Further, the linear
automata following this part are each of size ⌈log n⌉ and there are n of these.
So, the total size of any Bi is O(n log n). Since An consists of a linear number
of Bi subautomata, An is of size O(n2 log n). This concludes the proof of
Theorem 9(1).

We now prove Theorem 9(2). It follows the structure of the proof of
Ehrenfeucht and Zeiger but is technically more involved as it deals with binary
encodings of integers.

We start by introducing some terminology. We say that a language L
covers a string w if there exist strings u, u′ ∈ Σ∗ such that uwu′ ∈ L. A regular
expression r covers w when L(r) covers w. Let w = ai0,i1ai1,i2 · · · aik−1,ik be
a string covered by Kn. We say that i0 is the start-point of w and ik is its
end-point. Furthermore, we say that w contains i or i occurs in w if i occurs
as an index of some symbol in w. That is, ai,j or aj,i occurs in w for some j.
For instance, a0,2a2,2a2,1 has start-point 0, end-point 1, and contains 0, 1 and
2.

The notions of contains, occurs, start- and end-point of a string w are also
extended to Hn. For w covered by Kn, the start- and end-points of ρn(w)
are the start and end-points of w. Hence, the start-point of ρn(w) is the
integer occurring between the first $ and # signs, and the notions of start-
and end-points is only extended to images of strings covered by Kn. The
notion of containing an integer, on the other hand, is extended to every string
v which is a covered by Hn. That is, v contains any integer encoded by
⌈log n⌉ consecutive bits in v. Clearly, for any w covered by Kn, ρn(w) contains
exactly the integers contained in w, but the notion is a bit more general. For
instance, for n = 4, the string 0$01#11$10 contains 1, 2, and 3 but its start-
and end-point are undefined as it is not the image of a string covered by Kn.

For a regular expression r, we say that i is a sidekick of r when it occurs
in every non-empty string defined by r. A regular expression s is a starred
subexpression of a regular expression r when s is a subexpression of r and is
of the form t∗. We say that a regular expression r is proper if every starred
subexpression of r has a sidekick.

3.1. A Generalization of a Theorem by Ehrenfeucht and Zeiger to
a Fixed Alphabet 23

Lemma 10. Any starred subexpression s of a regular expression r defining
Hn is proper.

Proof. We prove this lemma by a detailed examination of the structure of
strings defined by s. We start by making the following observation. For
any string w ∈ L(s), there exist strings u, u′ ∈ Σ∗

H such that uwu′ ∈ L(r).
Furthermore, w can be pumped in uwu′ and still form a string defined by r.
That is, for every j ∈ N, uwju′ ∈ L(r). In addition, for every other w′ ∈ L(s),
uw′u′ ∈ L(r).

Let w be a non-empty string in L(s) and let u, u′ be such that uwu′ ∈ L(r).
Then w must contain at least one $-symbol. Towards a contradiction, suppose
it does not. If w contains a # then uwwu′ ∈ L(r) but uwwu′ 6∈ Hn which leads
to the desired contradiction. If w contains no # and therefore only consists of
0’s and 1’s, then uwnu′ ∈ L(r) but uwnu′ 6∈ Hn which again is a contradiction.
In a similar way, one can show that (i) w contains at least one #-symbol; (ii)
w contains an equal number of $ and #-symbols; (iii) the $ and #-symbols
must alternate; and (iv) between any consecutive $ and #-symbol there is a
string of length ⌈log(n)⌉ containing only 0’s and 1’s.

From the above it follows that w matches one of the following expressions:

1. α1 = (0 + 1)∗$(0 + 1)⌈log n⌉#Σ∗
H

2. α2 = Σ∗
H#(0 + 1)⌈log n⌉$(0 + 1)∗.

We refer to the strings defined by α1 and α2 as strings of type-1 and type-2,
respectively. We next show that all strings defined by s are either all of type-
1 or all of type-2. Towards a contradiction assume there is a type-1 string
w1 and a type-2 string w2 in L(s). Then, w2w1 ∈ L(s) and thus there exist
u, u′ ∈ Σ∗

H such that uw2w1u
′ ∈ L(r). However, because of the concatenation

of w2 and w1, there are two $-symbols without an intermediate #-symbol and
therefore uw2w1u

′ 6∈ Hn.

Assume that all strings defined by s are of type-1. We next argue that the
substring of length ⌈log n⌉, that is, the integer i, between the first $ and #-
symbol is the same for every w ∈ L(s) which gives us our sidekick. For a type-1
string, we refer to this integer as the start block. Towards a contradiction,
suppose that w, w1 and w2 are non-empty strings in L(s) such that w1 and w2

have different start blocks. Let u, u′ be such that uww1u
′ ∈ L(r) and therefore

uww1u
′ ∈ Hn. Now, uw contains at least one $ and #-symbol. Therefore, by

definition of Hn, the value of the start block of w1 is uniquely determined by
uw. That is, it must be equal to the integer preceding the last $-symbol in uw.
Now also uww2u

′ ∈ L(r) as s is a starred subexpression, but uww2u
′ 6∈ Hn as

w2 has a different start block, which yields the desired contradiction.

24 Succinctness of Regular Expressions

The same kind of reasoning can be used to show that s has a sidekick when
all defined strings are of type-2.

If there is a greatest integer m for which r covers wm, we call m the index of
w in r and denote it by Iw(r). In this case we say that r is w-finite. Otherwise,
we say that r is w-infinite. The index of a regular expression can be used to
give a lower bound on its size according to the following lemma.

Lemma 11 ([30]). 1 For any regular expression r and string w, if r is w-finite,
then Iw(r) < 2|r|.

Now, we can state the most important property of Hn.

Lemma 12. Let n ≥ 2. For any C ⊆ {0, . . . , n − 1} of cardinality k and
i ∈ C, there exists a string w covered by Hn with start- and end-point i and
only containing integers in C, such that any proper regular expression r which
covers w is of size at least 2k.

Proof. The proof is by induction on k. For k = 1, C = {i}. Then, define
w = enc(i)$enc(i)#, which satisfies all conditions and any expression covering
w must definitely have size at least 2.

For the inductive step, let C = {j1, . . . , jk} and i ∈ C. Define Cℓ =
C \ {j(ℓ mod k)+1} and let wℓ be the string given by the induction hypothesis
with respect to Cℓ (of size k − 1) and jℓ. Note that jℓ ∈ Cℓ. Further, define
m = 2k+1 and set w equal to the string

enc(j1)$enc(i)#wm
1 enc(j2)$enc(j1)#wm

2 enc(j3)$enc(j2)# · · ·wm
k enc(i)$enc(jk)#.

Then, w is covered by Hn, has i as start and end-point and only contains
integers in C. It only remains to show that any expression r which is proper
and covers w is of size at least 2k.

Fix such a regular expression r. If r is wℓ-finite for some ℓ ≤ k then,
Iwℓ

(rk) ≥ m = 2k+1, by construction of w. By Lemma 11, |r| ≥ 2k and we are
done.

Therefore, assume that r is wℓ-infinite for every ℓ ≤ k. For every ℓ ≤ k,
consider all subexpressions of r which are wℓ-infinite. We will see that all
minimal elements in this set of subexpressions must be starred subexpressions.
Here and in the following, we say that an expression is minimal with respect to
a set simply when no other expression in the set is a subexpression. Indeed, a
subexpression of the form a or ε can never be wℓ-infinite and a subexpression

1In fact, in [30] the length of an expression is defined as the number of Σ-symbols occurring
in it. However, since our length measure also contains these Σ-symbols, this lemma still holds
in our setting.

3.1. A Generalization of a Theorem by Ehrenfeucht and Zeiger to
a Fixed Alphabet 25

of the form r1r2 or r1 + r2 can only be wℓ-infinite if r1 and/or r2 are wℓ-
infinite and is thus not minimal with respect to wℓ-infinity. Among these
minimal starred subexpressions for wℓ, choose one and denote it by sℓ. Let
E = {s1, . . . , sk}. Note that since r is proper, all its subexpressions are also
proper. As in addition each sℓ covers wℓ, by the induction hypothesis the size
of each sℓ is at least 2k−1. Now, choose from E some expression sℓ such that
sℓ is minimal with respect to the other elements in E.

As r is proper and sℓ is a starred subexpression of r, there is an integer
j such that every non-empty string in L(sℓ) contains j. As, by the induction
hypothesis, wℓ only contains integers in C, sℓ is wℓ-infinite, and sℓ is chosen
to be minimal with respect to wℓ-infinity, it follows that j ∈ C = {j1, . . . , jk}
must hold. Let k′ be such that j = jk′ . By definition of the inductively
obtained strings w1, . . . , wk, we have that for p = k′ − 1 (if k′ ≥ 2, and p = k,
otherwise), wp does not contain j. Denote by sp the starred subexpression
from E which is wp-infinite. In particular, as j is a sidekick of sℓ, and sp

defines strings not containing j (recall that it is wp-infinite, and minimal in
this respect), sℓ and sp cannot be the same subexpression of r.

Now, there are three possibilities:

• sℓ and sp are completely disjoint subexpressions of r. That is, they are
both not a subexpression of one another. By induction they must both
be of size 2k−1 and thus |r| ≥ 2k−1 + 2k−1 = 2k.

• sp is a strict subexpression of sℓ. This is not possible since sℓ is chosen
to be a minimal element from E.

• sℓ is a strict subexpression of sp. We show that if we replace sℓ by ε
in sp, then sp is still wp-infinite. It then follows that sp still covers wp,
and thus sp without sℓ is of size at least 2k−1. As |sℓ| ≥ 2k−1 as well it
follows that |r| ≥ 2k.

To see that sp without sℓ is still wp-infinite, recall that any non-empty
string defined by sℓ contains j and j does not occur in wp. Therefore, a
full iteration of sℓ can never contribute to the matching of any number
of repetitions of wp. Or, more specifically, no non-empty word w ∈ L(sℓ)
can ever be a substring of a word wi

p, for any i. So, sp can only lose its
wp-infinity by this replacement if sℓ contains a subexpression which is
itself wp-infinite. However, this then also is a subexpression of sp and sp

is chosen to be minimal with respect to wp-infinity, a contradiction. We
can only conclude that sp without sℓ is still wp-infinite.

Since by Lemma 10 any expression defining Hn is proper, Theorem 9(2)
directly follows from Lemma 12 by choosing i = 0, k = n. This concludes the
proof of Theorem 9(2).

26 Succinctness of Regular Expressions

We now extend the results on Hn, which is defined over the four-letter
alphabet ΣH = {0, 1, $, #}, to a binary alphabet. Thereto, let Σ2 = {a, b},
and define ρ2 as ρ2(0) = aa, ρ2(1) = ab, ρ2($) = ba, and ρ2(#) = bb. Then, as
usual, for w = a1 · · · an ∈ Σ∗

H, ρ2(w) = ρ2(a1) · · · ρ2(an). Then, we can define
H2

n as follows.

Definition 13. For n ∈ N, let H2
n = {ρ2(w) | w ∈ Hn}.

We can now easily extend Theorem 9 to H2
n, thus showing that in a trans-

lation from a DFA to an RE an exponential blow-up can not be avoided, even
when the alphabet is fixed and binary.

Theorem 14. For any n ∈ N, with n ≥ 2,

1. there is a DFA An of size O(n2 log n) defining H2
n; and,

2. any regular expression defining H2
n is of size at least 2n.

Proof. The proof of Theorem 9 carries over almost literally to the current
setting. For (1), the automaton An can be constructed very similarly as the
DFA An in Theorem 9. The only difference is that for every transition, we
have to add an additional state to the automaton. For instance, if there is a
transition from state q to q′, reading a 0, we have to insert a new state, say
q0, with transitions from q to q0, and q0 to q′, each reading an a. Further, if
after applying this transformation, we obtain a state which has two outgoing
transitions with the same label, we can simply merge the two states to which
the transitions point. The latter happens, for instance, when a state had an
outgoing 0 and 1 transition, as ρ2(0) = aa and ρ2(1) = ab. The obtained DFA
accepts H2

n and is of size O(n2 log n).
For (2), the proof of Theorem 9(2) also carries over almost literally. In

particular, all starred subexpressions of an expression defining H2
n must still

have a sidekick. And, in the last and crucial step of the proof, if we replace the
starred subexpression sℓ by ε in sp, then sp is still wp-infinite. Hence, it can
be proved that any regular expression defining H2

n is of size at least 2n.

We conclude the section by noting that Waizenegger [107] already claimed
a result similar to Theorem 9 using a different binary encoding of Kn. Unfor-
tunately, we believe that a more sophisticated encoding as presented here is
necessary, and hence the proof in [107] to be incorrect, as we discuss in some
detail next.

He takes an approach similar to ours and defines a binary encoding of Kn

as follows. For n ∈ N, Σn consists of n2 symbols. If we list these, in some
unspecified order, and associate a natural number from 0 to n2 − 1 to each
of them, we can encode Kn using log(n2) bits. For instance, if n = 2, then

3.2. Complementing Regular Expressions 27

Σn = {a0,0, a0,1, a1,0, a1,1} and we can encode these by the numbers 0, 1, 2, 3,
respectively. Now, a string in Kn is encoded by replacing every symbol by its
binary encoding and additionally adding an a and b to the start and end of
each symbol. For instance, a0,0a0,1 becomes a00ba01b, which gives a language,
say Wn, over the four-letter alphabet {0, 1, a, b}.

Then, Waizenegger shows that Wn can be described by an NFA of size
O(k2 · log k2), but every regular expression defining it must be of size at least
exponential in n. The latter is done by using the same proof techniques as in
[30]. However, in this proof it is claimed that if rn is an expression defining
Wn, then every string defined by a starred subexpression of rn must start with
an a. This statement is incorrect. For instance, if r2 is an expression defining
W2, and we still use the same encoding as above, then ((a0(0ba0)∗0b) + ε)r2

still defines W2 but does not have this property. Albeit small, the mistake has
serious consequences. It follows from this claim that every starred subexpres-
sion has a sidekick (using our terminology), and the rest of the proof builds
upon this fact. To see the importance, consider the language H′

n obtained
from Kn like Hn but without swapping the indices of the symbols in Kn. As
illustrated in Remark 8, H′

n can be defined by a regular expression of size
O(n log(n)). However, if we assume that every string defined by a starred
subexpression starts with a #, we can reuse our proof for Hn and show that
any regular expression defining H′

n must be of at least exponential size which
is clearly false.

To summarize, Waizenegger’s claim that the specific encoding of the n2

symbols in Σ does not matter in the proof for Theorem 9 is incorrect. Our
encoding used in defining Hn allows to prove the sidekick lemma (Lemma 10)
in a correct way.

3.2 Complementing Regular Expressions

It is known that extended regular expressions are non-elementary more suc-
cinct than classical ones [27, 102]. Intuitively, each exponent in the tower
requires nesting of an additional complement. In this section, we show that in
defining the complement of a single regular expression, a double exponential
size increase cannot be avoided in general. In contrast, when the expression
is deterministic its complement can be computed in polynomial time.

Theorem 15. 1. For every regular expression r over Σ, a regular expres-
sion s with L(s) = Σ∗ \ L(r) can be constructed in time 22O(n)

.

2. Let Σ be a binary alphabet. For every n ∈ N, there is a regular expression
rn of size O(n) such that any regular expression r defining Σ∗ \L(rn) is
of size at least 22n

.

28 Succinctness of Regular Expressions

Proof. (1) Let r ∈ RE. We first construct a DFA A, with L(A) = Σ∗ \ L(r)
and then construct the regular expression s equivalent to A. According to
Theorem 2(3) and (4) A contains at most 2|r|+1 states and can be constructed
in time exponential in the size of r. Then, by Theorem 2(1), the total algorithm

is in time 22O(n)
.

(2) Take Σ as ΣH, that is, {0, 1, $, #}. Let n ∈ N. We define an expression
r′n of size O(n), such that Σ∗ \ L(r′n) = H2n . By Theorem 9, any regular
expression defining H2n is of size exponential in 2n, that is, of size 22n

. This
hence already proves that the theorem holds for languages over an alphabet
of size four. Afterwards, we show that it also holds for alphabets of size two.

The expression r′n is then defined as the disjunction of the following ex-
pressions:

• all strings that do not start with a prefix in (0 + 1)n$0n:

Σ0,2n + Σ0,n−1($ + #)Σ∗ + Σn(0 + 1 + #)Σ∗ + Σn+1,2n(1 + $ + #)Σ∗

• all strings that do not end with a suffix in 1n$(0 + 1)n#:

Σ0,2n+1 + Σ∗(0 + 1 + $) + Σ∗($ + #)Σ1,n+

Σ∗(0 + 1 + #)Σn+1 + Σ∗(0 + $ + #)Σn+2,2n+1

• all strings where a $ is not followed by a string in (0 + 1)n#:

Σ∗$
(
Σ0,n−1(# + $) + Σn(0 + 1 + $)

)
Σ∗

• all strings where a non-final # is not followed by a string in (0 + 1)n$:

Σ∗#
(
Σ0,n−1(# + $) + Σn(0 + 1 + #)

)
Σ∗

• all strings where the corresponding bits of corresponding blocks are dif-
ferent:

((0+1)∗+Σ∗#(0+1)∗)0Σ3n+21Σ∗+((0+1)∗+Σ∗#(0+1)∗)1Σ3n+20Σ∗.

Notice here that in constructing each of the above regular expressions, we
only need to consider words which are not yet defined by one of the foregoing
expressions. For instance, the last expression above is only properly defined
over words of the form ((0 + 1)n$(0 + 1)n#)∗, as all other strings are already
defined by the previous expressions. Then, it should be clear that a string
over {0, 1, $, #} is matched by none of the above expressions if and only if it
belongs to H2n . So, the complement of r′n defines exactly H2n .

3.2. Complementing Regular Expressions 29

We now extend this result to a binary alphabet Σ = {a, b}. Thereto, let
ρ2(r

′
n) be the expression obtained by replacing every symbol σ occurring in

r′n by ρ2(σ). Then, the expression rn = ((a + b)(a + b))∗(a + b) + ρ2(r
′
n) is

the desired expression as its complement is exactly H2
2n , which by Theorem 14

must be of size at least 22n
. To see that the complement of rn is indeed H2

2n ,
notice that the expression ((a + b)(a + b))∗(a + b) defines exactly all strings
which are not the encoding of some string w ∈ Σ∗

H. Then, ρ2(r
′
n) captures

exactly all other strings which do represent a string w ∈ Σ∗
H, but are not in

H2
2n . Hence, the complement of rn is exactly H2

2n .

The previous theorem essentially shows that in complementing a regular
expression, there is no better algorithm than translating to a DFA, computing
the complement and translating back to a regular expression which includes
two exponential steps. However, when the given regular expression is deter-
ministic, a corresponding DFA can be computed in quadratic time through the
Glushkov construction [17] eliminating already one exponential step. It should
be noted that this construction, which we refer to as Glushkov construction,
was introduced by [14], and often goes by the name position automata [57].
However, as in the context of deterministic expressions the name Glushkov
construction is the most common, we will consistently use this naming.

The proof of the next theorem shows that the complement of the Glushkov
automaton of a deterministic expression can directly be defined by a regular
expression of polynomial size.

Theorem 16. For any deterministic regular expression r over an alphabet Σ,
a regular expression s defining Σ∗ \ L(r) can be constructed in time O(n3),
where n is the size of r.

Proof. Let r be a deterministic expression over Σ and fix a marking r of r.
We introduce some notation.

• The set not-first(r) contains all Σ-symbols which are not the first symbol
in any word defined by r, that is, not-first(r) = Σ \ first(r).

• For any symbol x ∈ Char(r), the set not-follow(r, x) contains all Σ-
symbols of which no marked version can follow x in any word defined
by r. That is, not-follow(r, x) = Σ \ {dm(y) | y ∈ Char(r) ∧ ∃w, w′ ∈
Char(r)∗, wxyw′ ∈ L(r)}. 2

• Recall that last(r) contains all marked symbols which are the last symbol
of some word defined by r.

2Recall that dm(y) denotes the demarking of y.

30 Succinctness of Regular Expressions

We define the following regular expressions:

• init(r) =

{
not-first(r)Σ∗ if ε ∈ L(r); and
ε + not-first(r)Σ∗ if ε /∈ L(r).

• For every x ∈ Char(r), rx will denote an expression defining {wx | w ∈
Char(r)∗ ∧ ∃u ∈ Char(r)∗, wxu ∈ L(r)}. That is, all prefixes of strings
in r ending in x. Then, let rx be dm(rx).

We are now ready to define s:

init(r) +
⋃

x/∈last(r)

rx(ε + not-follow(r, x)Σ∗) +
⋃

x∈last(r)

rxnot-follow(r, x)Σ∗.

We conclude by showing that s can be constructed in time cubic in the size
of r and that s defines the complement of r. We prove that L(s) = Σ∗ \
L(r) by highlighting the correspondence between s and the complement of
the Glushkov automaton Gr of r. The Glushkov automaton Gr is the DFA
(Q, q0, δ, F), where

• Q = {q0} ∪ {qx | x ∈ Char(r)};

• F = {qx | x ∈ last(r)} (plus q0 if ε ∈ L(r)); and

• for x, y ∈ Char(r), there is

– a transition (q0, dm(x), qx) ∈ δ, if x ∈ first(r); and,

– a transition (qx, dm(y), qy) ∈ δ, if y follows x in some word defined
by r.

It is known that L(r) = L(Gr) and that Gr is deterministic whenever r is
deterministic [17].

The complement automaton Gc
r = (Qc, q0, δ

c, F c) is obtained from Gr by
making it complete and interchanging final and non-final states. Formally,
Qc = Q ∪ {q } (with q 6∈ Q) and δc contains δ plus the triples (q , a, q), for
every a ∈ Σ, and (q, a, q) for every state q ∈ Q and symbol a ∈ Σ for which
there is no q′ ∈ Q with (q, a, q′) ∈ δ. Finally, F c = {q } ∪ (Q \ F). Clearly,
L(Gc

r) = Σ∗ \ L(Gr).

Now, we show that L(s) = L(Gc
r). First, by definition of s, ε ∈ L(s) if and

only if ε /∈ L(r) if and only if ε ∈ L(Gc
r). We prove that for any non-empty

word w, w ∈ L(s) if and only if w ∈ L(Gc
r), from which the lemma follows.

Thereto, we show that the non-empty words defined by the different disjuncts
of s correspond exactly to subsets of the language Gc

r.

3.2. Complementing Regular Expressions 31

• init(r) defines exactly the non-empty words for which Gc
r immediately

goes from q0 to q and reads the rest of the word while in q .

• For any x ∈ last(r), rx(not-follow(r, x)Σ∗) defines exactly all strings w
for which Gc

r arrives in qx after reading a part of w, goes to q and reads
the rest of w there.

• For any x /∈ last(r), rx(ε+not-follow(r, x)Σ∗) defines exactly all strings w
for which Gc

r either (1) arrives in qx after reading w and accepts because
qx is an accepting state; or (2) arrives in qx after reading a part of w,
goes to q and reads the rest of w there.

Note that because there are no incoming transitions in q0, and q only
has transitions to itself, we have described exactly all accepting runs of Gc

r.
Therefore, any non-empty string w ∈ L(s) if and only if w ∈ Gc

r.

We now show that s can be computed in time cubic in the size of r. By a
result of Brüggemann-Klein [15] the Glushkov automaton Gr corresponding to
r as defined above can be computed in time quadratic in the size of r. Using
Gr, the sets not-first(r), not-follow(r, x) and last(r) can be computed in time
quadratic in the size of r. So, all sets can be computed in time cubic in the
size of r. The expression init(r) can be constructed in linear time. We next
show that for any x ∈ Char(r), the expression rx can be constructed in time
quadratic in the size of r. As rx = dm(rx), it follows that s can be constructed
in cubic time. The expression rx is inductively defined as follows:

• For r = ε or r = ∅, rx = ∅.

• For r = y ∈ Char(r),

rx =

{
x if y = x
∅ otherwise.

• For r = αβ,

rx =

{
αx if x occurs in α
αβx otherwise.

• For r = α + β,

rx =

{
αx if x occurs in α
βx otherwise.

• For r = α∗, rx = α∗αx

32 Succinctness of Regular Expressions

The correctness is easily proved by induction on the structure of r. Note that
there are no ambiguities in the inductive definition of concatenation and dis-
junction since the expressions are marked and therefore every marked symbol
occurs only once in the expression. For the time complexity, notice that all
steps in the above inductive definition, except for the case r = α∗, are linear.
Further, for r = α∗, rx = α∗αx, and hence α is doubled. However, as the
inductive construction continues on only one of the two operands it follows
that the complete construction is at most quadratic.

We illustrate the construction in the previous proof by means of an exam-
ple. Let r = a(ab∗c)∗, and r = a1(a2b

∗
3c4)

∗. Then,

• ra1 = a1,

• ra2 = a1(a2b
∗
3c4)

∗a2,

• rb3 = a1(a2b
∗
3c4)

∗a2b
∗
3b3,

• rc4 = a1(a2b
∗
3c4)

∗a2b
∗
3c4, and

• init(r) = ε + (b + c)Σ∗.

Then the complement of r is defined by

ε + (b + c)Σ∗

+ a(ab∗c)∗a(ε + aΣ∗) + a(ab∗c)∗ab∗b(ε + aΣ∗)

+ a((b + c)Σ∗) + a(ab∗c)∗ab∗c((b + c)Σ∗).

We conclude this section by remarking that deterministic regular expres-
sions are not closed under complement and that the constructed expression s
is therefore not necessarily deterministic.

3.3 Intersecting Regular Expressions

In this section, we study the succinctness of intersection. In particular, we
show that the intersection of two (or any fixed number) and an arbitrary
number of regular expressions are exponentially and double exponentially
more succinct than regular expressions, respectively. Actually, the exponential
bound for a fixed number of expressions already holds for single-occurrence
regular expressions 3, whereas the double exponential bound for an arbitrary

3Recall that an expression is single-occurrence if every alphabet symbol occurs at most
once in it.

3.3. Intersecting Regular Expressions 33

number of expressions only carries over to deterministic expressions. For
single-occurrence expressions this can again be done in exponential time.

In this respect, we introduce a slightly altered version of Hn.

Definition 17. Let ΣD = {0, 1, $, #,△}. For all n ∈ N, Dn = {ρn(w)△ |
Kn covers w ∧ |w| is even}.

Here, we require that Kn covers w, instead of requiring w ∈ Kn, to allow
also for strings with a different start- and end-point than 0 and n− 1, respec-
tively. This will prove technically convenient later on, but does not change
the structure of the language.

We also define a variant of Kn which only slightly alters the ai,j symbols in
Kn. Thereto, let Σ◦

n = {ai◦,j , ai,j◦ | 0 ≤ i, j < n} , ρ̂(ai,jaj,k) = �iai,j◦aj◦,k and
ρ̂(ai0,i1ai1,i2 · · · aik−2,ik−1

aik−1,ik) = ρ̂(ai0,i1ai1,i2) · · · ρ̂(aik−2,ik−1
aik−1,ik), where

k is even.

Definition 18. Let n ∈ N and Σn
E = Σ◦

n ∪ {�0,△0, . . . ,�n−1,△n−2}. Then,
En = {ρ̂(w)△i | Kn covers w ∧ |w| is even ∧ i is the end-point of w} ∪ {△i |
0 ≤ i < n}.

Note that words in En are those in Kn where every odd position is pro-
moted to a circled one (◦), and triangles labeled with the non-circled positions
are added. For instance, the string a2,4a4,3a3,3a3,0 which is covered by K5 is
mapped to the string �2a2,4◦a4◦,3 �3 a3,3◦a3◦,0△0 ∈ E5.

We make use of the following property:

Lemma 19. Let n ∈ N.

1. Any regular expression defining Dn is of size at least 2n.

2. Any regular expression defining En is of size at least 2n−1.

Proof. (1) Analogous to Lemma 10, any regular expression r defining Dn must
also be proper and must furthermore cover any string w ∈ Hn. By choosing
i = 0 and k = n in Lemma 12, we see that r must be of size at least 2n.

(2) Let n ∈ N and rE be a regular expression defining En. Let r2
K be the

regular expression obtained from rE by replacing �i and △i, with i < n, by
ε and any ai◦,j or ai,j◦ , with 0 ≤ i, j < n, by ai,j . Then, |r2

K| ≤ |rE | and r2
K

defines exactly all strings of even length in Kn plus ε, and thus also covers
every string in Kn. Since the proof in [30] also constructs a string w covered by
Kn such that any proper expression covering w must be of size at least 2n−1,
it immediately follows that r2

K and thus rE must be of size at least 2n−1.

The next theorem shows the succinctness of the intersection operator.

34 Succinctness of Regular Expressions

Theorem 20. 1. For any k ∈ N and regular expressions r1, . . . , rk, a regu-
lar expression defining

⋂
i≤k L(rk) can be constructed in time 2O((m+1)k),

where m = max {|ri| | 1 ≤ i ≤ k}.

2. For every n ∈ N, there are SOREs rn and sn of size O(n2) such that any
regular expression defining L(rn) ∩ L(sn) is of size at least 2n−1.

3. For every n ∈ N, there are deterministic regular expressions r1, . . . , rm,
with m = 2n + 1, of size O(n) such that any regular expression defining⋂

i≤m L(ri) is of size at least 22n
.

4. Let r1, . . . , rn be SOREs. A regular expression defining
⋂

i≤n L(rn) can

be constructed in time 2O(m), where m =
∑

i≤n |ri|.

Proof. (1) First, construct NFAs A1, . . . , Ak such that L(Ai) = L(ri), for any
i ≤ k. If m = max {|ri| | 1 ≤ i ≤ k}, then by Theorem 2(4) any Ai has at
most m + 1 states and can be constructed in time O(m · |Σ|). Then, an NFA
A with (m + 1)k states, such that L(A) =

⋂
i≤k L(Ai), can be constructed in

time O((m + 1)k) by means of a product construction. By Theorem 2(1), a

regular expression defining L(A) can then be constructed in time 2O((m+1)k).

(2) Let n ∈ N. By Lemma 19(2), any regular expression defining Mn is of size
at least 2n−1. We define SOREs rn and sn of size quadratic in n, such that
L(rn) ∩ L(sn) = En. We start by partitioning Σn

E in two different ways. To
this end, for every i < n, define Outi = {ai,j◦ | 0 ≤ j < n}, Ini = {aj◦,i | 0 ≤
j < n}, Outi◦ = {ai◦,j | 0 ≤ j < n}, and, Ini◦ = {aj,i◦ | 0 ≤ j < n}. Then,

Σn
E =

⋃

i

Ini ∪Outi ∪ {�i,△i} =
⋃

i◦
Ini◦ ∪Outi◦ ∪ {�i,△i}.

Further, define

rn =
(
(�0 + · · ·+ �n−1)

⋃

i◦
Ini◦Outi◦

)∗
(△0 + · · ·+△n−1)

and
sn =

(⋃

i

(Ini + ε)(�i +△i)(Outi + ε)
)∗

.

Now, rn checks that every string consists of a sequence of blocks of the
form �iaj,k◦ak◦,ℓ, for i, j, k, ℓ < n, ending with a △i, for i < n. It thus sets
the format of the strings and checks whether the circled indices are equal.
Further, sn checks whether the non-circled indices are equal and whether the
triangles have the correct indices. Since the alphabet of En is of size O(n2),
also rn and sn are of size O(n2).

3.3. Intersecting Regular Expressions 35

(3) Let n ∈ N. We define m = 2n + 1 deterministic regular expressions of size
O(n), such that their intersection defines D2n . By Lemma 19(1), any regular
expression defining D2n is of size at least 22n

and the theorem follows. For
ease of readability, we denote ΣD simply by Σ. The expressions are as follows.
There should be an even length sequence of blocks:

(
(0 + 1)n$(0 + 1)n#(0 + 1)n$(0 + 1)n#

)∗△.

For all i ∈ {0, . . . , n− 1}, the (i + 1)th bit of the two numbers surrounding an
odd # should be equal:

(
Σi(0Σ3n+20 + 1Σ3n+21)Σn−i−1#

)∗△.

For all i ∈ {0, . . . , n− 1}, the (i + 1)th bit of the two numbers surrounding an
even # should be equal:

Σ2n+2
(
Σi(0Σ2n−i+1(△+ Σn+i+10Σn−i−1#)+

(1Σ2n−i+1(△+ Σn+i+11Σn−i−1#)))
)∗

.

Clearly, the intersection of the above expressions defines D2n . Furthermore,
every expression is of size O(n) and is deterministic as the Glushkov construc-
tion translates them into a DFA [17].

(4) We show that given SOREs r1, . . . , rn, we can construct an NFA A with
|Σ| + 1 states defining

⋂
i≤n L(ri) in time cubic in the sizes of r1, . . . , rn. It

then follows from Theorem 2(1) that an expression defining
⋂

i≤n L(ri) can be

constructed in time 2O(m), where m =
∑

i≤n |ri| since m ≥ |Σ|.
We first construct NFAs A1, . . . , An such that L(Ai) = L(ri), for any

i ≤ n, by using the Glushkov construction [15]. This construction creates
an automaton which has an initial state, with only outgoing transitions, and
additionally one state for each symbol in the regular expressions. Furthermore,
all incoming transitions for that state are labeled with that symbol. So, we
could also say that each state is labeled with a symbol, and that all incoming
transitions carry the label of that state. Since r1, . . . , rn are SOREs, for every
symbol there exists at most one state labeled with that symbol in any Ai.
Now, let Ai = (Qi, q

i
0, δi, Fi) then we say that Qi = {qi

0} ∪ {qi
a | a ∈ Σ}, where

qi
a is the state labeled with a. For ease of exposition, if a symbol a does not

occur in an expression ri, we add a state qi
a to Qi which does not have any

incoming or outgoing transitions.
Now, we are ready to construct the NFA A = (Q, q0, δ, F) defining the

intersection of A1, . . . , An. First, Q has again an initial state and one state
for each symbol: Q = {q0} ∪ {qa | a ∈ Σ}. A state is accepting if all its

36 Succinctness of Regular Expressions

corresponding states are accepting: F = {qa | ∀i ≤ n, qi
a ∈ Fi}. Here, a can

denote 0 or an alphabet symbol. Finally, there is a transition between qa and
qb if there is a transition between qi

a and qi
b, in every Ai: δ = {(qa, b, qb) | ∀i ≤

n, (qi
a, b, q

i
b) ∈ δi}. Now, L(A) =

⋂
i≤n L(Ai). Since the Glushkov construction

takes quadratic time [15], and we have to construct n automata, the total
construction can be done in cubic time.

We note that the lower bounds in Theorem 20(2) and (3) do not make
use of a fixed size alphabet. Notice that for the results in Theorem 20(2)
it is impossible to avoid this, as the number of SOREs over an alphabet of
fixed size is finite. However, if we weaken the statements and allow to use
unrestricted regular expressions in Theorem 20(2) and (3) (instead of SOREs
and deterministic expressions) it is easy to adapt the proofs to use the language
K2

n, and hence only use a binary alphabet.
We can thus obtain the following corollary.

Corollary 21. Let Σ be an alphabet with |Σ| = 2:

1. For every n ∈ N, there are regular expressions rn and sn over Σ, of size
O(n2), such that any regular expression defining L(rn)∩L(sn) is of size
at least 2n−1.

2. For every n ∈ N, there are regular expressions r1, . . . , rm over Σ, with
m = 2n + 1, of size O(n), such that any regular expression defining⋂

i≤m L(ri) is of size at least 22n
.

4
Succinctness of Extended
Regular Expressions

Next to XML schema languages, regular expressions are used in many ap-
plications such as text processors and programming languages [108]. These
applications, however, usually do not restrict themselves to the standard reg-
ular expression using disjunction (+), concatenation (·) and star (∗), but also
allow the use of additional operators. Although these operators mostly do not
increase the expressive power of the regular expressions, they can have a dras-
tic impact on succinctness, thus making them harder to handle. For instance,
it is well-known that expressions extended with the complement operator can
describe certain languages non-elementary more succinct than standard regu-
lar expressions or finite automata [102].

In this chapter, we study the succinctness of regular expressions extended
with counting (RE(#)), intersection (RE(∩)), and interleaving (RE(&)) op-
erators. The counting operator allows for expressions such as a2,5, specifying
that there must occur at least two and at most five a’s. These RE(#)s are
used in egrep [58] and Perl [108] patterns and in the XML schema language
XML Schema [100]. The class RE(∩) is a well studied extension of the regular
expressions, and is often referred to as the semi-extended regular expressions.
The interleaving operator allows for expressions such as a & b & c, specifying
that a, b, and c may occur in any order, and is used, for instance, in the XML
schema language Relax NG [22].

A problem we consider, is the translation of extended regular expressions

38 Succinctness of Extended Regular Expressions

into (standard) regular expressions. For RE(#) the complexity of this transla-
tion is exponential [64] while it follows from the results in the previous chapter
that for RE(∩) it is double exponential.1 We show that also in constructing
an expression for the interleaving of a set of expressions (an hence also for
an RE(&)) a double exponential size increase can not be avoided. This is
the main technical result of the chapter. Apart from a pure mathematical
interest, the latter result has two important consequences. First, it prohibits
an efficient translation from Relax NG (which allows interleaving) to XML
Schema Definitions (which only allows a very limited form of interleaving).
However, as XML Schema is the widespread W3C standard, and Relax NG is
a more flexible alternative, such a translation would be more than desirable.
A second consequence concerns the automatic discovery of regular expressions
describing a set of given strings. The latter problem occurs in the learning
of XML schema languages [8, 9, 11]. At present these algorithms do not take
into account the interleaving operator, but for Relax NG this would be wise
as this would allow to learn significantly smaller expressions.

It should be noted here that Gruber and Holzer [51] obtained similar re-
sults. They show that any regular expression defining the language (a1b1)

∗ &
· · · & (anbn)∗ must be of size at least double exponential in n. Compared to

the result in this chapter, this gives a tighter bound (22Ω(n)
instead of 22Ω(

√
n)

),
and shows that the double exponential size increase already occurs for very
simple expressions. On the other hand, the alphabet of the counterexamples
grows linear with n, whereas the alphabet size is constant for the languages in

this chapter. Over a constant size alphabet, they improved our 22Ω(
√

n)
bound

to 22Ω(n/ log n)
.

We also consider the translation of extended regular expressions to NFAs.
For the standard regular expressions, it is well-known that such a transla-
tion can be done efficiently [15]. Therefore, when considering problems such
as membership, equivalence, and inclusion testing for regular expressions the
first step is almost invariantly a translation to a finite automaton. For ex-
tended regular expressions, such an approach is less fruitful. We show that
an RE(&,∩, #) can be translated in exponential time into an NFA. However,
it has already been shown by Kilpelainen and Tuhkanen [64] and Mayer and
Stockmeyer [79] that such an exponential size increase can not be avoided for
RE(#) and RE(&), respectively. For the translation from RE(∩) to NFAs, a
2Ω(

√
n) lower bound is reported in [90], which we here improve to 2Ω(n).

As the translation of extended regular expressions to NFAs already involves
an exponential size increase, it is natural to ask what the size increase for DFAs

1The bound following from the results in the previous chapter is 22Ω(
√

n)

. This has been

improved in [51] to 22Ω(n)

.

39

NFA DFA RE

RE(#) 2Ω(n) [64] 22Ω(n)
(Prop. 28) 2θ(n) [64]

RE(∩) 2Ω(n) (Prop. 26) 22Ω(n)
(Thm. 29) 22θ(n)

[51]

RE(&) 2Ω(n) [79] 22Ω(
√

n)
(Thm. 31) 22Ω(

√
n)

(Thm. 39)

RE(&,∩, #) 2O(n) (Prop. 25) 22O(n)
(Prop. 27) 22O(n)

(Prop. 32)
(a)

RE

RE ∩ RE 2Ω(n) [48]⋂
RE 22Ω(

√
n)

(Ch. 3)

RE & RE 2Ω(n) [48]
(b)

Figure 4.1: Table (a) gives an overview of the results in this chapter con-
cerning the complexity of translating extended regular expressions into NFAs,
DFAs, and regular expressions. Proposition and theorem numbers are given in
brackets. Table (b) lists some related results obtained in the previous chapter
and [48].

is. Of course, we can translate any NFA into a DFA in exponential time, thus
giving a double exponential translation, but can we do better? For instance,
from the results in the previous chapter, we can conclude that given a set of
regular expressions, constructing an NFA for their intersection can not avoid
an exponential size increase. However, it is not too hard to see that also a
DFA of exponential size accepting their intersection can be constructed. In
the present chapter, we show that this is not possible for the classes RE(#),
RE(∩), and RE(&). For each class we show that in a translation to a DFA, a
double exponential size increase can not be avoided. An overview of all results
is given in Figure 4.1(a).

Related work. The different classes of regular expressions considered
here have been well studied. In particular, the RE(∩) and its membership [90,
61, 71] and equivalence and emptiness [35, 89, 94] problems, but also the
classes RE(#) [64, 83] and RE(&) [79] have received interest. Succinctness
of regular expressions has been studied by Ehrenfeucht and Zeiger [30] and,
more recently, by Ellul et. al [31], Gruber and Holzer [48, 50, 49], and Gruber
and Johannsen [53]. Some relevant results are listed in Figure 4.1(b). Schott
and Spehner give lower bounds for the translation of the interleaving of words
to DFAs [96]. Also related, but different in nature, are the results on state
complexity [111], in which the impact of the application of different operations
on finite automata is studied.

40 Succinctness of Extended Regular Expressions

Outline. In Section 4.1 we give some additional necessary definitions and
present some basic results. In Sections 4.2, 4.3, and 4.4 we study the trans-
lation of extended regular expressions to NFAs, DFAs, and regular expressions,
respectively.

4.1 Definitions and Basic Results

In this section we present some additional definitions and basic results used
in the remainder of this chapter.

Intuitively, the star height of a regular expression r, denoted by sh(r),
equals the number of nested stars in r. Formally, sh(∅) = sh(ε) = sh(a) = 0,
for a ∈ Σ, sh(r1r2) = sh(r1+r2) = max {sh(r1), sh(r2)}, and sh(r∗) = sh(r)+1.
The star height of a regular language L, denoted by sh(L), is the minimal star
height among all regular expressions defining L.

The latter two concepts are related through the following theorem due to
Gruber and Holzer [48], which will allow us to reduce our questions about
the size of regular expressions to questions about the star height of regular
languages.

Theorem 22 ([48]). Let L be a regular language. Then any regular expression

defining L is of size at least 2
1
3
(sh(L)−1) − 1.

A language L is bideterministic if there exists a DFA A, accepting L, such
that the inverse of A is again deterministic. That is, A may have at most one
final state and the automaton obtained by inverting every transition in A, and
exchanging the initial and final state, is again deterministic.

A (directed) graph G is a tuple (V, E), where V is the set of vertices and
E ⊆ V ×V is the set of edges. A graph (U, F) is a subgraph of G if U ⊆ V and
F ⊆ E. For a set of vertices U ⊆ V , the subgraph of G induced by U , denoted
by G[U], is the graph (U, F), where F = {(u, v) | u, v ∈ U ∧ (u, v) ∈ E}.

A graph G = (V, E) is strongly connected if for every pair of vertices
u, v ∈ V , both u is reachable from v, and v is reachable from u. A set
of edges V ′ ⊆ V is a strongly connected component (SCC) of G if G[V ′] is
strongly connected and for every set V ′′, with V ′ (V ′′, G[V ′′] is not strongly
connected. Let SCC(G) denote the set of strongly connected components of
G.

We now introduce the cycle rank of a graph G = (V, E), denoted by cr(G),
which is a measure for the structural complexity of G. It is inductively defined
as follows: (1) if G is acyclic or empty, then cr(G) = 0, otherwise (2) if G is
strongly connected, then cr(G) = minv∈V cr(G[V \{v}])+1, and otherwise (3)
cr(G) = maxV ′∈ SCC(G) cr(G[V ′]).

4.1. Definitions and Basic Results 41

We say that a graph H is a minor of a graph G if H can be obtained
from G by removing edges, removing vertices, and contracting edges. Here,
contracting an edge between two vertices u and v, means replacing u and v by
a new vertex, which inherits all incoming and outgoing edges of u and v. Now,
it has been shown by Cohen [23] that removing edges or nodes from a graph
does not increase the cycle rank of a graph, while McNaughton [80] essentially
showed that the same holds when contracting edges.

Lemma 23 ([23, 80]). If a graph H is a minor of a graph G, then cr(H) ≤
cr(G).

Let A = (Q, q0, δ, F) be an NFA. The underlying graph G of A is the
graph obtained by removing the labels from the transition edges of A, or
more formally G = (Q, E), with E = {(q, q′) | ∃a ∈ Σ, (q, a, q′) ∈ δ}. In the
following, we often abuse notation and for instance say the cycle rank of A,
referring to the cycle rank of its underlying graph.

There is a strong connection between the star height of a regular language,
and the cycle rank of the NFAs accepting it, as witnessed by the following
theorem. Theorem 24(1) is known as Eggan’s Theorem [29] and proved in its
present form by Cohen [23]. Theorem 24(3) is due to McNaughton [80].

Theorem 24. For any regular language L,

1. sh(L) = min {cr(A) | A is an NFA accepting L} [29, 23].

2. sh(L) · |Σ| ≥ min{cr(A) | A is a non-returning state-labeled NFA such
that L = L(A)}.

3. if L is bideterministic, then sh(L) = cr(A), where A is the minimal
trimmed DFA accepting L. [80]

Proof. We only have to prove (2). Thereto, let L be a regular language over
an alphabet Σ. By Eggan’s Theorem (Theorem 24(1)), we know that there
exists an NFA A, with L(A) = L and cr(A) = sh(L). We show that, given A,
we can construct a non-returning state-labeled NFA Bsl equivalent to A such
that cr(A) · |Σ| ≥ cr(Bsl) from which the theorem follows.

Let A = (Q, q0, δ, F) be an NFA over Σ, we construct Bsl in two steps.
First, we construct a non-returning NFA B = (QB, qB, δB, FB), with L(B) =
L(A), as follows: QB = Q⊎{qB}, δB = δ∪{(qB, a, q) | q ∈ Q, a ∈ Σ, (q0, a, q) ∈
δ}, and FB = F if q0 /∈ F , and FB = F ∪ {qB}, otherwise. Intuitively,
B is A extended with a new initial state which only inherits the outgoing
transitions of the old initial state. It should be clear that B is non-returning
and L(B) = L(A). Furthermore, cr(B) = cr(A) because qB has no incoming

42 Succinctness of Extended Regular Expressions

transitions and it thus forms a separate strongly connected component in B
whose cycle rank is 0. From the definitions it then follows that cr(B) = cr(A).

From B, we now construct the non-returning state-labeled NFA Bsl such
that cr(Bsl) ≤ cr(B) · |Σ| = cr(A) · |Σ|. Let Bsl = (Qsl, qsl

0 , δsl, F sl) be defined
as

• Qsl = {qa | q ∈ QB, a ∈ Σ};

• qsl
0 = qa

B, for some a ∈ Σ;

• δsl = {(qa, b, pb) | q, p ∈ QB, a, b ∈ Σ, (q, b, p) ∈ δB}; and

• F sl = {qa | q ∈ FB, a ∈ Σ}

That is, Bsl contains |Σ| copies of every state q of B, each of which captures
all incoming transitions of q for one alphabet symbol. Obviously, Bsl is a non-
returning state-labeled NFA with L(B) = L(Bsl).

We conclude by showing that cr(B) · |Σ| ≥ cr(Bsl). In the following, we
abuse notation and, for a set of states P , write B[P] for the subautomaton of
B induced by P , defined in the obvious way. Now, for a set of states P of B,
let P sl = {qa | q ∈ P, a ∈ Σ}, and observe that (B[Q \ P])sl = Bsl[Qsl \ P sl]
always holds. We now show cr(B) · |Σ| ≥ cr(Bsl) by induction on the number
of states of B. If |QB| = 1 then either the single state does not contain a
loop, such that cr(B) = cr(Bsl) = 0, or the single state contains a self loop,
in which case cr(B) = 1, and as |Qsl| = |Σ|, cr(Bsl) ≤ |Σ| holds, and hence
cr(B) · |Σ| ≥ cr(Bsl).

For the induction step, if B is acyclic, then, again, cr(B) = cr(Bsl) = 0.
Otherwise, if B is strongly connected, then cr(B) = cr(B[Q\{q}])+1, for some
q ∈ QB. Then, cr(B) · |Σ| = cr(B[Q \ {q}]) · |Σ|+ |Σ|, which by the induction
hypothesis gives us cr(B) · |Σ| ≥ cr(Bsl[Qsl\{q}sl])+ |Σ|. Finally, it is shown in
[48] that removing a set of states P from a graph can never decrease its cycle
rank by more than |P |. Therefore, as |{q}sl| = |Σ|, cr(Bsl[Q \ {q}sl]) + |Σ| ≥
cr(Bsl), and hence cr(B) · |Σ| ≥ cr(Bsl).

Otherwise, if B consists of strongly connected components Q1, . . . , Qk,
with k ≥ 2, then cr(B) = maxi≤k cr(B[Qi]). But now, by construction, every
strongly connected component V of Bsl is contained in Qsl

i , for some i ∈ [1, k].
Then, Bsl[V] is a minor of Bsl[Qsl

i], and hence it follows from Lemma 23 that
cr(Bsl) = maxV ∈SCC(Bsl) cr(Bsl[V]) ≤ maxi≤k cr(Bsl[Qsl

i]). Now, by induction,

cr(B[Qi]) · |Σ| ≥ cr(Bsl[Qsl
i]) for all i ∈ [1, k], from which it follows that

cr(B) · |Σ| ≥ cr(Bsl).

4.2. Succinctness w.r.t. NFAs 43

4.2 Succinctness w.r.t. NFAs

In this section, we study the complexity of translating extended regular expres-
sions into NFAs. We show that such a translation can be done in exponential
time, by constructing the NFA by induction on the structure of the expression.

Proposition 25. Let r be a RE(&,∩, #). An NFA A with at most 2|r| states,
such that L(r) = L(A), can be constructed in time 2O(|r|).

Proof. We construct A by induction on the structure of the formula. For the
base cases, r = ε, r = ∅, and r = a, for a ∈ Σ, and the induction cases r = r1r2,
r = r1 + r2, and r∗1 this can easily be done using standard constructions. We
give the full construction for the three special operators:

• If r = r1 ∩ r2, for i ∈ [1, 2], let Ai = (Qi, qi
0, δ

i, F i) accept L(ri). Then,
A = (Q, q0, δ, F) is defined as Q = Q1 ×Q2, q0 = (q1

0, q
2
0), F = F1 × F2,

and δ = {((q1, q2), a, (p1, p2)) | (q1, a, p1) ∈ δ1 ∧ (q2, a, p2) ∈ δ2}.

• If r = r1 & r2, then A is defined exactly as for r1 ∩ r2, except for δ which
now equals {((q1, q2), a, (p1, q2)) | (q1, a, p1) ∈ δ1}∪{((q1, q2), a, (q1, p2)) |
(q2, a, p2) ∈ δ2}.

• If r = rk,ℓ
1 , let A1 accept L(r1). Then, let B1 to Bℓ be ℓ identical copies

of A1 with disjoint sets of states. For i ∈ [1, ℓ], let Bi = (Qi, qi
0, δ

i, F i).

Now, define A = (Q, q0
0, δ, F) accepting rk,ℓ

1 as follows: Q =
⋃

i≤ℓ Qi,

F =
⋃

k≤i≤ℓ F i, and δ =
⋃

i≤ℓ δi ∪ {(qi, a, qi+1
0) | qi ∈ Qi ∧ ∃pi ∈

F i such that (qi, a, pi) ∈ δi}.

We note that the construction for the interleaving operator is introduced
by Mayer and Stockmeyer [79], who already used it for a translation from
RE(&) to NFAs. We argue that A contains at most 2|r| states. For r = r1∩ r2

or r = r1 & r2, by induction A1 and A2 contain at most 2|r1| and 2|r2| states
and, hence, A contains at most 2|r1| ·2|r2| = 2|r1|+|r2| ≤ 2|r| states. For r = rk,ℓ

1 ,
similarly, A contains at most ℓ · 2|r1| = 2|r1|+log ℓ ≤ 2|r| states. Furthermore,
as the intermediate automata never have more than 2|r| states and we have to
do at most |r| such constructions, the total construction can be done in time
2O(|r|).

This exponential size increase can not be avoided for any of the classes.
For RE(#) this is witnessed by the expression a2n,2n

and for RE(&) by the
expression a1 & · · ·&an, as already observed by Kilpelainen and Tuhkanen [64]
and Mayer and Stockmeyer [79], respectively. For RE(∩), a 2Ω(

√
n) lower bound

has already been reported in [90]. The present tighter statement, however,

44 Succinctness of Extended Regular Expressions

will follow from Theorem 29 and the fact that any NFA with n states can be
translated into a DFA with 2n states (Theorem 2(2)).

Proposition 26. For any n ∈ N, there exist an RE(#) r#, an RE(∩) r∩, and
an RE(&) r&, each of size O(n), such that any NFA accepting r#, r∩, or r&

contains at least 2n states.

4.3 Succinctness w.r.t. DFAs

In this section, we study the complexity of translating extended regular ex-
pressions into DFAs. First, from Proposition 25 and the fact that any NFA
with n states can be translated into a DFA with 2n states in exponential time
(Theorem 2(2)), we can immediately conclude the following.

Proposition 27. Let r be a RE(&,∩, #). A DFA A with at most 22|r| states,

such that L(r) = L(A), can be constructed in time 22O(|r|)
.

We show that, for each of the classes RE(#), RE(∩), or RE(&), this double
exponential size increase can not be avoided.

Proposition 28. For any n ∈ N there exists an RE(#) rn of size O(n) such
that any DFA accepting L(rn) contains at least 22n

states.

Proof. Let n ∈ N and define rn = (a+b)∗a(a+b)2
n,2n

. Here, rn is of size O(n)
since the integers in the numerical predicate are stored in binary. We show that
any DFA A = (Q, q0, δ, F) accepting L(rn) has at least 22n

states. Towards a
contradiction, suppose that A has less than 22n

states and consider all strings
of length 2n containing only a’s and b’s. As there are exactly 22n

such strings,
and A contains less than 22n

states, there must be two different such strings
w, w′ and a state q of A such that both (q0, w, q) ∈ δ∗ and (q0, w

′, q) ∈ δ∗.
But now, as w 6= w′, there exists some i ∈ [1, 2n] such that the ith position
of w contains an a, and the ith position of w′ contains a b (or the other way
around, but that is identical). Therefore, wai ∈ L(rn), and w′ai /∈ L(rn) but
wai and w′ai are either both accepted or both not accepted by A, and hence
L(rn) 6= L(A), which gives us the desired contradiction.

We now move to regular expressions extended with the intersection op-
erator. The succinctness of RE(∩) with respect to DFAs can be obtained
along the same lines as the simulation of exponential space turing machines
by RE(∩) by Fürer [35].

Theorem 29. For any n ∈ N there exists an RE(∩) r∩n of size O(n) such that
any DFA accepting L(r∩n) contains at least 22n

states.

4.3. Succinctness w.r.t. DFAs 45

Proof. Let n ∈ N. We start by describing the language Gn which will be used
to establish the lower bound. This will be a variation of the following language
over the alphabet {a, b}: {ww | |w| = 2n}. It is well-known that this language
is hard to describe by a DFA. However, to define it succinctly by an RE(∩)
expression, we need to add some additional information to it.

Thereto, we first define a marked number as a string over the alphabet
{0, 1, 0, 1} defined by the regular expression (0 + 1)∗10

∗
+ 0

∗
, i.e., a binary

number in which the rightmost 1 and all following 0’s are marked. Then, for
any i ∈ [0, 2n−1] let enc(i) denote the n-bit marked number encoding i. These
marked numbers were introduced in [35], where the following is observed: if
i, j ∈ [0, 2n − 1] are such that j = i + 1 (mod 2n), then the bits of i and j
which are different are exactly the marked bits of j. For instance, for n = 2,
enc(1) = 01 and enc(2) = 10 and they differ in both bits as both bits of enc(2)
are marked. Further, let encR(i) denote the reversal of enc(i).

Now, for a string w = a0a1 . . . a2n−1, define

enc(w) = encR(0)a0enc(0)$encR(1)a1enc(1)$ · · · encR(2n − 1)a2n−1enc(2n − 1)

and, finally, define

Gn = {#enc(w)#enc(w) | w ∈ L((a + b)∗) ∧ |w| = 2n}.

For instance, for n = 2, and w = abba, enc(w) = 00a00$10b01$01b10$11a11
and hence #00a00$10b01$01b10$11a11#00a00$10b01$01b10$11a11 ∈ G2.

Now, lets consider Gn, the complement of Gn. Using a standard argument,
similar to the in one in the proof of Proposition 28, it is straightforward to
show that any DFA accepting Gn must contain at least 22n

states. We conclude
by showing that we can construct a regular expression r∩n of size O(n) defining
Gn.

Note that Σ = {0, 0, 1, 1, a, b, $, #}. We define N = {0, 0, 1, 1}, S = {a, b},
D = {$, #} and for any set U , and σ ∈ U , let Uσ = U \{σ}. Now, we construct
a set of expressions, each capturing a possible mistake in a string. Then, r∩n
is simply the disjunction of these expressions. The expressions are as follows.
All strings which do not start with #:

ε + Σ#Σ∗ .

All strings in which two symbols at a distance n + 1 do not match:

Σ∗(NΣn(S + D) + SΣn(S + N) + DΣn(D + N))Σ∗ .

All strings which do not end with enc(2n − 1) = 1n−11:

Σ∗(Σ1 + Σ1Σ
1,n−1) .

46 Succinctness of Extended Regular Expressions

All strings in which # occurs before any number other than encR(0) or where
$ occurs before encR(0):

Σ∗($0
n

+ #(Σ0,n−1Σ0))Σ
∗ .

All strings which contain more or less than 2 #-symbols

Σ∗
#(# + ε)Σ∗

+ Σ∗#Σ∗#Σ∗#Σ∗ .

All strings which contain a (non-reversed) binary number which is not correctly
marked:

Σ∗SN∗((0 + 1)(0 + $ + #) + (0 + 1)N0)Σ
∗ .

All strings in which the binary encodings of two numbers surrounding an a or
b are not each others reverse. Thereto, we first define expressions ri, for all
i ∈ [0, n], such that L(ri) = {wσw′ | σ ∈ S ∧w, w′ ∈ Σ∗ ∧ |w| = |w′| ∧ |w| ≤ i},
inductively as follows: r0 = S and, for all j ∈ [1, n], rj = r0 + Σrj−1Σ. Then,
the following is the desired expression:

Σ∗(rn ∩
⋃

σ∈N

σΣ∗Σσ)Σ∗ .

All strings in which the binary encodings of two numbers surrounding a $ or #
do not differ by exactly one, i.e., there is a substring of the form enc(i)$encR(j)
or enc(i)#encR(j) such that j 6= i + 1 (mod 2n). Exactly as above, we can
inductively define r′n such that L(r′n) = {wσw′ | σ ∈ D ∧ w, w′ ∈ Σ∗ ∧ |w| =
|w′| ∧ |w| ≤ n}. Then, we obtain:

Σ∗(r′n ∩ ((0 + 0)Σ∗(0 + 1) + (1 + 1)Σ∗(1 + 0)))Σ∗ .

All strings in which two a or b symbols which should be equal are not equal.
We now define expressions si, for all i ∈ [0, n] such that L(si) = {wu#vwR |
u, v, w ∈ Σ∗ ∧ |w| = i}. By induction, s0 = Σ∗#Σ∗, and for all i ∈ [1, n],
si = Σsi−1Σ ∩

⋃
σ∈Σ σΣ∗σ. Then, the following is the desired expression:

Σ∗(asnb + bsna)Σ∗ .

Now, a string is not in Gn if and only if it is accepted by at least one of
the previous expressions. Hence, r∩n , defined as the disjunction of all these
expressions, defines exactly Gn. Furthermore, notice that all expressions, in-
cluding the inductively defined ones, are of size O(n), and hence r∩n is also of
size O(n). This concludes the proof.

4.4. Succinctness w.r.t. Regular Expressions 47

We can now extend the results for RE(∩) to RE(&). We do this by using
a technique of Mayer and Stockmeyer [79] which allows, in some sense, to
simulate an RE(∩) expression by an RE(&) expression. We illustrate their
technique in a simple case, for an expression r = r1 ∩ r2, where r1 and r2

are standard regular expressions, not containing intersection operators. Let c
be a symbol not occurring in r, and for i = 1, 2, define rc

i as the expression
obtained from ri by replacing any symbol a in ri by ac. Then, it is easily seen
that a string a0 · · · an ∈ L(ri) if and only if a0c · · · anc ∈ L(ri). Now, consider
the expression rc = rc

1 & rc
2. Then, a string a0 · · · an ∈ L(r) = L(r1) ∩ L(r2) if

and only if a0c · · · anc ∈ L(rc
1) ∩ L(rc

2) if and only if a2
0c

2 · · · a2
nc2 ∈ L(rc). So,

not all strings defined by rc are of the form a2
0c

2 · · · a2
nc2, but the set of strings

of the form a2
0c

2 · · · a2
nc2 defined by rc corresponds exactly to the set of strings

defined by r. In this sense, rc simulates r.
The latter technique can be extended to general RE(∩) and RE(&). To

formally define this, we need some notation. Let w = a0 · · · an be a string over
an alphabet Σ, and let c be a symbol not in Σ. Then, for any i ∈ N, define
pumpi(w) = ai

0c
iai

1c
i · · · ai

kc
i.

Lemma 30 ([79]). Let r be an RE(∩) containing k ∩-operators. Then, there
exists an RE(&) s of size at most |r|2 such that for any w ∈ Σ∗, w ∈ L(r) if
and only if pumpk(w) ∈ L(s).

Using this lemma, we can now prove the following theorem.

Theorem 31. For any n ∈ N there exists an RE(&) r&
n of size O(n2) such

that any DFA accepting L(r&
n) contains at least 22n

states.

Proof. Let n ∈ N and consider the expression r∩n of size O(n) constructed in
Theorem 29 such that any DFA accepting L(r∩n) contains at least 22n

states.
Now, let r&

n be the regular expression simulating r∩n obtained from Lemma 30,
such that for some k ∈ N and any w ∈ Σ∗, w ∈ L(r∩n) if and only if pumpk(w) ∈
L(r&

n). Then, r&
n is of size O(n2) and, exactly as before, it is straightforward

to show that any DFA accepting L(r&
n) contains at least 22n

states.

4.4 Succinctness w.r.t. Regular Expressions

In this section, we study the translation of extended regular expressions to
(standard) regular expressions. First, for the class RE(#) it has already been
shown by Kilpelainen and Tuhkanen [64] that this translation can be done in
exponential time, and that an exponential size increase can not be avoided.
Furthermore, from Proposition 25 and the fact that any NFA with n states
can be translated into a regular expression in time 2O(n) (Theorem 2(1)) it
immediately follows that:

48 Succinctness of Extended Regular Expressions

Proposition 32. Let r be a RE(&,∩, #). A regular expression s equivalent

to r can be constructed in time 22O(|r|)

Furthermore, from Theorem 20 it follows that in a translation from RE(∩)
to standard regular expressions, a double exponential size increase can not be
avoided.

Hence, it only remains to show a double exponential lower bound on the
translation from RE(&) to standard regular expressions, which is exactly what
we will do in the rest of this section. Thereto, we proceed in several steps and
define several families of languages. First, we revisit the family of languages
(Kn)n∈N, on which all following languages will be based, and establish its star
height. The star height of languages will be our tool for proving lower bounds
on the size of regular expressions defining these languages. Then, we define
the family (Ln)n∈N which is a binary encoding of (Kn)n∈N, different from the
binary encoding introduced in Section 3.1, and show that these languages can
be defined as the intersection of small regular expressions.

Finally, we define the family (Mn)n∈N which is obtained by simulating the
intersection of the previously obtained regular expressions by the interleaving
of related expressions, similar to the simulation of RE(∩) by RE(&) in Sec-
tion 4.3. Bringing everything together, this then leads to the desired result: a
double exponential lower bound on the translation of RE(&) to RE.

4.4.1 Kn: The Basic Language

Recall from Section 3.1 that the language Kn, for any n ∈ N, consists of all
strings of the form a0,i1ai1,i2 · · · aik,n−1 where k ∈ N∪ {0}. We now determine
the star height of Kn.

Lemma 33. For any n ∈ N, sh(Kn) = n.

Proof. We start by observing that, for any n ∈ N, the language Kn is bide-
terministic. Indeed, the inverse of the DFA AK

n accepting Kn is again deter-
ministic as every transition is labeled with a different symbol. Furthermore,
AK

n is the minimal trimmed DFA accepting Kn. Hence, by Theorem 24(3),
sh(Kn) = cr(AK

n). We conclude by showing that, for any n ∈ N, cr(AK
n) = n.

Thereto, first observe that the graph underlying AK
n is the complete graph

(including self-loops) on n nodes, which we denote by Kn. We proceed by
induction on n. For n = 1, the graph is a single node with a self loop and
hence by definition cr(K1) = 1. For the inductive step, suppose that cr(Kn) =
n and consider Kn+1 with node set Vn+1. Since Vn+1 consists of only one
strongly connected component, cr(Kn+1) = 1 + minv∈Vn+1{cr(Kn+1[Vn+1 \
{v}])}. However, for any v ∈ Vn+1, Kn+1[Vn+1 \{v}] is isomorphic to Kn, and
hence by the induction hypothesis cr(Kn+1) = n + 1.

4.4. Succinctness w.r.t. Regular Expressions 49

4.4.2 Ln: Binary Encoding of Kn

In this section we want to construct a set of small regular expressions such
that any expression defining their intersection must be large (that is, of double
exponential size). Ideally, we would like to use the languages of the family
(Kn)n∈N for this as we have shown in the previous section that they have
a large star height, and thus by Theorem 22 can not be defined by small
expressions. Unfortunately, this is not possible as the alphabet of (Kn)n∈N

grows quadratically with n.
Therefore, we will introduce in this section the family of languages (Ln)n∈N

which is a binary encoding of (Kn)n∈N over a fixed alphabet. Thereto, let n ∈ N

and recall that Kn is defined over the alphabet Σn = {ai,j | i, j ∈ [0, n − 1]}.
Now, for ai,j ∈ Σn, define the function ρn as

ρn(ai,j) = #enc(j)$enc(i)△enc(i + 1)△· · ·△enc(n− 1)△,

where enc(k), for k ∈ N, denotes the ⌈log(n)⌉-bit marked number encoding
k as defined in the proof of Theorem 29. So, the encoding starts by the
encoding of the second index, followed by an ascending sequence of encodings
of all numbers from the first index to n− 1. We extend the definition of ρn to
strings in the usual way: ρn(a0,i1 · · · aik−1,n−1) = ρn(a0,i1) · · · ρn(aik,n−1). We
are now ready to define Ln.

Definition 34. Let Σ = {0, 1, 0, 1, $, #,△}. For n ∈ N, Ln = {ρn(w) | w ∈
Kn}.

For instance, for n = 3, a0,1a1,2 ∈ K3 and hence ρ3(a0,1a1,2) = #01$00△01
△10△#10$01△10△ ∈ L3. We now show that this encoding does not affect
the star height.

Lemma 35. For any n ∈ N, sh(Ln) = n.

Proof. Let n ∈ N. We first show that sh(Ln) ≤ n. By Lemma 33, sh(Kn) =
n, and hence there exists a regular expression rK, with L(rK) = Kn and
sh(rK) = n. Let rL be the regular expression obtained from rK by replacing
every symbol ai,j by ρn(ai,j). Obviously, L(rL) = Ln and sh(rL) = n, and
hence sh(Ln) ≤ n.

We now show that sh(Ln) ≥ n. The proof is along the same lines as the
proof of Lemma 33. We first show that Ln is bideterministic and can then
determine its star height by looking at the minimal DFA accepting it. In fact,
the reason we use a slightly involved encoding of Kn, different from the one in
Chapter 3, is precisely the bideterminism property.

To show that Ln is bideterministic, we now construct the minimal DFA AL
n

accepting Ln. Here, AL
n will consist of n identical subautomata B0

n to Bn−1
n

50 Succinctness of Extended Regular Expressions

q2
0 q2

1 q2
2 q2

3

p2
0

p2
1

p2
2

0 0 △ 0 1 △ 1 0 △ #

0

0

1

0

1

0

Figure 4.2: The automaton B2
3 .

defined as follows. For any i ∈ [0, n − 1], Bi
n = (Qi, qi

n, δi, F
i) is the smallest

automaton for which Qi contains distinct states qi
0, . . . , q

i
n and pi

0, . . . , p
i
n−1

such that for any j ∈ [0, n− 1],

• (qi
j , enc(j)△, qi

j+1) ∈ δ∗i , and for all w 6= enc(j)△, (qi
j , w, qi

j+1) /∈ δ∗i ; and

• (qi
n, #enc(j), pi

j) ∈ δ∗i , and for all w 6= #enc(j), (qi
n, w, pi

j) /∈ δ∗i .

As an example, Figure 4.2 shows B2
3 . Now, AL

n = (Q, q0
n, δ, F) is defined

as Q =
⋃

i<n Qi, F = {qn−1
n } and δ =

⋃
i<n δi ∪ {(pi

j , $, qj
i) | i, j ∈ [0, n − 1]}.

Figure 4.3 shows AL
3 .

To see that AL
n indeed accepts Ln, notice that after reading a substring

#enc(i), for some i, the automaton moves to sub-automaton Bi
n. Then, af-

ter passing through Bi
n which ends by reading a new substring #enc(j), the

automaton moves to state qj
i of sub-automaton Bj

n. This ensures that the
subsequent ascending sequence of numbers starts with enc(i). Hence, the au-
tomaton checks correctly whether the numbers which should be equal, are
equal.

Furthermore, AL
n is bideterministic and minimal. To see that it is bideter-

ministic, notice that all states except the qi
j only have one incoming transition.

Furthermore, the qi
j each have exactly two incoming transitions, one labeled

with $ and one labeled with △. Minimality follows immediately from the fact
that AL

n is both trimmed and bideterministic.
Now, since Ln is bideterministic and AL

n is the minimal trimmed DFA
accepting Ln, it follows from Theorem 24(3) that sh(Ln) = cr(AL

n). Therefore,
it suffices to show that cr(AL

n) ≥ n. Thereto, observe that AK
n , the minimal

DFA accepting Kn, is a minor of AL
n . Indeed, we can easily contract edges and

remove nodes from AK
n such that the only remaining nodes are q0

n to qn−1
n , and

such that they form a complete graph. Now, since it is shown in Lemma 33
that cr(AK

n) = n and by Lemma 23 and the fact that AK
n is a minor of AL

n ,

4.4. Succinctness w.r.t. Regular Expressions 51

q0
0 q0

1 q0
2 q0

3

p0
0

p0
1

p0
2

00△ 01△ 10△ #01

#00

#10

q1
0 q1

1 q1
2 q1

3

p1
0

p1
1

p1
2

00△ 01△ 10△ #01

#00

#10

q2
0 q2

1 q2
2 q2

3

p2
0

p2
1

p2
2

00△ 01△ 10△ #01

#00

#10

$ $

$

$

$ $

$ $

$

B0
3

B1
3

B2
3

Figure 4.3: The DFA AL
3 , accepting L3.

we know that cr(AL
n) ≥ cr(AK

n), it follows that sh(Ln) = cr(AL
n) ≥ n. This

completes the proof.

Furthermore, it can be shown that Ln can be described as the intersection
of a set of small regular expressions.

Lemma 36. For every n ∈ N, there are regular expressions r1, . . . , rm, with
m = 4n + 3, each of size O(n), such that

⋂
i≤m L(ri) = L2n .

Proof. Let n ∈ N, and recall that L2n is defined over the alphabet Σ =
{0, 1, 0, 1, $, #,△}. Let N = {0, 1, 0, 1}, D = {$, #,△} and for any σ ∈ Σ, let
Σσ = Σ \ {σ}. The expressions are as follows.

The format of the string has to be correct:

(#Nn$Nn△(Nn△)+)+ .

Every number should be properly marked:

(D+((0 + 1)∗10
∗
+ 0

∗
))∗ .

Every number before a $ should be equal to the number following the next
$. We define two sets of regular expressions. First, for all i ∈ [0, n − 1], the

52 Succinctness of Extended Regular Expressions

(i + 1)th bit of the number before an even $ should be equal to the (i + 1)th
bit of the number after the next $.

(#N i
⋃

σ∈N

(σΣ∗
$$Σ∗

$$N iσ)Σ∗
#)∗(ε + #Σ∗

#) .

Second, for all i ∈ [0, n − 1], the (i + 1)th bit of the number before an odd $
should be equal to the (i + 1)th bit of the number after the next $.

#Σ∗
#(#N i

⋃

σ∈N

(σΣ∗
$$Σ∗

$$N iσ)Σ∗
#)∗(ε + #Σ∗

#) .

Every two (marked) numbers surrounding a △ should differ by exactly one.
Again, we define two sets of regular expressions. First, for all i ∈ [0, n − 1],
the (i + 1)th bit of the number before an even △ should properly match the
(i + 1)th bit of the next number:

(#Σ∗
$((△+$)Σi((0+0)Σn

#(1+0)+(1+1)Σn
#(0+1))Σn−i−1)∗((△+$)Σn+ε)△)∗.

Second, for all i ∈ [0, n− 1], the (i + 1)th bit of the number before an odd △
should properly match the (i + 1)th bit of the next number:

(#Σ∗
$$Σn(△Σi((0 + 0)Σn

#(1 + 0) + (1 + 1)Σn
#(0 + 1))Σn−i−1)∗(△Σn + ε)△)∗.

Every ascending sequence of numbers should end with enc(2n − 1) = 1n−11:

(#Σ∗
#1n−11△)∗ .

4.4.3 Mn: Succinctness of RE(&)

In this section, we will finally show that RE(&) are double exponentially more
succinct than standard regular expressions. We do this by simulating the
intersection of the regular expressions obtained in the previous section, by
the interleaving of related expressions, similar to the simulation of RE(∩) by
RE(&) in Section 4.3. This approach will partly yield the following family of
languages. For any n ∈ N, define

Mn = {pump4⌈log n⌉+3(w) | w ∈ Ln} .

As Mn is very similar to Ln, we can easily extend the result on the star
height of Ln (Lemma 35) to Mn:

Lemma 37. For any n ∈ N, sh(Mn) = n.

4.4. Succinctness w.r.t. Regular Expressions 53

Proof. The proof is along the same lines as the proof of Lemma 35. Again,
Mn is bideterministic as witnessed by the minimal DFA AM

n accepting Mn.
In fact, AM

n is simply obtained from AL
n by replacing each transition over a

symbol a by a sequence of states reading amcm, with m = 4⌈log n⌉+ 3. Some
care has to be taken, however, for the states qi

j , as these have two incoming
transitions: one labeled with $ and one labeled with △. Naively creating these
two sequences of states leading to qi

j , we obtain a non-minimal DFA. However,
if we merge the last m states of these two sequences (the parts reading cm),
we obtain the minimal trimmed DFA AM

n accepting Mn. Then, the proof
proceeds exactly as the proof of Lemma 35.

However, the language we will eventually define will not be exactly Mn.
Therefore, we need an additional lemma, for which we first introduce some
notation. For k ∈ N, and an alphabet Σ, we define Σ(k) to be the language de-
fined by the expression (

⋃
σ∈Σ σk)∗, i.e., all strings which consist of a sequence

of blocks of identical symbols of length k. Further, for a language L, define
index(L) = max {i | i ∈ N ∧ ∃w, w′ ∈ Σ∗, a ∈ Σ such that waiw′ ∈ L}. Notice
that index(L) can be infinite. However, we will only be interested in languages
for which it is finite, as in the following lemma.

Lemma 38. Let L be a regular language, and k ∈ N, such that index(L) ≤ k.
Then, sh(L) · |Σ| ≥ sh(L ∩ Σ(k)).

Proof. Let L be a regular language, and k ∈ N, such that index(L) ≤ k. We
show that, given a non-returning state-labeled NFA A accepting L, we can
can construct an NFA B such that L(B) = L ∩ Σ(k) and B is a minor of A.

We show how this implies the lemma. Let A be any non-returning state-
labeled NFA of minimal cycle rank accepting L, and let B be as constructed
above. First, since B is a minor of A it follows from Lemma 23 that cr(B) ≤
cr(A). Furthermore, by Theorem 24(1), cr(B) ≥ sh(L(B)) = sh(L ∩ Σ(k)),
and hence cr(A) ≥ sh(L ∩ Σ(k)). Now, since A is a non-returning state-
labeled NFA of minimal cycle rank, we can conclude from Theorem 24(2) that
sh(L) · |Σ| ≥ cr(A), and thus sh(L) · |Σ| ≥ sh(L ∩ Σ(k)).

We conclude by giving the construction of B. Thereto, let A = (Q, q0, δ, F)
be a non-returning state-labeled NFA. Now, for any q ∈ Q, and a ∈ Σ, define
the function ina(q) as follows:

ina(q) = max{i | i ∈ N ∪ {0} ∧ ∃w ∈ Σ∗ such that (q0, wai, q) ∈ δ∗} .

Notice that as i can equal zero and index(L) is finite, ina(q) is well defined
for any state which is not useless. Intuitively, ina(q) represents the maximal
number of a symbols which can be read when entering state q.

54 Succinctness of Extended Regular Expressions

Now, the following algorithm transforms A, accepting L, into B, accepting
L ∩ Σ(k). Repeat the following two steps, until no more changes are made:

1. Apply one of the following rules, if possible:

(a) If exists q, q′ ∈ Q, a ∈ Σ, with (q, a, q′) ∈ δ, such that ina(q
′) >

ina(q) + 1 ⇒ remove (q, a, q′) from δ.

(b) If exists q, q′ ∈ Q, a ∈ Σ, with (q, a, q′) ∈ δ and q 6= q0, such that
insymbol(q)(q) < k and symbol(q) 6= a ⇒ remove (q, a, q′) from δ.

(c) If exists q ∈ F , q 6= q0, such that insymbol(q)(q) < k ⇒ make q
non-final, i.e., remove q from F .

2. Remove all useless states from A, and recompute ina(q) for all q ∈ Q,
a ∈ Σ.

It remains to show that B, the automaton obtained when no more rules
can be applied, is the desired automaton. That is, that B is a minor of A and
that L(B) = L(A) ∩ Σ(k). It is immediate that B is a minor of A since B is
obtained from A by only removing transitions or states.

To show that L(B) = L(A)∩Σ(k), we first prove that L(A)∩Σ(k) ⊆ L(B).
Thereto, let A1, . . . , An, with A1 = A and An = B, be the sequence of NFAs
produced by the algorithm, where each Ai is obtained from Ai−1 by applying
exactly one rule and possibly removing useless states. It suffices to show
that for all i ∈ [1, n − 1], L(Ai) ∩ Σ(k) ⊆ L(Ai+1) ∩ Σ(k), as L(A) ∩ Σ(k) ⊆
L(B) ∩ Σ(k) ⊆ L(B) then easily follows.

Before proving L(Ai)∩Σ(k) ⊆ L(Ai+1)∩Σ(k), we introduce some notation.
For any q ∈ Q, a ∈ Σ, we define

outa(q) = max{i | i ∈ N ∪ {0} ∧ ∃w ∈ Σ∗, qf ∈ F such that (q, aiw, qf) ∈ δ∗}.

Here, outa(q) is similar to ina(q) and represents the maximal number of a’s
which can be read when leaving q. Since of course L(Ai) ⊆ L(A) holds for all
i ∈ [1, n], it also holds that index(Ai) ≤ k. Therefore, for any Ai, any state q
of Ai and any a ∈ Σ, it holds that

ina(q) + outa(q) ≤ k . (4.1)

We are now ready to show that L(Ai)∩Σ(k) ⊆ L(Ai+1)∩Σ(k). Thereto, we
prove that for any w ∈ L(Ai) ∩ Σ(k), any accepting run of Ai on w is still an
accepting run of Ai+1 on w. More precisely, we prove for every rule separately
that if Ai+1 is obtained from Ai by applying this rule, then the assumption
that the removed state or transition is used in an accepting run of Ai on w
leads to a contradiction.

4.4. Succinctness w.r.t. Regular Expressions 55

For rule (1a), suppose transition (q, a, q′) is removed but (q, a, q′) occurs
in an accepting run of Ai on w, i.e., w = uav for u, v ∈ Σ∗, (q0, u, q) ∈ δ∗ and
(q′, v, qf) ∈ δ∗, for some qf ∈ F . Since w ∈ Σ(k), there exists a j ∈ [0, n − 1]
and u′, v′ ∈ Σ∗ such that u = u′aj and v = ak−j−1v′. It immediately follows
that ina(q) ≥ j, and outa(q

′) ≥ k − j − 1. Then, since ina(q
′) > ina(q) + 1,

we have ina(q
′) + outa(q

′) > j + k − j − 1 + 1 = k. However, this contradicts
equation (4.1).

For rules (1b) and (1c), we describe the obtained contradictions less formal.
For rule (1b), if the transition (q, a, q′), with symbol(q) 6= a, is used in an
accepting run on w, then q is entered after reading k symbol(q) symbols,
and hence insymbol(q)(q) ≥ k. Contradiction. For rule (1c), again, if q is the
accepting state of some run on w, then q must be preceded by k symbol(q)
symbols, and hence insymbol(q)(q) ≥ k, contradiction.

We now show L(B) ⊆ L(A)∩Σ(k). Thereto, let B = (QB, qB
0 , δB, FB). We

first make the following observation. Let (q, a, q′) be a transition in δB. Since
B does not contain useless states, it is easy to see that ina(q

′) ≥ ina(q)+1. As
rule (1a) can not be applied to transition (q, a, q′), we now obtain the following
equality:

For q, q′ ∈ QB, a ∈ Σ, with (q, a, q′) ∈ δB : ina(q) + 1 = ina(q
′) . (4.2)

We are now ready to show that L(B) ⊆ L(A) ∩ Σ(k). Since L(B) ⊆ L(A)
definitely holds, it suffices to show that L(B) = L(B) ∩ Σ(k), i.e., B only
accepts strings in Σ(k).

Towards a contradiction, suppose that B accepts a string w /∈ Σ(k). Then,
there must exist i ∈ [1, k − 1], a ∈ Σ, u ∈ L(ε + Σ∗(Σ \ {a})) and v ∈
L(ε + (Σ \ {a})Σ∗), such that w = uaiv. Furthermore, as w ∈ L(B), there
also exist states p0, . . . , pi, such that (q0, u, p0) ∈ δ∗B, (pi, v, qf) ∈ δ∗B for some
qf ∈ F , and (pj , a, pj+1) ∈ δB for all j ∈ [0, i− 1].

We first argue that ina(pi) = k. By (4.1) it suffices to show that ina(pi) ≥ k.
Notice that, as i > 0, symbol(pi) = a. We consider two cases. If v = ε, then
pi ∈ F and hence by rule (1c) ina(pi) ≥ k. Otherwise, v = bv′ for b ∈ Σ, b 6= a
and v′ ∈ Σ∗ and hence pi must have an outgoing b-labeled transition, with
b 6= a = symbol(pi). By rule (1b), ina(pi) ≥ k must hold.

Now, by repeatedly applying equation (4.2), we obtain ina(pj) = k−(i−j),
for all j ∈ [0, i] and, in particular, ina(p0) = k−i > 0. This gives us the desired
contradiction. To see why, we distinguish two cases. If u = ε, then p0 = q0. As
A was non-returning and we did not introduce any new transitions, B is also
non-returning and hence ina(q0) = 0 should hold. Otherwise, if u = u′b for
u′ ∈ Σ∗ and b 6= a, then p0 has an incoming b transition. As B is state-labeled,

56 Succinctness of Extended Regular Expressions

p0 does not have an incoming a transition, and hence, again, ina(p0) = 0 should
hold. This concludes the proof.

Now, we are finally ready to prove the desired theorem:

Theorem 39. For every n ∈ N, there are regular expressions s1, . . . , sm, with
m = 4n + 3, each of size O(n), such that any regular expression defining

L(s1) & L(s2) & · · ·& L(sm) is of size at least 2
1
24

(2n−8) − 1.

Proof. Let n ∈ N, and let r1, . . . , rm, with m = 4n + 3, be the regular expres-
sions obtained in Lemma 36 such that

⋂
i≤m L(ri) = L2n .

Now, similar to Lemma 30, it is shown in [79] that given r1, . . . , rm it
is possible to construct regular expressions s1, . . . , sm such that (1) for all
i ∈ [1, m], |si| ≤ 2|ri|, and if we define N2n = L(s1) & · · · & L(sm), then (2)
index(N2n) ≤ m, and (3) for every w ∈ Σ∗, w ∈ ⋂

i≤m L(ri) if and only if
pumpm(w) ∈ N2n . Furthermore, it follows immediately from the construction
in [79] that any string in N2n ∩ Σ(m) is of the form am

1 cmam
2 cm · · · am

l cm, i.e.,
pumpm(w) for some w ∈ Σ∗.

Since
⋂

i≤m L(ri) = L2n , and M2n = {pumpm(w) | w ∈ L2n}, it hence

follows thatM2n = N2n∩Σ(m). As furthermore, by Lemma 37, sh(M2n) = 2n

and index(N2n) ≤ m, it follows from Lemma 38 that sh(N2n) ≥ sh(M2n)
|Σ| = 2n

8 .
So, N2n can be described by the interleaving of the expressions s1 to sm, each
of size O(n), but any regular expression defining N2n must, by Theorem 22,

be of size at least 2
1
24

(2n−8) − 1. This completes the proof.

Corollary 40. For any n ∈ N, there exists an RE(&) rn of size O(n2) such

that any regular expression defining L(rn) must be of size at least 2
1
24

(2n−8)−1.

This completes the chapter. As a final remark, we note that all lower
bounds in this chapter make use of a constant size alphabet and can fur-
thermore easily be extended to a binary alphabet. For any language over an
alphabet Σ = {a1, . . . , ak}, we obtain a new language over the alphabet {b, c}
by replacing, for any i ∈ [1, k], every symbol ai by bick−i+1. Obviously, the size
of a regular expression for this new language is at most k + 1 times the size of
the original expression, and the lower bounds on the number of states of DFAs
trivially carry over. Furthermore, it is shown in [81] that this transformation
does not affect the star height, and hence the lower bounds on the sizes of the
regular expression also carry over.

5
Complexity of Extended
Regular Expressions

In this chapter, we study the complexity of the equivalence, inclusion, and in-
tersection non-emptiness problem for regular expressions extended with count-
ing and interleaving operators. The main reason for this study is pinpoint-
ing the complexity of these decision problems for XML schema languages, as
done in Chapter 8. Therefore, we also investigate CHAin Regular Expressions
(CHAREs) extended with a counting operator. CHAREs are a subclass of the
regular expressions introduced by Martens et. al. [75] relevant to XML schema
languages. To study these problems, we introduce NFA(#, &)s, an extension
of NFAs with counter and split/merge states for dealing with counting and
interleaving operators. An overview of the results is given in Tables 5.1 and
5.2.

Outline. In Section 5.1, we define NFA(#, &). In Section 5.2 we establish
the complexity of the basic decision problems for different classes of regular
expressions.

5.1 Automata for RE(#, &)

We introduce the automaton model NFA(#, &). In brief, an NFA(#, &) is an
NFA with two additional features: (i) split and merge transitions to handle
interleaving; and, (ii) counting states and transitions to deal with numerical

58 Complexity of Extended Regular Expressions

inclusion equivalence intersection

RE pspace ([102]) pspace ([102]) pspace ([70])

RE(&) expspace ([79]) expspace ([79]) PSPACE

RE(#) expspace ([83]) expspace ([83]) PSPACE

RE(#, &) EXPSPACE EXPSPACE PSPACE

NFA(#), NFA(&),
and NFA(#, &)

EXPSPACE EXPSPACE PSPACE

Table 5.1: Overview of some new and known complexity results. All results
are completeness results. The new results are printed in bold.

occurrence constraints. The idea of split and merge transitions stems from
Jȩdrzejowicz and Szepietowski [60]. Their automata are more general than
NFA(#, &) as they can express shuffle-closure which is not regular. Counting
states are also used in the counter automata of Kilpeläinen and Tuhkanen [65],
and Reuter [93] although these counter automata operate quite differently
from NFA(#)s. Zilio and Lugiez [26] also proposed an automaton model that
incorporates counting and interleaving by means of Presburger formulas. None
of the cited papers consider the complexity of the basic decision problems of
their model. We will use NFA(#, &)s to obtain complexity upper bounds in
Section 5.2 and Chapter 8.

For readability, we denote Σ ∪ {ε} by Σε. We then define an NFA(#, &)
as follows.

Definition 41. An NFA(#, &) is a tuple A = (Q, s, f, δ) where

• Q is a finite set of states. To every q ∈ Q, we associate a lower bound
min(q) ∈ N and an upper bound max(q) ∈ N∪{∞}, such that min(q) ≤
max(q);

• s, f ∈ Q are the start and final states, respectively; and,

• δ is the transition relation and is a subset of the union of the following
sets:

(1) Q× Σε ×Q ordinary transition (resets the counter)
(2) Q× {store} ×Q transition not resetting the counter
(3) Q× {split} ×Q×Q split transition
(4) Q×Q× {merge} ×Q merge transition

Let max(A) = max{{max(q) | q ∈ Q ∧ max(q) ∈ N} ∪ {min(q) | q ∈
Q ∧max(q) = ∞}}. A configuration γ is a pair (P, α) where P ⊆ Q is a set
of states and α : Q → {0, . . . ,max(A)} is the value function mapping states

5.1. Automata for RE(#, &) 59

to the value of their counter. For a state q ∈ Q, we denote by αq the value
function mapping q to 1 and every other state to 0. The initial configuration γs

is ({s}, αs). The final configuration γf is ({f}, αf). When α is a value function
then α[q = 0] denotes the function obtained from α by setting the value of q
to 0 while leaving other values unchanged. Similarly, α[q++] increments the
value of q by 1, unless max(q) =∞ and α(q) = min(q) in which case also the
value of q remains unchanged. The rationale behind the latter is that for a
state which is allowed an unlimited number of iterations, as max(q) = ∞, it
is sufficient to know that α(q) is at least min(q).

We now define the transition relation between configurations. Intuitively,
the value of the state at which the automaton arrives is always incremented by
one. When exiting a state, the state’s counter is always reset to zero, except
when we exit through a counting transition, in which case the counter remains
the same. In addition, exiting a state through a non-counting transition is
only allowed when the value of the counter lies between the allowed minimum
and maximum. The latter, hence, ensures that the occurrence constraints are
satisfied. Split and merge transitions start and close a parallel composition.

A configuration γ′ = (P ′, α′) immediately follows a configuration γ =
(P, α) by reading σ ∈ Σε, denoted γ →A,σ γ′, when one of the following
conditions hold:

1. (ordinary transition) there is a q ∈ P and (q, σ, q′) ∈ δ such that
min(q) ≤ α(q) ≤ max(q), P ′ = (P −{q})∪{q′}, and α′ = α[q = 0][q′++].
That is, A is in state q and moves to state q′ by reading σ (note that
σ can be ε). The latter is only allowed when the counter value of q is
between the lower and upper bound. The state q is replaced in P by q′.
The counter of q is reset to zero and the counter of q′ is incremented by
one.

2. (counting transition) there is a q ∈ P and (q, store, q′) ∈ δ such that
α(q) < max(q), P ′ = (P − {q}) ∪ {q′}, and α′ = α[q′++]. That is, A is
in state q and moves to state q′ by reading ε when the counter of q has
not reached its maximal value yet. The state q is replaced in P by q′.
The counter of q is not reset but remains the same. The counter of q′ is
incremented by one.

3. (split transition) there is a q ∈ P and (q, split, q1, q2) ∈ δ such that
min(q) ≤ α(q) ≤ max(q), P ′ = (P − {q}) ∪ {q1, q2}, and α′ = α[q =
0][q1

++][q2
++]. That is, A is in state q and splits into states q1 and q2

by reading ε when the counter value of q is between the lower and upper
bound. The state q in P is replaced by (split into) q1 and q2. The counter
of q is reset to zero, and the counters of q1 and q2 are incremented by

60 Complexity of Extended Regular Expressions

one.

4. (merge transition) there are q1, q2 ∈ P and (q1, q2, merge, q) ∈ δ such
that, for each j = 1, 2, min(qj) ≤ α(qj) ≤ max(qj), P ′ = (P −{q1, q2})∪
{q}, and α′ = α[q1 = 0][q2 = 0][q++]. That is, A is in states q1 and q2

and moves to state q by reading ε when the respective counter values of
q1 and q2 are between the lower and upper bounds. The states q1 and
q2 in P are replaced by (merged into) q, the counters of q1 and q2 are
reset to zero, and the counter of q is incremented by one.

For a string w and two configurations γ, γ′, we denote by γ ⇒A,w γ′ when
there is a sequence of configurations γ →A,σ1 · · · →A,σn γ′ such that w =
σ1 · · ·σn. The latter sequence is called a run when γ is the initial configuration
γs. A string w is accepted by A if and only if γs ⇒A,w γf with γf the final
configuration. We usually denote ⇒A,w simply by ⇒w when A is clear from
the context. We denote by L(A) the set of strings accepted by A. The size
of A, denoted by |A|, is |Q|+ |δ|+ Σq∈Q log(min(q)) + Σq∈Q log(max(q)). So,
each min(q) and max(q) is represented in binary.

10,12

dvd

store

store

cd
10,12

Figure 5.1: An NFA(#, &) for the language dvd10,12 & cd10,12. For readability,
we only displayed the alphabet symbol on non-epsilon transitions and counters
for states q where min(q) and max(q) are different from one. The arrows
from the initial state and to the final state are split and merge transitions,
respectively. The arrows labeled store represent counting transitions.

An example of an NFA(#, &) defining dvd10,12 & cd10,12 is shown in Fig-
ure 5.1. An NFA(#) is an NFA(#, &) without split and merge transitions.
An NFA(&) is an NFA(#, &) without counting transitions.

Clearly NFA(#, &) accept all regular languages. The next theorem shows
the complexity of translating between RE(#, &) and NFA(#, &), and between
NFA(#, &) and NFA.

In its proof we will make use of the corridor tiling problem. Thereto,
a tiling instance is a tuple T = (X, H, V, b, t, n) where X is a finite set of tiles,
H, V ⊆ X ×X are the horizontal and vertical constraints, n is an integer in

5.1. Automata for RE(#, &) 61

unary notation, and b, t are n-tuples of tiles (b and t stand for bottom row and
top row, respectively).

A correct corridor tiling for T is a mapping λ : {1, . . . , m}×{1, . . . , n} → X
for some m ∈ N such that the following constraints are satisfied:

• the bottom row is b: b = (λ(1, 1), . . . , λ(1, n));

• the top row is t: t = (λ(m, 1), . . . , λ(m, n));

• all vertical constraints are satisfied: ∀i < m, ∀j ≤ n, (λ(i, j), λ(i+1, j)) ∈
V ; and,

• all horizontal constraints are satisfied: ∀i ≤ m, ∀j < n, (λ(i, j), λ(i, j +
1)) ∈ H.

The corridor tiling problem asks, given a tiling instance, whether there
exists a correct corridor tiling. The latter problem is pspace-complete [104].
We are now ready to prove Theorem 42.

Theorem 42. (1) Given an RE(#, &) expression r, an equivalent NFA(#, &)
can be constructed in time linear in the size of r.

(2) Given an NFA(#, &) A, an equivalent NFA can be constructed in time
exponential in the size of A.

Proof. (1) We prove the theorem by induction on the structure of RE(#, &)-
expressions. For every r we define a corresponding NFA(#, &) A(r) = (Qr, sr,
fr, δr) such that L(r) = L(A(r)).

For r of the form ε, a, r1 · r2, r1 + r2 and r∗1 these are the usual RE to NFA
constructions with ε-transition as displayed in text books such as [55].

We perform the following steps for the numerical occurrence and interleav-
ing operator which are graphically illustrated in Figure 5.2. The construction
for the interleaving operator comes from [60].

(i) If r = (r1)
k,ℓ and A(r1) = (Q1, s1, f1, δ1), then

• Qr := Qr1 ⊎ {sr, fr, qr};
• min(sr) = max(sr) = min(fr) = max(fr) = 1, min(qr) = k, and

max(qr) = ℓ;

• if k 6= 0 then δr := δr1⊎{(sr, ε, sr1), (fr1 , ε, qr), (qr, store, sr1), (qr, ε, fr)};
and,

• if k = 0 then δr := δr1⊎{(sr, ε, sr1), (fr1 , ε, qr), (qr, store, sr1), (qr, ε, fr),
(sr, ε, fr)}.

62 Complexity of Extended Regular Expressions

(ii) If r = r1 & r2, A(r1) = (Qr1 , sr1 , fr1 , δr1) and A(r2) = (Qr2 , sr2 , fr2 , δr2),
then

• Qr := Qr1 ⊎Qr2 ⊎ {sr, fr};
• min(sr) = max(sr) = min(fr) = max(fr) = 1;

• δr := δr1 ⊎ δr2 ⊎ {(sr, split, sr1 , sr2), (fr1 , fr2 , merge, fr)}.

Notice that in each step of the construction, a constant number of states
are added to the automaton. Moreover, the constructed counters are linear
in the size of r. It follows that the size of A(r) is linear in the size of r.
The correctness of the construction can easily be proved by induction on the
structure of r.

(2) Let A = (QA, sA, fA, δA) be an NFA(#, &). We define an NFA B =
(QB, q0

B, FB, δB) such that L(A) = L(B). Formally,

• QB = 2QA × ({1, . . . ,max(A)}QA);

• sB = ({sA}, αsA);

• FB = {({fA}, αfA
)} if ε /∈ L(A), and FB = {({fA}, αfA

), ({sA}, αsA)},
otherwise;

• δB = {
(
(P1, α1), σ, (P2, α2)

)
| σ ∈ Σ and (P1, α1) ⇒A,σ (P2, α2) for

configurations (P1, α1) and (P2, α2) of A}.

Obviously, B can be constructed from A in exponential time. Notice that
the size of QB is smaller than 2|QA| · 2|A|·|QA|. Furthermore, as B mimics A
by storing the configurations of B in its states, it is immediate that L(A) =
L(B).

We next turn to the complexity of the basic decision problems for NFA(#, &).

Theorem 43. (1) equivalence and inclusion for NFA(#, &) are expspace-
complete;

(2) intersection for NFA(#, &) is pspace-complete; and,

(3) membership for NFA(#) is np-hard, membership for NFA(&) and NFA(#,
&) are pspace-complete.

Proof. (1) expspace-hardness follows from Theorem 42(1) and the expspace-
hardness of equivalence for RE(&) [79]. Membership in expspace follows
from Theorem 42(2) and the fact that inclusion for NFAs is in pspace [102].

5.1. Automata for RE(#, &) 63

store

sr sr1
fr1

fr
qr

ε

ε ε ε
k, ℓ

if k = 0

fr2

sr fr

sr1
fr1

sr2

Figure 5.2: From RE(#, &) to NFA(#, &).

(2) The lower bound follows from [70]. We show that the problem is in pspace.
For j ∈ {1, . . . , n}, let Aj = (Qj , sj , fj , δj) be an NFA(#, &). The algorithm
proceeds by guessing a Σ-string w such that w ∈ ⋂n

j=1 L(Aj). Instead of
guessing w at once, we guess it symbol by symbol and keep for each Aj

one current configuration γj on the tape. More precisely, at each time in-
stant, the tape contains for each Aj a configuration γj = (Pj , αj) such that
γsj ⇒Aj ,wi (Pj , αj), where wi = a1 · · · ai is the prefix of w guessed up to now.
The algorithm accepts when each γj is a final configuration. Formally, the
algorithm operates as follows.

1. Set γj = ({sj}, αsj) for j ∈ {1, . . . , n};

2. While not every γj is a final configuration

(i) Guess an a ∈ Σ.

(ii) Non-deterministically replace each γj by a (P ′
j , α

′
j) such that

(Pj , αj)⇒Aj ,a (P ′
j , α

′
j).

As the algorithm only uses space polynomial in the size of the NFA(#, &)
and step (2,ii) can be done using only polynomial space, the overall algorithm
operates in pspace.

(3) The membership problem for NFA(#, &)s is easily seen to be in pspace

by an on-the-fly implementation of the construction in Theorem 42(2). Indeed,
as a configuration of an NFA(#, &) A = (Q, s, f, δ) has size at most |Q|+ |Q| ·
log(max(A)), we can store a configuration using only polynomial space.

We show that the membership problem for NFA(#)s is np-hard by a
reduction from a modification of integer knapsack. We define this problem
as follows. Given a set of natural numbers W = {w1, . . . , wk} and two integers

64 Complexity of Extended Regular Expressions

...

wk, wk

w1, w1

qwk

q fs
ε

qw1

ε
ε

store

store

ε

store

m, n

ε

Figure 5.3: np-hardness of membership for NFA(#).

m and n, all in binary notation, the problem asks whether there exists a
mapping τ : W → N such that m ≤∑

w∈W τ(w)×w ≤ n. The latter mapping
is called a solution. This problem is known to be np-complete [36].

We construct an NFA(#) A = (Q, s, f, δ) such that L(A) = {ε} if W, m, n
has a solution, and L(A) = ∅ otherwise.

The set of states Q consists of the start and final states s and f , a state
qwi for each weight wi, and a state q. Intuitively, a successful computation of
A loops at least m and at most n times through state q. In each iteration,
A also visits one of the states qwi . Using numerical occurrence constraints,
we can ensure that a computation accepts if and only if it passes at least m
and at most n times through q and a multiple of wi times through each qwi .
Hence, an accepting computation exists if and only if there is a mapping τ
such that m ≤∑

w∈W τ(w)× w ≤ n.
Formally, the transitions of A are the following:

• (s, ε, qwi) for each i ∈ {1, . . . , k};

• (qwi , store, q) for each i ∈ {1, . . . , k};

• (qwi , ε, q) for each i ∈ {1, . . . , k};

• (q, store, s); and,

• (q, ε, f).

We set min(s) = max(s) = min(f) = max(f) = 1, min(q) = m, max(q) = n
and min(qwi) = max(qwi) = wi for each qwi . The automaton is graphically
illustrated in Figure 5.3.

Finally, we show that membership for NFA(&)s is pspace-hard. Before
giving the proof, we describe some n-ary merge and split transitions which
can be rewritten in function of the regular binary split and merge transitions.

1. (q1, q2, merge-split, q′1, q
′
2): States q1 and q2 are read, and immediately

split into states q′1 and q′2.

5.1. Automata for RE(#, &) 65

2. (q1, q2, q3, merge-split, q′1, q
′
2, q

′
3): States q1, q2 and q3 are read, and im-

mediately split into states q′1, q
′
2 and q′3.

3. (q1, split, q′1, . . . , q
′
n): State q1 is read, and is immediately split into states

q′1, . . . , q
′
n.

4. (q1, . . . , qn, merge, q′1): States q1, . . . , qn are read, and are merged into
state q′1.

Transitions of type 1 (resp. 2) can be rewritten using 2 (resp. 4) regular
transitions, and 1 (resp. 3) new auxiliary states. Transitions of type 3 and 4
can be rewritten using (n − 1) regular transitions and (n − 1) new auxiliary
states. For example, the transition (q1, q2, merge-split, q′1, q

′
2) is equal to the

transitions (q1, q2, merge, qh), and (qh, split, q′1, q
′
2), where qh is a new auxiliary

state.

To show that membership for NFA(&)s is pspace-hard, we reduce from
corridor tiling. Given a tiling instance T = (X, H, V, b, t, n), we construct
an NFA(&) A over the empty alphabet (Σ = ∅) which accepts ε if and only if
there exists a correct corridor tiling for T .

The automaton constructs the tiling row by row. Therefore, A must at
any time reflect the current row in its state set. (recall that an NFA(&) can
be in more than one state at once) To do this, A contains for every tile x a set
of states x1, . . . , xn, where n is the length of each row. If A is in state xi, this
means that the ith tile of the current row is x. For example, if b = x1x3x1,
and t = x2x2x1, then the initial state set is {x1

1, x
2
3, x

3
1}, and A can accept

when the state set is {x1
2, x

2
2, x

3
1}.

It remains to describe how A can transform the current row (“state set”),
into a state set which describes a valid row on top of the current row. This
transformation proceeds on a tile by tile basis and begins with the first tile,
say xi, in the current row which is represented by x1

i in the state set. Now, for
every tile xj , for which (xi, xj) ∈ V , we allow x1

i to be replaced by x1
j , since

xj can be the first tile of the row on top of the current row. For the second
tile of the next row, we have to replace the second tile of the current row, say
xk, by a new tile, say xℓ, such that the vertical constraints between xk and xℓ

are satisfied and such that the horizontal constraints between xℓ and the tile
we just placed at the first position of the first row, xj , are satisfied as well.

The automaton proceeds in this manner for the remainder of the row. For
this, the automaton needs to know at any time at which position a tile must
be updated. Therefore, an extra set of states p1, . . . , pn is created, where the
state pi says that the tile at position i has to be updated. So, the state set
always consists of one state pi, and a number of states which represent the
current and next row. Here, the states up to position i already represent the

66 Complexity of Extended Regular Expressions

tiles of the next row, the states from position i still represent the current row,
and i is the next position to be updated.

We can now formally construct an NFA(&) A = (Q, s, f, δ) which accepts
ε if and only if there exists a correct corridor tiling for a tiling instance T =
(X, H, V, b, t, n) as follows:

• Q = {xj | x ∈ X, 1 ≤ j ≤ n} ∪ {pi | 1 ≤ i ≤ n} ∪ {s, f}

• Σ = ∅

• δ is the union of the following transitions

– (s, split, p1, b
1
1, . . . , b

n
n): From the initial state the automaton imme-

diately goes to the states which represent the bottom row.

– (p1, t
1
1, . . . , t

n
n, merge, f): When the state set represents a full row

(the automaton is in state p1), and the current row is the accepting
row, all states are merged to the accepting state.

– ∀xi, xj ∈ X, (xj , xi) ∈ V : (p1, x
1
j , merge-split, p2, x

1
i): When the

first tile has to be updated, the automaton only has to check the
vertical constraints with the first tile of the previous row.

– ∀xi, xj , xk ∈ X, m ∈ N, 2 ≤ m ≤ n, (xk, xi) ∈ V, (xj , xi) ∈ H:
(pm, xm

k , xm−1
j , merge-split, p(m mod n)+1, x

m
i , xm−1

j): When a tile at
the mth (m 6= 1) position has to be updated, the automaton has
to check the vertical constraint with the mth tile at the previous
row, and the horizontal constraint with the (m − 1)th tile of the
new row.

Clearly, if there exists a correct corridor tiling for T , there exists a run
of A accepting ε. Conversely, the construction of our automaton, in which
the updates are always determined by the position pi, and the horizontal and
vertical constraints, assures that when there is an accepting run of A on ε,
this run simulates a correct corridor tiling for T .

5.2 Complexity of Regular Expressions

We now investigate the complexity of regular expressions, extended with count-
ing and interleaving, and CHAREs.

Mayer and Stockmeyer [79] and Meyer and Stockmeyer [83] already estab-
lished the expspace-completeness of inclusion and equivalence for RE(&)
and RE(#), respectively. From Theorem 42(1) and Theorem 43(1) it then di-
rectly follows that allowing both operators does not increase the complexity. It

5.2. Complexity of Regular Expressions 67

inclusion equivalence intersection

CHARE pspace [75] in pspace [102] pspace [75]

CHARE(#) EXPSPACE in EXPSPACE PSPACE

CHARE(a, a?) conp [75] in ptime [75] np [75]

CHARE(a, a∗) conp [75] in ptime [75] np [75]

CHARE(a, a?, a#) coNP in PTIME NP

CHARE(a, a#>0) in PTIME in PTIME in PTIME

Table 5.2: Overview of new and known complexity results concerning Chain
Regular Expressions. All results are completeness results, unless mentioned
otherwise. The new results are printed in bold.

further follows from Theorem 42(1) and Theorem 43(2) that intersection for
RE(#, &) is in pspace. We stress that the latter results could also have been
obtained without making use of NFA(#, &)s but by translating RE(#, &)s
directly to NFAs. However, in the case of intersection such a construction
should be done in an on-the-fly fashion to not go beyond pspace. Although
such an approach certainly is possible, we prefer the shorter and more elegant
construction using NFA(#, &)s.

Theorem 44. 1. equivalence and inclusion for RE(#, &) are in ex-

pspace; and

2. intersection for RE(#, &) is pspace-complete.

Proof. (1) Follows directly from Theorem 42(1) and Theorem 43(1).

(2) The upper bound follows directly from Theorem 42(1) and Theorem 43(2).
The lower bound is already known for ordinary regular expressions.

Bex et al. [10] established that the far majority of regular expressions oc-
curring in practical DTDs and XSDs are of a very restricted form as defined
next. The class of chain regular expressions (CHAREs) are those REs con-
sisting of a sequence of factors f1 · · · fn where every factor is an expression of
the form (a1 + · · ·+ an), (a1 + · · ·+ an)?, (a1 + · · ·+ an)+, or, (a1 + · · ·+ an)∗,
where n ≥ 1 and every ai is an alphabet symbol. For instance, the expression
a(b + c)∗d+(e + f)? is a CHARE, while (ab + c)∗ and (a∗ + b?)∗ are not.1

We introduce some additional notation to define subclasses and extensions
of CHAREs. By CHARE(#) we denote the class of CHAREs where also
factors of the form (a1 + · · · + an)k,ℓ, with k, ℓ ∈ N ∪ {0} are allowed. For

1We disregard here the additional restriction used in [9] that every symbol can occur only
once.

68 Complexity of Extended Regular Expressions

the following fragments, we list the admissible types of factors. Here, a, a?,
a∗ denote the factors (a1 + · · · + an), (a1 + · · · + an)?, and (a1 + · · · + an)∗,
respectively, with n = 1, while a# denotes ak,ℓ, and a#>0 denotes ak,ℓ with
k > 0.

Table 5.2 lists the new and the relevant known results. We first show that
adding numerical occurrence constraints to CHAREs increases the complexity
of inclusion by one exponential. We reduce from exp-corridor tiling.

Theorem 45. inclusion for CHARE(#) is expspace-complete.

Proof. The expspace upper bound already follows from Theorem 44(1).

The proof for the expspace lower bound is similar to the proof for pspace-
hardness of inclusion for CHAREs in [75]. The main difference is that the
numerical occurrence operator allows to compare tiles over a distance expo-
nential in the size of the tiling instance.

The proof is a reduction from exp-corridor tiling. A tiling instance is
a tuple T = (X, H, V, x⊥, x⊤, n) where X is a finite set of tiles, H, V ⊆ X ×X
are the horizontal and vertical constraints, x⊥, x⊤ ∈ X, and n is a natural
number in unary notation. A correct exponential corridor tiling for T is a
mapping λ : {1, . . . , m} × {1, . . . , 2n} → X for some m ∈ N such that the
following constraints are satisfied:

• the first tile of the first row is x⊥: λ(1, 1) = x⊥;

• the first tile of the m-th row is x⊤: λ(m, 1) = x⊤;

• all vertical constraints are satisfied: ∀i < m, ∀j ≤ 2n, (λ(i, j), λ(i +
1, j)) ∈ V ; and,

• all horizontal constraints are satisfied: ∀i ≤ m, ∀j < 2n, (λ(i, j), λ(i, j +
1)) ∈ H.

The exp-corridor tiling problem asks, given a tiling instance, whether
there exists a correct exponential corridor tiling. The latter problem is easily
shown to be expspace-complete [104].

We proceed with the reduction from exp-corridor tiling. Thereto, let
T = (X, H, V, x⊥, x⊤, n) be a tiling instance. Without loss of generality, we
assume that n ≥ 2. We construct two CHARE(#) expressions r1 and r2 such
that

L(r1) ⊆ L(r2) if and only if

there exists no correct exponential corridor tiling for T.

5.2. Complexity of Regular Expressions 69

As expspace is closed under complement, the expspace-hardness of inclu-

sion for CHARE(#) follows.
Set Σ = X ⊎ {$,△}. For ease of exposition, we denote X ∪ {△} by X△

and X ∪{△, $} by X△,$. We encode candidates for a correct tiling by a string
in which the rows are separated by the symbol △, that is, by strings of the
form

△R0△R1△· · ·△Rm△, (†)
in which each Ri represents a row, that is, belongs to X2n

. Moreover, R0 is
the bottom row and Rm is the top row. The following regular expressions
detect strings of this form which do not encode a correct tiling for T :

• X∗
△△X0,2n−1△X∗

△. This expression detects rows that are too short,
that is, contain less than 2n symbols.

• X∗
△△X2n+1,2n+1X∗△X∗

△. This expression detects rows that are too
long, that is, contain more than 2n symbols.

• X∗
△x1x2X

∗
△, for every x1, x2 ∈ X, (x1, x2) 6∈ H. These expressions

detect all violations of horizontal constraints.

• X∗
△x1X

2n,2n

△ x2X
∗
△, for every x1, x2 ∈ X, (x1, x2) 6∈ V . These expressions

detect all violations of vertical constraints.

Let e1, . . . , ek be an enumeration of the above expressions. Notice that k =
O(|X|2). It is straightforward that a string w in (†) does not match

⋃k
i=1 ei if

and only if w encodes a correct tiling.
Let e = e1 · · · ek. Because of leading and trailing X∗

△ expressions, L(e) ⊆
L(ei), for every i ∈ {1, . . . , k}. We are now ready to define r1 and r2:

r1 =

k times e︷ ︸︸ ︷
ee$ · · · e△x⊥X2n−1,2n−1△X∗

△△x⊤X2n−1,2n−1△
k times e︷ ︸︸ ︷

ee$ · · · e

r2 = $X∗
△,$$e1$e2$ · · · ekX∗

△,$$

Notice that both r1 and r2 are in CHARE(#) and can be constructed in
polynomial time. It remains to show that L(r1) ⊆ L(r2) if and only if there is
no correct tiling for T .

We first show the implication from left to right. Thereto, let L(r1) ⊆ L(r2).
Let uwu′ be an arbitrary string in L(r1) such that u, u′ ∈ L(ee$ · · · e) and
w ∈ △x⊥X2n−1,2n−1△X∗

△△x⊤X2n−1,2n−1△. By assumption, uwu′ ∈ L(r2).
Notice that uwu′ contains 2k + 2 times the symbol “$”. Moreover, the

first and the last “$” of uwu′ is always matched onto the first and last “$”
of r2. This means that k + 1 consecutive $-symbols of the remaining 2k $-
symbols in uwu′ must be matched onto the $-symbols in $e1$e2$ · · · ek.

70 Complexity of Extended Regular Expressions

Hence, w is matched onto some ei. So, w does not encode a correct tiling.
As the subexpression △x⊥X2n−1,2n−1△X∗

△△x⊤X2n−1,2n−1△ of r1 defines all
candidate tilings, the system T has no solution.

To show the implication from right to left, assume that there is a string
uwu′ ∈ L(r1) that is not in r2, where u, u′ ∈ L(ee$ · · · e). Then w 6∈⋃k

i=1 L(ei) and, hence, w encodes a correct tiling.

Adding numerical occurrence constraints to the fragment CHARE(a, a?)
keeps equivalence in ptime, intersection in np and inclusion in conp.

Theorem 46. (1) equivalence for CHARE(a, a?, a#) is in ptime.

(2) inclusion for CHARE(a, a?, a#) is conp-complete.2

(3) intersection for CHARE(a, a?, a#) is np-complete.

Proof. (1) It is shown in [75] that two CHARE(a, a?) expressions are equivalent
if and only if they have the same sequence normal form (which is defined be-
low). As ak,ℓ is equivalent to ak(a?)ℓ−k, it follows that two CHARE(a, a?, a#)
expressions are equivalent if and only if they have the same sequence normal
form. It remains to argue that the sequence normal form of CHARE(a, a?, a#)
expressions can be computed in polynomial time. To this end, let r = f1 · · · fn

be a CHARE(a, a?, a#) expression with factors f1, . . . , fn. The sequence nor-
mal form is then obtained in the following way. First, we replace every factor
of the form

• a by a[1, 1];

• a? by a[0, 1]; and,

• ak,ℓ by a[k, ℓ],

where a is an alphabet symbol. We call a the base symbol of the factor a[i, j].
Then, we replace successive subexpressions a[i1, j1] and a[i2, j2] carrying the
same base symbol a by a[i1 + i2, j1 + j2] until no further replacements can be
made anymore. For instance, the sequence normal form of aa?a2,5a?bb?b?b1,7

is a[3, 8]b[2, 10]. Obviously, the above algorithm to compute the sequence nor-
mal form of CHARE(a, a?, a#) expressions can be implemented in polynomial
time. It can then be tested in linear time whether two sequence normal forms
are the same.

(2) conp-hardness is immediate since inclusion is already conp-complete for
CHARE(a, a?) expressions [75].

2In the extended abstract presented at ICDT’07, in which these results first appeared,
the complexity was wrongly attributed to lie between pspace and expspace.

5.2. Complexity of Regular Expressions 71

We show that the problem remains in conp. To this end, we represent
strings w by their sequence normal form as discussed above, where we take each
string w as the regular expression defining w. We call such strings compressed.
Let r1 and r2 be two CHARE(a, a?, a#)s. We can assume that they are in
sequence normal form.

To show that L(r1) 6⊆ L(r2), we guess a compressed string w of polynomial
size for which w ∈ L(r1), but w /∈ L(r2). We guess w ∈ L(r1) in the following
manner. We iterate from left to right over the factors of r1. For each factor
a[k, ℓ] we guess an h such that k ≤ h ≤ ℓ, and add ah to the compressed
string w. This algorithm gives a compressed string of polynomial size which
is defined by r1. Furthermore, this algorithm is capable of guessing every
possible string defined by r1. It is however possible that in the compressed
string there are two consecutive elements ai, aj with the same base symbol
a. If this is the case we merge these elements to ai+j which gives a proper
compressed string.

The following lemma shows that testing w /∈ L(r2) can be done in polyno-
mial time.

Lemma 47. Given a compressed string w and an expression r in sequence
normal form, deciding whether w ∈ L(r) is in ptime.

Proof. Let w = ap1
1 · · · apn

n , and r = b1[k1, ℓ1] · · · bm[km, ℓm]. Denote bi[ki, ℓi]
by fi. For every position i of w (0 < i ≤ n), we define Ci as a set of factors
b[k, ℓ] of r. Formally, fj ∈ Ci when ap1

1 · · · a
pi−1

i−1 ∈ L(f1 · · · fj−1) and ai = bj .
We compute the Ci as follows.

• C1 is the set of all bj [kj , ℓj] such that a1 = bj , and ∀h < j, kh = 0. These
are all the factors of r which can match the first symbol of w.

• Then, for all i ∈ {2, . . . , n}, we compute Ci from Ci−1. In particular,
fh = bh[kh, ℓh] ∈ Ci when there is a fj = bj [kj , ℓj] ∈ Ci−1 such that
a

pi−1

i−1 ∈ fj · · · fh−1 and ai = bh. That is, the following conditions should
hold:

– j < h: fh occurs after fj in r.

– bh = ai: fh can match the first symbol of api
i .

– ∀e ∈ {j, . . . , h− 1}, if be 6= ai−1 then ke = 0: in between factors fj

and fh it is possible to match only symbols ai−1.

– Let min =
∑

e∈{j,...,h−1},be=ai−1
ke and max =

∑
e∈{j,...,h−1},be=ai−1

ℓe.
Then min ≤ pi−1 ≤ max. That is, pi−1 symbols ai−1 should be
matched from fj to fh−1.

72 Complexity of Extended Regular Expressions

Then, w ∈ L(r) if and only if there is an fj ∈ Cn such that apn
n ∈

L(fj · · · fn). As the latter test and the computation of C1, . . . , Cn can be
done in polynomial time, the lemma follows.

(3) np-hardness is immediate since intersection is already np-complete for
CHARE(a, a?) expressions [75].

We show that the problem remains in np. As in the proof of Theo-
rem 46(2) we represent a string w as a compressed string. Let r1, . . . , rn

be CHARE(a, a?, a#) expressions.

Lemma 48. If
⋂n

i=1 L(ri) 6= ∅, then there exists a string w = ap1
1 · · · apm

m ∈⋂n
i=1 L(ri) such that m ≤ min{|ri| | i ∈ {1, . . . , n}} and, for each i ∈
{1, . . . , n}, ji is not larger than the largest integer occurring in r1, . . . , rn.

Proof. Suppose that there exists a string w = ap1
1 · · · apm

m ∈ ⋂n
i=1 L(ri), with

ai 6= ai+1 for every i ∈ {1, . . . , m−1}. Since w is matched by every expression
r1, . . . , rn, and since a factor of a CHARE(a, a?, a#) expression can never
match a strict superstring of api

i for i ∈ {1, . . . , n}, we have that m ≤ min{|ri| |
i ∈ {1, . . . , n}}.

Furthermore, since w is matched by every expression r1, . . . , rn, no ji can
be larger than the largest integer occurring in r1, . . . , rn.

The np algorithm then consists of guessing a compressed string w of poly-
nomial size and verifying whether w ∈ ⋂n

i=1 L(ri). If we represent r1, . . . , rn by
their sequence normal form, this verification step can be done in polynomial
time by Lemma 47.

Finally, we exhibit a tractable subclass with numerical occurrence con-
straints:

Theorem 49. inclusion, equivalence, and intersection for CHARE(a,
a#>0) are in ptime.

Proof. The upper bound for equivalence is immediate from Theorem 46(2).

For inclusion, let r1 and r2 be two CHARE(a, a#>0)s in sequence normal
form. (as defined in the proof of Theorem 46) Let r1 = a1[k1, ℓ1] · · · an[kn, ℓn]
and r2 = a′1[k

′
1, ℓ

′
1] · · · a′n′ [k′

n′ , ℓ′n′]. Notice that every number ki and k′
j is

greater than zero. We claim that L(r1) ⊆ L(r2) if and only if n = n′ and for
every i ∈ {1, . . . , n}, ai = a′i, ki ≥ k′

i, and ℓi ≤ ℓ′i.
Indeed, if n 6= n′, or if there exists an i such that ai 6= a′i or ki < k′

i,
then ak1

1 · · · akn
n ∈ L(r1) \ L(r2). If there exists an i such that ℓi > ℓ′i, then

aℓ1
1 · · · aℓn

n ∈ L(r1) \ L(r2). Conversely, it is immediate that every string in

5.2. Complexity of Regular Expressions 73

L(r1) is also in L(r2). It is straightforward to test these conditions in linear
time.

For intersection, let, for every i ∈ {1, . . . , n}, ri = ai,1[ki,1, ℓi,1] · · ·
ai,mi [ki,mi , ℓi,mi] be a CHARE(a, a#>0) in sequence normal form. Notice that
every number ki,j is greater than zero. We claim that

⋂n
i=1 L(ri) 6= ∅ if and

only if

(i) m1 = m2 = · · · = mn;

(ii) for every i, j ∈ {1, . . . , n} and x ∈ {1, . . . , m1}, ai,x = aj,x; and,

(iii) for every x ∈ {1, . . . , m1}, max{ki,x | 1 ≤ i ≤ n} ≤ min{ℓi,x | 1 ≤ i ≤ n}.

Indeed, if the above conditions hold, we have that aK1
1,1 · · · a

Km1
1,m1

is in
⋂n

i=1 L(ri),
where Kx = max{ki,x | 1 ≤ i ≤ n} for every x ∈ {1, . . . , m1}. If mi 6= mj

for some i, j ∈ {1, . . . , n}, then the intersection between ri and rj is empty.
So assume that condition (i) holds. If ai,x 6= aj,x for some i, j ∈ {1, . . . , n}
and x ∈ {1, . . . , m1}, then we also have that the intersection between ri and
rj is empty. Finally, if condition (iii) does not hold, take i, j, and x such that
ki,x = max{ki,x | 1 ≤ i ≤ n} and ℓj,x = min{ℓi,x | 1 ≤ i ≤ n}. Then the
intersection between ri and rj is empty.

Finally, testing conditions (i)–(iii) can be done in linear time.

6
Deterministic Regular
Expressions with Counting

As mentioned before, XML Schema expands the vocabulary of regular expres-
sion by a counting operator, but restricts them by requiring the expressions
to be deterministic. Although there is a notion of determinism which has be-
come the standard in the context of standard regular expressions, there are in
fact two slightly different notions of determinism. The most common notion,
weak determinism (also called one-unambiguity [17]), intuitively requires that,
when matching a string from left to right against an expression, it is always
clear against which position in the expression the next symbol in the string
must be matched. For example, the expression (a + b)∗a is not weakly deter-
ministic, because it is not clear in advance to which a in the expression the
first a of the string aaa must be matched. The reason is that, without look-
ing ahead, we do not know whether the current a we read is the last symbol
of the string or not. On the other hand, the equivalent expression b∗a(b∗a)∗

is weakly deterministic: the first a we encounter must be matched against
the leftmost a in the expression, and all other a’s against the rightmost one
(similarly for the b’s). Strong determinism restricts regular expressions even
further. Intuitively, it requires additionally that it is also clear how to go from
one position to the next. For example, (a∗)∗ is weakly deterministic, but not
strongly deterministic since it is not clear over which star one should iterate
when going from one a to the next.

Although the latter example illustrates the difference between the notions

76 Deterministic Regular Expressions with Counting

of weak and strong determinism, they in fact almost coincide for standard
regular expressions. Indeed, Brüggemann-Klein [15] has shown that any weak
deterministic expression can be translated into an equivalent strongly deter-
ministic one in linear time.1 However, this situation changes completely when
counting is involved. First, the algorithm for deciding whether an expression
is weakly deterministic is non-trivial [66]. For instance, (a2,3 + b)2,2b is weakly
deterministic, but the very similar (a2,3 + b)3,3b is not. So, the amount of
non-determinism introduced depends on the concrete values of the counters.
Second, as we will show, weakly deterministic expressions with counting are
strictly more expressive than strongly deterministic ones. Therefore, the aim
of this chapter is an in-depth study of the notions of weak and strong determin-
ism in the presence of counting with respect to expressiveness, succinctness,
and complexity.

We first give a complete overview of the expressive power of the differ-
ent classes of deterministic expressions with counting. We show that strongly
deterministic expressions with counting are equally expressive as standard de-
terministic expressions. Weakly deterministic expressions with counting, on
the other hand, are more expressive than strongly deterministic ones, except
for unary languages, on which they coincide. However, not all regular lan-
guages are definable by weakly deterministic expressions with counting.

Then, we investigate the difference in succinctness between strongly and
weakly deterministic expressions with counting, and show that weakly deter-
ministic expressions can be exponentially more succinct than strongly deter-
ministic ones. This result prohibits an efficient algorithm translating a weakly
deterministic expression into an equivalent strongly deterministic one, if such
an expression exists. This contrasts with the situation of standard expressions
where such a linear time algorithm exists [15].

We also present an automaton model extended with counters, counter
NFAs (CNFAs), and investigate the complexity of some related problems.
For instance, it is shown that boolean operations can be applied efficiently
to CDFAs, the deterministic counterpart of CNFAs. Bruggemann-Klein [15]
has shown that the Glushkov construction, translating regular expressions into
NFAs, yields a DFA if and only if the original expression is deterministic. We
investigate the natural extension of the Glushkov construction to expressions
with counters, converting expressions to CNFAs. We show that the resulting
automaton is deterministic if and only if the original expression is strongly de-
terministic. Combining the results on CDFAs with the latter result then also
allows to infer better upper bounds on the inclusion and equivalence problem

1In fact, Brüggemann-Klein did not study strong determinism explicitly. However, she
gives a procedure to transform expressions into star normal form which rewrites weakly
determinisistic expressions into equivalent strongly deterministic ones in linear time.

77

of strongly deterministic expressions with counting. Further, we show that
testing whether an expression with counting is strongly deterministic can be
done in cubic time, as is the case for weak determinism [66].

It should be said that XML Schema uses weakly deterministic expressions
with counting. However, it is also noted by Sperberg-McQueen [101], one of
its developers, that

“Given the complications which arise from [weakly deterministic
expressions], it might be desirable to also require that they be
strongly deterministic as well [in XML Schema].”

The design decision for weak determinism is probably inspired by the fact
that it is the natural extension of the notion of determinism for standard
expressions, and a lack of a detailed analysis of their differences when counting
is allowed. A detailed examination of strong and weak determinism of regular
expressions with counting intends to fill this gap.

Related work. Apart from the work already mentioned, there are several
automata based models for different classes of expressions with counting with
as main application XML Schema validation, by Kilpelainen and Tuhkanen
[65], Zilio and Lugiez [26], and Sperberg-McQueen [101]. Here, Sperberg-
McQueen introduces the extension of the Glushkov construction which we
study in Section 6.5. We introduce a new automata model in Section 6.4 as
none of these models allow to derive all results in Sections 6.4 and 6.5. Further,
Sperberg-McQueen [101] and Koch and Scherzinger [68] introduce a (slightly
different) notion of strongly deterministic expression with and without count-
ing, respectively. We follow the semantical meaning of Sperberg-McQueen’s
definition, while using the technical approach of Koch and Scherzinger. Fi-
nally, Kilpelainen [63] shows that inclusion for weakly deterministic expres-
sions with counting is coNP-hard; and Colazzo, Ghelli, and Sartiani [24] have
investigated the inclusion problem involving subclasses of deterministic ex-
pressions with counting.

Concerning deterministic languages without counting, the seminal paper
is by Bruggemann-Klein and Wood [17] where, in particular, it is shown to be
decidable whether a language is definable by a deterministic regular expression.
Conversely, general regular expressions with counting have also received quite
some attention [40, 37, 64, 83].

Outline. In Section 6.1, we provide some additional definitions. In Sec-
tion 6.2 we study the expressive power of weak and strong deterministic
expressions with counting, and in Section 6.3 their relative succinctness. In
Section 6.4, we define CNFA, and in Section 6.5 we study the Glushkov

78 Deterministic Regular Expressions with Counting

construction translating RE(#) to CNFA. In Sections 6.6 and 6.7 we con-
sider the complexity of testing whether an expression with counting is strongly
deterministic and decision problems for deterministic RE(#). We conclude in
Section 6.8.

6.1 Preliminaries

We introduce some additional notation concerning (deterministic) RE(#) ex-
pressions. An RE(#) expression r is nullable if ε ∈ L(r). We say that an
RE(#) r is in normal form if for every nullable subexpression sk,l of r we have
k = 0. Any RE(#) can easily be normalized in linear time. Therefore, we
assume that all expressions used in this chapter are in normal form. Some-
times we will use the following observation, which follows directly from the
definitions:

Remark 50. A subexpression rk,ℓ is nullable if and only if k = 0.

For a regular expression r, we say that a subexpression of r of the form sk,ℓ

is an iterator of r. Let r and s be expressions such that s is a subexpression
of r. Then we say that s is a factor of r, whenever first(s) ⊆ first(r) and
last(s) ⊆ last(r). When r and s are iterators, this intuitively means that
a number of iterations of s are sufficient to satisfy r. For instance, in the
expression s = (a0,3

1 b1,2
1)3,4, b1,2

1 is a factor of s, but a0,3
1 is not.

For two symbols x, y of a marked expression r, we denote by lca(x, y) the
smallest subexpression of r containing both x and y. Further, we write s � r
when s is a subexpression of r and s ≺ r when s � r and s 6= r. For an
iterator sk,ℓ, let base(sk,ℓ) := s, lower(sk,ℓ) := k, and upper(sk,ℓ) := ℓ. We say
that sk,ℓ is bounded when ℓ ∈ N, otherwise it is unbounded.

Weak determinism. For completeness, we define here the notion of weak
determinism. This notion, however, is exactly the notion of determinism as
defined in Section 2.2. Recall that for an expression r, r denotes a marking of
r, and Char(r) denotes the symbols occurring in r.

Definition 51. An RE(#) expression r is weakly deterministic if, for all
strings u, v, w ∈ Char(r)∗ and all symbols a, b ∈ Char(r), the conditions
uav, ubw ∈ L(r) and a 6= b imply that a 6= b.

A regular language is weakly deterministic with counting if it is defined by
some weakly deterministic RE(#) expression. The classes of all weakly deter-
ministic languages with counting, respectively, without counting, are denoted
by DRE#

W , respectively, DREW .

6.1. Preliminaries 79

·
·

0, 3

0, 1

a

+

0,∞
b

0,∞
c

d

1

2 3 4

Figure 6.1: Parse tree of (a0,1)0,3(b0,∞ + c0,∞)d. Counter nodes are numbered
from 1 to 4.

Intuitively, an expression is weakly deterministic if, when matching a string
against the expression from left to right, we always know against which symbol
in the expression we must match the next symbol, without looking ahead in the
string. For instance, (a + b)∗a and (a2,3 + b)3,3b are not weakly deterministic,
while b∗a(b∗a)∗ and (a2,3 + b)2,2b are.

Strong determinism. Intuitively, an expression is weakly deterministic if,
when matching a string from left to right, we always know where we are in
the expression. For a strongly deterministic expression, we will additionally
require that we always know how to go from one position to the next. Thereto,
we distinguish between going forward in an expression and backward by iter-
ating over a counter. For instance, in the expression (ab)1,2 going from a to b
implies going forward, whereas going from b to a iterates backward over the
counter.

Therefore, an expression such as ((a + ε)(b + ε))1,2 will not be strongly
deterministic, although it is weakly deterministic. Indeed, when matching ab,
we can go from a to b by either going forward or by iterating over the counter.
By the same token, also (a1,2)3,4 is not strongly deterministic, as we have a
choice of counters over which to iterate when reading multiple a’s. Conversely,
(a2,2)3,4 is strongly deterministic as it is always clear over which counter we
must iterate.

For the definition of strong determinism, we follow the semantic meaning of
the definition by Sperberg-McQueen [101], while using the formal approach of
Koch and Scherzinger [68] (who called the notion strong one-unambiguity)2.
We denote the parse tree of an RE(#) expression r by pt(r). Figure 6.1
contains the parse tree of the expression (a0,1)0,3(b0,∞ + c0,∞)d.

A bracketing of a regular expression r is a labeling of the counter nodes of

2The difference with Koch and Scherzinger is that we allow different derivations of ε while
they forbid this. For instance, a∗ + b∗ is strongly deterministic in our definition, but not in
theirs, as ε can be matched by both a∗ and b∗.

80 Deterministic Regular Expressions with Counting

pt(r) by distinct indices. Concretely, we simply number the nodes according to
the depth-first left-to-right ordering. The bracketing r̃ of r is then obtained by
replacing each subexpression sk,ℓ of r with index i with ([is]i)

k,ℓ. Therefore, a
bracketed regular expression is a regular expression over alphabet Σ⊎Γ, where
Γ := {[i,]i | i ∈ N}. For example, ([1([2a]2)

0,1]1)
0,3(([3b]3)

0,∞ + ([4c]4)
0,∞)d is

a bracketing of (a0,1)0,3(b0,∞ + c0,∞)d, for which the parse tree is shown in
Figure 6.1. We say that a string w in Σ ⊎ Γ is correctly bracketed if w has no
substring of the form [i]i. That is, we do not allow a derivation of ε in the
derivation tree.

Definition 52. A regular expression r is strongly deterministic with counting
if r is weakly deterministic and there do not exist strings u, v, w over Σ ∪ Γ,
strings α 6= β over Γ, and a symbol a ∈ Σ such that uαav and uβaw are both
correctly bracketed and in L(r̃).

A standard regular expression (without counting) is strongly deterministic
if the expression obtained by replacing each subexpression of the form r∗ with
r0,∞ is strongly deterministic with counting. The class DRE#

S , respectively,
DRES , denotes all languages definable by a strongly deterministic expressions
with, respectively, without, counting.

6.2 Expressive Power

Brüggemann-Klein and Wood [17] proved that, for any alphabet Σ, DREW

forms a strict subclass of the regular languages, denoted REG(Σ). The com-
plete picture of the relative expressive power of the different classes depends
on the size of Σ, as shown in Figure 6.2.

Figure 6.2: An overview of the expressive power of different classes of deter-
ministic regular languages, depending on the alphabet size. Numbers refer to
the theorems proving the (in)equalities.

DRES
[15]
= DREW

54
= DRE#

S
55
= DRE#

W

60
(REG(Σ) (if |Σ| = 1)

DRES
[15]
= DREW

54
= DRE#

S

59
(DRE#

W

60
(REG(Σ) (if |Σ| ≥ 2)

The equality DRES = DREW is already implicit in the work of Brüggemann-
Klein [15].3 By this result and by definition, all inclusions from left to right

3Strong determinism was not explicitly considered in [15]. However, the paper gives a
transformation of weakly deterministic regular expressions into equivalent expressions in star

normal form; and every expression in star normal form is strongly deterministic.

6.2. Expressive Power 81

already hold. The rest of this section is devoted to proving the other equal-
ities and inequilaties in Theorems 54, 55, 59, and 60, while the intermediate
lemmas are only used in proving the former theorems.

We need a small lemma to prepare for the equality between DRES and
DRE#

S .

Lemma 53. Let r1r2 be a factor of rk,ℓ with r1, r2 nullable, L(r1) 6= {ε},
L(r2) 6= {ε}, and ℓ ≥ 2. Then rk,ℓ is not strongly deterministic.

Proof. If rk,ℓ is not weakly deterministic, the lemma already holds. Therefore,
assume that rk,ℓ is weakly deterministic. Let rk,ℓ be a marked version of rk,ℓ.
Let s̃ := [1r̃]

k,ℓ
1 denote the bracketed version of rk,ℓ. Denote by r̃1 and r̃2 the

subexpressions of s̃ that correspond to r1 and r2.
Let ũ (respectively, ṽ) be a non-empty string in L(r̃1) (respectively, L(r̃2)).

These strings exist as L(r1) and L(r2) are not equal to {ε}. Let w̃ = [1ũṽ]1.

Define x := max{0, k − 2}. Then, both [1ũ]1[1ṽ]1w̃
x

and [1ũṽ]1w̃
x+1

are in
L(s̃) and thereby show that rk,ℓ is not strongly deterministic.

Theorem 54. Let Σ be an arbitrary alphabet. Then,

DRES = DRE#
S .

Proof. Let r be an arbitrary strongly deterministic regular expression with
counting. We can assume without loss of generality that no subexpressions of
the form s1,1 or ε occur. Indeed, iteratively replacing any subexpression of the
form s1,1, sε or εs by s; s+ε or ε+s by s0,1 and εk,ℓ by ε, yields an expression
which is still strongly deterministic and which is either equal to ε or does not
contain s1,1 or ε. As in the former case we are done, we can hence assume the
latter.

We recursively transform r into a strongly deterministic expression EC(r)
without counting such that L(r) = L(EC(r)), using the rules below. In these
rules, EC stands for “eliminate counter” and ECE for “eliminate counter and
epsilon”:

(a) for all a ∈ Σ, EC(a) := a

(b) EC(r1 + r2) := EC(r1) + EC(r2)

(c) EC(r1r2) := EC(r1)EC(r2)

(d) if r nullable then EC(r0,1) := EC(r)

(e) if r not nullable then EC(r0,1) := ECE(r) + ε

(f) EC(rk,∞) := ECE(r) · · ·ECE(r) · ECE(r)∗

82 Deterministic Regular Expressions with Counting

(g) if ℓ ∈ N\{1} then EC(rk,ℓ) := ECE(r) · · ·ECE(r)·
(
ECE(r)(ECE(r)(· · ·)+

ε) + ε
)

In the last two rules, ECE(r) · · ·ECE(r) denotes a k-fold concatenation of
ECE(r), and the recursion in

(
ECE(r)(ECE(r)(· · ·) + ε) + ε

)
contains ℓ − k

occurrences of r.

(a’) for all a ∈ Σ, ECE(a) := a

(b’) ECE(r1 + r2) := ECE(r1) + ECE(r2)

(c’) ECE(r1r2) := EC(r1)EC(r2)

(d’) if k 6= 0, then ECE(rk,ℓ) := EC(rk,ℓ)

(e’) ECE(r0,1) := ECE(r)

(f’) ECE(r0,∞) := ECE(r)ECE(r)∗

(g’) if k = 0 and ℓ ∈ N \ {1}, then ECE(rk,ℓ) := ECE(r)
(
ECE(r)(· · ·) + ε

)

Similarly as above, the recursion
(
ECE(r)(· · ·)+ε

)
contains ℓ−1 occurrences of

r. We prove that L(r) = L(EC(r)) and that EC(r) is a strongly deterministic
regular expression.

To show L(r) = L(EC(r)), we prove by simultaneous induction on the
application of the rules (a)–(g) and (a’)–(g’) that L(EC(r)) = L(r), for any
strongly deterministic expression r, and that L(ECE(r)) = L(r) \ {ε}, for all
expressions r to which ECE(r) can be applied. The latter is important as
ECE(r) does not equal L(r) \ {ε} for all r. For instance, ECE(a0,1b0,1) =
(a + ε)(b + ε), and L(a0,1b0,1) = L((a + ε)(b + ε)). However, as EC is always
applied to a strongly deterministic expression, we will see that ECE will never
be applied to such a subexpression. This is why we need Lemma 53.

The base cases of the induction are (a) EC(a) := a and (a’) ECE(a) :=
a. These cases are clear. For the induction, the cases (b)–(e) are trivial.
Correctness for cases (f) and (g) is immediate from Remark 50. Case (b’) is
also trivial.

The first non-trivial case is (c’). If ε /∈ L(r1r2) then (c’) is clearly correct.
Towards a contradiction, suppose that ε ∈ L(r1r2). This implies that r1 and r2

are nullable. Notice that we only apply rule (c’) when rewriting r if either (i)
r1r2 is a factor of some s0,1 with s not nullable (case (e)), or (ii) r1r2 is a factor
of a subexpression of the form sk,ℓ with ℓ ≥ 2 (cases (f,g)). Here, r1r2 must
in both cases be a factor since, whenever ECE is applied to a subexpression,
this subexpression is a factor; and the factor relation is clearly transitive. The
reason that there must always be such a superexpression to which case (e), (f),

6.2. Expressive Power 83

or (g) is applied is that the recursive process starts by applying EC. Therefore,
we must have applied (e), (f), or (g) to some superexpression of which r1r2 is
a factor before applying ECE to r1r2.

In case (i), r1 and r2 nullable implies that r in rule (e) must be nullable
(because r1r2 is a factor of r), which contradicts the precondition of rule
(e). In case (ii), Lemma 53 claims that sk,ℓ and therefore r is not strongly
deterministic, which is also a contradiction.

By Remark 50, (d’) is also correct. Cases (e’)–(g’) are also trivial. This
concludes the proof that L(EC(r)) = L(r).

We next prove that EC(r) and ECE(r) are strongly deterministic regular
expression, whenever r is strongly deterministic. We prove this by induction
on the reversed order of application of the rewrite rules. The induction base
rules are (a) and (a’), which are immediate. Furtermore, rules (b)–(e) and
(b’)–(e’) are also immediate. For instance, for rule (b) we know by induction
that EC(r1) and EC(r2) are strongly deterministic. As L(r1) = L(EC(r1)),
L(r2) = L(EC(r2)), and r1 + r2 is strongly deterministic, it follows that also
EC(r1) + EC(r2) is strongly deterministic.

Cases (f), (g), (f’), and (g’) are more involved. We only investigate case (f)

because these four cases are all very similar. Let EC(rk,∞) denote a marked

version of EC(rk,∞) and let EC(rk,∞) = ECE(r)1 · · ·ECE(r)kECE(r)
∗
k+1. Fur-

ther, let rk,∞ be a marking of rk,∞ and let f : Char(EC(rk,∞))→ Char(rk,∞)

be the natural mapping associating each symbol in EC(rk,∞) to its correspond-
ing symbol in Char(rk,∞). For instance, when r = (aba)1,∞, then EC(r) =
(aba)(aba)∗, r = (a1b1a2)

1,∞, EC(r) = (a1b1a2)(a3b2a4)
∗, and f(a1) = a1,

f(b1) = b1, f(a2) = a2, f(a3) = a1, f(b2) = b1, and f(a4) = a2. By abuse of
notation, we also let f denote its natural extension mapping strings to strings.

Now, assume, towards a contradiction, that EC(rk,∞) is not strongly de-
terministic, and assume first that this is due to the fact that EC(rk,∞) is not
weakly deterministic. Hence, there exist marked strings u, v, w and marked
symbols x and y such that uxv and uyw in L(EC(rk,∞)) with x 6= y and
dm(x) = dm(y). We distinguish two cases. First, assume f(x) 6= f(y). Then,
as both f(u)f(x)f(v) and f(u)f(x)f(w) are in L(rk,∞) we immediately obtain a
contradiction with the weak determinism, and thus also the strong determin-
ism, of rk,∞. Second, assume f(x) = f(y). Then, x and y cannot occur in the
same ECE(r)i, for any i ∈ [1, k + 1]. Indeed, otherwise ECE(r) would not be
weakly deterministic, contradicting the induction hypothesis. Hence we can
assume x ∈ Char(ECE(r)i) and y ∈ Char(ECE(r)j), with 1 ≤ i < j ≤ k + 1.
But then, consider the strings w1 = dm(uxv) and w2 = dm(uyw) and notice
that dm(ux) = dm(uy). Let [m be the opening bracket corresponding to the
iterator rk,∞ in the bracketed version of rk,∞. Then, we can construct two

84 Deterministic Regular Expressions with Counting

correctly bracketed words defined by the bracketing of rk,∞ by adding brack-
ets to w1 and w2 such that (i) in the prefix dm(ux) of w1, i [m-brackets occur
(indicating i iterations of the outermost iterator) and (ii) in the prefix dm(uy)
of w2, j [m-brackets occur. But, as dm(ux) = dm(uy) this implies that rk,∞

is not strongly deterministic, a contradiction.
Hence, if EC(rk,∞) is not strongly deterministic, this is due to the failure

of the second reason in Definition 52. It is easily seen that, as this reason
concerns the iterators, and all subexpressions are strongly deterministic due
to the induction hypothesis, it must be the case that ECE(r)∗ is not strongly
deterministic. Let [m1 be the opening bracket corresponding to the iterator
ECE(r)∗. Since ECE(r) is strongly deterministic but ECE(r)∗ is not, we can
take strings ũ1α1ãv1 and ũ1β1ãw1, so that

• ũ1α1ãv1 and ũ1β1ãw1 are correctly bracketed and accepted by the brack-
eted version of ECE(r)

∗
,

• α1, β1 ∈ Γ∗, and

•]m1 [m1 is a substring of α1 but not of β1,

Consider the expression r0,∞ (which has a lower bound 0 instead of k) and let
[m2 be the opening bracket corresponding to its outermost iterator. According
to the above, there also exist correctly bracketed strings ũ2α2ãv2 and ũ2β2ãw2

accepted by the bracketed version of r0,∞ such that]m2 [m2 is a substring of
α2 but not of β2. This proves that r0,∞ and therefore rk,∞ is not strongly
deterministic. This hence leads to the desired contradiction, and shows that
EC(r) is indeed strongly deterministic.

Theorem 55. Let Σ be an alphabet with |Σ| = 1. Then,

DRE#
S = DRE#

W

Proof. By definition, every strongly deterministic expression is also weakly
deterministic. Hence, it suffices to show that, over a unary alphabet, every
weakly deterministic language with counting can also be defined by a strongly
deterministic expression with counting. We will do so by characterizing the
weakly deterministic languages with counting over a unary alphabet in terms of
their corresponding minimal DFAs. Thereto, we first introduce some notation.
The following notions come from, e.g., Shallit [91], but we repeat them here
for completeness. (Shallit used tail to refer to what we call a chain.)

Definition 56. We say that a DFA over Σ = {a} is a chain if its start state is
q0 and its transition function is of the form δ(q0, a) = q1, . . . , δ(qn−1, a) = qn,
where qi 6= qj when i 6= j. A DFA is a chain followed by a cycle if its transition

6.2. Expressive Power 85

function is of the form δ(q0, a) = q1, . . . , δ(qn−1, a) = qn, δ(qn, a) = qn+1, . . . ,
δ(qn+m−1, a) = qn+m, δ(qn+m, a) = qn, where qi 6= qj when i 6= j. The cycle
states of the latter DFA are qn, . . . , qn+m.

We say that a unary regular language L is ultimately periodic if L is infinite
and its minimal DFA is a chain followed by a cycle, for which at most one of
the cycle states is final.

The crux of the proof then lies in Lemma 57. It is well known (see, e.g.,
[91]) and easy to see that the minimal DFA for a regular language over a unary
alphabet is defined either by a simple chain of states, or a chain followed by
a cycle. To this fact, the following lemma adds that for languages defined by
weakly deterministic regular expressions only one node in this cycle can be
final.

Lemma 57. Let Σ = {a}, and L ∈ REG(Σ), then L ∈ DRE#
W if and only if

L is either finite or ultimately periodic.

Before we prove this lemma, note that it implies Theorem 55. Indeed, any
finite language can clearly be defined by a strongly deterministic expression,
while an infinite but ultimately periodic language can be defined by a strongly
deterministic expression of the form an1(an2(· · · ank−1(ank)∗ · · ·+ε)+ε), where
ani denotes the ni-fold concatenation of a. Hence, it only remains to prove
Lemma 57. Thereto, we first need a more refined notion of ultimate periodicity
and an additional lemma, after which we conclude with the proof of Lemma 57.

We say that L over alphabet {a} is (n0, x)-periodic if

(i) L ⊆ L((ax)∗), and

(ii) for every n ∈ N such that nx ≥ n0, L contains the string anx, i.e., the
string of a’s of length nx.

We say that L is ultimately x-periodic if L is (n0, x)-periodic for some n0 ∈ N.
Notice that these notions imply that L is infinite. Clearly, any ultimately
x-periodic language is also ultimately periodic. However, the opposite does
not always hold. Indeed, in an ultimately x-periodic language all strings have
lengths which are multiples of x, i.e., they have length 0 (modulo x). In an
ultimately periodic language only all sufficiently long string must have the
same length y (modulo x), for a fixed y, which, moreover, can be different
from 0.

Lemma 58. Let L be a language, x ∈ N, k ∈ N∪ {0}, and ℓ ∈ N∪ {∞} with
k ≤ ℓ. If L is ultimately x-periodic, then Lk,ℓ is also ultimately x-periodic.

86 Deterministic Regular Expressions with Counting

Proof. Every string in Lk,ℓ is a concatenation of (possibly empty) strings in
L. Since the length of every string in L is a multiple of x, it follows that the
length of every string in Lk,ℓ is a multiple of x. Therefore, Lk,ℓ ⊆ L((ax)∗).

Furthermore, take n0 ∈ N such that L is (n0, x)-periodic. Let k0 :=
max{k, 1}. We will show that Lk,ℓ is (k0(n0 + x), x)-periodic, which proves
the lemma. Take n ∈ N such that nx ≥ k0(n0 + x). Hence, (n

k0
− 1)x ≥ n0

since k0 ≥ 1 and therefore ⌊ n
k0
⌋x ≥ n0. Hence, anx = a⌊n/k0⌋x · · · a⌊n/k0⌋xar0x,

where the dots abbreviate a k0-fold concatenation of a⌊n/k0⌋x and r0 := n
mod ⌊n/k0⌋. Since L is (n0, x)-periodic, a⌊n/k0⌋x ∈ L and a(⌊n/k0⌋+r0)x ∈ L.
Hence, anx ∈ Lk0 , which implies that anx ∈ Lk,ℓ.

We are now finally ready to prove Lemma 57 and thus conclude the proof
of Theorem 55

Proof. [of Lemma 57] Clearly, any finite language is in DRE#
W and any ulti-

mately periodic language can already be defined by a strongly deterministic
expression, and hence is also in DRE#

W . Hence, we only need to show that,

if an infinite language is in DRE#
W , then it is ultimately periodic, i.e., can

be defined with a DFA of the correct form. It is well-known that, for every
infinite unary language, the minimal DFA is a chain followed by a cycle. We
therefore only need to argue that, in this cycle, at most one of the nodes is
final.

Let Σ = {a} and let r be a weakly deterministic regular expression with
counting over {a}, such that L(r) is infinite. We can assume without loss of
generality that r does not contain concatenations with ε. Since r is over a
unary alphabet, we can make the following observations:

If r has a disjunction r1 + r2 then either L(r1) = {ε} or L(r2) = {ε}. (6.1)

There are no subexpressions of the form r1r2 in r in which |L(r1)| > 1. (6.2)

Indeed, if these statements do not hold, then r is not weakly deterministic.
Our first goal is to bring r into a normal form. More specifically, we want to
write r as

r = (r1(r2(· · · (rn)pn,1 · · ·)p3,1)p2,1)p1,1,

where

(a) for each i = 1, . . . , n, pi ∈ {0, 1};

(b) r has no occurrences of ε;

(c) rn is a tower of counters, that is, it only has a single occurrence of a; and

6.2. Expressive Power 87

(d) L(r1), . . . , L(rn−1) are singletons, and L(rn) is infinite.

Notice that, if r has the normal form and one of L(ri), with 1 ≤ i ≤ n− 1, is
not a singleton, then this would immediately violate (6.2). In order to achieve
this normal form, we iteratively replace

(i) all subexpressions of the form (sk,k)ℓ,ℓ with skℓ,kℓ;

(ii) all subexpressions of the form sk1,k1sk2,ℓ2 with sk1+k2,k1+ℓ2 ; and

(iii) all subexpressions of the form (s + ε) and (ε + s) with s0,1

(iv) all subexpressions of the form ak,ks, where s 6= ak1,ℓ1 with ak,ks1,1

until no such subexpressions occur anymore. These replacements preserve
the language defined by r and preserve weak determinism. Due to (6.1) and
(6.2), these replacements turn r in the normal form above adhering to the
syntactic constraints (a)–(c). Furthermore, we know that condition (d) must
hold because r is weakly deterministic.

Hence, we can assume that r = (r1(r2(· · · (rn)pn,1 · · ·)p3,1)p2,1)p1,1 in which
only L(rn) is infinite. Notice that we can translate the regular expression

r′ = (r1(r2(· · · (rn−1(X)pn,1)pn−1,1 · · ·)p3,1)p2,1)p1,1

over alphabet {a, X} into a DFA which is a chain and which reads the symbol
X precisely once, at the end of the chain. Therefore, it suffices to prove now
that we can translate rn into a DFA which is a chain followed by a cycle, in
which at most one of the cycle nodes is final. Indeed, if A1 and A2 are the
DFAs for r′ and rn respectively, then we can intuitively obtain the DFA A for
r by concatenating these two DFAs. More formally, if q1 is the unique state
in A1 which has the transition δ(q1, X) = q2 (and q2 is final in A1), and q3

is the initial state of A2, then we can obtain A by taking the union of the
states and transitions of A1 and A2, removing state q2, and merging states q1

and q3 into a new state, while preserving incoming and outgoing transitions.
The initial state of A is the initial state of A1 and its final state set is the
union of the final state sets in A1 and A2. Since A1 is a chain, L(A) = L(r)
is ultimately periodic if and only if L(A2) = L(rn) is ultimately periodic. It
thus only remains to show that L(rn) is ultimately periodic.

Let sk,∞ be the smallest subexpression of rn in which the upper bound
is unbounded. (Such an expression must exist, since L(rn) is infinite.) We
will first prove that L(sk,∞) is ultimately x-periodic for some x ∈ N. Due to
Lemma 58 and the structure of rn, this also proves that L(rn) is ultimately
x-periodic, and thus ultimately periodic, and concludes our proof.

88 Deterministic Regular Expressions with Counting

It therefore only remains to show that L(sk,∞) is ultimately x-periodic
for some x ∈ N. To this end, there are two possibilities: either s contains
a subexpression of the form (s′)y1,y2 with y1 < y2, or it does not. If not,
then L(sk,∞) is of the form (ax,x)k,∞ due to the replacement (i) above in our
normalization. In this case, L(sk,∞) is clearly (xk, x)-periodic.

If sk,∞ contains a subexpression of the form (s′)y1,y2 with y1 < y2, then it is
of the form (((ax,x)y1,y2)h1

1,h1
2) · · ·)hn

1 ,hn
2)k,∞, where x can equal 1, and the hi

1,
hi

2 denote a nesting of iterators. It is immediate that L(sk,∞) ⊆ L((ax,x)∗),
i.e., the length of every string in L(sk,∞) is a multiple of x. To show that
there also exists an n0 such that sk,∞ defines all strings of length mx with
m ∈ N and mx ≥ n0, let z = h1

1 · h2
1 · · ·hn

1 , or z = 1 when n = 0. Clearly,
(((ax,x)y,y+1)z,z)k,∞ defines a subset of sk,∞ and, hence, it suffices to show
that (((ax,x)y,y+1)z,z)k,∞ defines all such strings of length mx ≥ n0.

Let n0 = y2xkz. We show that for any m such that mx ≥ y2xkz, amx is
defined by (((ax,x)y,y+1)z,z)k,∞. Take any m ≥ y2kz, and note that it suffices to
show that am is defined by ((ay,y+1)z,z)k,∞. The latter is the case if there exists
an ℓ ≥ k and positive natural numbers y0, y1 such that m = y0y + y1(y + 1)
and y0 + y1 = ℓz. That is, ℓ denotes the number of iterations the topmost
iterator does, and hence must be at least as big as k, while y0 (respectively,
y1) denotes the number of times the inner iterator reads y (respectively, y +1)
a’s. We now show that such ℓ, y0, and y1 indeed exist.

Thereto, let ℓ be the biggest natural number such that yzℓ ≤ m, and
observe that, as m ≥ y2zk, it must hold that ℓ ≥ y and ℓ ≥ k. Then, let
y1 = m− yzℓ and y0 = ℓz − y1. It remains to verify that ℓ, y0 and y1 satisfy
the desired conditions. We already observed that ℓ ≥ k, and, by definition of
y0, also y0 + y1 = ℓz. Further, to show that m = y0y + y1(y + 1), note that
m = yzℓ+y1 and thus m = y(y0 +y1)+y1 = y0y +y1(y +1). Finally, we must
show that y0 and y1 are positive numbers. For y1 this is clear as y1 = m−yzℓ,
and ℓ is chosen such that yzℓ ≤ m. For y0, recall that ℓ ≥ y, and, hence,
y0 ≥ yz − y1. Assuming y0 to be negative implies that yz ≥ y1 = m − yzℓ.
However, the latter implies that ℓ is not chosen to be maximal, as then also
yz(ℓ + 1) ≤ m, which is a contradiction.

This concludes the proof of Lemma 57.

Theorem 59. Let Σ be an alphabet with |Σ| ≥ 2. Then,

DRE#
S (DRE#

W

Proof. By definition, DRE#
S ⊂ DRE#

W . Hence, it suffices to show that the
inclusion is strict for a binary alphabet Σ = {a, b}. A witness for this strict

inclusion is r = (a2,3(b + ε))∗. As r is weakly deterministic, L(r) ∈ DRE#
W .

By applying the algorithm of Brüggemann-Klein and Wood on r for testing

6.3. Succinctness 89

whether a regular language L(r) is in DREW [17], it can be seen that L(r) /∈
DREW , and thus also not in DRES . By Theorem 54, we therefore have that
L(r) /∈ DRE#

S .

Theorem 60. Let Σ be an arbitrary alphabet. Then,

DRE#
W (REG(Σ)

Proof. Clearly, every language defined by a regular expression with counting
is regular. Hence, it suffices to show that the inclusion is strict. We prove
that the inclusion is strict already for a unary alphabet Σ = {a}. Thereto,
consider the expression r = (aaa)∗(a + aa). We can easily see that L(r) /∈
DREW by applying the algorithm of Brüggemann-Klein and Wood [17] to
L(r). As r is over a unary alphabet, it follows from Theorems 54 and 55 that

L((aaa)∗(a + aa)) /∈ DRE#
W , and hence DRE#

W (REG(Σ).

6.3 Succinctness

In Section 6.2 we learned that DRE#
W strictly contains DRE#

S , prohibiting a
translation from weakly to strongly deterministic expressions with counting.
However, one could still hope for an efficient algorithm which, given a weakly
deterministic expression known to be equivalent to a strongly deterministic
one, constructs this expression. However, this is not the case:

Theorem 61. For every n ∈ N, there exists an RE(#) expression r over
alphabet {a} which is weakly deterministic and of size O(n) such that every
strongly deterministic expression s, with L(r) = L(s), is of size at least 2n.

Before proving this theorem, we first give a lemma used in its proof.

Lemma 62. Let r be a strongly deterministic regular expression over alphabet
{a} with only one occurrence of a. Then L(r) can be defined by one of the
following expressions:

(1) (ak,k)x,y

(2) (ak,k)x,y + ε

where k ∈ N, x ∈ N ∪ {0}, and y ∈ N ∪ {∞}.

Proof. First, suppose that L(r) does not contain ε. Since r has one occurrence
of a, r is a nesting of iterators. However, since r is strongly deterministic, r can
not have subexpressions of the form sx,y with |L(s)| > 1 and (x, y) 6= (1, 1). It

90 Deterministic Regular Expressions with Counting

follows immediately that r is of the form ((· · · (ak1,k1)k2,k2 · · ·)kn,kn)x,y. Setting
k := k1 × · · · × kn proves this case.

Second, suppose that L(r) contains ε. If r is of the form s1 + s2, then one
of s1 and s2, say s2, does not contain an a, and hence L(s2) = {ε}. Then,
if L(s) does not contain ε, we are done due to the above argument. So, the
only remaining case is that r is a nesting of iterators, possibly defining ε. We
can assume without loss of generality that r does not have subexpressions of
the form s1,1. Again, since r is strongly deterministic, it cannot have subex-
pressions of the form sx,y with (x, y) 6= (0, 1) and |L(s)− {ε}| > 1. Hence, by
replacing subexpressions of the form (sk,k)ℓ,ℓ by skℓ,kℓ and (s0,1)0,1 by s0,1, r
can either be rewritten to (ak,k)x,y or ((ak,k)x,y)0,1. In the first case, the lemma
is immediate and, in the second case, we can rewrite r as ((ak,k)x,y) + ε.

We are now ready to prove Theorem 61.

Proof. [of Theorem 61] Let r be the weakly deterministic expression (aN+1,2N)1,2

for N = 2n. Clearly, the size of r is O(n). Note that r defines all strings of
length at least N+1 and at most 4N , except a2N+1. These expressions, in fact,
where introduced by Kilpeläinen [63] when studying the inclusion problem for
weakly deterministic expressions with counting.

We prove that every strongly deterministic expression for L(r) is of size
at least 2n. Thereto, let s be a strongly deterministic regular expression for
L(r) with a minimal number of occurrences of the symbol a and, among those
minimal expressions, one of minimal size.

We first argue that s is in a similar but more restricted normal form as
the one we have in the proof of Lemma 57. If s is minimal and strongly
deterministic, then

(a) if s has a disjunction of the form s1 + s2 then either L(s1) = {ε} or
L(s2) = {ε};

(b) there are no subexpressions of the form s1s2 in s in which |L(s1)| > 1 or
ε ∈ L(s1);

(c) there are no subexpressions of the form s1,1
1 , (s0,1

1)0,1, aak,ℓ, ak,ℓa, ak1,ℓ1ak2,ℓ2 ,
or (ak,k)ℓ,ℓ;

(d) there are no subexpressions of the form (s1)
k,ℓ with (k, ℓ) 6= (0, 1) and

|L(s1)− {ε}| > 1;

The reasons are as follows:

• (a),(b): otherwise, s is not weakly deterministic;

6.3. Succinctness 91

• (c): otherwise, s is not minimal; and

• (d): otherwise, by (c), ℓ ≥ 2, which implies that s is not strongly deter-
ministic.

Due to (a), we can assume without loss of generality that s does not have any
disjunctions. Indeed, when L(s2) = {ε}, we can replace every subexpression
s1 + s2 or s2 + s1 with (s1)

0,1 since the latter expression has the same or a
smaller size as the former ones. From (a)–(d), and the fact that ε /∈ L(s), it
then follows that s is of the form

s = s1(s2(· · · (sm)0,1 · · ·)0,1)0,1

where each si (i = 1, . . . , m − 1) is of the form ak,k. Notice that sm can still
be non-trivial according to (a)–(d), such as (a7,7)8,9 or a7,7((a2,2)0,1)2,2. We
now argue that sm is either of the form s′m or s′′ms′m, where s′m and s′′m have
only one occurrence of the symbol a. We already observed above that sm does
not have any disjunctions. So, the only remaining operators are counting and
conjunction.

Suppose, towards a contradiction, that sm has at least two conjunctions
(and, therefore, at least three occurrences of a). Because of (b) and (c),
sm cannot be of the form p1p2p3, since then |L(p1p2)| = 1 and p1p2 can be
rewritten. Hence, sm is of the form p1p2, where either p1 or p2 is an iterator
which contains a conjunction. If p1 contains a conjunction we know due to (b)
that |L(p1)| = 1 and then p1 can be rewritten. If p2 is an iterator that contains
a conjunction then p2 is of the form p0,1

3 due to (d) and since |L(sm)| =∞. Due

to (c), p3 cannot be of the form p0,1
4 . Due to (d), p3 cannot be of the form pk,ℓ

4

with (k, ℓ) 6= (0, 1). Hence, p3 = p4p5. But this means that sm = p1(p4p5)
0,1

which violates the definition of sm, being the innermost expression in the
normal form for s above (i.e., sm should have been p4p5). This shows that sm

has at most one conjunction.

It now follows analogously as in the reasoning for p3 above that sm is either
of the form s′m or s′′ms′m, where s′m and s′′m have only one occurrence of the
symbol a.

We will now argue that, for each string of the form aN+1, . . . , a2N , its last
position is matched onto a different symbol in s. Formally, let uN+1, . . . , u2N

be the unique strings in L(s) such that |ui| = i, for every i ∈ [N + 1, 2N].
We claim that the last symbol in each ui is different. This implies that s
contains at least N occurrences of a, making the size of s at least N = 2n, as
desired. Thereto, let w1 and w2 be two different strings in {uN+1, . . . , u2N}.
Without loss of generality, assume w1 to be the shorter string. Towards a
contradiction, assume that w1 and w2 end with the same symbol x. Let

92 Deterministic Regular Expressions with Counting

s = s1(s2(· · · (sm)0,1 · · ·)0,1)0,1. Due to the structure of s and since both w1

and w2 are in L(s), this implies that x cannot occur in s1, . . . , sm−1 and that
x must be the rightmost symbol in s. As sm is either of the form s′m or s′′ms′m
this implies x occurs in s′m. Again due to the structure of s and sm, this means
that s′m must always define a language of the form {w | vw ∈ L(r)}, where
v is a prefix of dm(w1). Considering the language defined by s, L(s′m) hence
contains the strings ai, . . . , ai+k, ai+k+2, . . . , ai+k+2N for some i ≥ 1 and k ≥ 0.
However, as s′m only contains a single occurrence of the symbol a, Lemma 62
says that it cannot define such a language. This is a contradiction.

It follows that the size of s is at least 2n.

6.4 Counter Automata

Let C be a set of counter variables and α : C → N be a function assigning a
value to each counter variable. We inductively define guards over C, denoted
Guard(C), as follows: for every cv ∈ C and k ∈ N, we have that true, false,
cv = k, and cv < k are in Guard(C). Moreover, when φ1, φ2 ∈ Guard(C),
then so are φ1∧φ2, φ1∨φ2, and ¬φ1. For φ ∈ Guard(C), we denote by α |= φ
that α models φ, i.e., that applying the value assignment α to the counter
variables results in satisfaction of φ.

An update is a set of statements of the form cv++ and reset(cv) in which
every cv ∈ C occurs at most once. By Update(C) we denote the set of all
updates.

Definition 63. A non-deterministic counter automaton (CNFA) is a 6-tuple
A = (Q, q0, C, δ, F, τ) where Q is the finite set of states; q0 ∈ Q is the ini-
tial state; C is the finite set of counter variables; δ : Q × Σ × Guard(C) ×
Update(C) × Q is the transition relation; F : Q → Guard(C) is the accep-
tance function; and τ : C → N assigns a maximum value to every counter
variable.

Intuitively, A can make a transition (q, a, φ, π, q′) whenever it is in state q,
reads a, and guard φ is true under the current values of the counter variables.
It then updates the counter variables according to the update π, in a way
we explain next, and moves into state q′. To explain the update mechanism
formally, we introduce the notion of configuration. Thereto, let max(A) =
max{τ(c) | c ∈ C}. A configuration is a pair (q, α) where q ∈ Q is the
current state and α : C → {1, . . . ,max(A)} is the function mapping counter
variables to their current value. Finally, an update π transforms α into π(α)
by setting cv := 1, when reset(cv) ∈ π, and cv := cv + 1 when cv++ ∈ π and
α(cv) < τ(cv). Otherwise, the value of cv remains unaltered.

6.4. Counter Automata 93

Let α0 be the function mapping every counter variable to 1. The initial
configuration γ0 is (q0, α0). A configuration (q, α) is final if α |= F (q). A
configuration γ′ = (q′, α′) immediately follows a configuration γ = (q, α) by
reading a ∈ Σ, denoted γ →a γ′, if there exists (q, a, φ, π, q′) ∈ δ with α |= φ
and α′ = π(α).

For a string w = a1 · · · an and two configurations γ and γ′, we denote by
γ ⇒w γ′ that γ →a1 · · · →an γ′. A configuration γ is reachable if there exists
a string w such that γ0 ⇒w γ. A string w is accepted by A if γ0 ⇒w γf where
γf is a final configuration. We denote by L(A) the set of strings accepted by
A.

A CNFA A is deterministic (or a CDFA) if, for every reachable configu-
ration γ = (q, α) and for every symbol a ∈ Σ, there is at most one transition
(q, a, φ, π, q′) ∈ δ such that α |= φ. Note that, as this definition only concerns
reachable configurations, it is not straightforward to test whether an CNFA
is deterministic (as will also become clear in Theorem 64(6)). However, as
non-reachable configurations have no influence on the determinism of runs on
the automaton, we choose not to take them into account.

The size of a transition θ or acceptance condition F (q) is the number of
symbols which occur in it plus the size of the binary representation of each
integer occcurring in it. By the same token, the size of A, denoted by |A|, is
|Q|+ ∑

q∈Q log τ(q) + |F (q)|+ ∑
θ∈δ |θ|.

Theorem 64. 1. Given CNFAs A1 and A2, a CNFA A accepting the union
or intersection of A1 and A2 can be constructed in polynomial time.
Moreover, when A1 and A2 are deterministic, then so is A.

2. Given a CDFA A, a CDFA which accepts the complement of A can be
constructed in polynomial time.

3. membership for word w and CDFA A is in time O(|w||A|).

4. membership for non-deterministic CNFA is np-complete.

5. emptiness for CDFAs and CNFAs is pspace-complete.

6. Deciding whether a CNFA A is deterministic is pspace-complete.

Proof. We first note that a CNFA A = (Q, q0, C, δ, F, τ) can easily be com-
pleted. For q ∈ Q, a ∈ Σ define Formulas(q, a) = {φ | (q, a, φ, π, q′) ∈ δ}.
We say that A is complete if, for any value function α, it holds that α |=∨

φ∈Formulas(q,a) φ. That is, for any configuration (q, α) and symbol a, there is
always a transition which can be followed by reading a.

Define the completion Ac of A as Ac = (Qc, q0, C, δc, F c, τ c) with Qc =
Q∪{qs}, δc is δ extended with (qs, a, true, ∅, qs) and, for all q ∈ Q, a ∈ Σ, with

94 Deterministic Regular Expressions with Counting

the tuples (q, a, φc
a,q, φ, qs), where φc

a,q = ¬∨
φ∈Formulas(q,a) φ. Finally, F c is F

extended with F c(qs) = false. Note also that Ac is deterministic if and only
if A is deterministic. Hence, from now on we can assume that all CNFAs and
CDFAs under consideration are complete. We now prove the six statements.

(1) Given two complete CNFAs A1, A2, where Ai = (Qi, qi, Ci, δi, Fi, τi), their
union can be defined as A = (Q1 ×Q2, (q1, q2), C1 ⊎ C2, δ, F, τ1 ∪ τ2). Here,

• δ = {((s1, s2), a, φ1 ∧ φ2, π1 ∪ π2, (s
′
1, s

′
2)) | (si, a, φi, πi, s

′
i) ∈ δi for i =

1, 2}; and

• F (s1, s2) = F1(s1) ∨ F2(s2).

For the intersection of A1 and A2, the definition is completely analogue, only
the acceptance condition differs: F (s1, s2) = F (s1)∧F (s2). It is easily verified
that if A1 and A2 are both deterministic, then A is also deterministic.

(2) Given a complete CDFA A = (Q, q, C, δ, F, τ), the CDFA A′ = (Q, q, C, δ,
F ′, τ), where F ′(q) = ¬F (q), for all q ∈ Q, defines the complement of A.

(3) Since A is a CDFA, from every reachable configuration only one transition
can be followed when reading a symbol. Hence, we can match the string w
from left to right, maintaining at any time the current configuration of A.
Hence, we need to make |w| + 1 transitions, while every transition can be
made in time O(|A|). Therefore, testing membership can be done in time
O(|w||A|).
(4) Obviously, we can decide in non-deterministic polynomial time whether
a string w is accepted by a CNFA A. It suffices to guess a sequence of |w|
transitions, and check whether this sequence forms a valid run of A on w.

To show that it is np-hard, we do a reduction from bin packing [36]. This
is the problem, given a set of weights W = {n1, . . . , nk}, a packet size p, and
the maximum number of packets m; decide whether there is a partitioning of
W = S1⊎S2⊎· · ·⊎Sm such that for each i ∈ [1, m], we have that

∑
n∈Si

n ≤ p.
The latter problem is NP-complete, even when all integers are given in unary.

We will construct a string w and a CNFA A such that w ∈ L(A) if and
only if there exists a proper partitioning for W = {n1, . . . , nk}, p, and m. Let
Σ = {#, 1}, and w = #1n1##1n2# · · ·#1nk#. Further, A will have an initial
state q0 and for every j ∈ [1, m] a state qj and countervariable cvj . When
reading the string w the automaton will non-deterministically guess for each
ni to which of the m sets ni is assigned (by going to its corresponding state)
and maintaining the running sum of the different sets in the countervariables.
(As the initial value of the countervariables is 1, we actually store the running
sum plus 1) In the end it can then easily be verified whether the chosen
partitioning satisfies the desired properties.

6.4. Counter Automata 95

Formally, A = (Q, q0, {cv1, . . . , cvm}, δ, F, τ) can be defined as follows:

• Q = {q0, . . . , qm};

• For all i ∈ [1, m], (q0, #, true, ∅, qi), (qi, 1, true, {cvi++}, qi), (qi, #, true,
∅, q0) ∈ δ;

• F (q0) =
∧

i∈[1,m] cvi ≤ p + 1, and for q 6= q0, F (q) = false; and

• for all i ∈ [1, m], τ(cvi) = p + 2.

(5) We show that emptiness is in pspace for CNFAs, and pspace-hard for
CDFAs. The theorem then follows.

The algorithm for the upperbound guesses a string w which is accepted
by A. Instead of guessing w at once, we guess it symbol by symbol and
store one configuration γ, such that A can be in γ after reading the already
guessed string w. When γ is an accepting configuration, we have guessed a
string which is accepted by A, and have thus shown that L(A) is non-empty.
Since any configuration can be stored in space polynomial in A (due to the
maximum values τ on the countervariables), we hence have a non-deterministic
polynomial space algorithm for the complement of the emptiness problem.
As npspace = pspace, and pspace is closed under complement, it follows
that emptiness for CNFAs is in pspace.

We show that the emptiness problem for CDFAs is pspace-hard by a
reduction from reachability of 1-safe Petri nets.

A net is a triple N = (S, T, E), where S and T are finite sets of places and
transitions, and E ⊆ (S × T) ∪ (T × S) → {0, 1}. The preset of a transition
t is denoted by •t, and defined by •t = {s | E(s, t) = 1}. A marking is a
mapping M : S → N. A Petri net is a pair N = (N, M0), where N is a net
and M0 is the initial marking. A transition t is enabled at a marking M if
M(s) > 0 for every s ∈ •t. If t is enabled at M , then it can fire, and its
firing leads to the successor marking M ′ which is defined for every place s by
M ′(s) = M(s) + E(t, s)− E(s, t). The expression M →t M ′ denotes that M
enables transition t, and that the marking reached by the firing of t is M ′.
Given a (firing) sequence σ = t1 · · · tn, M ⇒σ M ′ denotes that there exist
markings M1, M2, . . . , Mn−1 such that M →t1 M1 · · ·Mn−1 →tn M ′. A Petri
net is 1-safe if M(s) ≤ 1 for every place s and every reachable marking M .

reachability for 1-safe Petri nets is the problem, given a 1-safe Petri net
(N, M0) and a marking M , is M reachable from M0. That is, does there exist
a sequence σ such that M0 ⇒σ M . The latter problem is pspace-complete
[32].

We construct a CDFA A such that L(A) = ∅ if and only if M is not
reachable from M0. That is, A will accept all strings at1 · · · tk such that

96 Deterministic Regular Expressions with Counting

M0 ⇒t1···tk M . To achieve this, A will simulate the working of the Petri
net on the firing sequence given by the string. Therefore, we maintain a
countervariable for every place s, which will have value 1 when M ′(s) = 0 and
2 when M ′(s) = 1, where M ′ is the current marking. With every transition of
the Petri net, we associate a transition in A. Here, the guard φ is used to check
whether the preconditions for the firing of this transition are satisfied, and the
updates are used to update the values of the countervariables according to the
transition. The string is accepted if after executing this firing sequence, the
countervariables correspond to the given marking M .

Formally, let N = (S, T, E). Then, the CDFA A = ({q0, q1}, q0, S, δ, F, τ)
is defined as follows:

• (q0, a, true, π, q1) ∈ δ, where π = {s++ |M0(s) = 1};

• For every t ∈ T : (q1, t, φ, π, q1) ∈ δ, where φ =
∧

s∈•t s = 2 and π =
{reset(s) | E(s, t) > E(t, s)} ∪ {s++ | E(t, s) > E(s, t)};

• F (q0) = false, and F (q1) =
∧

M(s)=0 s = 1 ∧∧
M(s)=1 s = 2; and

• For every s ∈ S, τ(s) = 2.

(6) To show that it is in pspace, we guess a string w character by character and
only store the current configuration. If at any time it is possible to follow more
than one transition at once, A is non-deterministic. Again, since npspace =
pspace and pspace is closed under complement, the result follows.

To show that the problem is pspace-hard, we do a reduction from one run

of 1-safe Petri nets. This is the problem, given a 1-safe Petri net N = (N, M0),
is there exactly one run on N . The latter problem is pspace-complete [32].

We construct a CNFA A which is deterministic if and only if one run is
true for N . To do this, we set the alphabet of A to {a, t} and A will accept
strings of the form at∗, and simulates the working of N . The set of states
Q = {q0, qc, t1, . . . , tn}, when T = {t1, . . . , tn}. Furthermore, there is one
countervariable for every place: C = S.

The automaton now works as follows. From its initial state q0 it goes to
its central state qc and sets the values of the countervariables to the initial
marking M0. From qc, there is a transition to every state ti. This transition
can be followed by reading a t if and only if the values of the countervariables
satisfy the necessary conditions to fire the transition ti. Then, from the states
ti, there is a transition back to qc, which can be followed by reading a t and
is used to update the countervariables according to the firing of ti. As in
the previous proof, the countervariable for place s will have value 1 when
M ′(s) = 0 and 2 when M ′(s) = 1, where M ′ is the current marking.

More formally, A = ({q0, qc} ∪ T, q0, S, δ, F, τ) is constructed as follows:

6.5. From RE(#) to CNFA 97

• (q0, a, true, π, qc) ∈ δ, where π = {s++ |M0(s) = 1};

• For all ti ∈ T , (qc, t, φ, ∅, ti) ∈ δ, where φ =
∧

s∈•ti s = 2;

• For all ti ∈ T , (ti, t, true, π, qc) ∈ δ, where π = {reset(s) | E(s, ti) >
E(ti, s)} ∪ {s++ | E(ti, s) > E(s, ti)};

• For all s ∈ S, τ(s) = 2; and

• F (q) = true, for all q ∈ Q.

6.5 From RE(#) to CNFA

In this section, we show how an RE(#) expression r can be translated in
polynomial time into an equivalent CNFA Gr by applying a natural extension
of the well-known Glushkov construction [15]. We emphasize at this point that
such an extended Glushkov construction has already been given by Sperberg-
McQueen [101]. Therefore, the contribution of this section lies mostly in the
characterization given below: Gr is deterministic if and only if r is strongly
deterministic. Moreover, as seen in the previous section, CDFAs have desirable
properties which by this translation also apply to strongly deterministic RE(#)
expressions. We refer to Gr as the Glushkov counting automaton of r.

We first provide some notation and terminology needed in the construction
below. For a marked expression r, a marked symbol x and an iterator c of r we
denote by iteratorsr(x, c) the list of all iterators of c which contain x, except c
itself. For marked symbols x, y, we denote by iteratorsr(x, y) all iterators of r
which contain x but not y. Finally, let iteratorsr(x) be the list of all iterators
of r which contain x. Note that all such lists [c1, . . . , cn] contain a sequence
of nested subexpressions. Therefore, we will always assume that they are
ordered such that c1 ≺ c2 ≺ · · · ≺ cn. That is, they form a sequence of nested
subexpressions. Moreover, whenever r is clear from the context, we omit it
as a subscript. For example, if r = ((a1,2

1 b1)
3,4)5,6, then iterators(a1, r) =

[a1,2
1 , (a1,2

1 b1)
3,4], iterators(a1, b1) = [a1,2

1], and iterators(a1) = [a1,2
1 , (a1,2

1 b1)
3,4,

((a1,2
1 b1)

3,4)5,6].

We now define the set follow(r) for a marked regular expression r. As in
the standard Glushkov construction, this set lies at the basis of the transition
relation of Gr. The set follow(r) contains triples (x, y, c), where x and y are
marked symbols and c is either an iterator or null. Intuitively, the states of
Gr will be a designated start state plus a state for each symbol in Char(r).
A triple (x, y, c) then contains the information we need for Gr to make a

98 Deterministic Regular Expressions with Counting

transition from state x to y. If c 6= null, this transition iterates over c and all
iterators in iterators(x, c) are reset by going to y. Otherwise, if c equals null,
the iterators in iterators(x, y) are reset. Formally, the set follow(r) contains
for each subexpression s of r,

• all tuples (x, y, null) for x in last(s1), y in first(s2), and s = s1 s2; and

• all tuples (x, y, s) for x in last(s1), y in first(s1), and s = sk,ℓ
1 .

We introduce a counter variable cv(c) for every iterator c in r whose value
will always denote which iteration of c we are doing in the current run on the
string. We define a number of tests and update commands on these counter
variables:

• value-test([c1, . . . , cn]) :=
∧

ci
(lower(ci) ≤ cv(ci)) ∧ (cv(ci) ≤ upper(ci)).

When we leave the iterators c1, . . . , cn we have to check that we have
done an admissible number of iterations for each iterator.

• upperbound-test(c) := cv(c) < upper(c) when c is a bounded itera-
tor and, otherwise, upperbound-test(c) := true. When iterating over a
bounded iterator, we have to check that we can still do an extra iteration.

• reset([c1, . . . , cn]) := {reset(cv(c1)), . . . , reset(cv(cn))}. When leaving
some iterators, their values must be reset. The counter variable is reset
to 1, because at the time we reenter this iterator, its first iteration is
started.

• update(c) := {cv(c)++}. When iterating over an iterator, we start a
new iteration and increment its number of transitions.

We now define the Glushkov counting automaton Gr = (Q, q0, C, δ, F, τ).
The set of states Q is the set of symbols in r plus an initial state, i.e., Q :=
{q0}⊎

⋃
x∈Char(r) qx. Let C = {cv(c) | c is an iterator of r}. We next define the

transition function. For all y ∈ first(r), (q0, dm(y), true, ∅, qy) ∈ δ.4 For every
element (x, y, c) ∈ follow(r), we define a transition (qx, dm(y), φ, π, qy) ∈ δ. If
c = null, then φ := value-test(iterators(x, y)) and π := reset(iterators(x, y)).
If c 6= null, then φ := value-test(iterators(x, c)) ∧ upperbound-test(c) and
π := reset(iterators(x, c)) ∪ update(c). The acceptance criteria of Gr depend
on the set last(r). For any symbol x /∈ last(r), F (qx) := false. For every
element x ∈ last(r), F (qx) := value-test(iterators(x)). Here, we test whether
we have done an admissible number of iterations of all iterators in which x is
located. Finally, F (q0) := true if ε ∈ L(r). Lastly, for all bounded iterators

4Recall that dm(y) denotes the demarking of y.

6.5. From RE(#) to CNFA 99

c, τ(cv(c)) = upper(c) since c never becomes larger than upper(c), and for all
unbounded iterators c, τ(cv(c)) = lower(c) as there are no upper bound tests
for cv(c).

Theorem 65. For every RE(#) expression r, L(Gr) = L(r). Moreover, Gr is
deterministic if and only if r is strongly deterministic.

This theorem will largely follow from Lemma 66, for which we first intro-
duce some notation. The goal will be to associate transition sequences of Gr

with correctly bracketed words in r̃, the bracketing of r. A transition sequence
σ = t1, . . . , tn of Gr is simply a sequence of transitions of Gr. It is accepting
if there exists a sequence of configurations γ0γ1, . . . , γn such that γ0 is the
inital configuration, γn is a final configuration, and, for every i = 1, . . . , n− 1,
γi−1 →ai γi by using transition ti = (qi−1, ai, φi, πi, qi). Here, for each i,
γi = (qi, αi).

Recall that the bracketing r̃ of an expression r is obtained by associating
indices to iterators in r and by replacing each iterator c := sk,ℓ of r with index
i with ([is]i)

k,ℓ. In the following, we use ind(c) to denote the index i associated
to iterator c. As every triple (x, y, c) in follow(r) corresponds to exactly one
transition t in Gr, we also say that t is generated by (x, y, c).

We now want to translate transition sequences into correctly bracketed
words. Thereto, we first associate a bracketed word wordGr(t) to each transi-
tion t of Gr. We distinguish a few cases:

(i) If t = (q0, a, φ, π, qy), with iterators(y) = [c1, . . . , cn], then wordGr(t) =
[ind(cn)· · · [ind(c1)y.

(ii) If t = (qx, a, φ, π, qy) and is generated by (x, y, c) ∈ follow(r), with c 6=
null. Let iterators(x, c) = [c1, . . . , cn] and iterators(y, c) = [d1, . . . , dm].
Then, wordGr(t) =]ind(c1) · · ·]ind(cn)[ind(dm)· · · [ind(d1)y.

(iii) If t = (qx, a, φ, π, qy) and is generated by (x, y, null) ∈ follow(r). Let
iterators(x, y) = [c1, . . . , cn] and let iterators(y, x) = [d1, . . . , dm]. Then,
wordGr(t) =]ind(c1) · · ·]ind(cn)[ind(dm)· · · [ind(d1)y.

Finally, to a marked symbol x with iterators(x) = [c1, . . . , cn], we associate
wordGr(x) =]ind(c1) · · ·]ind(cn). Now, for a transition sequence σ = t1, . . . , tn,
where tn = (qx, a, φ, π, qy), we set brack-seqGr

(σ) = wordGr(t1) · · ·wordGr(tn)
wordGr(y). Notice that brack-seqGr

(σ) is a bracketed word over a marked
alphabet. We sometimes also say that σ encodes brack-seqGr

(σ). We usually
omit the subscript Gr from word and brack-seq when it is clear from the
context.

100 Deterministic Regular Expressions with Counting

For a bracketed word w̃, let strip(w) denote the word obtained from w̃
by removing all brackets. Then, for a transition sequence σ, define run(σ) =
strip(brack-seq(σ)).

Lemma 66. Let r be a marked regular expression with counting and Gr the
corresponding counting Glushkov automaton for r.

(1) For every string w̃, we have that w̃ is a correctly bracketed word in L(r̃)
if and only if there exists an accepting transition sequence σ of Gr such
that w̃ = brack-seq(σ).

(2) L(r) = {run(σ) | σ is an accepting transition sequence of Gr}.

Proof. We first prove (1) by induction on the structure of r. First, notice
that brack-seq(σ) is a correctly bracketed word for every accepting transition
sequence σ on Gr. Hence, we can restrict attention to correctly bracketed
words below.

For the induction below, we first fix a bracketing r̃ of r and we assume
that all expressions s̃, s̃1, s̃2 are correctly bracketed subexpressions of r̃.

• s = x. Then, also s̃ = x, and L(s̃) = x. It is easily seen that the only
accepting transition sequence σ of Gs consists of one transition t, with
brack-seq(σ) = x.

• s = s1 + s2. Clearly, the set of all correctly bracketed words in L(s̃) is
the union of all correctly bracketed words in L(s̃1) and L(s̃2). Further,
observe that Gs is constructed from Gs1 and Gs2 by identifying their
initial states and taking the disjoint union otherwise. As the initial states
only have outgoing, and no incoming, transitions, the set of accepting
transition sequences of Gs is exactly the union of the accepting transition
sequences of Gs1 and Gs2 . Hence, the lemma follows from the induction
hypothesis.

• s = s1 · s2. Let w̃ be a correctly bracketed word. We distinguish a few
cases. First, assume w̃ ∈ Char(s̃1)

∗, i.e., w̃ contains only symbols of s̃1.
Then, if ε /∈ L(s2), w̃ /∈ L(s̃), and, by construction of Gs, there is no
accepting transition sequence σ on Gs such that brack-seq(σ) = w̃. This
is due to the fact that, with ε /∈ L(s2), for all x ∈ Char(s2), we have
that x /∈ last(s) and hence F (qx) = false. Hence, assume ε ∈ L(s2).
Then, w̃ ∈ L(s̃) if and only if w̃ ∈ L(s̃1) if and only if, by the induction
hypothesis, there is an accepting transition sequence σ on Gs1 , with
brack-seq(σ) = w̃. By construction of Gs, and the fact that ε ∈ L(s2),
brack-seq(σ) = w̃ if and only if σ is also an accepting transition sequence

6.5. From RE(#) to CNFA 101

on Gs. This settles the case w̃ ∈ Char(s̃1)
∗. The case w̃ ∈ Char(s̃2)

∗

can be handled analogously.

Finally, consider the case that w̃ contains symbols from both s̃1 and
s̃2. If w̃ is not of the form w̃ = w̃1w̃2, with w1 ∈ Char(s̃1)

∗ and
w2 ∈ Char(s̃2)

∗, then we immediately have that w̃ /∈ L(s̃) nor can there
be a transition sequence σ on Gs encoding w̃. Hence, assume w̃ is of
this form. Then, w̃ ∈ L(s̃) if and only if w̃i ∈ L(s̃i), for i = 1, 2 if
and only if, by the induction hypothesis, there exist accepting transition
sequences σ1 (resp. σ2) on Gs1 (resp. Gs2) encoding w̃1 (resp. w̃2). Let
σ1 = t1, . . . , tn and σ2 = tn+1, . . . , tm, with qx the target state of tn,
and qy the target state of tn+1. Further, let t = (qx, a, φ, π, qy) be the
unique transition of Gs generated by the tuple (x, y, null) ∈ follow(s).
We claim that σ = t1, . . . , tn, t, tn+2, . . . , tm is an accepting transition
sequence on Gs with brack-seq(σ) = brack-seq(σ1)brack-seq(σ2), and
hence brack-seq(σ) = w̃. To see that σ is an accepting transition se-
quence on Gs note that the guard F (qx) (in Gs1) is equal to φ, the
guard of t. Hence, the fact that σ1 is an accepting transition sequence
on Gs1 ensures that t can be followed in Gs. Further, note that after
following transition t, all counters are reset, as they were after following
tn+1 in Gs2 . This ensures that σ1 and σ2 can indeed be composed to
the accepting transition sequence σ in this manner. Further, to see that
brack-seqGs

(σ) = brack-seqGs1
(σ1)brack-seqGs2

(σ2) it suffices to observe

that wordGs1
(qx)wordGs2

(tn+1) = wordGs(t), by definition. Hence, σ is

an accepting transition sequence on Gs, with brack-seqGs
(σ) = w̃, as

desired. Conversely, we need to show that any such transition sequence
σ can be decomposed in accepting transition sequences σ1 and σ2 satis-
fying the same conditions. This can be done using the same reasoning
as above.

• s = s
[k,ℓ]
1 . Let s̃ = ([j s̃1]j)

k,ℓ and w̃ be a correctly bracketed word.

First, assume w̃ ∈ L(s̃), we show that there is an accepting transition
sequence σ on Gs encoding w̃. As w̃ is correctly bracketed, we can write
w̃ = [jw̃1]j [jw̃2]j · · · [jw̃n]j , with n ∈ [k, ℓ], and w̃i ∈ L(s̃1), w̃i 6= ε,
for all i ∈ [1, n]. Then, by the induction hypothesis, there exist valid
transition sequences σ1, . . . , σn on Gs1 encoding wi, for each i ∈ [1, n].
For all i ∈ [1, n], let σi = ti1, . . . , t

i
mi

, for some mi, the target state of
ti1 be qyi

and the target state of timi
be qxi . For all i ∈ [1, n − 1], let

ti be the unique transition generated by (xi, yi+1, s) ∈ follow(s), and
define σ = t11, . . . , t

1
m1

, t1, t22, . . . , t
2
m2

, t2, t32, . . . , t
n−1, tn2 , . . . , tnmn

. It now
suffices to show that σ is an accepting transition sequence on Gs and

102 Deterministic Regular Expressions with Counting

brack-seq(σ) = w̃. The reasons are analogous to the ones for the con-
structed transition sequence σ in the previous case (s = s1 · s2). To see
that σ is an accepting transition sequence, note that we simply execute
the different transition sequences σ1 to σn one after another, separated
by iterations over the topmost iterator s, by means of the transitions t1

to tn. As these transitions reset all counter variables (except cv(s)) the
counter variables on each of these separate runs always have the same val-
ues as they had in the runs on Gs1 . Therefore, it suffices to argue that the
transitions ti can safely be followed in the run σ, and that we finally ar-
rive in an accepting configuration. This is both due to the fact that we do
n such iterations, with n ∈ [k, ℓ], and each iteration increments cv(s) by
exactly 1. To see that brack-seqGs

(σ) = w̃, note that, by induction, w̃ =
[jbrack-seqGs1

(σ1)]j [jbrack-seqGs1
(σ2)]j · · · [jbrack-seqGs1

(σn)]j . There-

fore, it suffices to observe that wordGs(t
1
1) = [jwordGs1

(t11), wordGs(t
n
mn

)

= wordGs1
(tnmn

)]j , for all i ∈ [1, n − 1], wordGs(t
i) = wordGs1

(xi)]j [j

wordGs1
(ti+1

1), and wordGs(t) = wordGs1
(t), for all other transitions t

occurring in σ.

Conversely, assume that there exists an accepting transition sequence σ
on Gs encoding w̃. We must show w̃ ∈ L(s̃). This can be done using
arguments analogous to the ones above. It suffices to note that σ contains
n transitions t1 to tn, for some n ∈ [k, ℓ], generated by a tuple of the
form (x, y, s) ∈ follow(s). This allows to decompose σ into n accepting
transition sequences σ1 to σn and apply the induction hypothesis to
obtain the desired result.

To prove the second point, i.e. L(s) = {run(σ) | σ is an accepting transition
sequence on Gs}, it suffices to observe that

L(s) = {strip(w̃) | w̃ ∈ L(s̃) and w̃ correctly bracketed}
= {strip(brack-seq(σ)) | σ is an accepting transition sequence on Gs}
= {run(σ) | σ is an accepting transition sequence on Gs}

Here, the first equality follows immediately from Lemma 67 below, the second
equality from the first point of this lemma, and the third is immediate from
the definitions.

The following lemma, which we state without proof, is immediate from
the definitions. However, notice that it is important in this lemma that, for
subexpressions sk,ℓ with s nullable, we have k = 0, as required by the normal
form for RE(#).

6.5. From RE(#) to CNFA 103

Lemma 67. Let r ∈ RE(#), and r̃ be the bracketing of r. Then,

L(r) = {strip(w̃) | w̃ ∈ L(r̃) and w̃ is correctly bracketed}.

We are now ready to prove Theorem 65.

Proof. [of Theorem 65] Let r ∈ RE(#), r a marking of r, and Gr its corre-
sponding counting Glushkov automaton.

We first show that L(r) = L(Gr). Thereto, observe that (1) L(r) =
{dm(w) | w ∈ L(r)}, by definition of r, and (2) L(Gr) = {dm(run(σ)) | σ
is an accepting transition sequence on Gr} by definition of Gr and the run
predicate. As, by Lemma 66, L(r) = {run(σ) | σ is an accepting transition
sequence on Gr}, we hence obtain L(r) = L(Gr).

We next turn to the second statement: r is strongly deterministic if and
only if Gr is deterministic. For the right to left direction, suppose r is not
strongly deterministic, we show that then Gr is not deterministic. Here, r
can be not strongly deterministic for two reasons: either it is not weakly
deterministic, or it is but violates the second criterion in Definition 52.

First, suppose r is not weakly deterministic, and hence there exists words
u, v, w and symbols x, y, with x 6= y but dm(x) = dm(y) such that uxv ∈
L(r), and uyw ∈ L(r). Then, by Lemma 66, there exist accepting transition
sequences σ1 = t1, . . . , tn and σ2 = t′1, . . . , t

′
m such that run(σ1) = uxv and

run(σ2) = uyw. Let |u| = i. Then, ti+1 6= t′i+1, as ti+1 is a transition to qx,
and t′i+1 to qy, with qx 6= qy. Let j ∈ [1, i+1] be the smallest number such that
tj 6= t′j , which must exist as ti+1 6= t′i+1. Let u = dm(ux). Then, after reading
the prefix of u of length j − 1, we have that Gr can be in some configuration
γ and can both follow transition tj and t′j while reading the jth symbol of u.
Hence, Gr is not deterministic.

Second, suppose r is weakly deterministic, but there exist words ũ, ṽ, w̃
over Σ∪ Γ, words α 6= β over Γ, and symbol a ∈ Σ such that ũαaṽ and ũβaw̃
are correctly bracketed and in L(r̃). Consequently, there exist words ũ, ṽ,
and w̃ and x such that ũαxṽ and ũβxw̃ are correctly bracketed and in L(r̃).
Here, both words must use the same marked symbol x for a as r is weakly
deterministic. Then, by Lemma 66, there exist transition sequences σ1 =
t1, . . . , tn, σ2 = t1, . . . , t

′
n such that brack-seq(σ1) = ũαxṽ and brack-seq(σ2) =

ũβxw̃. Without loss of generality we can assume that α and β are chosen to
be maximal (i.e. ũ is either empty or ends with a marked symbol). But then,
let i = |strip(ũ)| and observe that word(ti+1) = αx and word(t′i+1) = βx, and
thus as word(ti+1) 6= word(t′i+1) also ti+1 6= t′i+1. By reasoning exactly as in
the previous case, it then follows that Gr is not deterministic.

Before proving the converse direction, we first make two observations.
First, for any two transitions t and t′, with t 6= t′ who share the same source

104 Deterministic Regular Expressions with Counting

state qx, we have that word(t) 6= word(t′). Indeed, observe that if the tar-
get state of t is qy, and the target of t′ is qy′ , that then word(t) = αy and
word(t′) = βy′, with α, β words over Γ. Hence, if y 6= y′, we immediately have
word(t) 6= word(t′). Otherwise, when y = y′, we know that t is computed
based on either (1) (x, y, null) ∈ follow(r) and t′ on (x, y, c) ∈ follow(r) or (2)
(x, y, c) ∈ follow(r) and t′ on (x, y, c′) ∈ follow(r), with c 6= c′. In both cases
it is easily seen that α 6= β. The second observation we make is that Gr is
reduced, i.e., for every reachable configuration γ, there is some string which
brings γ to an accepting configuration. The latter is due to the upper bound
tests present in Gr.

Now, assume that Gr is not deterministic. We show that r is not strongly
deterministic. As Gr is reduced and not deterministic there exist words u, v,
w and symbol a such that uav, uaw ∈ L(Gr) witnessed by accepting transition
sequences σ1 = t1, . . . , tn and σ2 = t′1, . . . , t

′
m (for uav and uaw, respectively),

such that ti = t′i, for all i ∈ [1, |u|], but t|u|+1 6= t′|u|+1. Let qx be the target of

transition t|u|+1 and qy the target of transition t′|u|+1, and x and y their asso-

ciated marked symbols. Note that dm(x) = dm(y) = a. We now distinguish
two cases.

First, assume x 6= y. By Lemma 66, both run(σ1) ∈ L(r) and run(σ2) ∈
L(r). Writing run(σ1) = uxv and run(σ2) = uyw (such that |u| = |u|, |v| = |v|
and |w| = |w|) we then obtain the strings u, v, w and symbols x, y sufficient
to show that r is not weakly deterministic, and hence also not strongly deter-
ministic.

Second, assume x = y. We then consider brack-seq(σ1) and brack-seq(σ2)
which, by Lemma 66, are both correctly bracketed words in L(r̃). Further,
note that t|u|+1 and t′|u|+1 share the same source state, and hence, by the first

observation above, word(t|u|+1) = αx 6= word(t′|u|+1) = βy. In particular, as

x = y, it holds that α 6= β. But then, writing brack-seq(σ1) = ũαxṽ, and
brack-seq(σ2) = ũαyw̃, we can see that dm(ũ), dm(ṽ), dm(w̃), α, β, and a,
violate the condition in Definition 52 and hence show that r is not strongly
deterministic.

6.6 Testing Strong Determinism

Definition 52, defining strong determinism, is of a semantic nature. Therefore,
we provide Algorithm 1 for testing whether a given expression is strongly deter-
ministic, which runs in cubic time. To decide weak determinism, Kilpeläinen
and Tuhkanen [66] give a cubic algorithm for RE(#), while Brüggemann-
Klein [15] gives a quadratic algorithm for RE by computing its Glushkov

6.6. Testing Strong Determinism 105

Algorithm 1 isStrongDeterministic. Returns true if r is strong deter-
ministic, false otherwise.

r ← marked version of r
2: Initialize Follow← ∅

Compute first(s), last(s), for all subexpressions s of r
4: if ∃x, y ∈ first(r) with x 6= y and dm(x) = dm(y) then return false

for each subexpression s of r, in bottom-up fashion do
6: if s = s1 s2 then

if last(s1) 6= ∅ and ∃x, y ∈ first(s1) with x 6= y and dm(x) = dm(y)
then return false

8: F ← {(x,dm(y)) | x ∈ last(s1), y ∈ first(s2)}
else if s = s

[k,ℓ]
1 , with ℓ ≥ 2 then

10: if ∃x, y ∈ first(s1) with x 6= y and dm(x) = dm(y) then return
false

F ← {(x,dm(y)) | x ∈ last(s1), y ∈ first(s1)}
12: if F ∩ Follow 6= ∅ then return false

if s = s1 s2 or s = sk,ℓ
1 , with ℓ ≥ 2 and k < ℓ then

14: Follow← Follow ⊎ F
return true

automaton and testing whether it is deterministic5.
We next show that Algorithm 1 is correct. Recall that we write s � r

when s is a subexpression of r and s ≺ r when s � r and s 6= r.

Theorem 68. For any r ∈ RE(#), isStrongDeterministic (r) returns true
if and only if r is strongly deterministic. Moreover, it runs in time O(|r|3).

Proof. Let r ∈ RE(#), r a marking of r, and Gr the corresponding Glushkov
counting automaton. By Theorem 65 it suffices to show that the algorithm
isStrongDeterministic (r) returns true if and only if Gr is deterministic.
Thereto, we first extract from Algorithm 1 the reasons for isStrongDeter-

ministic (r) to return false. This is the case if and only if there exist marked
symbols x, y, y′, with dm(y) = dm(y′), such that either

1. y, y′ ∈ first(s) and y 6= y′ (Line 4)

2. (x, y, c) ∈ follow(s), (x, y′, c) ∈ follow(s), y 6= y′ and upper(c) ≥ 2
(Line 10)

5There sometimes is some confusion about this result: Computing the Glushkov automa-
ton is quadratic in the expression, while linear in the output automaton (consider, e.g.,
(a1 + · · ·+ an)(a1 + · · ·+ an)). Only when the alphabet is fixed, is the Glushkov automaton
of a deterministic expression of size linear in the expression.

106 Deterministic Regular Expressions with Counting

3. (x, y, c) ∈ follow(s), (x, y′, c′) ∈ follow(s), c ≺ c′, and upper(c) ≥ 2,
upper(c′) ≥ 2, and upper(c) > lower(c) (Line 12)

4. (x, y, null) ∈ follow(s), (x, y′, c′) ∈ follow(s), lca(x, y) ≺ c′ and upper(c′) ≥
2 (Line 12)

5. (x, y, c) ∈ follow(s), (x, y′, null) ∈ follow(s), c ≺ lca(x, y′), upper(c) ≥ 2,
and upper(c) > lower(c) (Line 12)

6. (x, y, null) ∈ follow(s), (x, y′, null) ∈ follow(s), y 6= y′ and lca(x, y) =
lca(x, y′) (Line 7)

7. (x, y, null) ∈ follow(s), (x, y′, null) ∈ follow(s), and lca(x, y) ≺ lca(x, y′)
(Line 12)

We now show that Gs is not deterministic if and only if one of the above
seven conditions holds. We first verify the right to left direction by investigat-
ing the different cases.

Suppose case 1 holds, i.e., y, y′ ∈ first(s) and y 6= y′. Then, there is a
transition from q0 to qy and one from q0 to qy′ , with qy 6= qy′ . These transitions
can both be followed when the first symbol in a string is dm(y). Hence, Gs is
not deterministic.

In each of the six remaining there are always two distinct tuples in follow(s)
which generate distinct transitions with as source state qx and target states
qy and qy′ , and dm(y) = dm(y′). Therefore, it suffices, in each of the cases,
to construct a reachable configuration γ = (qx, α) from which both transitions
can be followed by reading dm(y). The reachability of this configuration γ will
always follow from Lemma 69, but its precise form depends on the particular
case we are in. In each of the following cases, let iterators(x) = [c1, . . . , cn]
and, when applicable, set c = ci and c′ = cj . When both c and c′ occur, we
always have c ≺ c′, and hence i < j.

Case 2: Set γ = (qx, α) with α(cv(cm)) = lower(cm), for all m ∈ [1, i− 1],
and α(cv(cm)) = 1, for all m ∈ [i, m]. We need to show that the transitions
generated by (x, y, c) and (x, y′, c) can both be followed from γ. This is due to
the fact that α |= value-test[c1,...,ci−1] and α |= upperbound-test[ci]. The latter
because upper(ci) ≥ 2 > α(cv(ci)).

Case 3: Set γ = (qx, α) with α(cv(cm)) = lower(cm), for all m ∈ [1, j − 1],
and α(cv(cm)) = 1, for all m ∈ [j, n]. To see that the transition gener-
ated by (x, y, c) can be followed, note that again α |= value-test[c1,...,ci−1]

and α |= upperbound-test[ci]. The latter due to the fact that upper(c) >
lower(c) = α(cv(ci)). On the other hand, also α |= value-test[c1,...,cj−1] and
α |= upperbound-test[cj] as upper(c′) ≥ 2 > α(cv(cj)). Hence, Gs can also
follow the transition generated by (x, y′, c′).

6.6. Testing Strong Determinism 107

Case 4: Set γ = (qx, α) with α(cv(cm)) = lower(cm), for all m ∈ [1, j − 1],
and α(cv(cm)) = 1, for all m ∈ [j, n]. Arguing as above, and using the facts
that (1) upper(c′) ≥ 2 and (2) iterators(x, y) = [c1, . . . , ci′], for some i′ < j (as
lca(x, y) ≺ c′); we can deduce that Gs can again follow both transitions.

Cases 5, 6, and 7: In each of these cases we can set γ = (qx, α) with
α(cv(cm)) = lower(cm), for all m ∈ [1, n]. Arguing as before it can be seen
that in each case both transitions can be followed from this configuration.

We next turn to the left to right direction. Assume Gs is not deterministic
and let γ be a reachable configuration such that two distinct transitions t1, t2
can be followed by reading a symbol a. We argue that in this case the condi-
tions for one of the seven cases above must be fulfilled. First, if γ = (q0, α)
then t1 and t2 must be the initial transitions of a run, as there are no transi-
tions returning to q0. As, furthermore, q0 has exactly one transition to each
state qx, when x ∈ first(s), we can see that the conditions in case 1 hold.

Therefore, assume γ = (qx, α), with x ∈ Char(r). We will investigate the
tuples in follow(s) which generated t1 and t2 and show that they fall into
one of the six remaining cases mentioned above, hence forcing isStrongDe-

terministic (s) to return false. There are indeed six possibilities, ignoring
symmetries, which we immediately classify to the case they will belong to:

2. t1 is generated by (x, y, c) and t2 by (x, y′, c),

3. t1 is generated by (x, y, c) and t2 by (x, y′, c′) with c ≺ c′.

4. t1 is generated by (x, y, null) and t2 by (x, y′, c′) with lca(x, y) ≺ c′.

5. t1 is generated by (x, y, c) and t2 by (x, y′, null) and c ≺ lca(x, y).

6. t1 is generated by (x, y, null) and t2 by (x, y′, null) with lca(x, y) =
lca(x, y′).

7. t1 is generated by (x, y, null) and t2 by (x, y′, null) with lca(x, y) ≺
lca(x, y′).

Note that all subexpressions under consideration (i.e. lca(x, y), lca(x, y′), c,
and c′) contain x, and that lca(x, y) and lca(x, y′) are always subexpressions
whose topmost operator is a concatenation. These are the reasons why all
these expressions are in a subexpression relation, and why we never have, for
instance, lca(x, y) = c.

However, these six cases only give us the different possibilities of how the
transitions t1 and t2 can be generated by tuples in follow(s). We still need to
argue that the additional conditions imposed by the cases mentioned above
apply. Thereto, we first note that for all iterators c and c′ under consideration,

108 Deterministic Regular Expressions with Counting

upper(c) ≥ 2 and upper(c′) ≥ 2 must surely hold. Indeed, suppose for instance
upper(c) = 1. Then, for any transition t generated by (x, y, c) the guard φ
contains the condition upperbound-testc := cv(c) < 1, which can never be
true. Hence, such a transition t can never be followed and is not relevant.
This already shows that possibilities 4 and 7 above, indeed imply cases 4 and
7, respectively. For the additional cases, we argue on a case by case basis.

Cases 2 and 6: We additionally need to show y 6= y′, which is immediate
from the fact that t1 6= t2. Indeed, assuming y = y′, implies that t1 and t2 are
generated by the same tuple in follow(s) and are hence equal.

Cases 3 and 5: We need to show upper(c) > lower(c). In both cases, the
guard of transition t1 contains the condition cv(c) < upper(c) as upperbound
test, whereas the guard of transition t2 contains the condition cv(c) ≥ lower(c).
These can only simultaneously be true when upper(c) > lower(c).

This settles the correctness of the algorithm. We conclude by arguing that
the algorithm runs in time O(|r|3). Computing the first and last sets for each
subexpression s of r can easily be done in timeO(|r|3) as can the test on Line 4.
Further, the for loop iterates over a linear number of nodes in the parse tree of
r. To do each iteration of the loop in quadratic time, one needs to implement
the set Follow as a two-dimensional boolean table. In each iteration we then
need to do at most a quadratic number of (constant time) lookups and writes
to the table. Altogether this yields a quadratic algorithm.

It only remains to prove the following lemma:

Lemma 69. Let x ∈ Char(r), and iterators(x) = [c1, . . . , cn]. Let γ = (qx, α),
be a configuration such that α(cv(ci)) ∈ [1, upper(ci)], for i ∈ [1, n], and
α(cv(c)) = 1, for all other countervariables c. Then, γ is reachable in Gr.

Proof. This lemma can easily be proved by induction on the structure of r.
However, as this is a bit tedious, we only provide some intuition by construct-
ing, given such a configuration γ, a string w which brings Gs from its initial
configuration to γ.

We construct w by concatenating several substrings. Thereto, for every
i ∈ [1, n], let vi be a non-empty string in L(base(ci)). Concatenating such a
string vi with itself allows to iterate ci. We further define, for every i ∈ [1, n], a
marked string wi which, intuitively, connects the different iterators. Thereto,
let wn be a minimal (w.r.t. length) string such that wn ∈ (Char(s)\Char(cn))∗

and such that there exist u ∈ Char(cn)∗ and v ∈ Char(s)∗ such that wnuxv ∈
L(s). Similarly, for any i ∈ [1, n−1], let wi be a minimal (w.r.t. length) string
such that wi ∈ (Char(ci+1) \ Char(ci))

∗ and there exist u ∈ Char(ci)
∗ and

v ∈ Char(ci+1)
∗ such that wnuxv ∈ L(ci+1). Finally, let w0 be a string such

that there exists a u such that w0xu ∈ L(base(c1)). We require these strings

6.7. Decision Problems for RE(#) 109

w1 to wn to be minimal to be sure that they do not allow to iterate over their
corresponding counter.

Then, the desired string w is

dm(wn)(vn)α(cv(cn))dm(wn−1)(vn−1)
α(cv(cn−1)) · · ·dm(w0)dm(x) .

6.7 Decision Problems for RE(#)

We recall the following complexity results:

Theorem 70. 1. inclusion and equivalence for RE(#) are expspace-
complete [83], intersection for RE(#) is pspace-complete (Chapter 5)

2. inclusion and equivalence for DREW are in ptime, intersection

for DREW is pspace-complete [75].

3. inclusion for DRE#
W is conp-hard [64].

By combining (1) and (2) of Theorem 70 we get the complexity of inter-

section for DRE#
W and DRE#

S . This is not the case for the inclusion and
equivalence problem, unfortunately. By using the results of the previous
sections we can, for DRE#

S , give a pspace upperbound for both problems,
however.

Theorem 71. (1) equivalence and inclusion for DRE#
S are in pspace.

(2) intersection for DRE#
W and DRE#

S is pspace-complete.

Proof. (1) We show that inclusion for DRE#
S is in pspace. Given two

strongly deterministic RE(#) expressions r1, r2, we construct two CDFAs
A1, A2 for r1 and r2 using the construction of section 6.5, which by Theo-
rem 65 are indeed deterministic. Then, we construct the CDFAs A′

2, A such
that A′

2 accepts the complement of A2, and A is the intersection of A1 and A′
2.

This can all be done in polynomial time and preserves determinism according
to Theorem 64. Finally, L(r1) ⊆ L(r2) if and only if L(A) 6= ∅, which can be
decided using only polynomial space by Theorem 64(1).

(2) The result for DRE#
W is immediate from Theorem 70(1) and (2). This

result also carries over to DRE#
S . For the upper bound this is trivial, whereas

the lower bound follows from the fact that standard weakly deterministic reg-
ular expressions can be transformed in linear time into equivalent strongly
deterministic expressions [15].

110 Deterministic Regular Expressions with Counting

6.8 Discussion

We investigated and compared the notions of strong and weak determinism
for regular expressions in the presence of counting. Weakly deterministic ex-
pressions have the advantage of being more expressive and more succinct than
strongly deterministic ones. However, strongly deterministic expressions are
expressivily equivalent to standard deterministic expressions, a class of lan-
guages much better understood than the weakly deterministic languages with
counting. Moreover, strongly deterministic expressions are conceptually sim-
pler (as strong determinism does not depend on intricate interplays of the
counter values) and correspond naturally to deterministic Glushkov automata.
The latter also makes strongly deterministic expressions easier to handle as
witnessed by the pspace upperbound for inclusion and equivalence, whereas
for weakly deterministic expressions only a trivial expspace upperbound is
known. For these reasons, one might wonder if the weak determinism de-
manded in the current standards for XML Schema should not be replaced by
strong determinism. The answer to some of the following open questions can
shed more light on this issue:

• Is it decidable if a language is definable by a weakly deterministic expres-
sion with counting? For standard (weakly) deterministic expressions, a
decision algorithm is given by Bruggemann-Klein and Wood [17] which,
by our results, also carries over to strongly deterministic expressions with
counting.

• Can the Glushkov construction given in Section 6.5 be extended such
that it translates any weakly deterministic expression with counting into
a CDFA? Kilpelainen and Tuhkanen [65] have given a Glushkov-like con-
struction translating weakly deterministic expressions into a determinis-
tic automata model. However, this automaton model is mostly designed
for doing membership testing and complexity bounds can not directly
be derived from it, due to the lack of upperbounds on the counters.

• What are the exact complexity bounds for inclusion and equivalence of
strongly and weakly deterministic expressions with counting? For strong
determinism, this can still be anything between ptime and pspace,
whereas for weak determinism, conp and pspace are the most likely,
although expspace also remains possible.

Part II

Applications to XML Schema
Languages

111

7
Succinctness of Pattern-Based
Schema Languages

In formal language theoretic terms, an XML schema defines a tree language.
The for historical reasons still widespread Document Type Definitions (DTDs)
can then be seen as context-free grammars with regular expressions at right-
hand sides which define the local tree languages [16]. XML Schema [100]
extends the expressiveness of DTDs by a typing mechanism allowing content-
models to depend on the type rather than only on the label of the parent.
Unrestricted application of such typing leads to the robust class of unranked
regular tree languages [16] as embodied in the XML schema language Relax
NG [22]. The latter language is commonly abstracted in the literature by
extended DTDs (EDTDs) [88]. The Element Declarations Consistent con-
straint in the XML Schema specification, however, restricts this typing: it
forbids the occurrence of different types of the same element in the same
content model. Murata et al. [85] therefore abstracted XSDs by single-type
EDTDs. Martens et al. [77] subsequently characterized the expressiveness of
single-type EDTDs in several syntactic and semantic ways. Among them,
they defined an extension of DTDs equivalent in expressiveness to single-type
EDTDs: ancestor-guarded DTDs. An advantage of this language is that it
makes the expressiveness of XSDs more apparent: the content model of an
element can only depend on regular string properties of the string formed by
the ancestors of that element. Ancestor-based DTDs can therefore be used
as a type-free front-end for XML Schema. As they can be interpreted both

114 Succinctness of Pattern-Based Schema Languages

other semantics EDTD EDTDst DTD

P∃(Reg) 2-exp (83(1)) exp (83(2)) exp (83(3)) exp* (83(5))

P∀(Reg) 2-exp (83(6)) 2-exp (83(7)) 2-exp (83(8)) 2-exp (83(10))

P∃(Lin) \ (85(1)) exp (85(2)) exp (85(3)) exp* (85(5))

P∀(Lin) \ (85(6)) 2-exp (85(7)) 2-exp (85(8)) 2-exp (85(10))

P∃(S-Lin) poly (89(1)) poly (89(2)) poly (89(3)) poly (89(6))

P∀(S-Lin) poly (89(7)) poly (89(8)) poly (89(9)) poly (89(12))

P∃(Det-S-Lin) poly (89(1)) poly (89(2)) poly (89(3)) poly (89(6))

P∀(Det-S-Lin) poly (89(7)) poly (89(8)) poly (89(9)) poly (89(12))

Table 7.1: Overview of complexity results for translating pattern-based
schemas into other schema formalisms. For all non-polynomial complexities,
except the ones marked with a star, there exist examples matching this upper
bound. Theorem numbers are given between brackets.

in an existential and universal way, we study in this chapter the complexity
of translating between the two semantics and into the formalisms of DTDs,
EDTDs, and single-type EDTDs.

In the remainder of the chapter, we use the name pattern-based schema,
rather than ancestor-based DTD, as it emphasizes the dependence on a par-
ticular pattern language. A pattern-based schema is a set of rules of the form
(r, s), where r and s are regular expressions. An XML tree is then existentially
valid with respect to a rule set if for each node there is a rule such that the
path from the root to that node matches r and the child sequence matches s.
Furthermore, it is universally valid if each node vertically matching r, horizon-
tally matches s. The existential semantics is exhaustive, fully specifying every
allowed combination, and more DTD-like, whereas the universal semantics is
more liberal, enforcing constraints only where necessary.

Kasneci and Schwentick [62] studied the complexity of the satisfiability and
inclusion problem for pattern-based schemas under the existential (∃) and uni-
versal (∀) semantics. They considered regular (Reg), linear (Lin), and strongly
linear (S-Lin) patterns. These correspond to the regular expressions, XPath
expressions with only child (/) and descendant (//), and XPath expressions
of the form //w or /w, respectively. Deterministic strongly linear (Det-S-Lin)
patterns are strongly linear patterns in which additionally all horizontal ex-
pressions s are required to be deterministic [17]. A snapshot of their results is
given in the third and fourth column of Table 7.2. These results indicate that
there is no difference between the existential and universal semantics.

We, however, show that with respect to succinctness there is a huge differ-
ence. Our results are summarized in Table 7.1. Both for the pattern languages

7.1. Preliminaries and Basic Results 115

simplification satisfiability inclusion

P∃(Reg) exptime (83(4)) exptime [62] exptime [62]

P∀(Reg) exptime (83(9)) exptime [62] exptime [62]

P∃(Lin) pspace (85(4)) pspace [62] pspace [62]

P∀(Lin) pspace (85(9)) pspace [62] pspace [62]

P∃(S-Lin) pspace (89(4)) pspace [62] pspace [62]

P∀(S-Lin) pspace (89(10)) pspace [62] pspace [62]

P∃(Det-S-Lin) in ptime (89(5)) in ptime [62] in ptime [62]

P∀(Det-S-Lin) in ptime (89(11)) in ptime [62] in ptime [62]

Table 7.2: Overview of complexity results for pattern-based schemas. All re-
sults, unless indicated otherwise, are completeness results. Theorem numbers
for the new results are given between brackets.

Reg and Lin, the universal semantics is exponentially more succinct than the
existential one when translating into (single-type) extended DTDs and ordi-
nary DTDs. Furthermore, our results show that the general class of pattern-
based schemas is ill-suited to serve as a front-end for XML Schema due to
the inherent exponential or double exponential size increase after translation.
Only when resorting to S-Lin patterns, there are translations only requiring
polynomial size increase. Fortunately, the practical study in [77] shows that
the sort of typing used in XSDs occurring in practice can be described by such
patterns. Our results further show that the expressive power of the existential
and the universal semantics coincide for Reg and S-Lin, albeit a translation
can not avoid a double exponential size increase in general in the former case.
For linear patterns the expressiveness is incomparable. Finally, as listed in
Table 7.2, we study the complexity of the simplification problem: given a
pattern-based schema, is it equivalent to a DTD?

Outline. In Section 7.1, we introduce some additional definitions concerning
schema languages, and pattern-based schemas. In Section 7.2, 7.3, and
7.4, we study pattern-based schemas with regular, linear, and strongly linear
expressions, respectively.

7.1 Preliminaries and Basic Results

In this section, we introduce pattern-based schemas, an alternative charac-
terization of single-type EDTDs, recall some known theorems, and introduce
some additional terminology for describing succinctness results.

116 Succinctness of Pattern-Based Schema Languages

7.1.1 Pattern-Based Schema Languages

We recycle the following definitions from [62].

Definition 72. A pattern-based schema P is a set {(r1, s1), . . . , (rm, sm)}
where all ri, si are regular expressions.

Each pair (ri, si) of a pattern-based schema represents a schema rule. We
also refer to the ri and si as the vertical and horizontal regular expressions,
respectively. There are two semantics for pattern-based schemas.

Definition 73. A tree t is existentially valid with respect to a pattern-based
schema P if, for every node v of t, there is a rule (r, s) ∈ P such that
anc-str(v) ∈ L(r) and ch-str(v) ∈ L(s). In this case, we write P |=∃ t.

Definition 74. A tree t is universally valid with respect to a pattern-based
schema P if, for every node v of t, and each rule (r, s) ∈ P it holds that
anc-str(v) ∈ L(r) implies ch-str(v) ∈ L(s). In this case, we write P |=∀ t.

Denote by P∃(t) = {v ∈ Dom(t) | ∃(r, s) ∈ P, anc-str(v) ∈ L(r)∧ch-str(v) ∈
L(s)} the set of nodes in t that are existentially valid. Denote by P∀(t) = {v ∈
Dom(t) | ∀(r, s) ∈ P, anc-str(v) ∈ L(r)⇒ ch-str(v) ∈ L(s)} the set of nodes in
t that are universally valid.

We denote the set of Σ-trees which are existentially and universally valid
with respect to P by T Σ

∃ (P) and T Σ
∀ (P), respectively. We often omit Σ if it

is clear from the context what the alphabet is.
When for every string w ∈ Σ∗ there is a rule (r, s) ∈ P such that w ∈ L(r),

then we say that P is complete. Further, when for every pair (r, s), (r′, s′) ∈ P
of different rules, L(r) ∩ L(r′) = ∅, then we say that P is disjoint.

In some proofs, we make use of unary trees, which can be represented as
strings. In this context, we abuse notation and write for instance w ∈ T∃(P)
meaning that the unary tree which w represents is existentially valid with
respect to P . Similarly, we refer to the last position of w as the leaf of w.

We conclude this section with two basic results on pattern-based schemas.

Lemma 75. For a pattern-based schema P , a tree t and a string w,

1. t ∈ T∀(P) if and only if for every node v of t, v ∈ P∀(t).

2. if w ∈ T∀(P) then for every prefix w′ of w and every non-leaf node v of
w′, v ∈ P∀(w′).

3. t ∈ T∃(P) if and only if for every node v of t, v ∈ P∃(t).

4. if w ∈ T∃(P) then for every prefix w′ of w and every non-leaf node v of
w′, v ∈ P∃(w′).

7.1. Preliminaries and Basic Results 117

Proof. (1,3) These are in fact just a restatement of the definition of universal
and existential satisfaction and are therefore trivially true.

(2) Consider any non-leaf node v′ of w′. Since w′ is a prefix of w, there
must be a node v of w such that anc-strw(v) = anc-strw′

(v′) and ch-strw(v) =
ch-strw′

(v′). By Lemma 75(1), v ∈ P∀(w) and thus v′ ∈ P∀(w).
(4) The proof of (2) carries over literally for the existential semantics.

Lemma 76. For any complete and disjoint pattern-based schema P , T∃(P) =
T∀(P).

Proof. We show that if P is complete and disjoint, then for any node v of
any tree t, v ∈ P∃(t) if and only if v ∈ P∀(t). The lemma then follows from
Lemma 75(1) and (3). First, suppose v ∈ P∃(t). Then, there is a rule (r, s) ∈ P
such that anc-str(v) ∈ L(r) and ch-str(v) ∈ L(s), and by the disjointness of P ,
anc-str(v) /∈ L(r′) for any other vertical expression r′ in P . It thus follows that
v ∈ P∀(t). Conversely, suppose v ∈ P∀(t). By the completeness of P there is
at least one rule (r, s) such that anc-str(v) ∈ L(r) and thus ch-str(v) ∈ L(s).
It follows that v ∈ P∃(t).

7.1.2 Characterizations of (Extended) DTDs

We start by introducing another schema formalism equivalent to single-type
EDTDs. An automaton-based schema D over vocabulary Σ is a tuple (A, λ),
where A = (Q, q0, δ, F) is a DFA and λ is a function mapping states of A to
regular expressions. A tree t is accepted by D if for every node v of t, where
q ∈ Q is the state such that q0 ⇒A,anc-str(v) q, ch-str(v) ∈ L(λ(q)). Because
the set of final states F of A is not used, we often omit F and represent A as a
triple (Q, q0, δ). Automaton-based schemas are implicit in [77] and introduced
explicitly in [76].

Remark 77. Because DTDs and EDTDs only define tree languages in which
every tree has the same root element, we implicitly assume that this is also
the case for automaton-based schemas and the pattern-based schemas defined
next. Whenever we translate among pattern-based schemas, we drop this as-
sumption. Obviously, this does not influence any of the results of this chapter.

Lemma 78. Any automaton-based schema D can be translated into an equiv-
alent single-type EDTD D′ in time at most quadratic in the size of D, and
vice versa.

Proof. Let D = (A, λ), with A = (Q, q0, δ), be an automaton-based schema.
We start by making A complete. That is, we add a sink state q to Q and
for every pair q ∈ Q, a ∈ Σ, for which there is no transition (q, a, q′) ∈ δ,

118 Succinctness of Pattern-Based Schema Languages

t1

v1 ∈ T

t2

v2 ∈ T ⇒
t1

v2 ∈ T

Figure 7.1: Closure under label-guarded subtree exchange

we add (q, a, q) to δ. Further, λ(q) = ∅. Construct D′ = (Σ, Σ′, d, si, µ)
as follows. Let si be such that s is the root symbol of any tree defined by
D and (q0, s, qi) ∈ δ. Let Q ∪ {q } = {q0, . . . , qn} for some n ∈ N, then
Σ′ = {ai | a ∈ Σ ∧ qi ∈ Q} and µ(ai) = a. Finally, d(ai) = λ(qi), where any
symbol a ∈ Σ is replaced by aj when (qi, a, qj) ∈ δ. Since A is complete, aj

is guaranteed to exist and since A is a DFA aj is uniquely defined. For the
time complexity of the algorithm, we see that the number of types in D′ can
never be exceeded by the number of transitions in A. Then, to every type one
regular expression from D′ is assigned which yields a quadratic algorithm.

Conversely, let D = (Σ, Σ′, d, s, µ) be a single-type EDTD. The equivalent
automaton-based schema D = (A, λ) with A = (Q, q0, δ) is constructed as
follows. Let Q = Σ′, q0 = s, and for ai, bj ∈ Σ′, (ai, b, bj) ∈ δ if µ(bj) = b and
bj occurs in d(ai). Note that since D is a single-type EDTD, A is guaranteed
to be deterministic. Finally, for any type ai ∈ Σ′, λ(ai) = µ(d(ai)).

A regular tree language T is closed under label-guarded subtree exchange if
it has the following property: if two trees t1 and t2 are in T , and there are two
nodes v1 in t1 and v2 in t2 with the same label, then t1[v1 ← subtreet2(v2)] is
also in T . This notion is graphically illustrated in Figure 7.1.

Lemma 79 ([88]). A regular tree language is definable by a DTD if and only
if it is closed under label-guarded subtree exchange.

An EDTD D = (Σ, Σ′, d, sd, µ) is trimmed if for for every ai ∈ Σ′, there
exists a tree t ∈ L(d) and a node u ∈ Dom(t) such that labt(u) = ai.

Lemma 80 ([77]). 1. For every EDTD D, a trimmed EDTD D′, with
L(D) = L(D′), can be constructed in time polynomial in the size of
D.

2. Let D be a trimmed EDTD. For any type ai ∈ Σ′ and any string
w ∈ L(d(ai)) there exists a tree t ∈ L(d) which contains a node v with
labt(v) = ai and ch-strt(v) = w.

7.1. Preliminaries and Basic Results 119

7.1.3 Theorems

We use the following theorem of Glaister and Shallit [45].

Theorem 81 ([45]). Let L ⊆ Σ∗ be a regular language and suppose there
exists a set of pairs M = {(xi, wi) | 1 ≤ i ≤ n} such that

• xiwi ∈ L for 1 ≤ i ≤ n; and

• xiwj /∈ L for 1 ≤ i, j ≤ n and i 6= j.

Then any NFA accepting L has at least n states.

We make use of the following results on transformations of regular expres-
sions.

Theorem 82. 1. Let r1, . . . , rn, s1, . . . , sm be regular expressions. A regu-
lar expression r, with L(r) =

⋂
i≤n L(ri)\

⋃
i≤m L(si), can be constructed

in time double exponential in the sum of the sizes of all ri, sj , i ≤ n,
j ≤ m.

2. For any regular expressions r and alphabet ∆ ⊆ Σ, an expression r−,
such that L(r−) = L(r) ∩ ∆∗, can be constructed in time linear in the
size of r.

Proof. (1) First, for every i ≤ n, construct an NFA Ai, such that L(ri) =
L(Ai), which can be done in polynomial time according to Theorem 2(4).
Then, let A be the DFA accepting

⋂
i≤n L(Ai) obtained from the Ai by deter-

minization followed by a product construction. For k the size of the largest
NFA, this can be done in time O(2k·n). For every i ≤ m, construct an NFA
Bi, with L(si) = Bi, and let Bi be the DFA accepting

⋃
i≤m L(Bi) again ob-

tained from the Bi by means of determinization and a product construction.
Similarly, B can also be computed in time exponential in the size of the input.
Then, compute the DFA B′ for the complement of B by making B complete
and exchanging final and non-final states in B, which can be done in time
polynomial in the size of B. Then, the DFA C accepts L(A) ∩ L(B′) and
can again be obtained by a product construction on A and B′ which requires
polynomial time in the sizes of A and B′. Therefore, C is of exponential size
in function of the input. Finally, r, with L(r) =

⋂
i≤n L(ri) \

⋃
i≤m L(si) can

be obtained from C in time exponential in the size of C (Theorem 2(1)) and
thus yields a double exponential algorithm in total.

(2) The algorithm proceeds in two steps. First, replace every symbol a /∈ ∆
in r by ∅. Then, use the following rewrite rules on subexpressions of r as often
as possible: ∅∗ = ε, ∅s = s∅ = ∅, and ∅ + s = s + ∅ = s. This gives us r−

which is equal to ∅ or does not contain ∅ at all, with L(r−) = L(r) ∩∆∗.

120 Succinctness of Pattern-Based Schema Languages

7.1.4 Succinctness

As the focus in this chapter is on succinctness results we introduce some ad-
ditional notation to allow for a succinct notation of such results.

For a class S and S ′ of representations of schema languages, and F a class

of functions from N to N, we write S F→ S ′ if there is an f ∈ F such that for
every s ∈ S there is an s′ ∈ S ′ with L(s) = L(s′) which can be constructed in
time f(|s|). This also implies that |s′| ≤ f(|s|). By L(s) we mean the set of
trees defined by s.

We write S F⇒ S ′ if S F→ S ′ and there is an f ∈ F , a monotonically
increasing function g : N → N and an infinite family of schemas sn ∈ S with
|sn| ≤ g(n) such that the smallest s′ ∈ S ′ with L(s) = L(s′) is at least of size
f(g(n)). By poly, exp and 2-exp we denote the classes of functions

⋃
k,c cnk,

⋃
k,c c2nk

and
⋃

k,c c22nk

, respectively.
Further, we write S 6→ S ′ if there exists an s ∈ S such that for every

s′ ∈ S ′, L(s′) 6= L(s). In this case we also write S
F
6→ S ′ and S

F
6⇒ S ′ whenever

S F→ S ′ and S F⇒ S ′, respectively, hold for those elements in S which do have
an equivalent element in S ′.

7.2 Regular Pattern-Based Schemas

In this section, we study the full class of pattern-based schemas which we de-
note by P∃(Reg) and P∀(Reg). The results are shown in Theorem 83. Notice
that the translations among schemas with different semantics, and the trans-
lation from a pattern-based schema under universal semantics to an EDTD
are double exponential, whereas the translation from a schema under existen-
tial semantics to an EDTD is “only” exponential. Essentially all these double
exponential lower bounds are due to the fact that in these translations one
necessarily has to apply operations, such as intersection and complement, on
regular expressions, which, as shown in Chapter 3, yields double exponential
lower bounds. In the translation from a pattern-based schema under existen-
tial semantics to an EDTD such operations are not necessary which allows for
an easier translation.

Theorem 83. 1. P∃(Reg)
2-exp⇒ P∀(Reg);

2. P∃(Reg)
exp⇒ EDTD;

3. P∃(Reg)
exp⇒ EDTDst;

4. simplification for P∃(Reg) is exptime-complete;

7.2. Regular Pattern-Based Schemas 121

5. P∃(Reg)
exp

6→ DTD;

6. P∀(Reg)
2-exp⇒ P∃(Reg);

7. P∀(Reg)
2-exp⇒ EDTD;

8. P∀(Reg)
2-exp⇒ EDTDst;

9. simplification for P∀(Reg) is exptime-complete; and,

10. P∀(Reg)
2-exp

6⇒ DTD.

Proof. (1) We first show P∃(Reg)
2-exp→ P∀(Reg). Let P = {(r1, s1), . . . ,

(rn, sn)}. We show that we can construct a complete and disjoint pattern-
based schema P ′ such that T∃(P) = T∃(P ′) in time double exponential in the
size of P . By Lemma 76, T∃(P ′) = T∀(P ′) and thus T∃(P) = T∀(P ′).

For any non-empty set C ⊆ {1, . . . , n}, denote by rC the regular expression
which defines the language

⋂
i∈C L(ri)\

⋃
1≤i≤n,i/∈C L(ri) and by r∅ the expres-

sion defining Σ∗\⋃
1≤i≤n L(ri). That is, rC defines any word w which is defined

by all vertical expressions contained in C but is not defined by any vertical ex-
pression not contained in C. Denote by sC the expression defining the language⋃

i∈C L(si). Then, P ′ = {(r∅, ∅)} ∪ {(rC , sC) | C ⊆ {1, . . . , n} ∧C 6= ∅}. Here,
P ′ is disjoint and complete. We show that T∃(P) = T∃(P ′). By Lemma 75(3),
it suffices to prove that for any node v of any tree t, v ∈ P∃(t) if and only if
v ∈ P ′

∃(t):

• v ∈ P∃(t) ⇒ v ∈ P ′
∃(t): Let C = {i | anc-str(v) ∈ L(ri)}. Since

v ∈ P∃(t), C 6= ∅ and there is an i ∈ C with ch-str(v) ∈ L(si). But then,
by definition of rC and sC , anc-str(v) ∈ L(rC) and ch-str(v) ∈ L(sC),
and thus v ∈ P ′

∃(t).

• v ∈ P ′
∃(t) ⇒ v ∈ P∃(t): Let C ⊆ {1, . . . , n} be the unique set for

which anc-str(v) ∈ L(rC) and ch-str(v) ∈ L(sC), and choose some i ∈ C
for which ch-str(v) ∈ L(si). By definition of sC , such an i must exist.
Then, anc-str(v) ∈ L(ri) and ch-str(v) ∈ L(si), from which it follows
that v ∈ P∃(t).

We conclude by showing that P ′ can be constructed from P in time double
exponential in the size of P . By Theorem 82(1), the expressions rC can be
constructed in time double exponential in the size of the ri and si. The ex-
pressions sC can easily be constructed in linear time by taking the disjunction

122 Succinctness of Pattern-Based Schema Languages

of the right expressions. So, any rule (rC , sC) requires at most double expo-
nential time to construct, and we must construct an exponential number of
these rules, which yields and algorithm of double exponential time complexity.

To show that P∃(Reg)
2-exp⇒ P∀(Reg), we slightly extend Theorem 15.

Lemma 84. For every n ∈ N, there is a regular expressions rn of size linear
in n such that any regular expression r defining Σ∗ \ L(rn) is of size at least
double exponential in r. Further, rn has the property that for any string
w /∈ L(rn), there exists a string u such that wu ∈ L(rn).

Proof. Let n ∈ N. By Theorem 15, there exists a regular expression sn of
size linear in n over an alphabet Σ such that any regular expression defining
Σ∗ \L(sn) must be of size at least double exponential in n. Let Σa = Σ⊎{a}.
Define rn = sn + Σ∗

aa as all strings which are defined by sn or have a as last
symbol. First, note that rn satisfies the extra condition: for every w /∈ L(rn),
wa ∈ L(rn). We show that any expression r defining the complement of rn

must be of size at least double exponential in n. This complement consists
of all strings which do not have a as last symbol and are not defined by sn.
But then, the expression s which defines L(r)∩Σ∗ defines exactly L(sn) \Σ∗,
the complement of L(sn). Furthermore, by Theorem 15, s must be of size at
least double exponential in n and by Theorem 82(2), s can be computed from
r in time linear in the size of r. It follows that r must also be of size at least
double exponential in n.

Now, let n ∈ N and let rn be a regular expression over Σ satisfying the
conditions of Lemma 84. Then, define Pn = {(rn, ε), (Σ∗, Σ)}. Here, T∃(Pn)
defines all unary trees w for which w ∈ L(rn).

Let P be a pattern-based schema with T∃(Pn) = T∀(P). Define U = {r |
(r, s) ∈ P ∧ ε /∈ L(s)} as the set of vertical regular expressions in P whose
corresponding horizontal regular expression does not contain the empty string.
Finally, let r be the disjunction of all expressions in U . We now show that
L(r) = Σ∗ \L(rn), thereby proving that the size of P must be at least double
exponential in n.

First, let w /∈ L(rn) and towards a contradiction suppose w /∈ L(r). Then,
w /∈ T∃(Pn) = T∀(P). By Lemma 84, there exists a string u such that wu ∈
L(rn), and thus wu ∈ T∃(Pn) by definition of Pn and so wu ∈ T∀(P). By
Lemma 75(2), for every non-leaf node v of w, v ∈ P∀(w). As w is not defined
by any expression in U , for any rule (r′, s′) ∈ P with w ∈ L(r′) it holds that
ε ∈ L(s′), and thus for the leaf node v of w, v ∈ P∀(w). So, by Lemma 75(1),
w ∈ T∀(P) which leads to the desired contradiction.

Conversely, suppose w ∈ L(r′), for some r′ ∈ U , and again towards a
contradiction suppose w ∈ L(rn). Then, w ∈ T∃(P) = T∀(P). But, since

7.2. Regular Pattern-Based Schemas 123

w ∈ L(r′), and by definition of U for the rule (r′, s′) in P it holds that ε /∈ L(s′).
It follows that the leaf node v of w is not in P∀(w). Therefore, w /∈ T∀(P) by
Lemma 75(1), which again gives us the desired contradiction. This concludes
the proof of Theorem 83(1).

(2-3) We first show P∃(Reg)
exp→ EDTDst, which implies P∃(Reg)

exp→ EDTD.

Thereto, let P = {(r1, s1), . . . , (rn, sn)}. We construct an automaton-based
schema D = (A, λ) such that L(D) = T∃(P). By Lemma 78, D can then be
translated into an equivalent single-type EDTD in polynomial time and the
theorem follows. First, construct for every ri a DFA Ai = (Qi, qi, δi, Fi), such
that L(ri) = L(Ai). Then, A = (Q1 × · · · ×Qn, (q1, . . . , qn), δ) is the product
automaton for A1, . . . , An. Finally, λ((q1, . . . , qn)) =

⋃
i≤n,qi∈Fi

L(si), and
λ((q1, . . . , qn)) = ∅ if none of the qi are accepting states for their automaton.
Here, if m is the size of the largest vertical expression in P , then A is of
size O(2m·n). Furthermore, an expression for

⋃
i≤n,qi∈Fi

L(si) is simply the
disjunction of these si and can be constructed in linear time. Therefore, the
total construction can be carried out in exponential time.

Further, P∃(Reg)
exp⇒ EDTD already holds for a restricted version of pattern-

based schemas, which is shown in Theorem 85(2). The latter then implies

P∃(Reg)
exp⇒ EDTDst.

(4) For the upper bound, we combine a number of results of Kasneci and
Schwentick [62] and Martens et. al [77]. In the following, an NTA(NFA) is a
non-deterministic tree automaton where the transition relation is represented
by an NFA. Recall also that DTD(NFA) is a DTD where content models are
defined by NFAs.

Given a pattern-based schema P , we first construct an NTA(NFA) AP

with L(AP) = T∃(P), which can be done in exponential time (Proposition 3.3
in [62]). Then, Martens et. al. [77] have shown that given any NTA(NFA) AP

it is possible to construct, in time polynomial in the size of AP , a DTD(NFA)
DP such that L(AP) ⊆ L(DP) is always true and L(AP) = L(DP) holds if and
only if L(AP) is definable by a DTD. Summarizing, DP is of size exponential
in P , T∃(P) ⊆ L(DP) and T∃(P) is definable by a DTD if and only if T∃(P) =
L(DP).

Now, construct another NTA(NFA) A¬P which defines the complement of
T∃(P). This can again be done in exponential time (Proposition 3.3 in [62]).
Since T∃(P) ⊆ L(DP), T∃(P) = L(DP) if and only if L(DP) ∩ L(A¬P) 6= ∅.
Here, DP and A¬P are of size at most exponential in the size of P , and testing
the non-emptiness of their intersection can be done in time polynomial in the
size of DP and A¬P . This gives us an exptime algorithm overall.

For the lower bound, we reduce from satisfiability of pattern-based
schemas, which is exptime-complete [62]. Let P be a pattern-based schema

124 Succinctness of Pattern-Based Schema Languages

over the alphabet Σ, define ΣP = {a, b, c, e} ⊎ Σ, and define the pattern-
based schema P ′ = {(a, b + c), (ab, e), (ac, e), (abe, ε), (ace, ε)} ∪ {(acer, s) |
(r, s) ∈ P}. We show that T∃(P ′) is definable by a DTD if and only if P is
not existentially satisfiable. Since exptime is closed under complement, the
theorem follows.

If T∃(P) = ∅, then the following DTD d defines T∃(P ′): d(a) = b + c,
d(b) = e, d(c) = e, d(e) = ε.

Conversely, if there exists some tree t ∈ T∃(P), suppose towards a con-
tradiction that there exists a DTD D such that L(D) = T∃(P ′). Then,
a(b(e)) ∈ L(D), and a(c(e(t))) ∈ L(D). Since every DTD is closed under
label-guarded subtree exchange (Lemma 79), a(b(e(t))) ∈ L(D) also holds,
but a(b(e(t))) /∈ T∃(P ′) which yields the desired contradiction.

(5) First, P∃(Reg) 6→ DTD already holds for a restricted version of pattern-

based schemas (Theorem 89(6)). We show P∃(Reg)
exp

6→ DTD.

Simply translating the DTD(NFA), obtained in the previous proof, into a
normal DTD by means of state elimination would give us a double exponential
algorithm. Therefore, we use the following similar approach which does not
need to translate regular expressions into NFAs and back. First, construct
a single-type EDTD D1 such that L(D1) = T∃(P). This can be done in
exponential time according to Theorem 83(3). Then, use the polynomial time
algorithm of Martens et al [77], to construct an equivalent DTD D. In this
algorithm, all expressions of D define unions of the language defined by the
expressions in D1. This can, of course, be done by taking the disjunction of
expressions in D1. In total, D is constructed in exponential time.

(6) We first show P∀(Reg)
2-exp→ P∃(Reg). We take the same approach as

in the proof of Theorem 83(1), but have to make some small changes. Let
P = {(r1, s1), . . . , (rn, sn)}, and for any non-empty set C ⊆ {1, . . . , n} let rC

be the regular expression defining
⋂

i∈C L(ri)\
⋃

1≤i≤n,i/∈C L(ri). Let r∅ define
Σ∗ \⋂i≤n L(ri) and let sC be the expression defining the language

⋂
i∈C L(si).

Define P ′ = {(r∅, Σ∗)} ∪ {(rC , sC | C ⊆ {1, . . . , n} ∧ C 6= ∅}. Here, P ′

is disjoint and complete and, by the same argumentation as in the proof of
Theorem 83(1), can be constructed in time double exponential in the size of
P ′. So, by Lemma 76, T∃(P ′) = T∀(P ′). We show that T∀(P) = T∀(P ′) from
which T∀(P) = T∃(P ′) then follows. By Lemma 75(1), it suffices to prove that
for any node v of any tree t, v ∈ P∀(t) if and only if v ∈ P ′

∀(t):

• v ∈ P∀(t)⇒ v ∈ P ′
∀(t): Let C = {i | anc-str(v) ∈ L(ri)}. If C = ∅, then

anc-str(v) ∈ L(r∅) and the horizontal regular expression Σ∗ allows every
child-string. Because of the disjointness of P ′ no other vertical regular
expression in P ′ can define anc-str(v) and thus v ∈ P ′

∀(t). If C 6= ∅,

7.2. Regular Pattern-Based Schemas 125

since v ∈ P∀(t), for all i ∈ C, ch-str(v) ∈ L(si). But then, by definition
of rC and sC , anc-str(v) ∈ L(rC) and ch-str(v) ∈ L(sC), combined with
the disjointness of P ′ gives v ∈ P ′

∀(t).

• v ∈ P ′
∀(t) ⇒ v ∈ P∀(t): Let C ⊆ {1, . . . , n} be the unique set for

which (rC , sC) ∈ P ′, anc-str(v) ∈ L(rC) and ch-str(v) ∈ L(sC). Since
v ∈ P ′

∀(t) and by the disjointness and completeness of P ′ there indeed
exists exactly one such set. If C = ∅, then anc-str(v) is not defined by
any vertical expression in P and thus v ∈ P∀(t). If C 6= ∅, then for
all i ∈ C, anc-str(v) ∈ L(ri) and ch-str(v) ∈ L(si), and for all i /∈ C,
anc-str(v) /∈ L(ri). It follows that v ∈ P∀(t).

We now show that P∀(Reg)
2-exp⇒ P∃(Reg). Let n ∈ N. According to

Theorem 20(3), there exist a linear number of regular expressions r1, . . . , rm

of size linear in n such that any regular expression defining
⋂

i≤m L(ri) must
be of size at least double exponential in n. For brevity, define K =

⋂
i≤m L(ri).

Define Pn over the alphabet Σa = Σ ⊎ {a}, for a /∈ Σ, as Pn = {(a, ri) |
i ≤ m} ∪ {(ab, ε) | b ∈ Σ} ∪ {(b, ∅) | b ∈ Σ}. That is, T∀(Pn) contains all trees
a(w), where w ∈ K.

Let P be a pattern-based schema with T∀(Pn) = T∃(P). For an expression
s, denote by s− the expression defining all words in L(s) ∩ Σ∗. According
to Theorem 82(2), s− can be constructed from s in linear time. Define U =
{s− | (r, s) ∈ P ∧ a ∈ L(r)} as the set of horizontal regular expressions whose
corresponding vertical regular expressions contains the string a. Finally, let
rK be the disjunction of all expressions in U . We now show that L(rK) = K,
thereby proving that the size of P must be at least double exponential in n.

First, let w ∈ K. Then, t = a(w) ∈ T∀(Pn) = T∃(P). Therefore, by
Lemma 75(3), the root node v of t is in P∃(t). It follows that there must be a
rule (r, s) ∈ P , with a ∈ L(r) and w ∈ L(s). Now w ∈ Σ∗ implies w ∈ L(s−),
and thus, by definition of U and rK , w ∈ L(rK).

Conversely, suppose w ∈ L(s−) for some s− ∈ U . We show that t = a(w) ∈
T∃(P) = T∀(Pn), which implies that w ∈ K. By Lemma 75(3), it suffices to
show that every node v of t is in P∃(t). For the root node v of t, we know that
ch-str(v) = w ∈ L(s−), and by definition of U , that anc-str(v) = a ∈ L(r),
where r is the corresponding vertical expression for s. Therefore, v ∈ P∃(t).
All other nodes v are leaf nodes with ch-str(v) = ε and anc-str(v) = ab, where
b ∈ Σ since w ∈ L(s−). To show that any node with these child and ancestor-
strings must be in P∃(t), note that for every symbol b ∈ Σ there exists a string
w′ ∈ K such that w′ contains a b. Otherwise b is useless and can be removed
from Σ. Then, t′ = a(w′) ∈ T∀(Pn) = T∃(P) and thus there is a leaf node v′

in t′ for which anc-str(v′) = ab and ch-str(v′) = ε. Since, by Lemma 75(3)

126 Succinctness of Pattern-Based Schema Languages

v′ ∈ P∃(t′), also any leaf node v of t with anc-str(v) = ab is in P∃(t). It follows
that t ∈ T∃(P) = T∀(Pn).

(7-8) We first show P∀(Reg)
2-exp→ EDTDst, which implies P∀(Reg)

2-exp→ EDTD.
Thereto, let P = {(r1, s1), . . . , (rn, sn)}. We construct an automaton-based
schema D = (A, λ) such that L(D) = T∀(P). By Lemma 78, D can then be
translated into an equivalent single-type EDTD and the theorem follows. We
construct A in exactly the same manner as in the proof of Theorem 83(3). For
λ, let λ((q1, . . . , qn)) =

⋂
i≤n,qi∈Fi

L(si), and λ((q1, . . . , qn)) = Σ∗ if none of the
qi are accepting states for their automaton. We already know that A can be
constructed in exponential time, and by Theorem 20(1) a regular expression
for λ((q1, . . . , qn)) =

⋂
i≤n,qi∈Fi

L(si) can be constructed in double exponential
time. It follows that the total construction can be done in double exponential
time.

Further, P∀(Reg)
2-exp⇒ EDTD already holds for a restricted version of

pattern-based schemas, which is shown in Theorem 85(7). The latter implies

P∀(Reg)
2-exp⇒ EDTDst.

(9) The proof is along the same lines as that of Theorem 83(4).

(10) First, P∀(Reg) 6→ DTD already holds for a restricted version of
pattern-based schemas (Theorem 89(12)).

We first show P∀(Reg)
2-exp

6→ DTD. Notice that the DTD(NFA) D con-
structed in the above proof, conform the proof of Theorem 83(4), is con-
structed in time exponential in the size of P . To obtain an actual DTD, we
only have to translate the NFAs in D into regular expressions, which can be
done in exponential time (Theorem 2(1)). This yields a total algorithm of
double exponential time complexity.

Finally, P∀(Reg)
2-exp

6⇒ DTD already holds for a more restricted version of
pattern-based schemas, which is shown in Theorem 85(10).

7.3 Linear Pattern-Based Schemas

In this section, following [62], we restrict the vertical expressions to XPath
expressions using only descendant and child axes. For instance, an XPath
expression \\a\\b\c captures all nodes that are labeled with c, have b as
parent and have an a as ancestor. This corresponds to the regular expression
Σ∗aΣ∗bc.

Formally, we call an expression linear if it is of the form w0Σ
∗ · · ·wn−1Σ

∗wn,
with w0, wn ∈ Σ∗, and wi ∈ Σ+ for 1 ≤ i < n. A pattern-based schema is
linear if all its vertical expressions are linear. Denote the classes of linear

7.3. Linear Pattern-Based Schemas 127

schemas under existential and universal semantics by P∃(Lin) and P∀(Lin),
respectively.

Theorem 85 lists the results for linear schemas. The complexity of simpli-

fication improves slightly, pspace instead of exptime. Further, we show
that the expressive power of linear schemas under existential and univer-
sal semantics becomes incomparable, but that the complexity of translating
to DTDs and (single-type) EDTDs is in general not better than for regular
pattern-based schemas.

Theorem 85. 1. P∃(Lin) 6→ P∀(Lin);

2. P∃(Lin)
exp⇒ EDTD;

3. P∃(Lin)
exp⇒ EDTDst;

4. simplification for P∃(Lin) is pspace-complete;

5. P∃(Lin)
exp

6→ DTD;

6. P∀(Lin) 6→ P∃(Lin);

7. P∀(Lin)
2-exp⇒ EDTD;

8. P∀(Lin)
2-exp⇒ EDTDst;

9. simplification for P∀(Lin) is pspace-complete; and,

10. P∀(Lin)
2-exp

6⇒ DTD.

Proof. (1) We first prove the following simple lemma. Given an alphabet Σ,
and a symbol b ∈ Σ, denote Σ \ {b} by Σb.

Lemma 86. There does not exist a set of linear regular expression r1, . . . , rn

such that
⋃

1≤i≤n L(ri) is an infinite language and
⋃

1≤i≤n L(ri) ⊆ L(Σ∗
b).

Proof. Suppose to the contrary that such a list of linear expressions does
exist. Then, one of these expressions must contain Σ∗ because otherwise⋃

1≤i≤n L(ri) would be a finite language. However, if an expression contains
Σ∗, then it also defines words containing b, which gives us the desired contra-
diction.

Now, let P = {(Σ∗bΣ∗, ε), (Σ∗, Σ)}. Then, T∃(P) defines all unary trees
containing at least one b. Suppose that P ′ is a linear schema such that T∃(P) =
T∀(P ′). Define U = {r | (r, s) ∈ P ′ and ε /∈ L(s)} as the set of all vertical

128 Succinctness of Pattern-Based Schema Languages

regular expressions in P ′ whose horizontal regular expressions do not contain
the empty string. We show that the union of the expressions in U defines an
infinite language and is a subset of Σ∗

b , which by Lemma 86 proves that such
a schema P ′ can not exist.

First, to show that the union of these expressions defines an infinite lan-
guage, suppose that it does not. Then, every expression r ∈ U is of the form
r = w, for some string w. Let k be the length of the longest such string w.
Now, ak+1b ∈ T∃(P) = T∀(P ′) and thus by Lemma 75(2) every non-leaf node
v of ak+1 is in P ′

∀(a
k+1). Further, ak+1 /∈ L(r) for all vertical expressions in U

and thus the leaf node of ak+1 is also in P ′
∀(a

k+1). But then, by Lemma 75(1),
ak+1 ∈ T∀(P ′) which leads to the desired contradiction.

Second, let w ∈ L(r), for some r ∈ U , we show w ∈ Σ∗
b . Towards a

contradiction, suppose w /∈ Σ∗
b , which means that w contains at least one b and

thus w ∈ T∃(P) = T∀(P ′). But then, for the leaf node v of w, anc-str(v) = w ∈
L(r), and by definition of U , ch-str(v) = ε /∈ L(s), where s is the corresponding
horizontal expression for r. Then, v /∈ P ′

∀(w) and thus by Lemma 75(1),
w /∈ T∀(P ′), which again gives the desired contradiction.

(2-3) First, P∃(Lin)
exp→ EDTDst follows immediately from Theorem 83(3). We

show P∃(Lin)
exp⇒ EDTD, which then implies both statements. Thereto, we

first characterize the expressive power of EDTDs over unary tree languages.

Lemma 87. For any EDTD D for which L(D) is a unary tree language, there
exists an NFA A such that L(D) = L(A). Moreover, A can be computed from
D in time linear in the size of D.

Proof. Let D = (Σ, Σ′, d, s, µ) be an EDTD, such that L(D) is a unary tree
language. Then, define A = (Q, q0, δ, F) as Q = {q0} ∪ Σ′, δ = {(q0, s, s)} ∪
{(a, µ(b), b) | a, b ∈ Σ′ ∧ b ∈ L(d(a))}, and F = {a | a ∈ Σ′ ∧ ε ∈ d(a)}.

Now, let n ∈ N. Define Σn = {$, #1, #2} ∪
⋃

1≤i≤n{a0
i , a

1
i , b

0
i , b

1
i } and

Kn = {#1a
i1
1 ai2

2 · · · ain
n $bi1

1 bi2
2 · · · bin

n #2 | ik ∈ {0, 1}, 1 ≤ k ≤ n}. It is not hard
to see that any NFA defining Kn must be of size at least exponential in n.
Indeed define M = {(x, w) | xw ∈ Kn∧|x| = n+1} which is of size exponential
in n, and satisfies the conditions of Theorem 81. Then, by Lemma 87, every
EDTD defining the unary tree language Kn must also be of size exponential
in n. We conclude the proof by giving a pattern-based schema Pn, such that
T∃(Pn) = Kn, which is of size linear in n. It contains the following rules:

• #1 → a0
1 + a1

1

• For any i < n:

– #1Σ
∗a0

i → a0
i+1 + a1

i+1

7.3. Linear Pattern-Based Schemas 129

– #1Σ
∗a1

i → a0
i+1 + a1

i+1

– #1Σ
∗a0

i Σ
∗b0

i → b0
i+1 + b1

i+1

– #1Σ
∗a1

i Σ
∗b1

i → b0
i+1 + b1

i+1

• #1Σ
∗a0

n → $

• #1Σ
∗a1

n → $

• #1Σ
∗$→ b0

1 + b1
1

• #1Σ
∗a0

nΣ∗b0
n → #2

• #1Σ
∗a1

nΣ∗b1
n → #2

• #1Σ
∗#2 → ε

(4) For the lower bound, we reduce from universality of regular expressions.
That is, deciding for a regular expression r whether L(r) = Σ∗. The latter
problem is known to be pspace-complete [102]. Given r over alphabet Σ,
let ΣP = {a, b, c, d} ⊎ Σ, and define the pattern-based schema P = {(a, b +
c), (ab, e), (ac, e), (abe,Σ∗), (ace, r)} ∪ {(abeσ, ε), (aceσ, ε) | σ ∈ Σ}. We show
that there exists a DTD D with L(D) = T∃(P) if and only if L(r) = Σ∗.

If L(r) = Σ∗, then the following DTD d defines T∃(P): d(a) = b + c,
d(b) = e, d(c) = e, d(e) = Σ∗, and d(σ) = ε for every σ ∈ Σ.

Conversely, if L(r) (Σ∗, we show that T∃(P) is not closed under label-
guarded subtree exchange. From Lemma 79, it then follows that T∃(P) is not
definable by a DTD. Let w, w′ be strings such that w /∈ L(r) and w′ ∈ L(r).
Then, a(b(e(w))) ∈ L(D), and a(c(e(w′))) ∈ L(D) but a(c(e(w))) /∈ T∃(P).

For the upper bound, we again make use of the closure under label-guarded
subtree exchange property of DTDs. Observe that T∃(P), which is a regular
tree language, is not definable by any DTD if and only if there exist trees
t1, t2 ∈ T∃(P) and nodes v1 and v2 in t1 and t2, respectively, with labt1(v1) =
labt2(v2), such that the tree t3 = t1[v1 ← subtreet2(v2)] is not in T∃(P). We
refer to such a tuple (t1, t2) as a witness to the DTD-undefinability of T∃(P),
or simply a witness tuple.

Lemma 88. If there exists a witness tuple (t1, t2) for a linear schema P , then
there also exists a witness tuple (t′1, t

′
2) for P , where t′1 and t′2 are of depth

polynomial in the size of P .

Proof. We make use of techniques introduced by Kasneci and Schwentick [62].
When P, P ′ are two linear schemas, they stated that if there exists a tree t
with t ∈ T∃(P) but t /∈ T∃(P ′), then there exists a tree t′ of depth polynomial
with the same properties. In particular, they obtained the following property.

130 Succinctness of Pattern-Based Schema Languages

Let P be a linear pattern-based schema and t a tree. Then, to every node
v of t, a vector F t

P (v) over N can be assigned with the following properties:

• along a path in a tree, F t
P (v) can take at most polynomially many values

in the size of P ;

• if v′ is a child of v, then F t
P (v′) can be computed from F t

P (v) and the
label of v′ in t; and

• v ∈ P∃(t) can be decided solely on the value of F t
P (v) and ch-str(v).

Based on these properties it is easy to see that if there exists a tree t which
existentially satisfies P , then there exists a tree t′ of polynomial depth which
existentially satisfies P . Indeed, t′ can be constructed from t by searching
for nodes v and v′ of t such that v′ is a descendant of v, labt(v) = labt(v′)
and F t

P (v) = F t
P (v′), and replacing the subtree rooted at v by the one rooted

at v′. By applying this rule as often as possible, we get a tree which is still
existentially valid with respect to P and where no two nodes on a path in the
tree have the same vector and label and which thus is of polynomial depth.

We will also use this technique, but have to be a bit more careful in the
replacements we carry out. Thereto, let (t1, t2) be a witness tuple for P
and fix nodes v1 and v2 of t1 and t2, respectively, such that t3, defined as
t1[v1 ← subtreet2(v2)], is not in T∃(P). Since t3 /∈ T∃(P), by Lemma 75(3),
there must be some node v3 of t3 with v3 /∈ P∃(t3). Furthermore, v3 must
occur in the subtree under v2 inherited from t2. Indeed, every node v not in
that subtree, has the same vector and child-string as its corresponding node
in t1, and since t1 ∈ T∃(P) also v ∈ P∃(t1) and thus v ∈ P∃(t3). So, fix some
node v3, with v3 /∈ P∃(t3), occurring in t2. Then, we can partition the trees t1
and t2, and thereby also t3, in five different parts as follows:

1. t1[v1 ← ()]: the tree t1 without the subtree under v1;

2. subtreet1(v1): the subtree under v1 in t1;

3. t2[v2 ← ()]: the tree t2 without the subtree under v2

4. subtreet2(v2)[v3 ← ()]: the subtree under v2 in t2, without the subtree
under v3;

5. subtreet2(v3): the subtree under v3 in t2;

This situation is graphically illustrated in Figure 7.2.
Now, let t′1 and t′2 be the trees obtained from t1 and t2 by repeating the

following as often as possible: Search for two nodes v, v′ such that v is an
ancestor of v′, v and v′ are not equal to v1, v2 or v3, v and v′ occur in the same

7.3. Linear Pattern-Based Schemas 131

t1
v1

t1

t2
v2

v3

t2

t1
v2

v3

t3

Figure 7.2: The five different areas in t1 and t2.

part of t1 or t2, lab(v) = lab(v′) and F t1
P (v) = F t1

P (v′) (or F t2
P (v) = F t2

P (v′) if
v and v′ both occur in t2). Then, replace v by the subtree under v′.

Observe that, by the properties of F , any path in one of the five parts
of t′1 and t′2 can have at most a polynomial depth, and thus t′1 and t′2 are
of at most a polynomial depth. Furthermore, t′1, t

′
2 ∈ T∃(P) still holds and

the original nodes v1, v2 and v3 still occur in t′1 and t′2. Therefore, for t′3 =

t′1[v1 ← subtreet′2(v2)], F
t′3
P (v3) = F t3

P (v3) and ch-strt′3(v3) = ch-strt3(v3). But
then, v3 /∈ P∃(t′3), which by Lemma 75(3) gives us t′3 /∈ T∃(P). So, (t′1, t

′
2) is a

witness tuple in which t′1 and t′2 are of at most polynomial depth.

Now, using Lemma 88, we show that the problem is in pspace. We simply
guess a witness tuple (t1, t2) and check in polynomial space whether it is a
valid witness tuple. If it is, T∃(P) is not definable by a DTD. If T∃(P) is
definable by a DTD, there does not exist a witness tuple for P . Since pspace

is closed under complement, the theorem follows.

By Lemma 88, it suffices to guess trees of at most polynomial depth. There-
fore, we guess t1 and t2 in depth-first and left-to-right fashion, maintaining
for each tree and each level of the trees, the sets of states the appropriate
automata can be in. Here, t1 and t2 are guessed simultaneously and indepen-
dently. That is, for each guessed symbol, we also guess whether it belongs to
t1 or t2. At some point in this procedure, we guess that we are now at the
nodes v1 and v2 of t1 and t2. From that point we maintain a third list of
states of automata, which are initiated by the values of these of t1, but the
subsequent subtree take the values of t2. If in the end, t1 and t2 are accepted,
but the third tree is not, then (t1, t2) is a valid witness for P .

(5) First, P∃(Lin) 6→ DTD already holds for a restricted version of pattern-

based schemas (Theorem 89(6)). Then, P∃(Lin)
exp

6→ DTD follows immediately
from Theorem 83(5).

(6) Let Σ = {a, b, c} and define P = {(Σ∗bΣ∗c, b)}. Then, T∀(P) contains all
trees in which whenever a c labeled node v has a b labeled node as ancestor,

132 Succinctness of Pattern-Based Schema Languages

ch-str(v) must be b. We show that any linear schema P ′ defining all trees in
T∀(P) under existential semantics, must also define trees not in T∀(P).

Suppose there does exist a linear schema P ′ such that T∀(P) = T∃(P ′).
Define wℓ = aℓc for ℓ ≥ 1 and notice that wℓ ∈ T∀(P) = T∃(P ′). Let (r, s) ∈ P ′

be a rule matching infinitely many leaf nodes of the strings wℓ. There must
be at least one as P ′ contains a finite number of rules. Then, ε ∈ L(s) must
hold and r is of one of the following forms:

1. an1Σ∗an2Σ∗ · · ·Σ∗ankc

2. an1Σ∗an2Σ∗ · · ·Σ∗ankcΣ∗

3. an1Σ∗an2Σ∗ · · ·Σ∗ankΣ∗

where k ≥ 2 and nk ≥ 0.

Choose some N ∈ N with N ≥ |P ′| and define the unary trees t1 =
aNbaNcb and t2 = aNbaNc. Obviously, t1 ∈ T∀(P), and t2 /∈ T∀(P). Then,
t1 ∈ T∃(P ′) and since t2 is a prefix of t1, by Lemma 75(4), every non-leaf node v
of t2 is in P ′

∃(t2). Finally, for the leaf node v of t2, anc-str(v) ∈ L(r) for any of
the three expressions given above and ε ∈ L(s) for its corresponding horizontal
expression. Then, v ∈ P ′

∃(t2), and thus by Lemma 75(3), t2 ∈ T∃(P ′) which
completes the proof.

(7-8) First, P∀(Lin)
2-exp→ EDTDst follows immediately from Theorem 83(3).

We show P∀(Lin)
2-exp⇒ EDTD, which then implies both statements.

Let n ∈ N. According to Theorem 20(3), there exist a linear number of
regular expressions r1, . . . , rm of size linear in n such that any regular expres-
sion defining

⋂
i≤m L(ri) must be of size at least double exponential in n. Set

K =
⋂

i≤m L(ri).

Next, we define Pn over the alphabet Σ ⊎ {a} as Pn = {(a, ri) | i ≤
m} ∪ {(ab, ε) | b ∈ Σ} ∪ {(b, ∅) | b ∈ Σ}. That is, T∀(Pn) defines all trees a(w),
for which w ∈ K.

Let D = (Σ, Σ′, d, a, µ) be an EDTD with T∀(P) = L(D). By Lemma 80(a),
we can assume that D is trimmed. Let a→ r be the single rule in D for the root
element a. Let rK be the expressions defining µ(L(r)). Since D is trimmed, it
follows from Lemma 80(2) that rK cannot contain an a. But then, L(rK) = K,
which proves that the size of D must be at least double exponential in n.

(9) The proof is along the same lines as that of Theorem 85(4).

(10) First, P∀(Lin) 6→ DTD already holds for a restricted version of pattern-

based schemas (Theorem 89(12)). Then, P∀(Lin)
2-exp

6→ DTD follows immedi-

ately from Theorem 83(10). For P∀(Lin)
2-exp

6⇒ DTD, let n ∈ N. In the proof

7.4. Strongly Linear Pattern-Based Schemas 133

of Theorem 85(7) we have defined a linear pattern-based schema Pn of size
polynomial in n for which any EDTD D′ with T∀(Pn) = L(D′) must be of size
at least double exponential in n. Furthermore, every DTD is an EDTD and
the language T∀(Pn) is definable by a DTD. It follows that any DTD D with
T∀(Pn) = L(D) must be of size at least double exponential in n.

7.4 Strongly Linear Pattern-Based Schemas

In [77], it is observed that the type of a node in most real-world XSDs only
depends on the labels of its parents and grand parents. To capture this idea,
following [62], we say that a regular expression is strongly linear if it is of the
form w or Σ∗w, where w is non-empty. A pattern-based schema is strongly
linear if it is disjoint and all its vertical expressions are strongly linear. Denote
the class of all strongly linear pattern-based schemas under existential and
universal semantics by P∃(S-Lin) and P∀(S-Lin), respectively.

In [62], all horizontal expressions in a strongly linear schema are also re-
quired to be deterministic, as is the case for DTDs and XML Schema. The
latter requirement is necessary to get ptime satisfiability and inclusion

which would otherwise be pspace-complete for arbitrary regular expressions.
This is also the case for the simplification problem studied here, but not for
the various translation problems. Therefore, we distinguish between strongly
linear schemas, as defined above, and strongly linear schemas where all hori-
zontal expressions must be deterministic, which we call deterministic strongly
linear schemas and denote by P∃(Det-S-Lin) and P∀(Det-S-Lin).

Theorem 89 shows the results for (deterministic) strongly linear pattern-
based schemas. First, observe that the expressive power of these schemas
under existential and universal semantics again coincides. Further, all con-
sidered problems become tractable, which makes strongly linear schemas very
interesting from a practical point of view.

Theorem 89. 1. P∃(S-Lin)
poly→ P∀(S-Lin) and

P∃(Det-S-Lin)
poly→ P∀(Det-S-Lin);

2. P∃(S-Lin)
poly→ EDTD and P∃(Det-S-Lin)

poly→ EDTD;

3. P∃(S-Lin)
poly→ EDTDst and P∃(Det-S-Lin)

poly→ EDTDst;

4. simplification for P∃(S-Lin) is pspace-complete;

5. simplification for P∃(Det-S-Lin) is in ptime;

6. P∃(S-Lin)
poly

6→ DTD and P∃(Det-S-Lin)
poly

6→ DTD;

134 Succinctness of Pattern-Based Schema Languages

7. P∀(S-Lin)
poly→ P∃(S-Lin) and P∀(Det-S-Lin)

poly→ P∃(Det-S-Lin);

8. P∀(S-Lin)
poly→ EDTD and P∀(Det-S-Lin)

poly→ EDTD;

9. P∀(S-Lin)
poly→ EDTDst and P∀(Det-S-Lin)

poly→ EDTDst;

10. simplification for P∀(S-Lin) is pspace-complete;

11. simplification for P∀(Det-S-Lin) is in ptime; and,

12. P∀(S-Lin)
poly

6→ DTD and P∀(Det-S-Lin)
poly

6→ DTD.

Proof. (1) We first show P∃(S-Lin)
poly→ P∀(S-Lin). The key of this proof lies

in the following lemma:

Lemma 90. For each finite set R of disjoint strongly linear expressions, a
finite set S of disjoint strongly linear regular expressions can be constructed
in polynomial time such that

⋃
s∈S L(s) = Σ∗ \⋃

r∈R L(r).

Before we prove this lemma, we show how it implies the theorem. For
P = {(r1, s1), . . . , (rn, sn)}, let S be the set of strongly linear expressions
for R = {r1, . . . , rn} satisfying the conditions of Lemma 90. Set P ′ = P ∪⋃

s∈S{(s, ∅)}. Here, T∃(P) = T∃(P ′) and since P ′ is disjoint and complete it
follows from Lemma 76 that T∃(P ′) = T∀(P ′). This gives us T∃(P) = T∀(P ′).
By Lemma 90, the set S is polynomial time computable and therefore, P ′ is
too.

Further, note that the regular expressions in P ′ are copies of these in P .

Therefore, P∀(Det-S-Lin)
poly→ P∃(Det-S-Lin) also holds. We finally give the

proof of Lemma 90.

Proof. For R a set of strongly linear regular expressions, let Suffix(R) =⋃
r∈R Suffix(r). Define U as the set of strings aw, a ∈ Σ, w ∈ Σ∗, such

that w ∈ Suffix(R), and aw /∈ Suffix(R). Define V as Suffix(R) \⋃
r∈R L(r).

We claim that S =
⋃

u∈U{Σ∗u}∪⋃
v∈V {v} is the desired set of regular ex-

pressions. For instance, for R = {Σ∗abc,Σ∗b, bc} we have U = {bbc, cbc, ac, cc,
a} and V = {c} which gives us S = {Σ∗bbc, Σ∗cbc,Σ∗ac,Σ∗cc,Σ∗a, c}.

It suffices to show that, given R: (1) S is finite and polynomial time
computable; (2) the expressions in S are pairwise disjoint; (3)

⋃
r∈R L(r) ∩⋃

s∈S L(s) = ∅; and, (4)
⋃

r∈R∪S L(r) = Σ∗.
We first show (1). Every r ∈ R is of the form w or Σ∗w, for some w. Then,

for r there are only |w| suffixes in L(r) which can match the definition of U
or V . When a string w′, with |w′| > |w|, is a suffix in L(r) then r must be of
the form Σ∗w and thus for every a ∈ Σ, aw is also a suffix in L(r), and thus

7.4. Strongly Linear Pattern-Based Schemas 135

aw /∈ U . Further, w′ /∈ V . So, the number of strings in U and V is bounded
by the number of rules in R times the length of the strings w occurring in the
expressions in R, times the number of alphabet symbols, which is a polynomial.
Obviously, we can also compute these strings in polynomial time.

For (2), we must check that the generated expressions are all pairwise
disjoint. First, every expression generated by V defines only one string, so
two expressions generated by V always have an empty intersection. For an
expression Σ∗aw generated by U and an string w′ in V , suppose that their
intersection is non-empty and thus w′ ∈ L(Σ∗aw). Then, aw must be a suf-
fix of w′ and we know by definition of V that w′ ∈ Suffix(R). But then,
also aw ∈ Suffix(R) which contradicts the definition of U . Third, suppose
that two expressions Σ∗aw,Σ∗a′w′ generated by U have a non-empty inter-
section. Then, aw must be a suffix of a′w′ (or the other way around, but
that is perfectly symmetrical), and since aw 6= a′w′, aw must be a suffix of
w′. But w′ ∈ Suffix(R) and thus aw ∈ Suffix(R) must also hold, which again
contradicts the definition of U .

For (3), The strings in V are explicitly defined such that their intersection
with

⋃
r∈R L(r) is empty. For the expression generated by U , observe that

they only define words which have suffixes that can not be suffixes of any
word defined by any expression in R. Therefore,

⋃
r∈R L(r) ∩⋃

s∈S L(s) = ∅.
Finally, we show (4). Let w /∈ L(r), for any r ∈ R. We show that there

exists an s ∈ S, such that w ∈ L(s). If w ∈ V , we are done. So assume
w /∈ V . Let w = a1 · · · ak. Now, we go from left to right through w and
search for the rightmost l ≤ k + 1 such that wl = al · · · ak ∈ Suffix(R), and
wl−1 = al−1 · · · ak /∈ Suffix(R). When l = k + 1, wl = ε. Then, w is accepted
by the expression Σ∗al−1 · · · ak, which by definition must be generated by U .
It is only left to show that there indeed exists such an index l for w. Thereto,
note that if l = k + 1, then it is easy to see that wl = ε is a suffix of every
string accepted by every r ∈ R. Conversely, if l = 1 we show that wl = w can
not be a suffix of any string defined by any r ∈ R. Suppose to the contrary
that w ∈ Suffix(r), for some r ∈ R. Let r be wr or Σ∗wr. If w is a suffix
of wr, then w is accepted by an expression generated by V , which case we
already ruled out. If w is not a suffix of wr, then r must be of the form Σ∗wr

and wr must be a suffix of w. But then, w ∈ L(r), which also contradicts
our assumptions. So, we can only conclude that w1 /∈ Suffix(R). So, given
that wk+1 ∈ Suffix(R), and w1 /∈ Suffix(R), we are guaranteed to find some l,
1 < l ≤ k + 1, such that wl ∈ Suffix(R), and wl−1 /∈ Suffix(R). This concludes
the proof of Lemma 90.

(7) For P = {(r1, s1), . . . , (rn, sn)}, let S = {r′1, · · · , r′m} be the set of strongly
linear expressions for R = {r1, . . . , rn} satisfying the conditions of Lemma 90.

136 Succinctness of Pattern-Based Schema Languages

Then, define P ′ = {(r1, s1), . . . , (rn, sn), (r′1, Σ
∗), . . . , (r′m, Σ∗)}. Here, T∀(P) =

T∀(P ′) and since P ′ is disjoint and complete it follows from Lemma 76 that
T∃(P ′) = T∀(P ′). This gives us T∀(P) = T∃(P ′). By Lemma 90, the set S is
polynomial time computable and therefore, P ′ is too.

Further, note that the regular expressions in P ′ are copies of these in P .

Therefore, P∃(Det-S-Lin)
poly→ P∀(Det-S-Lin) also holds.

(2-3),(8-9) We show P∃(S-Lin)
poly→ EDTDst. Since deterministic strongly-

linear schemas are a subset of strongly-linear schemas, since single-type EDTDs
are a subset of EDTDs and since we can translate a strongly-linear schema
with universal semantics into an equivalent one with existential semantics in
polynomial time (Theorem 89(7)), all other results follow.

Given P , we construct an automaton-based schema D = (A, λ) such that
L(D) = T∃(P). By Lemma 78, we can then translate D into an equivalent
single-type EDTD in polynomial time. Let P = {(r1, s1), . . . , (rn, sn)}. We
define D such that when A is in state q after reading w, λ(q) = si if and
only if w ∈ L(ri) and λ(q) = ∅ otherwise. The most obvious way to construct
A is by constructing DFAs for the vertical expressions and combining these
by a product construction. However, this would induce an exponential blow-
up. Instead, we construct A in polynomial time in a manner similar to the
construction used in Proposition 5.2 in [62].

First, assume that every ri is of the form Σ∗wi. We later extend the
construction to also handle vertical expressions of the form wi. Define S = {w |
w ∈ Prefix(wi), 1 ≤ i ≤ n}. Then, A = (Q, q0, δ) is defined as Q = S ∪ {q0},
and for each a ∈ Σ,

• δ(q0, a) = a if a ∈ S, and δ(q0, a) = q0 otherwise; and

• for each w ∈ S, δ(w, a) = w′, where w′ is the longest suffix of wa in S,
and δ(w, a) = q0 if no string in S is a suffix of wa.

For the definition of λ, let λ(q0) = ∅, and for all w ∈ S, λ(w) = si if
w ∈ L(ri) and λ(w) = ∅ if w /∈ L(ri) for all i ≤ n. Note that since the vertical
expression are disjoint, λ is well-defined.

We prove the correctness of our construction using the following lemma
which can easily be proved by induction on the length of u.

Lemma 91. For any string u = a1 · · · ak,

1. if q0 ⇒A,u q0, then no suffix of u is in S; and

2. if q0 ⇒A,u w, for some w ∈ S, then w is the biggest element in S which
is a suffix of u.

7.4. Strongly Linear Pattern-Based Schemas 137

3. q0 ⇒A,u q, with λ(q) = ∅, if and only if u /∈ L(ri), for any i ≤ n; and

4. q0 ⇒A,u w, w ∈ S, with λ(w) = si, if and only if u ∈ L(ri).

To show that L(D) = T∃(P), it suffices to prove that for any tree t, a node
v ∈ P∃(t) if and only if ch-str(v) ∈ L(λ(q)) for q ∈ Q such that q0 ⇒A,anc-str(v)

q.
First, suppose v ∈ P∃(t). Then, for some i ≤ n, anc-str(v) ∈ L(ri) and

ch-str(v) ∈ L(si). By Lemma 91(4), and the definition of λ, q0 ⇒anc-str(v) q,
with λ(q) = si. But then, ch-str(v) ∈ L(λ(q)).

Conversely, suppose that for q such that q0 ⇒A,anc-str(v) q, ch-str(v) ∈
L(λ(q)) holds. Then, by Lemma 91(4), there is some i such that anc-str(v) ∈
L(ri), and by the definition of λ, ch-str(v) ∈ L(si). It follows that v ∈ P∃(t).

We have now shown that the construction is correct when all expressions
are of the form Σ∗w. We sketch the extension to the full class of strongly linear
expressions. Assume w.l.o.g. that there exists some m such that for i ≤ m,
ri = Σ∗wi and for i > m, ri = wi. Define S = {w | w ∈ Prefix(wi)∧1 ≤ i ≤ m}
in the same manner as above, and S′ = {w | w ∈ Prefix(wi) ∧m < i ≤ n}.
Define A = (Q, q′0, δ), with Q = {q0, q

′
0} ∪ S ∪ S′. Note that the elements of

S and S′ need not be disjoint. Therefore, we denote the states corresponding
to elements of S′ by primes, for instance ab ∈ S′ corresponds to the state
a′b′. Then, for any symbol a ∈ Σ, δ(q′0, a) = a′ if a ∈ S′; δ(q′0, a) = a if
a /∈ S′∧a ∈ S; and δ(q′0, a) = q0 otherwise. For a string w ∈ S′, δ(w′, a) = w′a′

if wa ∈ S′, δ(w′, a) is the longest suffix of wa in S if it exists and wa /∈ S′,
and δ(w′, a) = q0 otherwise. The transition function for q0 and the states
introduced by S remains the same. So, we have added a subautomaton to
A which starts by checking whether w = wi, for some i > m, much like a
suffix-tree, and switches to the normal operation of the original automaton if
this is not possible anymore.

Finally, the definition of λ again remains the same for q0 and the states
introduced by S. Further, λ(q′0) = ∅, and λ(w′) = ri if w ∈ L(ri) for some i,
1 ≤ i ≤ n, and λ(w′) = ∅ otherwise. The previous lemma can be extended
for this extended construction and the correctness of the construction follows
thereof.

(4),(10) This follows immediately from Theorem 85(4) and (9). The upper
bound carries over since every strongly linear schema is also a linear schema.
For the lower bound, observe that the schema used in the proofs of Theo-
rem 85(4) and (9) is strongly linear.

(5),(11) We give the proof for the existential semantics. By Theorem 89(7)
the result carries over immediately to the universal semantics.

The algorithm proceeds in a number of steps. First, construct an automaton-
based schema D1 such that L(D1) = T∃(P). By Theorem 89(3) this can be

138 Succinctness of Pattern-Based Schema Languages

done in polynomial time. Furthermore, the regular expressions in D1 are
copies of the horizontal expressions in P and are therefore also deterministic.
Then, translate D1 into a single-type EDTD D2 = (Σ, Σ′, d2, a, µ), which by
Lemma 78 can again be done in ptime and also maintains the determinism of
the used regular expressions. Then, we trim D2 which can be done in polyno-
mial time by Lemma 80(1) and also preserves the determinism of the expres-
sions in D2. Finally, we claim that L(D2) = T∃(P) is definable by a DTD if and
only if for every two types ai, aj ∈ Σ′ it holds that L(µ(d(ai))) = L(µ(d(aj))).
Since all regular expressions in D2 are deterministic, this can be tested in
polynomial time. We finally prove the above claim:

First, suppose that for every pair of types ai, aj ∈ Σ′ it holds that µ(d2(a
i))

= µ(d2(a
j)). Then, consider the DTD D = (Σ, d, s), where d(a) = µ(d2(a

i))
for some ai ∈ Σ′. Since all regular expression µ(d2(a

i)), with µ(ai) = a, are
equivalent, it does not matter which type we choose. Now, L(D) = L(D2)
which shows that L(D2) is definable by a DTD.

Conversely, suppose that there exist types ai, aj ∈ Σ′ such that µ(L(d(ai)))
6= µ(L(d(aj))). We show that L(D2) is not closed under ancestor-guarded
subtree exchange. From Lemma 79 it then follows that L(D2) is not definable
by a DTD. Since µ(L(d(ai))) 6= µ(L(d(aj))), there exists a string w such that
w ∈ µ(L(d(ai))) and w /∈ µ(L(d(aj))) or w /∈ µ(L(d(ai))) and w ∈ µ(L(d(aj))).
We consider the first case, the second is identical. Let t1 ∈ L(d2) be a tree
with some node v with labt1(v) = ai and ch-strt1(v) = w′ where µ(w′) =
w. Further, let t2 ∈ L(d2) be a tree with some node u with labt2(u) = aj .
Since D2 is trimmed, t1 and t2 must exist by Lemma 80(2). Now, define
t3 = µ(t2)[u ← µ(subtreet1(v))] which is obtained from µ(t1) and µ(t2) by
label-guarded subtree exchange. Because D2 is a single-type EDTD, it must
assign the type aj to node u in t3. However, ch-strt3(u) = w /∈ µ(L(d(aj)))
and thus t3 /∈ L(D3). This shows that D2 is not closed under label-guarded
subtree exchange.

(6),(12) We first show that P∀(Det-S-Lin) 6→ DTD and then P∃(S-Lin)
poly

6→
DTD. Since deterministic strongly-linear schemas are a subset of strongly-
linear schemas and since we can translate a strongly-linear schema with univer-
sal semantics into an equivalent one with existential semantics in polynomial
time (Theorem 89(7)), all other results follow.

First, to show that P∀(Det-S-Lin) 6→ DTD, let ΣP = {a, b, c, d, e, f} and
P = {(a, b + c), (ab, d), (ac, d), (abd, ε), (acd, f), (acdf, ε)}. Here, a(b(d)) ∈
T∀(P) and a(c(d(f))) ∈ T∀(P) but a(b(d(f))) /∈ T∀(P). Therefore, T∀(P)
is not closed under ancestor-guarded subtree exchange and by Lemma 79 is
not definable by a DTD.

To show that P∃(S-Lin)
poly

6→ DTD, note that the algorithm in the above

7.4. Strongly Linear Pattern-Based Schemas 139

proof also works when the horizontal regular expressions are not deterministic.
The total algorithm then becomes pspace, because we have to test equivalence
of regular expressions. However, the DTD D is still constructed in polynomial
time, which completes this proof.

8
Optimizing XML Schema
Languages

As mentioned before, XML is the lingua franca for data exchange on the
Internet [1]. Within applications or communities, XML data is usually not
arbitrary but adheres to some structure imposed by a schema. The presence
of such a schema not only provides users with a global view on the anatomy
of the data, but far more importantly, it enables automation and optimiza-
tion of standard tasks like (i) searching, integration, and processing of XML
data (cf., e.g., [28, 69, 73, 109]); and, (ii) static analysis of transformations
(cf., e.g., [5, 56, 74, 87]). Decision problems like equivalence, inclusion and
non-emptiness of intersection of schemas, hereafter referred to as the basic de-
cision problems, constitute essential building blocks in solutions for the just
mentioned optimization and static analysis problems. Additionally, the basic
decision problems are fundamental for schema minimization (cf., e.g., [25, 78]).
Because of their widespread applicability, it is therefore important to estab-
lish the exact complexity of the basic decision problems for the various XML
schema languages.

The most common schema languages are DTD, XML Schema [100], and
Relax NG [22] and can be modeled by grammar formalisms [85]. In partic-
ular, DTDs correspond to context-free grammars with regular expressions at
right-hand sides, while Relax NG is usually abstracted by extended DTDs
(EDTDs) [88] or equivalently, unranked tree automata [16], defining the regu-
lar unranked tree languages. XML Schema is usually abstracted by single-type

142 Optimizing XML Schema Languages

shop → regular∗ & discount-box∗

regular → cd
discount-box → cd10,12 price
cd → artist & title & price

Figure 8.1: A sample schema using the numerical occurrence and interleave
operators. The schema defines a shop that sells CDs and offers a special price
for boxes of 10–12 CDs.

EDTDs. As detailed in [75], the relationship between schema formalisms and
grammars provides direct upper and lower bounds for the complexity of the
basic decision problems.

A closer inspection of the various schema specifications reveals that the
above abstractions in terms of grammars with regular expressions is too coarse.
Indeed, in addition to the conventional regular expression operators like con-
catenation, union, and Kleene-star, the XML Schema and the Relax NG spec-
ification allow two other operators as well. The XML Schema specification
allows to express counting or numerical occurrence constraints which define
the minimal and maximal number of times a regular construct can be repeated.
Relax NG allows unordered concatenation through the interleaving operator,
which is also present in XML Schema in a restricted form. Finally, both DTD
and XML Schema require expressions to be deterministic.

We illustrate these additional operators in Figure 8.1. Although the new
operators can be expressed by the conventional regular operators, they can-
not do so succinctly (see Chapter 4), which has severe implications on the
complexity of the basic decision problems.

The goal of this chapter is to study the impact of these counting and inter-
leaving operators on the complexity of the basic decision problems for DTDs,
XSDs, and Relax NG. As observed in Section 8.1, the complexity of inclu-
sion and equivalence of RE(#, &) expressions (and subclasses thereof) carries
over to DTDs and single-type EDTDs. Therefore, the results in Chapter 5,
concerning (subclasses) of RE(#, &) and Section 6.7, concerning deterministic
expressions with counting, immediately give us complexity bounds for the ba-
sic decision problems for a wide range of subclasses of DTDs and single-type
EDTDs. For EDTDs, this immediate correspondence does not hold anymore.
Therefore, we study the complexity of the basic decision problems for EDTDs
extended with counting and interleaving operators. Finally, we revisit the
simplification problem introduced in [77] for schemas with RE(#, &) expres-
sions. This problem is defined as follows: given an extended DTD, can it be
rewritten into an equivalent DTD or a single-type EDTD?

Outline. In Sections 8.1 and 8.2, we establish the complexity of the basic

8.1. Complexity of DTDs and Single-Type EDTDs 143

decision problems for DTDs and single-type EDTDs, and EDTDs, respectively.
We discuss simplification in Section 8.3.

8.1 Complexity of DTDs and Single-Type EDTDs

In this section, we establish the complexity of the basic decision problems
for DTDs and single-type EDTDs with extended regular expressions. This is
mainly done by showing that the results on extended regular expressions of
Section 5.2 often carry over literally to DTDs and single-type EDTDs.

We call a complexity class C closed under positive reductions if the following
holds for every O ∈ C. Let L′ be accepted by a deterministic polynomial-time
Turing machine M with oracle O (denoted L′ = L(MO)). Let M further have
the property that L(MA) ⊆ L(MB) whenever L(A) ⊆ L(B). Then L′ is also
in C. For a more precise definition of this notion we refer the reader to [54].
For our purposes, it is sufficient that important complexity classes like ptime,
np, conp, pspace, and expspace have this property, and that every such class
contains ptime. The following two propositions have been shown to hold for
standard regular expressions in [75]. However, their proofs carry over literally
to all subclasses of RE(#, &).

Proposition 92 ([75]). Let R be a subclass of RE(#, &) and let C be a
complexity class closed under positive reductions. Then the following are
equivalent:

(a) inclusion for R expressions is in C.

(b) inclusion for DTD(R) is in C.

(c) inclusion for EDTDst(R) is in C.

The corresponding statement holds for equivalence.

Clearly, any lower bound on the complexity of equivalence and inclu-

sion of a class of regular expressions R also carries over to DTD(R) and
EDTDst(R). Hence the results on the equivalence and inclusion problem
of Section 5.2 and Section 6.7 all carry over to DTDs and single-type EDTDs.
For instance, equivalence and inclusion for EDTDst(#), EDTDst(#,&),
and DTD(&) are expspace-complete, while these problems are in pspace for

EDTDst(DRE#
S).

The previous proposition can be generalized to intersection of DTDs as
well.

144 Optimizing XML Schema Languages

Proposition 93 ([75]). Let R be a subclass of RE(#, &) and let C be a
complexity class which is closed under positive reductions. Then the following
are equivalent:

(a) intersection for R expressions is in C.

(b) intersection for DTD(R) is in C.
Hence, also the results on intersection of Section 5.2 carry over to DTDs,

and any lower bound on intersection for R expressions carries over to
DTD(R) and EDTDst(R). Hence, for example intersection for DTD(#,&)

and DTD(DRE#
W) are pspace-complete. The only remaining problem is in-

tersection for single-type EDTDs. Although the above proposition does not
hold for single-type EDTDs, we can still establish complexity bounds for them.
Indeed, intersection for EDTDst(RE) is exptime-hard and in the next sec-
tion we will see that even for EDTD(#,&) intersection remains in exptime.
It immediately follows that intersection for EDTDst(#), EDTDst(&), and
EDTDst(#,&) is also exptime-complete.

8.2 Complexity of Extended DTDs

We next consider the complexity of the basic decision problems for EDTDs
with numerical occurrence constraints and interleaving. Here, we do not con-
sider deterministic expressions as EDTDs are the abstraction of Relax NG,
which does not require expressions to be deterministic. As the basic decision
problems are exptime-complete for EDTD(RE), the straightforward approach
of translating every RE(#, &) expression into an NFA and then applying the
standard algorithms gives rise to a double exponential time complexity. By
using the NFA(#, &) introduced in Section 5.1, we can do better: expspace

for inclusion and equivalence, and, more surprisingly, exptime for inter-

section.

Theorem 94. (1) equivalence and inclusion for EDTD(#,&) are in ex-

pspace;

(2) equivalence and inclusion for EDTD(#) and EDTD(&) are expspace-
hard; and,

(3) intersection for EDTD(#,&) is exptime-complete.

Proof. (1) We show that inclusion is in expspace. The upper bound for
equivalence then immediately follows.

First, we introduce some notation. For an EDTD D = (Σ, Σ′, d, s, µ),
we will denote elements of Σ′, i.e., types, by τ . We denote by (D, τ) the

8.2. Complexity of Extended DTDs 145

EDTD D with start symbol τ . We define the depth of a tree t, denoted by
depth(t), as follows: if t = ε, then depth(t) = 0; and if t = σ(t1 · · · tn), then
depth(t) = max{depth(ti) | i ∈ {1, . . . , n}}+ 1.

Suppose that we have two EDTDs D1 = (Σ, Σ′
1, d1, s1, µ1) and D2 =

(Σ, Σ′
2, d2, s2, µ2). We provide an expspace algorithm that decides whether

L(D1) 6⊆ L(D2). As expspace is closed under complement, the theorem fol-
lows. The algorithm computes a set E of pairs (C1, C2) ∈ 2Σ′

1 × 2Σ′
2 where

(C1, C2) ∈ E if and only if there exists a tree t such that Cj = {τ ∈ Σ′
j | t ∈

L((Dj , τ))} for each j = 1, 2. That is, every Cj is the set of types that can be
assigned by Dj to the root of t. Or when viewing Dj as a tree automaton, Cj

is the set of states that can be assigned to the root in a run on t. Therefore,
we say that t is a witness for (C1, C2). Notice that t ∈ L(D1) (respectively,
t ∈ L(D2)) if s1 ∈ C1 (respectively, s2 ∈ C2). Hence, L(D1) 6⊆ L(D2) if and
only if there exists a pair (C1, C2) ∈ E with s1 ∈ C1 and s2 6∈ C2.

We compute the set E in a bottom-up manner as follows:

1. Initially, set E1 := {(C1, C2) | ∃a ∈ Σ, τ1 ∈ Σ′
1, τ2 ∈ Σ′

2 such that
µ1(τ1) = µ2(τ2) = a, and for i = 1, 2, Ci = {τ ∈ Σ′

i | ε ∈ di(τ) ∧ µi(τ) =
a}}.

2. For every k > 1, Ek is the union of Ek−1 and the pairs (C1, C2) for which
there are a ∈ Σ, n ∈ N and a string (C1,1, C2,1) · · · (C1,n, C2,n) in E∗

k−1

such that

Cj = {τ ∈ Σ′
j | µj(τ) = a,∃bj,1 ∈ Cj,1, . . . , bj,n ∈ Cj,n

with bj,1 · · · bj,n ∈ dj(τ)}, for each j = 1, 2.

Let E := Eℓ for ℓ = 2|Σ
′
1| · 2|Σ′

2|. The algorithm then accepts when there is a
pair (C1, C2) ∈ E with s1 ∈ C1 and s2 6∈ C2 and rejects otherwise.

We argue that the algorithm is correct. As Ek ⊆ Ek+1, for every k, it
follows that Eℓ = Eℓ+1. Hence, the algorithm computes the largest set of
pairs. The following lemma then shows that the algorithm decides whether
L(D1) 6⊆ L(D2). The lemma can be proved by induction on k.

Lemma 95. For every k ≥ 1, (C1, C2) ∈ Ek if and only if there exists a
witness tree for (C1, C2) of depth at most k.

It remains to show that the algorithm can be carried out using exponen-
tial space. Step (1) reduces to a linear number of tests ε ∈ L(r), for some
RE(#, &) expressions r which is in ptime by [64]. Step (3) can be carried out
in exponential time, since the size of E is exponential in the input. For step
(2), it suffices to argue that, when Ek−1 is known, it is decidable in expspace

146 Optimizing XML Schema Languages

whether a pair (C1, C2) is in Ek. As there are only an exponential number
of such possible pairs, the result follows. To this end, we need to verify that
there exists a string W = (C1,1, C2,1) · · · (C1,n, C2,n) in E∗

k−1 such that for each
j = 1, 2,

(A) for every τ ∈ Cj , there exist bj,1 ∈ Cj,1, . . . , bj,n ∈ Cj,n with bj,1 · · · bj,n ∈
dj(τ); and,

(B) for every τ ∈ Σ′
j \ Cj , there do not exist bj,1 ∈ Cj,1, . . . , bj,n ∈ Cj,nwith

bj,1 · · · bj,n ∈ dj(τ).

Assume that Σ′
1 ∩ Σ′

2 = ∅. Let, for each j = 1, 2 and τ ∈ Σ′
j , N(τ) be the

NFA(#, &) accepting dj(τ). Intuitively, we guess the string W one symbol at
a time and compute the set of reachable configurations Γτ for each N(τ).

Initially, Γτ is the singleton set containing the initial configuration of N(τ).
Suppose that we have guessed a prefix (C1,1, C2,1) · · · (C1,m−1, C2,m−1) of W
and that we guess a new symbol (C1,m, C2,m). Then, we compute the set
Γ′

τ = {γ′ | ∃b ∈ Cj,m, γ ∈ Γτ such that γ ⇒N(τ),b γ′} and set Γτ to Γ′
τ . Each

set Γ′
τ can be computed in exponential space from Γτ . We accept (C1, C2) when

for every τ ∈ Σ′
j , τ ∈ Cj if and only if Γτ contains an accepting configuration.

(2) It is shown by Mayer and Stockmeyer [79] and Meyer and Stockmeyer [83]
that equivalence and inclusion are expspace-hard for RE(&)s and RE(#),
respectively. Hence, equivalence and inclusion are also expspace-hard for
EDTD(&) and EDTD(#).

(3) The lower bound follows from [99]. We argue that the problem is in
exptime. Thereto, let, for each i ∈ {1, . . . , n}, Di = (Σ, Σ′

i, di, si, µi) be an
EDTD(#,&). We assume w.l.o.g. that the sets Σ′

i are pairwise disjoint. We
also assume that the start type si never appears at the right-hand side of a
rule. Finally, we assume that no derivation tree consists of only the root.
For each type τ ∈ Σ′

i, let N(τ) denote an NFA(#, &) for di(τ). According
to Theorem 42, N(τ) can be computed from di(τ) in polynomial time. We
provide an alternating polynomial space algorithm that guesses a tree t and
accepts if t ∈ L(D1) ∩ · · · ∩ L(Dn). As apspace = exptime [19], this proves
the theorem.

We guess t node by node in a top-down manner. For every guessed node
v, the following information is written on the tape of the Turing machine: for
every i ∈ {1, . . . , n}, the triple ci = (τ i

v, τ
i
p, γ

i) where τ i
v is the type assigned

to v by grammar Di, τ i
p is the type of the parent assigned by Di, and γi is the

current configuration N(τ i
p) is in after reading the string formed by the left

siblings of v. In the following, we say that τ ∈ Σ′
i is an a-type when µi(τ) = a.

The algorithm proceeds as follows:

8.3. Simplification 147

1. As for each grammar the types of the roots are given, we start by guessing
the first child of the root. That is, we guess an a ∈ Σ, and for each
i ∈ {1, . . . , n}, we guess an a-type τ i and write the triple ci = (τ i, si, γ

i
s)

on the tape where γi
s is the start configuration of N(si).

2. For i ∈ {1, . . . , n}, let ci = (τ i, τ i
p, γ

i) be the triples on the tape. The
algorithm now universally splits into two parallel branches as follows:

(a) Downward extension: When for every i, ε ∈ di(τ
i) then the

current node can be a leaf node and the branch accepts. Otherwise,
guess an a ∈ Σ and for each i, guess an a-type θi. Replace every
ci by the triple (θi, τ i, γi

s) and proceed to step (2). Here, γi
s is the

start configuration of N(τ i).

(b) Extension to the right: For every i ∈ {1, . . . , n}, compute a
configuration γ′i for which γi ⇒N(τ i

p),τ i γ′i. When every γ′i is a
final configuration, then we do not need to extend to the right
anymore and the algorithm accepts. Otherwise, guess an a ∈ Σ
and for each i, guess an a-type θi. Replace every ci by the triple
(θi, τ i, γ′i) and proceed to step (2).

We argue that the algorithm is correct. If the algorithm accepts, we have
guessed a tree t and, for every i ∈ {1, . . . , n}, a tree t′i with µi(t

′
i) = t and

t′i ∈ L(di). Therefore, t ∈ ⋂n
i=1 L(Di). For the other direction, suppose

that there exists a tree t ∈ ⋂n
i=1 L(Di) and t is minimal in the sense that no

subtree t0 of t is in
⋂n

i=1 L(Di). Then, there is a run of the above algorithm
that guesses t and guesses trees t′i with µi(t

′
i) = t. The tree t must be minimal

since the algorithm stops extending the tree as soon as possible.
The algorithm obviously uses only polynomial space.

8.3 Simplification

In this section, we study the simplification problem a bit more broadly than
before. Given an EDTD, we are interested in knowing whether it has an
equivalent EDTD of a restricted type, i.e., an equivalent DTD or single-type
EDTD. In [77], this problem was shown to be exptime-complete for EDTDs
with standard regular expressions. We revisit this problem in the context of
RE(#, &).

We need a bit of terminology. We say that a tree language L is closed under
ancestor-guarded subtree exchange if the following holds. Whenever for two
trees t1, t2 ∈ L with nodes u1 ∈ Dom(t1) and u2 ∈ Dom(t2), anc-strt1(u1) =
anc-strt2(u2) implies t1[u1 ← subtreet2(u2)] ∈ L.

We recall the following theorem from [77]:

148 Optimizing XML Schema Languages

Theorem 96 (Theorem 7.1 in [77]). Let L be a tree language defined by an
EDTD. Then the following conditions are equivalent.

(a) L is definable by a single-type EDTD.

(b) L is closed under ancestor-guarded subtree exchange.

We are now ready for the following theorem.

Theorem 97. Given an EDTD(#,&), deciding whether it is equivalent to an
EDTDst(#,&) or DTD(#,&) is expspace-complete.

Proof. We first show that the problem is hard for expspace. We use a reduc-
tion from equivalence of RE(#), which is expspace-complete [83].

Let r1, r2 be RE(#) expressions over Σ and let b and s be two symbols
not occurring in Σ. By definition L(rj) 6= ∅, for j = 1, 2. Define D =
(Σ ∪ {b, s}, Σ ∪ {s, b1, b2}, d, s, µ) as the EDTD with the following rules:

s → b1b2

b1 → r1

b2 → r2,

where for every τ ∈ Σ ∪ {s}, µ(τ) = τ , and µ(b1) = µ(b2) = b. We claim that
D is equivalent to a single-type DTD or a DTD if and only if L(r1) = L(r2).
Clearly, if r1 is equivalent to r2, then D is equivalent to the DTD (and therefore
also to a single-type EDTD)

s → bb
b → r1.

Conversely, suppose that there exists an EDTDst which defines the language
L(D). Towards a contradiction, assume that r1 is not equivalent to r2. So,
there exists a string w1 such that w1 ∈ L(r1) and w1 /∈ L(r2), or w1 /∈ L(r1)
and w1 ∈ L(r2). We only consider the first case, the second is identical. Now,
let w2 be a string in L(r2) and consider the tree t = s(b(w1)b(w2)). Clearly, t
is in L(D). However, the tree t′ = s(b(w2)b(w1)) obtained from t by switching
its left and right subtree is not in L(D). According to Theorem 96, every tree
language defined by a single-type EDTD is closed under such an exchange of
subtrees. So, this means that L(D) cannot be defined by an EDTDst, which
leads to the desired contradiction.

We now proceed with the upper bounds. The following algorithms are
along the same lines as the EXPTIME algorithms in [77] for the simplification
problem without numerical occurrence or interleaving operators. We first give
an expspace algorithm which decides whether an EDTD is equivalent to an

8.3. Simplification 149

EDTDst. Let D = (Σ, Σ′, d, s, µ) be an EDTD. Intuitively, we compute an
EDTDst D0 = (Σ, Σ′

0, d0, s, µ0) which is the closure of D under the single-type
property. The EDTDst D0 has the following properties:

(a) Σ′
0 is in general exponentially larger than Σ′;

(b) the RE(#, &) expressions in the definition of d0 are only polynomially
larger than the RE(#, &) expressions in the definition of d;

(c) L(D) ⊆ L(D0); and,

(d) L(D0) = L(D) ⇔ D is equivalent to a EDTDst.

Hence, D is equivalent to an EDTDst if and only if L(D0) ⊆ L(D).

We first show how D0 can be constructed. We can assume w.l.o.g. that,
for each type ai ∈ Σ′, there exists a tree t′ ∈ L(d) such that ai is a label in t′.
Indeed, every useless type can be removed from D in a simple preprocessing
step. Then, for a string w ∈ Σ∗ and a ∈ Σ let types(wa) be the set of all types
ai ∈ Σ′, for which there is a tree t and a tree t′ ∈ L(d) with µ(t′) = t, and a
node v in t such that anc-strt(v) = wa and the type of v in t′ is ai. We show
how to compute types(wa) in exponential time. To this end, we enumerate
all sets types(w). Let s = c1. Initially, set W := {c}, Types(c) := {c1} and
R := {{c1}}. Repeat the following until W becomes empty:

(1) Remove a string wa from W .

(2) For every b ∈ Σ, let Types(wab) contain all bi for which there exists an
aj in Types(wa) and a string in d(aj) containing bi. If Types(wab) is not
empty and not already in R, then add it to R and add wab to W .

Since we add every set only once to R, the algorithm runs in time exponential
in the size of D. Moreover, we have that Types(w) = types(w) for every w,
and that R = Σ′

0.

For each a ∈ Σ, let types(D, a) be the set of all nonempty sets types(wa),
with w ∈ Σ∗. Clearly, each types(D, a) is finite. We next define D0 =
(Σ, Σ′

0, d0, s, µ0). Its set of types is Σ′
0 :=

⋃
a∈Σ types(D, a). Note that s ∈ Σ′

0.
For every τ ∈ types(D, a), set µ0(τ) = a. In d0, the right-hand side of the rule
for each types(wa) is the disjunction of all d(ai) for ai ∈ types(wa), with each
bj in d(ai) replaced by types(wab).

We show that properties (a)–(d) hold. Since Σ′
0 ⊆ 2Σ′

, we immediately
have that (a) holds. The RE(#, &) expressions that we constructed in D0 are
unions of a linear number of RE(#, &) expressions in D, but have types in
2Σ′

rather than in Σ′. Hence, the size of the RE(#, &) expressions in D0 is at

150 Optimizing XML Schema Languages

most quadratic in the size of D. Finally, we note that it has been shown in
Theorem 7.1 in [77] that (c) and (d) also hold.

It remains to argue that it can be decided in expspace that L(D0) ⊆
L(D). A direct application of the expspace algorithm in Theorem 94(1)
leads to a 2expspace algorithm to test whether L(D0) ⊆ L(D), due to the
computation of C1. Indeed, the algorithm remembers, given the EDTDs D0 =
(Σ, Σ′

0, d0, s0, µ0) and D = (Σ, Σ′, d, s, µ), all possible pairs (C1, C2) such that
there exists a tree t with C1 = {τ ∈ Σ′

0 | t ∈ L((D0, τ))} and C2 = {τ ∈
Σ′ | t ∈ L((D, τ))}. It then accepts if there exists such a pair (C1, C2) with
s0 ∈ C1 and s 6∈ C2. However, when we use non-determinism, notice that it is
not necessary to compute the entire set C1. Indeed, as we only test whether
there exist elements in C1 in the entire course of the algorithm, we can adapt
the algorithm to compute pairs (c1, C2), where c1 is an element of C1, rather
than the entire set. Since nexpspace = expspace, we can use this adaption
to test whether L(D0) ⊆ L(D) in expspace.

Finally, we give the algorithm which decides whether an EDTD D = (Σ, Σ′,
d, s, µ) is equivalent to a DTD. We compute a DTD (Σ, d0, sd) which is equiv-
alent to D if and only if L(D) is definable by a DTD. Thereto, let for each
ai ∈ Σ′, ra,i be the expression obtained from d(ai) by replacing each symbol
bj in d(ai) by b. For every a ∈ Σ, define d0(a) =

⋃
ai∈Σ′ ra,i. Again, it is

shown in [77] that L(D) = L(d0) if and only if L(D) is definable by a DTD.
By Theorem 94(1) and since d0 is of size polynomial in the size of D, this can
be tested in expspace.

9
Handling Non-Deterministic
Regular Expressions

At several places already in this thesis we have discussed the requirement in
DTD and XML Schema of regular expressions to be deterministic. Unfortu-
nately, the Unique Particle Attribution (UPA) constraint, as determinism is
called in XML Schema, is a highly non-transparent one. The sole motivation
for this restriction is backward compatibility with SGML, a predecessor of
XML, where it was introduced for the reason of fast unambiguous parsing of
content models (without lookahead) [103]. Sadly this notion of unambiguous
parsing is a semantic rather than a syntactic one, making it difficult for de-
signers to interpret. Specifically, the XML Schema specification mentions the
following definition of UPA:

A content model must be formed such that during validation of an
element information item sequence, the particle component con-
tained directly, indirectly or implicitly therein with which to at-
tempt to validate each item in the sequence in turn can be uniquely
determined without examining the content or attributes of that
item, and without any information about the items in the remain-
der of the sequence. [italics mine]

In most books (c.f. [103]), the UPA constraint is usually explained in terms
of a simple example rather than by means of a clear syntactical definition.
The latter is not surprising as to date there is no known easy syntax for de-
terministic regular expressions. That is, there are no simple rules a user can

152 Handling Non-Deterministic Regular Expressions

apply to define only (and all) deterministic regular expressions. So, when after
the schema design process, one or several content models are rejected by the
schema checker on account of being nondeterministic, it is very difficult for
non-expert1 users to grasp the source of the error and almost impossible to
rewrite the content model into an admissible one. The purpose of the present
chapter is to investigate methods for transforming nondeterministic expres-
sions into concise and readable deterministic ones defining either the same
language or constituting good approximations. We propose the algorithm
supac (Supportive UPA Checker) which can be incorporated in a responsive
XSD tester which in addition to rejecting XSDs violating UPA also suggests
plausible alternatives. Consequently, the task of designing an XSD is relieved
from the burden of the UPA restriction and the user can focus on designing
an accurate schema. In addition, our algorithm can serve as a plug-in for any
model management tool which supports export to XML Schema format [6].

Deterministic regular expressions were investigated in a seminal paper by
Brüggemann-Klein and Wood [17]. They show that deciding whether a given
regular expression is deterministic can be done in quadratic time. In addition,
they provide an algorithm, that we call bkwdec, to decide whether a regular
language can be represented by a deterministic regular expression. bkwdec

runs in time quadratic in the size of the minimal deterministic finite automaton
and therefore in time exponential in the size of the regular expression. We
prove in this chapter that the problem is hard for pspace thereby eliminating
much of the hope for a theoretically tractable algorithm. We tested bkwdec

on a large and diverse set of regular expressions and observed that it runs
very fast (under 200ms for expressions with 50 alphabet symbols). It turns
out that, for many expressions, the corresponding minimal DFA is quite small
and far from the theoretical worst-case exponential size increase. In addition,
we observe that bkwdec is fixed-parameter tractable in the maximal number
of occurrences of the same alphabet symbol. As this number is very small
for the far majority of real-world regular expressions [9], applying bkwdec in
practice should never be a problem.

Deciding existence of an equivalent deterministic regular expression or ef-
fectively constructing one, are entirely different matters. Indeed, while the
decision problem is in exptime, Brüggemann-Klein and Wood [17] provide
an algorithm, which we will call bkw, which constructs deterministic regular
expressions whose size can be double exponential in the size of the original
expression. In this chapter, we measure the size of an expression as the total
number of occurrences of alphabet symbols. The first exponential size increase
stems from creating the minimal deterministic automaton Ar equivalent to the

1In formal language theory.

153

given nondeterministic regular expression r. The second one stems from trans-
lating the automaton into an expression. Although it is unclear whether this
double exponential size increase can be avoided, examples are known for which
a single exponential blow-up is necessary [17]. We define an optimized version
of bkw, called bkw-opt, which optimizes the second step in the algorithm
and can produce exponentially smaller expressions than bkw. Unfortunately,
the obtained expressions can still be very large. For instance, as detailed in
the experiments section, for input expressions of size 15, bkw and bkw-opt

generate equivalent deterministic expressions of average size 1577 and 394,
respectively. To overcome this, we propose the algorithm grow. The idea
underlying this algorithm is that small deterministic regular expressions cor-
respond to small Glushkov automata [17]: indeed, every deterministic regular
expression r can be translated in a Glushkov automaton with as many states
as there are alphabet symbols in r. Therefore, when the minimal automaton
Ar is not Glushkov, grow tries to extend Ar such that it becomes Glushkov.
To translate the Glushkov automaton into an equivalent regular expression,
we use the existing algorithm rewrite [9]. Our experiments show that when
grow succeeds in finding a small equivalent deterministic expression its size
is always roughly that of the input expression. In this respect, it is greatly
superior to bkw and bkw-opt. Nevertheless, its success rate is inversely
proportional to the size of the input expression (we refer to Section 9.4.2 for
details).

Next, we focus on the case when no equivalent deterministic regular expres-
sion can be constructed for a given nondeterministic regular expression and
an adequate super-approximation is needed. We start with a fairly negative
result: we show that there is no smallest super-approximation of a regular
expression r within the class of deterministic regular expressions. That is,
whenever L(r) (L(s), and s is deterministic, then there is a deterministic
expression s′ with L(r) (L(s′) (L(s). We therefore measure the proximity
between r and s relative to the strings up to a fixed length. Using this measure
we can compare the quality of different approximations. We consider three al-
gorithms. The first one is an algorithm of Ahonen [3] which essentially repairs
bkw by adding edges to the minimal DFA whenever it gets stuck. The sec-
ond algorithm operates like the first one but utilizes grow rather than bkw

to generate the corresponding deterministic regular expression. The third
algorithm, called shrink, merges states, thereby generalizing the language,
until a regular language is obtained with a corresponding concise determinis-
tic regular expression. For the latter, we again make use of grow, and of the
algorithm koa-to-kore of [8] which transforms automata to concise regular
expressions. In our experimental study, we show in which situation which of
the algorithms works best.

154 Handling Non-Deterministic Regular Expressions

Finally, based on the experimental assessment, we propose the algorithm
supac (supportive UPA checker) for handling non-deterministic regular ex-
pressions. supac makes use of several of the aforementioned algorithms and
can be incorporated in a responsive XSD checker to automatically deal with
the UPA constraint.

Related Work. Although XML is accepted as the de facto standard for data
exchange on the Internet and XML Schema is widely used, fairly little atten-
tion has been devoted to the study of deterministic regular expressions. We
already mentioned the seminal paper by Bruggemann-Klein and Wood [17].
Computational and structural properties were addressed by Martens, Neven,
and Schwentick [75]. They show that testing non-emptiness of an arbitrary
number of intersections of deterministic regular expressions is pspace-complete.
Bex et al. investigated algorithms for the inference of regular expressions from
a sample of strings in the context of DTDs and XML Schemas [8, 9, 11, 12].
From this investigation resulted two algorithms: rewrite [9] which trans-
forms automata with n states to equivalent expressions with n alphabet sym-
bols and fails when no such expression exists; and the algorithm koa-to-kore

[8, 9] which operates as rewrite with the difference that it always returns a
concise expression at the expense of generalizing the language when no equiv-
alent concise expression exists.

Deciding determinism of expressions containing numerical occurrences was
studied by Kilpeläinen and Tuhkanen [66]. The complexity of syntactic sub-
classes of the deterministic regular expressions with counting has also been
considered [43, 44]. In the context of streaming the notion of determinism and
k-determinism was used in [68] and [20].

The presented work would clearly benefit from algorithms for regular ex-
pression minimization. To the best of our knowledge, no such (efficient) al-
gorithms exist for deterministic regular expressions, for which minimization is
in np. Only a sound and complete rewriting system is available for general
regular expressions [95], for which minimization is pspace-complete.

Outline. The outline of the chapter is as follows. In Section 9.1, we discuss
the complexity of deciding determinism of the underlying regular language.
In Section 9.2 and 9.3, we discuss the construction of equivalent and super-
approximations of regular expressions, respectively. We present an experimen-
tal validation of our algorithms in Section 9.4. We outline a supportive UPA
checker in Section 9.5.

9.1. Deciding Determinism 155

9.1 Deciding Determinism

The first step in creating a responsive UPA checker is testing whether L(r) is
deterministic. Brüggemann-Klein and Wood obtained an exptime algorithm
(in the size of the regular expression) which we will refer to as bkwdec:

Theorem 98 ([17]). Given a regular expression r, the algorithm bkwdec de-
cides in time quadratic in the size of the minimal DFA corresponding to r
whether L(r) is deterministic.

We show that, unless pspace = ptime, there is no hope for a theoretically
tractable algorithm.

Theorem 99. Given a regular expression r, the problem of deciding whether
L(r) is deterministic is pspace-hard.

Proof. We reduce from the corridor tiling problem, introduced in Sec-
tion 5.1. However, we restrict ourselves to those tiling instances for which
there exists at most one correct corridor tiling. Notice that we can assume
this without loss of generality: From the master reduction from Turing Ma-
chine acceptance to corridor tiling in [104], it follows that the number
of correct tilings of the constructed tiling system is precisely the number of
accepting runs of the Turing Machine on its input word. As the acceptance
problem for polynomial space bounded Turing Machines is already pspace-
complete for deterministic machines, we can assume w.l.o.g. that the input
instance of corridor tiling has at most one correct corridor tiling.

Now, let T be a tiling instance for which there exists at most one correct
tiling. We construct a regular expression r, such that L(r) is deterministic
if and only if there does not exist a corridor tiling for T . Before giving the
actual definition of r, we give the language it will define and show this is
indeed deterministic if and only if corridor tiling for T is false. We encode
corridor tilings by a string in which the different rows are separated by the
symbol $, that is, by strings of the form

$R1$R2$ · · · Rm

in which each Ri represents a row and is therefore in Xn. Moreover, R1 is the
bottom row and Rn is the top row.

Then, let Σ = X ⊎ {a, $, #} and for a symbol b ∈ Σ, let Σb denote Σ \
{b}. Then, L(r) = Σ∗ \ {w1#w2 | w1 encodes a valid tiling for T and w2 ∈
Σ∗

#Σa,#Σ#}. First, if there does not exist a valid tiling for T , then L(r) = Σ∗

and thus L(r) is deterministic. Conversely, if there does exist a valid corridor
tiling for T , then by our assumption, there exists exactly one. A DFA for L(r)

156 Handling Non-Deterministic Regular Expressions

is graphically illustrated in Figure 9.1. Notice that this DFA is the minimal
DFA if and only if w1 exists. By applying the algorithm of Brüggemann-
Klein and Wood (Algorithm 4), it is easily seen that L(r) is not deterministic.
Indeed, Algorithm 4 gets immediately stuck in line 17, where it sees that the
gates in the orbit consisting of the three rightmost states in Figure 9.1 are not
all final states. Hence, this minimal DFA does not satisfy the orbit property.

Our regular expression r now consists of the disjunction of the following
regular expressions:2

• Σ∗#Σ∗#Σ∗ + Σ∗
#: This expression detects strings that do not have ex-

actly one occurrence of #.

• Σ∗#Σ?: This expression detects strings that have # as last or second to
last symbol.

• Σ∗
#Σ∗aΣ: This expression detects strings that have a as second to last

symbol.

• Σ∗aΣ∗#Σ∗: This expression detects strings that have an a before the
#-sign.

• Σ$Σ
∗ + Σ∗Σ$#Σ∗: This expression detects strings that do not have a

$-sign as the first or last element of their encoding.

• Σ∗$Σ
[0,n−1]
$ $Σ∗#Σ∗ +Σ∗$Σ

[n+1,n+1]
$ Σ∗

$$Σ∗#Σ∗: This expression detects
all string in which a row in the tiling encoding is too short or too long.

• Σ∗x1x2Σ
∗#Σ∗, for every x1, x2 ∈ X, (x1, x2) /∈ H: These expressions

detect all violations of horizontal constraints in the tiling encoding.

• Σ∗x1Σ
nx2Σ

∗#Σ∗, for every x1, x2 ∈ X, (x1, x2) /∈ V : These expressions
detect all violations of vertical constraints in the tiling encoding.

• Σi+1Σbi
Σ∗#Σ∗ for every 1 ≤ i < n: These expressions detect all tilings

which do not have b as the bottom row in the tiling encoding.

• Σ∗Σti
Σn−i#Σ∗ for every 1 ≤ i < n: These expressions detect all tilings

which do not have t as the top row in the tiling encoding.

Finally, it is easily verified that L(r) is defined correctly.

It is unclear whether the problem itself is in pspace. Simply guessing
a deterministic regular expression s and testing equivalence with r does not
work as the size of s can be exponential in the size of r (see also Theorem 102).

Next, we address the problem from the viewpoint of parameterized com-
plexity [34], where an additional parameter k is extracted from the input r.
Then, we say that a problem is fixed parameter tractable if there exists a com-
putable function f and a polynomial g such that the problem can be solved in

2Notice that r itself does not have to be deterministic.

9.2. Constructing Deterministic Expressions 157

start
w1

Σ$

#

Σ#

Σa,#

a

#

Σ#

#

Σa,#

a

#Σ

Figure 9.1: DFA for L(r) in the proof of Theorem 99.

time f(k) · g(|r|). Intuitively, this implies that, if k is small and f is reason-
able, the problem is efficiently solvable. We now say that an expression r is a
k-occurrence regular expression (k-ORE) if every alphabet symbol occurs at
most k times in r. For example, ab(a∗ + c) is a 2-ORE because a occurs twice.

Proposition 100. Let r be a k-ORE. The problem of deciding whether L(r)
is deterministic is fixed parameter tractable with parameter k. Specifically, its
complexity is O(2k2 |r|2).
Proof. Let r be a k-ORE. By applying a Glushkov construction (see, e.g.,
[17]), followed by a subset construction, it is easy to see that the resulting
DFA has at most 2k · |Σ| states. By Theorem 98, the result follows.

This result is not only of theoretical interest. It has already often been
observed that the vast majority of regular expressions occurring in practice
are k-OREs, for k = 1, 2, 3 (see, e.g., [77]). Hence, this result implies that in
practice the problem can be solved in polynomial time.

Corollary 101. For any fixed k, the problem of deciding whether the language
defined by a k-ORE is deterministic is in ptime.

9.2 Constructing Deterministic Expressions

Next, we focus on constructing equivalent deterministic regular expressions.
Unfortunately, the following result by Brüggemann-Klein and Wood already
rules out a truly efficient conversion algorithm:

Theorem 102 ([17]). For any n ∈ N, there exists a regular expression rn of
size O(n) such that any deterministic regular expression defining L(rn) is of
size at least 2n.

158 Handling Non-Deterministic Regular Expressions

Algorithm 2 Algorithm grow, with pool size P and expansion size E.

Require: P , E ∈ N, minimal DFA A = (Q,Σ, δ, q0, F) with L(A) determin-
istic,

Ensure: Det. reg. exp. s with L(s) = L(A), if successful
for i = 0 to E do

2: Generate at most P non-isomorphic DFAs B s.t.
L(B) = L(A) and B has |Q|+ i states

4: for each such B do
if rewrite (B) succeeds then

6: return rewrite (B)

if i > E then fail

9.2.1 Growing automata

We first present grow as Algorithm 2, which is designed to produce con-
cise deterministic expressions. The idea underlying this algorithm is that the
Glushkov construction [17] transforms small deterministic regular expressions
to small deterministic automata with as many states as there are alphabet
symbols in the expression. The minimization algorithm eliminates some of
these states, complicating the inverse Glushkov-rewriting from DFA to deter-
ministic regular expression. By expanding the minimal automaton, grow tries
to recuperate the eliminated states. The algorithm rewrite of [9] succeeds
when the modified automaton can be obtained from a deterministic regular
expression by the Glushkov construction and assembles this expression upon
success. As their are many DFAs equivalent to the given automaton A, we
only enumerate non-isomorphic expansions of A up to a given number of ex-
tra states E. However, the number of generated non-isomorphic DFAs can
explode quickly. Therefore, the algorithm is also given a given pool size P
which restricts the number of DFAs of each size which are generated.

Nonwithstanding the harsh brute force flavor of grow, we show in our
experimental study that the algorithm can be quite effective.

9.2.2 Enumerating Automata

The grow algorithm described above uses an enumeration algorithm as a
subroutine. In this section, we describe this algorithm which, given a min-
imal DFA M and a size k, efficiently enumerates all non-isomorphic DFAs
equivalent to M of size at most k. Thereto, we first provide some definitions.

Throughout this section, we assume that any DFA is trimmed, i.e., contains
no useless transitions. For a DFA A, we always denote its set of states by QA,
transitions by δA, initial state by qA, and set of final states by FA. Finally, we

9.2. Constructing Deterministic Expressions 159

assume that the set of states Q of any DFA consists of an initial segment of
the integers. That is, if |Q| = n, then Q = {0, . . . , n− 1}.

Let A and B be DFAs. Then, A and B are isomorphic, denoted A ∼= B,
if there exists a bijection f : QA → QB, such that (1) f(qA) = qB, (2) for all
q ∈ QA, we have q ∈ FA if and only if f(q) ∈ FB, and (3) for all q, p ∈ QA

and a ∈ Σ, it holds that (q, a, p) ∈ QA if and only if (f(q), a, f(p)) ∈ QB. We
then also say that f witnesses A ∼= B. Notice that, because we are working
with DFAs, there is at most one such bijection which, moreover, can easily be
constructed. Indeed, we must set f(qA) = qB. Then, because qA has at most
one outgoing transition for each alphabet symbol this, in turn, defines f(q)
for all q to which qA has an outgoing transition. By continuing recursively in
this manner, one obtains the unique bijection witnessing A ∼= B

Further, we define a function bf : QA → [1, |QA|] which assigns to every
state q ∈ QA its number in a breadth-first traversal of A, starting at qA. Here,
we fix an order on the alphabet symbols (say, lexicographic ordering), and
require that in the breadth-first traversal of the DFA transitions are followed
in the order of the symbol by which they are labeled. This ensures that
bf is unambiguously defined. We then say that A is canonical if bf(i) = i,
for all i ∈ QA (recall that the state labels are always an initial part of the
natural numbers). That is, A is canonical if and only if the names of its
states correspond to their number in the breadth-first traversal of A. The
latter notion of canonical DFAs essentially comes from [4], although there it
is presented in terms of a string representation. The following simple lemma
is implicit in their paper.

Lemma 103. 1. Let A be a DFA. Then, there exists a canonical DFA B
such that A ∼= B.

2. Let A, B be canonical DFAs. Then, A = B if and only if A ∼= B.

Now, let M be a minimal DFA, and k an integer and define S = {A |
L(A) = L(M), |QA| ≤ k, A is canonical}. Then, by the above lemma, S con-
tains exactly one isomorphic copy of any DFA A equivalent to M of size at
most k. Hence, given M and k, the goal of this section reduces to give an
algorithm which computes the set S.

To do so efficiently, we first need some insight in the connection between
a minimal DFA and its larger equivalent versions. If A is a DFA, and q ∈ QA,
recall that Aq denotes the DFA A in which q is the initial state. The following
lemma then states a few basic facts about minimal DFAs (see, e.g., [55]).

Lemma 104. Let A be a DFA, and M its equivalent minimal DFA.

• For all q, p ∈ QM , if q 6= p, then L(M q) 6= L(Mp).

160 Handling Non-Deterministic Regular Expressions

• For all q ∈ QA, there exists a (unique) p ∈ QM , such that L(Aq) =
L(Mp).

Let minimal : QA → QM be the function which takes the state q ∈ QA to
p ∈ QM , when L(Aq) = L(Mp). According to the above lemma, this function
is well-defined. We also say that q is a copy of p. Hence, for each state p ∈ QM ,
there is at least one copy in A, although there can be more. Further, for any
p′ ∈ QM , and a ∈ Σ, if (p, a, p′) ∈ δM , then there exists a q′ ∈ QA, such
that minimal(q′) = p′, and (q, a, q′) ∈ QA. That is, any q ∈ QA is a copy
of minimal(q) ∈ QM , and, furthermore, q’s outgoing transitions are copies
of those of minimal(q), again to copies of the appropriate target states in M .
Using this knowledge, Algorithm 3 enumerates the desired automata. For ease
of exposition, it is presented as a non-deterministic algorithm in which each
trace only outputs one DFA. It can easily be modified, using recursion, to an
algorithm outputting all these automata, and hence the desired set.

Theorem 105. Given a minimal DFA M , and k ≥ |QM |, the set S of all
automata returned by enumerate, consists of pairwise non-isomorphic DFAs
of size at most k. Further, for any DFA B of size at most k and equivalent to
M , there is a B′ ∈ S such that B ∼= B′.

Proof. We first argue that given M , and k ≥ |QM |, enumerate returns the
set S = {A | |QA| < k, L(A) = L(M), A is canonical}. Due to Lemma 103,
the set S satisfies the criteria of the theorem.

Let us first show that enumerate only produces automata in this set S, i.e.
any DFA A generated by enumerate has |QA| < k, is equivalent to M , and is
canonical. The reason that A is canonical is because the enumeration explicitly
follows the breadth-first traversal of the automaton it is generating. It is
equivalent to M because for any state q ∈ QA, we maintain the corresponding
state minimal(q) ∈ QM and give q outgoing transitions to copies of the states
where minimal(q) also has transitions to. This guarantees that for all q ∈
QA, we have L(Aq) = L(Mminimal(q)), and, in particular L(A) = L(Aqa) =
L(M qM) = L(M). Finally, |QA| < k, due to the test on Line 12, which
quarantees that never more than k states will be generated.

Conversely, we must show that any automaton in S is generated by enu-

merate, i.e. any canonical A equivalent to M with at most k states is gen-
erated by enumerate. Let A be such a DFA. By Lemma 104 we know it
consists of a number of copies of each state of M which are linked to each
other in a manner consistent with M . Given this information, enumerate

follows all possible breadth-first paths generating such DFAs, and hence also
generates A.

9.2. Constructing Deterministic Expressions 161

Algorithm 3 Algorithm enumerate.

Require: Minimal DFA M = (QM , δM , qM , FM), and k ≥ |QM |
Ensure: Canonical DFA A, with L(A) = L(M) and |QA| ≤ k.

QA, δA, FA ← ∅
2: Queue P ← ∅

qA ← 0
4: Push qA onto P

QA ← QA ⊎ {qA}
6: Set minimal(qA) = qM

while P 6= ∅ do
8: q ← P .Pop

p← minimal(q)
10: for a ∈ Σ do

if ∃p′ ∈ QM : (p, a, p′) ∈ δM then
12: Choose q′ non-deterministically such that either q′ = |QA| (if |QA| <

k), or such that q′ < |QA| and minimal(q′) = p′.
If no such q′ exists: fail.

14: if q′ = |QA| then
Push q′ onto P

16: Set minimal(q′) = p′

QA ← QA ⊎ q′

18: δA ← δA ⊎ (q, a, q′)
if p′ ∈ FM then

20: FA ← FA ∪ q′
return A

We conclude by noting that, by using a careful implementation, the algo-
rithm actually runs in time linear in the total size of the output. Thereto,
the algorithm should never fail, but this can be accomplished by maintaining
some additional information (concerning the number of states which must still
be generated) which allows to avoid non-deterministic choices which will lead
to failure.

9.2.3 Optimizing the BKW-Algorithm

Next, we discuss Brüggemann-Klein and Woods bkw algorithm and then
present a few optimizations to generate smaller expressions.

First, we need some terminology. Given a DFA A, a symbol a is A-
consistent if there is a unique state w(a) in A such that all final states of
A have an a-transition to w(a). We call w(a) the witness state for a. A set S
is A-consistent if each element in S is A-consistent. The S-cut of A, denoted

162 Handling Non-Deterministic Regular Expressions

Algorithm 4 The bkw-Algorithm.

Require: Minimal DFA A = (Q,Σ, δ, q0, F)
Ensure: Det. reg. exp. s with L(s) = L(A)

if A has only one state q and no transitions then
2: if q is final then return ε

else return ∅
4: else if A has precisely one orbit then

S ← A-consistent symbols
6: if S = ∅ then fail

else return bkw(AS) ·
(⋃

a∈S a · bkw(A
w(a)
S)

)∗

8: else
if A has the orbit property then

10: for all a s.t. Orbit(q0) has outgoing a-transition do
qa ← unique target state of these a-transitions

12: Aq0 ← orbit automaton of q0

if Aq0 contains a final state then
14: return bkw(Aq0) ·

(⋃
a∈Σ(a · bkw(Aqa))

)
?

else
16: return bkw(Aq0) ·

⋃
a∈Σ(a · bkw(Aqa))

else fail

by AS , is the automaton obtained from A by removing, for each a ∈ S, all
a-transitions that leave a final state of A. Given a state q of A, Aq is the
automaton obtained from A by setting its initial state to q and restricting its
state set to the states reachable from q. For a state q, the orbit of q, denoted
Orbit(q), is the strongly connected component of A that contains q. We call
q a gate of Orbit(q) if q is final, or q is the source of a transition that has a
target outside Orbit(q).

We say that A has the orbit property if, for every pair of gates q1, q2 in the
same orbit the following properties hold:

1. q1 is final if and only if q2 is final; and,

2. for all a ∈ Σ and states q outside the orbit of q1 and q2, there is a
transition (q1, a, q) if and only if there is a transition (q2, a, q).

Given a state q of A, the orbit automaton of q, denoted by Aq, is obtained
from A by restricting its state set to Orbit(q), setting its initial state to q and
by making the gates of Orbit(q) its final states.

The bkw-Algorithm is then given as Algorithm 4. For a regular expression
r, the algorithm is called with the minimal complete DFA A accepting L(r)

9.2. Constructing Deterministic Expressions 163

and then recursively constructs an equivalent deterministic expression when
one exists and fails otherwise. Algorithm 4 can fail in two places: (1) in
line 6, when the set of A-consistent symbols is empty and (2) in line 17, if
A does not have the orbit property. Notice that, if A has the orbit property,
the unique state qa on line 11 can always be found. The correctness proof is
non-trivial and can be found in [17]. bkw runs in time double exponential
in the size of the nondeterministic regular expression. The first exponential
arises from converting the given regular expression to a DFA, the second one
from branching in the lines 7, 14, and 16. The generated expressions can
therefore be quite large. As Algorithm 4 was not designed with conciseness of
regular expressions in mind, we therefore propose three optimizations resulting
in smaller expressions.

To this end, by slight abuse of notation, let first(A) denote the set {a |
∃w ∈ Σ∗, aw ∈ L(A)}, i.e., the set of possible first symbols in a string in L(A).
We adapt the lines 7, 14, and 16 in Algorithm 4 in the way described below
and refer to the modified algorithm as bkw-opt.

line 7 Now, A consists of one orbit and S is the set of A-consistent symbols:

• If L(AS) = L(A
w(a)
S) for all a ∈ S, ε ∈ L(AS), and first(AS) ∩ S = ∅,

then return ((S + ε) · bkw(AS))∗.

• Else, partition S into equivalence classes S1, . . . , Sn where for a, b ∈ S,
a is equivalent to b if and only if w(a) = w(b). Furthermore, let, for
each i ∈ {1, . . . , n}, ai be an arbitrary but fixed element from Si. Then,

return bkw(AS) ·
(⋃

1≤i≤n Si · bkw(A
w(ai)
Si

)
)∗

.

line 14 and 16 If A consists of more than one orbit, we can view A as an
acyclic DFA when considering every orbit as an atomic subautomaton. We
therefore define the acyclic DFA summary automaton summ(A) of A where
every state corresponds to a unique orbit. As these automata are usually quite
small, we subsequently apply grow to obtain a concise regular expression over
an alphabet consisting of Σ-symbols and orbit identifiers. We then replace
each orbit identifier by its corresponding, recursively obtained, deterministic
expression.

Before defining summary automata formally, we present an example. Fig-
ure 9.2(a) illustrates a DFA A with three orbits: {1}, {2, 3, 4}, and {5}. Orbit
{2, 3, 4} has two possible entry points: states 2 (with an a-transition) and 3
(with the b- and c-transitions). For each such entry point we have a state
in the summary automaton. Figure 9.2(b) presents the summary automaton
summ(A).

164 Handling Non-Deterministic Regular Expressions

1start

2

3

4 5

a

b, c

d

e

f

g

(a) DFA A.

O1start

O2

O3

O5

(a, 2)

(b, 3), (c, 3)

(g, 5)

(g, 5)

(b) summ(A)

Figure 9.2: A DFA and its summary automaton.

start

· · ·

· · ·

a 1

a
2

a
3

a 4

a 5

a
6

a
n−

5

a n−
4

a n−
3

a
n−

2

a
n−

1

a n

Figure 9.3: Class of DFAs for which our optimization improves exponentially
over the bkw algorithm.

Formally, let A = (Q, δ, q0, F) over alphabet Σ. Then we define summ(A)
as a DFA (Qs, δs, qs

0, F
s) over alphabet Σs ⊆ Σ × Q. In particular, for each

transition (q1, a, q2) ∈ δ where Orbit(q1) 6= Orbit(q2), we have (a, q2) ∈ Σs.
The state set Qs is defined as {Oq | there is a transition (p, a, q) ∈ δ for
p outside Orbit(q)}. Furthermore, we define qs

0 := Oq0 , F s := {Op ∈ Qs |
Orbit(p) ∩ F 6= ∅}, and (Oq1 , (a, q2), Oq2) ∈ δs if and only if Orbit(q1) 6=
Orbit(q2) and there exists a q′1 ∈ Orbit(q1) such that (q′1, a, q2) ∈ δ. Notice
that, if A is a DFA fulfilling the orbit property, all outgoing transitions of each
orbit go to the same witness state. Therefore, summ(A) is also a DFA.

To find a small regular expression for the multiple orbits case, we make use
of the deterministic expressions rq which are obtained by applying bkw-opt

recursively to the orbit automata Aq. We run grow on summ(A) to find a
small deterministic expression for L(summ(A)). If we find one, we obtain the
deterministic expression for L(A) by replacing each symbol (a, q) by a · rq.

Notice that this optimization potentially generates exponentially smaller
regular expressions than the bkw algorithm. Consider the family of DFAs of
Figure 9.3. The summary DFAs for these automata are equal to the DFAs
themselves. While the bkw algorithm would essentially unfold this DFA and

9.3. Approximating Deterministic Regular Expressions 165

return a regular expression of size at least 2n, grow would return the expres-
sion (a1a3 + a2a4) · · · (an−3an−1 + an−2an), which is linear in n.

It is shown in [53] that there are acyclic DFAs whose smallest equivalent
regular expression is of superpolynomial size: Ω(nlog n) for n the size of the
DFA. As acyclic DFAs define finite languages and finite languages are deter-
ministic, the result transfers to deterministic regular expressions. Hence, it is
impossible for grow to always return a (small) result. Therefore, when grow

does not find a solution we just apply one non-optimized step of the bkw al-
gorithm (i.e., return line 14/16 of Algorithm 4). However, in our experiments
we noticed that this almost never happened (less than 1% of the total calls to
grow did not return an expression).

9.3 Approximating Deterministic Regular Expres-
sions

When the regular language under consideration is not deterministic, we can
make it deterministic at the expense of generalizing the language. First, we
show that there is no best approximation.

9.3.1 Optimal Approximations

An expression s is a deterministic super-approximation of an expression r when
L(r) ⊆ L(s) and s is deterministic. In the sequel we will just say approxima-
tion rather than super-approximation. Then, we say that s is an optimal
deterministic approximation of r, if L(r) ⊆ L(s), and there does not exist a
deterministic regular expression s′ such that L(r) ⊆ L(s′) (L(s). That is, an
approximation is optimal if there does not exist another one which is strictly
better. Unfortunately, we can show that no such optimal approximation exists:

Theorem 106. Let r be a regular expression, such that L(r) is not deter-
ministic. Then, there does not exist an optimal deterministic approximation
of r.

Proof. We show in Lemma 107 below that for every deterministic language L
and string w ∈ L, the language L \ {w} is also deterministic. Now, suppose,
towards a contradiction, that an optimal deterministic approximation s exists.
Then, since L(r) is not deterministic, L(r) (L(s) and thus there exists some
string w with w ∈ L(s) but w /∈ L(r). But then, for the language Lw = L(s) \
{w}, we have that L(r) ⊆ Lw and, by Lemma 107, Lw is also deterministic.
This gives us the desired contradiction.

166 Handling Non-Deterministic Regular Expressions

Lemma 107. For every deterministic language L and string w ∈ L, the
language L \ {w} is also deterministic.

Proof. By |u| we denote the length of string u. We define the prefix-language
L≤|w| = {u ∈ L | |u| < |w|}∪{u ∈ Σ∗ | |u| = |w|,∃v.uv ∈ L}. As L≤k is a finite
language, one can easily construct a deterministic regular expression for it con-
sisting of nested disjunctions. For instance, the set L≤|w| = {aab, ab, baa, bba}
can be defined by aa(b+ ε)+ b(aa+ ba). Denote the resulting expression by r.
Further, we note that deterministic regular languages are closed under deriva-
tives [17]. Specifically, for a string u, the u-derivative of a regular expression
s is a regular expression s′ that defines the set {v | uv ∈ L(s)}. For every
string u ∈ L≤|w| with |u| = |w| and u 6= w, let ru be a deterministic expression
defining the u-derivative of L. Notice that the u-derivative can be ε. Now
for u = w, let rw define the w-derivative of L minus ε. It is shown in [17]
(Theorem D.4) that, for every deterministic regular language L′, L′ − {ε} is
also deterministic. Hence, rw can also be written as a deterministic regular
expression. Now, the expression defining L \ {w} is obtained by adding, for
each u ∈ L≤|w| with |u| = |w|, ru after the last symbol of u in r.

As finite languages are always deterministic, Theorem 106 implies that ev-
ery approximation defines infinitely more strings than the original expression.
Furthermore, one can prove analogously that an optimal under-approximation
of a non-deterministic regular expression r also does not exist. That is, a
deterministic regular expression s such that L(s) ⊆ L(r) for which there is no
deterministic s′ with L(s) (L(s′) ⊆ L(r).

9.3.2 Quality of the approximation

Motivated by the above discussion, we will compare sizes of regular languages
by only comparing strings up to a predefined length.

Thereto, for an expression r and a natural number ℓ, let Lℓ(r) be the subset
of strings in L(r) with length exactly ℓ. For regular expressions r and s with
L(r) ⊆ L(s), define the proximity between r and s, as

proximity(r, s) :=
1

k

k∑

ℓ=1

|Lℓ(r)|+ 1

|Lℓ(s)|+ 1

for k = max{2|r|+1, 2|s|+1}. The proximity is always a value between 0 and
1. When the proximity is close to 1, the size of the sets Lℓ(s) \Lℓ(r) is small,
and the quality of approximation is excellent.

Although the above measure provides us with a tool to compare proximity
of regular languages, we cannot simply search for a deterministic expression

9.3. Approximating Deterministic Regular Expressions 167

which performs best under this measure. It is also important that the obtained
expression is small and thus readable. Indeed, a user might well favor an ex-
pression which is understandable, but constitutes only a rough approximation,
over one which is very close to the original expression, but is completely in-
comprehensible due to its large size.

In conclusion, a valid approximation s for an expression r, is a deter-
ministic expression constituting a good tradeoff between (1) a large value for
proximity(r, s) and (2) a small size |s|. The heuristics in the following section
will try to construct approximations which fit these requirements.

9.3.3 Ahonen’s Algorithm

In the previous section, we have seen that the bkw-algorithm will translate
a DFA into a deterministic expression, and will fail if no such equivalent de-
terministic expression exists. Ahonen’s algorithm [3] is a first method that
constructs a deterministic regular expression at the expense of generalizing the
target language. It essentially runs the bkwdec-algorithm, the decision variant
of bkw which does not produce an output expression (cf. Theorem 98), until
it fails, and subsequently repairs the DFA by adding transitions, making states
final, or merging states, in such a manner that bkwdec can continue. In the
end, a DFA is produced defining a deterministic language. The corresponding
deterministic regular expression is then obtained by running bkw. Ahonen’s
algorithm for obtaining a DFA defining a deterministic language is presented
in Algorithm 5.3 By ahonen-bkw we then denote the application of bkw on
the result of ahonen.

ahonen proceeds by merging states. We explain in more detail how we can
merge two states in a DFA A = (Q, δ, q0, F). For an example, see Figure 9.4(c)
and 9.4(d), where states 2 and 4 are merged into a new state {2, 4}. For ease
of exposition, we assume that states in Q are sets. Initially, all sets in Q are
singletons (e.g., {2}, {4}) and by merging such states we obtain non-singletons
(e.g., {2, 4}). Let q1 and q2 be the two states to be merged into a new state
qM := q1∪q2. We denote by Qnew the state set of A after this merge operation
(analogously for δnew,q0new , and Fnew). We assume that q1, q2 ∈ Q and qM /∈ Q.
Then, Qnew := (Q ∪ {qM}) \ {q1, q2}. Furthermore, qM ∈ Fnew if and only if
q1 ∈ F or q2 ∈ F . Analogously, q0new is the unique set p ∈ Qnew such that q0 ∈
p. The transitions are adapted by removing all transitions containing q1 or q2,
but redirecting all these transitions to qM . For instance, when (q, a, q1) ∈ δ, we
have (q, a, qM) ∈ δnew. As long as the obtained automaton is not deterministic,
we choose non-deterministic transitions (p, a, q1) and (p, a, q2) and continue

3The algorithm we present slightly differs from Ahonen’s original algorithm as the original
algorithm is slightly incorrect. We briefly discuss this at the end of this section.

168 Handling Non-Deterministic Regular Expressions

Algorithm 5 An adaptation of Ahonen’s repair algorithm: the ahonen al-
gorithm.

Require: DFA A = (Q,Σ, δ, q0, F)
Ensure: DFA B such that L(A) ⊆ L(B)

S ← A-consistent symbols
2: if A has only one state q then

if q is final then return ε
4: else return ∅

else if A has precisely one orbit then
6: if S = ∅ then

Choose an a s.t. (q, a, q1) ∈ δ for q final
8: for all p ∈ F do

add (p, a, q1) to δ
10: if (p, a, q2) ∈ δ for q2 6= q1 then

Merge(q1,q2)

12: S ← {a}
ForceOrbitProperty (AS)

14: for each orbit O of AS do
Choose an arbitrary q ∈ O

16: ahonen ((AS)q)

merging states until it is deterministic again. We denote this recursive merging
procedure in Algorithms 5 and 6 by Merge.

ahonen repairs the automaton A in two possible instances where bkwdec

gets stuck. If A has one orbit but no A-consistent symbols, ahonen simply
chooses a symbol a and adds transitions to force A-consistency. If A has
more than one orbit, but does not fulfill the orbit property, then ahonen calls
ForceOrbitProperty (Algorithm 6) to add final states and transitions until
A fulfills it.

Example 108. We illustrate the algorithm on the regular expression (aba +
a)+b. The minimal DFA A is depicted in Figure 9.4(a). As there are no
A-consistent symbols, we have that S = ∅. As there are three orbits ({1},
{2, 3, 4}, and {5}), the algorithm immediately calls ForceOrbitProperty on A,
where 4 is made final and transition (3, b, 5) is added (Figure 9.4(b)). In the
next recursive level, we call ahonen for every orbit of A. We only consider the
non-trivial orbit {2, 3, 4} here, with its orbit automaton A2 in Figure 9.4(c). As
there are no A2-consistent symbols and A2 has only one orbit, we recursively
merge states 2 and 4. (Line 7 gives us a choice of which transition to take,
but any choice would lead us to the merging of 2 and 4.) After the merge, a is

9.3. Approximating Deterministic Regular Expressions 169

Algorithm 6 The ForceOrbitProperty procedure.

Require: DFA A
Ensure: DFA B such that L(A) ⊆ L(B)

for each orbit O of A do
18: Let g1, . . . , gk be the gates of K

if there exists a gate gi ∈ F then
20: F ← F ∪ {g1, . . . , gk}

for each ordered pair of gates (gi, gj) do
22: while there is an a s.t. (gi, a, q) ∈ δ

for q outside Orbit(gi) and (gj , a, q) /∈ δ do
24: Add (gj , a, q) to δ

while (gj , a, q′) ∈ δ for q′ 6= q do
26: Merge(q,q′)

A2-consistent. We therefore call ForceOrbitproperty on the {a}-cut of A2 as
in Figure 9.4(e). Here, we discover that there are only two trivial orbits left,
and the algorithm ends.

It remains to return from the recursion and construct the resulting DFA
of the algorithm. Plugging the DFA from Figure 9.4(d) into the DFA from
Figure 9.4(b) results in Figure 9.4(f). Notice that this automaton is non-
deterministic. Therefore, we have to merge states 3 and 5 in order to restore
determinism. The final DFA obtained by the algorithm is in Figure 9.4(g).
Notice that this is a non-minimal DFA defining the language a(a + b)∗.

It remains to discuss Ahonen’s original algorithm [3]. It is essentially the
same as the one we already presented, with a slightly different ForceOrbit-

Property (see Algorithm 7). We did not succeed in recovering the actual
implementation of Ahonen. As the algorithm presented by Ahonen is slightly
incorrect, we had to mend it in order to make a fair comparison. In particular,
we observed the following: (a) The if-test on l.9 should not be there. Oth-
erwise, the output will certainly not always be an automaton that fulfills the
orbit property. (b) The if-test on l.8 should, in our opinion, be some kind of
for-loop. Currently, the algorithm does not necessarily choose the same a for
each pair of gates (gi, gj). We do believe, however, that these differences are
merely typos and that Ahonen actually intended to present this new version.

Several additional remarks should be made about the original paper [3]:
(i) it does not prove that the input DFA for Algorithm 5 is transformed
into an automaton that can always be converted into a deterministic regular
expression; (ii) it does not formally explain how states of the automaton should
be merged; we have chosen the most reasonable definition; and (iii) it does

170 Handling Non-Deterministic Regular Expressions

1start 2 3 4 5
a

a

b a

a

b

(a) Minimal DFA A for (aba + a)+b.

1start 2 3 4 5
a

a

b a

ba

b

(b) Extra final state and transition.

2start 3 4

a

b a

a

(c) Orbit automaton A2.

2,4start 3

a

b

a

(d) Merge 2,4.

2,4start 3
b

(e) {a}-cut.

1start 2,4 3

5

a

a

b

a

b b

(f) Reconstruct.

1start 2,4 3,5
a

a

b

a

b

(g) Merge 3,5.

Figure 9.4: Example run of the adapted Ahonen’s algorithm.

not explain how the output DFA should be reconstructed when going back up
in the recursion. Therefore, we had to make some assumptions. For example,
we assume that, when re-combining orbits into a large automaton, we have a
transition (q1, a, q2) if and only if there were subsets q′1 ⊆ q1 and q′2 ⊆ q2 such
that the original automaton had a transition (q′1, a, q′2). (See, for example, the

9.3. Approximating Deterministic Regular Expressions 171

Algorithm 7 The original ForceOrbitProperty.

ForceOrbitProperty(A = (Q,Σ, δ, q0, F))
2: for each orbit C of A do

Let g1, . . . , gk be the gates of K
4: if there exists a gate gi ∈ F then

F ← F ∪ {g1, . . . , gk}
6: for each ordered pair of gates (gi, gj) do

if there is an a s.t. (gi, a, q) ∈ δ
8: for q outside Orbit(gi) and (gj , a, q) /∈ δ then

if (qj , a, q′) ∈ δ for q′ 6= q then
10: Add (gj , a, q) to δ

Merge q and q′

transition ({2, 4}, b, {5}) in Figure 9.4(f), which is there because the original
automaton in Figure 9.4(b) had a transition ({4}, b, {5}).)

With respect to remark (i), we noticed in our experiments that Ahonen’s
algorithm sometimes indeed outputs a DFA that cannot be converted into an
equivalent deterministic expression. If this happens, we reiterate Ahonen’s
algorithm to the thus far constructed DFA until the resulting DFA defines a
deterministic language.

9.3.4 Ahonen’s Algorithm Followed by Grow

Ahonen’s algorithm ahonen-bkw relies on bkw to construct the correspond-
ing deterministic expression. However, as we know, bkw generates very large
expressions. We therefore consider the algorithm ahonen-grow which runs
grow on the DFA resulting from ahonen.

9.3.5 Shrink

As a final approach, we present shrink. The latter algorithm operates on
state-labeled finite automata instead of standard DFAs. Recall that for state-
labeled automata, the function symbol : Q → Σ associates each state with
its corresponding symbol. For instance, the automaton in Figure 9.4(a) is
state-labeled and has symbol(2) = a, symbol(3) = b, symbol(4) = a, and
symbol(5) = b; symbol(1) is undefined as 1 does not have incoming transitions.

We note that from any finite automaton, we can easily construct an equiv-
alent state-labeled automaton by duplicating states which have more than one
symbol on their incoming transitions. In particular, from a minimal DFA, one
can thus construct a minimal state-labeled DFA.

172 Handling Non-Deterministic Regular Expressions

Algorithm 8 The shrink algorithm with pool size P .

Require: Minimal state-labeled DFA A, P ∈ N

Ensure: Array of det. reg. exp. s with L(A) ⊆ L(s)
Pool ← {A}

2: BestArray ← empty array of |A| − |Σ| elements
while Pool is not empty do

4: j ← 1
for each B ∈ Pool do

6: for each pair of states q1, q2 of B with symbol(q1) = symbol(q2) do
Bj ← Merge(B,q1,q2)

8: j ← j + 1

Pool ← Rank(P ,{B1, . . . , Bj−1})
10: for each Bk ∈ Pool do

rk,1 ← koa-to-kore(Bk)
12: rk,2 ← grow(Bk)

for each ℓ, |Σ| ≤ ℓ ≤ |A| do
14: BestArray[ℓ] ← the deterministic regexp r of size ℓ from BestArray[ℓ]

and all rk,x with maximal value proximity(A, r)

16: return BestArray

The philosophy behind shrink rather opposes the one behind grow: it
tries to reduce the number of states of the input automaton by merging pairs
of states with the same label, until every state has a different label.The result
of shrink is an array containing deterministic expressions for which the lan-
guage proximity to the target language is maximal among the deterministic
expressions of the same size.

shrink is presented in Algorithm 8. The call to Merge(B, q1, q2) is the
one we explained in Section 9.3.3 and operates on the DFA B. Rank(P ,{B1,
. . . , Bj}) is a ranking procedure that selects the P “best” automata from
the set {B1, . . . , Bj}. Thereto, we say that an automaton Bi is better than
Bj when L(Bi) is deterministic but L(Bj) is nondeterministic. Otherwise, if
L(Bi) and L(Bj) are either both deterministic or both nondeterministic, Bi

is better than Bj if and only if proximity(Bi, A) > proximity(Bj , A). That is,
we favour automata which define deterministic languages (as we are looking
for deterministic languages), and when no distinction is made in this manner,
we favour those automata which form the best approximation of the original
language.

koa-to-kore is an algorithm of [8] which transforms a state-labeled au-
tomaton A into a (possibly nondeterministic) expression r such that L(A) ⊆

9.4. Experiments 173

L(r). Further r contains one symbol for every labeled state in A. As we are
only interested in deterministic expressions, we discard the result of koa-to-

kore when it is nondeterministic. However, if every state of A is labeled with
a different symbol, then the resulting expression also contains every symbol
only once, and hence is deterministic. As shrink will always generate au-
tomata which have this property, shrink is thus guaranteed to always output
at least one deterministic approximation.

Notice that shrink always terminates: the automata in Pool become
smaller in each iteration and when they have |Σ| states left, no more merges
can be performed.

9.4 Experiments

In this section we validate our approach by means of an experimental analy-
sis. All experiments were performed using a prototype implementation writ-
ten in Java executed on a Pentium M 2 GHz with 1GB RAM. As the XML
Schema specification forbids ambiguous content models, it is difficult to ex-
tract real-world expressions violating UPA from the Web. We therefore test
our algorithms on a sizable and diverse set of generated regular expressions.
To this end, we apply the synthetic regular expression generator used in [8]
to generate 2100 nondeterministic regular expressions. From this set, 1200
define deterministic languages while the others do not. We utilize three pa-
rameters to obtain a versatile sample. The first parameter is the size of the
expressions (number of occurrences of alphabet symbols) and ranges from 5 to
50. The second parameter is the average number of occurrences of alphabet
symbols in the expression, denoted by κ. That is, when the size of r is n, then
κ(r) = n/|Char(r)|, where Char(r) is the set of different alphabet symbols
occurring in r. For instance, when r = a(a + b)+acab, then κ(r) = 7/3 = 2.3.
In our sample, κ ranges from 1 to 5. At first glance, the maximum value of 5
for κ might seem small. However, the latter value must not be confused with
the maximum number of occurrences of a single alphabet symbol, which in our
sample ranges from 1 to 10. Finally, the third parameter measures how much
the language of a generated expression overlaps with Σ∗, which is measured
by proximity(r, Σ∗). The expressions are generated in such a way that the
parameter covers the complete spectrum uniformly from 0 to 1.

9.4.1 Deciding Determinism

As a sanity check, we first ran the algorithm bkwdec on the real world deter-
ministic expressions obtained in the study [10] (which are all deterministic).
On average they were decided to define a deterministic regular language within

174 Handling Non-Deterministic Regular Expressions

35 milliseconds. This outcome is not very surprising as κ for each of these
expressions is close to 1 (cfr. Proposition 100). We then ran the algorithm
bkwdec on each of the 2100 expressions and were surprised that on average
no more than 50 milliseconds were needed, even for the largest expressions of
size 50. Upon examining these expressions more closely, we discovered that
all of them have small corresponding minimal DFAs: on average 25 states
or less. Apparently random regular expressions do not suffer much from the
theoretical worst case exponential size increase when translated into DFAs.

9.4.1.1 Discussion

Although the problem of deciding determinism is theoretically intractable
(Theorem 99), in practice, there does not seem to be a problem so we can
safely use bkwdec as a basic building block of supac (Algorithm 9).

9.4.2 Constructing Deterministic Regular Expressions

In this section, we compare the deterministic regular expressions generated
by the three algorithms: bkw, bkw-opt, and grow. We point out that the
comparison with bkw is not a fair one, as the latter was not defined with
efficiency in mind.

Table 9.1 depicts the average sizes of the expressions generated by the three
methods (again size refers to number of symbol occurrences), with the average
running times in brackets. Input size refers to the size of the input regular
expressions. Here, the pool-size and depth of grow are 100 and 5, respectively.
We note that for every expression individually the output of bkw is always
larger than that of bkw-opt and that grow, when it succeeds, always gives
the smallest expression. Due to the exponential nature of the bkw algorithm,
both bkw and bkw-opt can not be used for input expressions of size larger
than 20.4 For smaller input expressions, bkw-opt is better than bkw, but
still returns expressions which are in general too large to be easily interpreted.
In strong contrast, when it succeeds, grow produces very concise expressions,
roughly the size of the input expression.

It remains to discuss the effectiveness of grow. In Table 9.2, we give
the success rates and the average running times for various sizes of input
expressions and for several values for pool-size and depth. It is readily seen
that the success rate of grow is inversely proportional to the input size,
starting at 90% for input size 5, but deteriorating to 20% for input size 25.
Further, Table 9.2 also shows that increasing the pool-size or depth only has

4For expressions of size 20, bkw already returned expressions of size 560.000.

9.4. Experiments 175

input size bkw bkw-opt grow

5 9 (< 0.1) 7 (< 0.1) 3 (< 0.1)
10 216 (< 0.1) 95 (0.1) 6 (0.2)
15 1577 (0.2) 394 (0.6) 9 (0.6)
20 / / 12 (1.5)
25-30 / / 13 (4.0)
35-50 / / 23 (19.6)

Table 9.1: Average output sizes and running times (in brackets, in seconds)
of bkw, bkw-opt and grow on expressions of different input size.

input size (d:5,p:20) (5,100) (10,20) (10,100)

5 89 (< 0.1) 89 (< 0.1) 89 (< 0.1) 89 (< 0.1)
10 66 (< 0.1) 68 (0.2) 68 (0.1) 70 (0.5)
15 43 (0.1) 46 (0.6) 44 (0.3) 47 (1.6)
20 31 (0.3) 33 (1.5) 31 (0.8) 33 (3.8)
25-30 21 (0.8) 21 (4.0) 21 (1.8) 21 (9.1)
35-50 7 (3.9) 8 (19.6) 7 (8.3) 8 (43.7)

Table 9.2: Success rates (%) and average running times (in brackets, in sec-
onds) of grow for different values of the depth (d) and pool-size (p) parame-
ters.

a minor impact on the success rate of grow, but a bigger influence on its
running time.

9.4.2.1 Discussion

grow is the preferred method to run in a first try. When it gives a result it
is always a concise one. Its success rate is inversely proportional to the size
of the input expressions and quite reasonable for expressions up to size 20.
Should grow fail, it is not a real option to try bkw-opt as on expressions of
that size it never produces a reasonable result. In that case, the best option
is to look for a concise approximation (as implemented in Algorithm 9).

9.4.3 Approximating Deterministic Regular Expressions

We now compare the algorithms ahonen-bkw, shrink, and ahonen-grow.
Note that ahonen-bkw and ahonen-grow return a single approximation,
whereas shrink returns a set of expressions (with a tradeoff between size and
proximity). To simplify the discussion, we take from the output of shrink the
expression with the best proximity, disregarding the size of the expressions.

176 Handling Non-Deterministic Regular Expressions

input size ahonen-bkw ahonen-grow shrink

5 0.73 (100%) 0.71 (75%) 0.75 (100%)
10 0.81 (100%) 0.79 (56%) 0.78 (100%)
15 0.84 (100%) 0.88 (40%) 0.79 (100%)
20 / 0.89 (18%) 0.76 (100%)
25-30 / 0.89 (8%) 0.71 (100%)
35-50 / 0.75 (4%) 0.68 (100%)

Table 9.3: Quality of approximations of ahonen-bkw, ahonen-grow, and
shrink (closer to one is better). Success rates in brackets.

input size ahonen-bkw ahonen-grow shrink

5 8 (100%) 3 (75%) 3 (100%)
10 28 (100%) 6 (56%) 6 (100%)
15 73 (100%) 8 (40%) 8 (100%)
20 / 11 (18%) 10 (100%)
25-30 / 11 (8%) 13 (100%)
35-50 / 14 (4%) 18 (100%)

Table 9.4: Average output sizes of ahonen-bkw, ahonen-grow, and shrink.
Success rates in brackets.

This is justified as all expressions returned by shrink are concise by definition.
In a practical scenario, however, the choice in tradeoff between proximity and
conciseness can be left to the user.

Table 9.3 then shows the average proximity(r, s) where r is the input ex-
pression and s is the expression produced by the algorithm. As ahonen-grow

is not guaranteed to produce an expression, the success rates are given in
brackets. In contrast, ahonen-bkw and shrink always return a determinis-
tic expression. Further, as ahonen-bkw uses bkw as a subroutine its use is
restricted to input expressions of size 15.

We make several observations concerning Table 9.3. First, we see that the
succes rate of ahonen-grow is inversely proportional to the size of the input
expression. This is to be expected, as grow is not very successful on large
input expressions or automata. But, as ahonen-bkw is also not suited for
larger input expressions, only shrink produces results in this segment.

Concerning the quality of the approximations, we only compare ahonen-
bkw with shrink because ahonen-grow, when it succeeds, returns an ex-
pression equivalent to ahonen-bkw which consequently possesses the same
proximity. In Table 9.3, we observe that ahonen-bkw returns on average
slightly better approximations than shrink. Also in absolute values, ahonen-

9.5. SUPAC: Supportive UPA Checker 177

Algorithm 9 Supportive UPA Checker supac.

Require: regular expression r
Ensure: deterministic reg. exp. s with L(r) ⊆ L(s)

if r is deterministic then return r;
2: else if L(r) is deterministic then

if grow(r) succeeds then return grow(r)
4: else return best from bkw-opt(r) and shrink(r)

else return best from ahonen-grow(r) and shrink(r)

bkw returns in roughly 2/3th of the cases the best approximation with respect
to proximity, and shrink in the other 1/3th. We further observe that the qual-
ity of the approximations of shrink only slightly decreases but overall remains
fairly good, with 0.68 for expressions of size 50.

Table 9.4 shows the average output sizes of the different algorithms. Here,
we see the advantage of ahonen-grow over ahonen-bkw. When an ex-
pression is returned by ahonen-grow, it is much more concise than (though
equivalent to) the output of ahonen-bkw. Furthermore, it has a small chance
on success for those sizes of expressions on which ahonen-bkw is not feasible
anymore. Also shrink can be seen to always return very concise expressions.

Finally, we consider running times. On the input sizes for which ahonen-
bkw is applicable, it runs in less than a second. ahonen-grow was executed
with pool-size 100 and depth 5 for the grow subroutine, and took less than
a second for the small input sizes (5 to 15) and up to a half a minute for
the largest (50). Finally, shrink was executed with pool-size 10, for input
expressions of size 5 to 20, and pool-size 5 for bigger expressions, and took up
to a few seconds for small input expressions, and a minute on average for the
largest ones.

9.4.3.1 Discussion

As running times do not pose any restriction on the applicability of the pro-
posed methods, the best option is to always try ahonen-grow and shrink,
and ahonen-bkw only for very small input expressions (up to size 5) and
subsequently pick the best expression.

9.5 SUPAC: Supportive UPA Checker

Based on the observations made in Section 9.4, we define our supportive UPA
checker supac as in Algorithm 9. We stress that the notion of ‘best’ ex-
pression can depend on both the conciseness and the proximity of the result-

178 Handling Non-Deterministic Regular Expressions

input output

c∗cac + b c+ac + b
(a?bc + d)+d ((a?(bc)+)∗d+)+

((cba + c)∗b)? ((c+ba?)∗b?)?
(c+cb + a + c)∗ (a+ + c+b?)∗

Table 9.5: Sample output of supac.

ing regular expressions and is essentially left as a choice for the user. Note
that, when grow does not succeed, there is only a choice between a probably
lengthy equivalent expressions generated by bkw-opt or a concise approxi-
mation generated by shrink. In line 5, we could also make the distinction
between expressions r of small size (≈ 5) and larger size (> 5). For small
expressions, we then could also try ahonen-bkw.

As an illustration, Table 9.5 lists a few small input expressions with the
corresponding expression constructed by supac. The first two expressions
define deterministic languages, while the last two do not.

10
Conclusion

To conclude I would like to make a few observations.

First, let me point out the strong interaction between XML and formal
language theory. Clearly, XML technologies are strongly rooted in formal
languages. Indeed, XML schema languages are formalisms based on context-
free grammars, make use of regular expressions, and thus define regular tree
languages. Even the study of counting and interleaving operators present in
these languages already goes back to the seventies. Therefore, XML raises
questions well worth studying by the formal language theory community, such
as the following:

• In Chapter 6, we discussed deterministic regular expression with count-
ing, and showed that they can not define all regular languages. However,
a good understanding of the class of languages they define is still lacking.
In particular, an algorithm deciding whether a language can be defined
by a weak deterministic expression with counting would be a major step
forward.

• Deterministic regular expressions have the benefit of being deterministic,
but mostly have negative properties. Therefore, it would be interesting
for applications if another class of languages, definable by corresponding
“deterministic” regular expressions, could be found that does not have
these downsides. Ideally, this would include (1) an easy syntax, (2)
“sufficient” expressivity, (3) good closure properties, and (4) tractable
decision problems. Here, the first point is probably the most important

180 Conclusion

as it is the lack of a syntax for defining all (and only) deterministic
expressions, that makes them so difficult to use in practice.

The above illustrates that there is a strong link from formal language
theory to XML. In this thesis, I hope to have illustrated that the opposite
also holds. For instance, when studying the complexity of translating pattern-
based schemas to other schema formalisms it turned out that this reduces to
taking the complement and intersection of regular expressions. Studying the
latter showed that this can be surprisingly difficult (double exponential), and
it furthermore followed that in a translation from finite automata to regular
expressions an exponential size-increase can not be avoided, even when the
alphabet is fixed. These results clearly belong more to the field of formal
language theory, and illustrate that XML research can add to our knowledge
about formal languages.

Finally, this dual connection between XML and formal language theory
can, or should, also be found in theory versus practice. The theoretical ques-
tions asked here are mostly inspired by practical problems, but it is often
more difficult for theoretical results to find their way back to practice. For
instance, Bruggemann-Klein and Wood’s much cited paper concerning deter-
ministic (one-unambiguous) regular languages [17] is already 10 years old, but
never found its way to practical algorithms. We implemented these algorithms
(see Chapter 9) and demonstrate that they can also be of practical interest.
We also show in that chapter that deciding whether a language is determin-
istic, is pspace-hard but yet can be done very efficiently on all instances of
interest. This is of course not a contradiction as the pspace-hardness only
implies worst-case complexity bounds, but the term worst-case is easily for-
gotten in discussing the difficulty of problems. Therefore, the main lesson I
learned in writing this thesis is that a fundamental study can be a very useful
first step in solving a problem, but should never be its last.

11
Publications

The results presented in this thesis have been published in several papers. We
list these publications here. Apart from the publications listed below, I also
cooperated on a few other papers [8, 13, 33, 39].

Chapter Reference

3 [42]
4 [37]
5 [40]
6 [38]
7 [41]
8 [40]
9 [7]

Bibliography

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web : From
Relations to Semistructured Data and XML. Morgan Kaufmann, 1999.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, 1974.

[3] H. Ahonen. Disambiguation of SGML content models. In Principles of
Document Processing (PODP 1996), pages 27–37, 1996.

[4] M. Almeida, N. Moreira, and R. Reis. Enumeration and generation
with a string automata representation. Theoretical Computer Science,
387(2):93–102, 2007.

[5] M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the presence
of DTDs. Journal of the ACM, 55(2), 2008.

[6] P. A. Bernstein. Applying Model Management to Classical Meta Data
Problems. In Innovative Data Systems Research (CIDR 2003), 2003.

[7] G. J. Bex, W. Gelade, W. Martens, and F. Neven. Simplifying XML
Schema: Effortless handling of nondeterministic regular expressions. In
Management of Data (SIGMOD 2009), 2009.

[8] G. J. Bex, W. Gelade, F. Neven, and S. Vansummeren. Learning de-
terministic regular expressions for the inference of schemas from XML
data. In World Wide Web Conference (WWW 2008), pages 825–834,
2008.

[9] G. J. Bex, F. Neven, T. Schwentick, and K. Tuyls. Inference of concise
DTDs from XML data. In Very Large Data Base (VLDB 2006), pages
115–126, 2006.

[10] G. J. Bex, F. Neven, and J. Van den Bussche. DTDs versus XML
schema: A practical study. In The Web and Databases (WebDB 2004),
pages 79–84, 2004.

183

184 Bibliography

[11] G. J. Bex, F. Neven, and S. Vansummeren. Inferring XML Schema
definitions from XML data. In Very Large Databases (VLDB 2007),
pages 998–1009, 2007.

[12] G. J. Bex, F. Neven, and S. Vansummeren. SchemaScope: a system for
inferring and cleaning XML schemas. In Management of Data (SIGMOD
2008), pages 1259–1262, 2008.

[13] H. Björklund, W. Gelade, M. Marquardt, and W. Martens. Incremental
XPath evaluation. In Database Theory (ICDT 2009), pages 162–173,
2009.

[14] R. Book, S. Even, S. Greibach, and G. Ott. Ambiguity in graphs and
expressions. IEEE Transactions on Computers, 20:149–153, 1971.

[15] A. Brüggemann-Klein. Regular expressions into finite automata. Theo-
retical Computer Science, 120(2):197–213, 1993.

[16] A. Brüggemann-Klein, M. Murata, and D. Wood. Regular tree and
regular hedge languages over unranked alphabets. Technical report, The
Hongkong University of Science and Technologiy, April 3 2001.

[17] A. Brüggemann-Klein and D. Wood. One-unambiguous regular lan-
guages. Information and Computation, 142(2):182–206, 1998.

[18] J. Buchi. Weak second-order logic and finite automata. S. Math. Logik
Grundlagen Math., 6:66–92, 1960.

[19] A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. Journal
of the ACM, 28(1):114–133, 1981.

[20] C. Chitic and D. Rosu. On validation of XML streams using finite state
machines. In The Web and Databases (WebDB 2004), pages 85–90, 2004.

[21] N. Chomsky and G. A. Miller. Finite state languages. Information and
Control, 1(2):91–112, 1958.

[22] J. Clark and M. Murata. RELAX NG Specification. OASIS, December
2001.

[23] R. S. Cohen. Rank-non-increasing transformations on transition graphs.
Information and Control, 20(2):93–113, 1972.

[24] D. Colazzo, G. Ghelli, and C Sartiani. Efficient asymmetric inclusion
between regular expression types. In Database Theory (ICDT 2009),
pages 174–182, 2009.

Bibliography 185

[25] J. Cristau, C. Löding, and W. Thomas. Deterministic automata on
unranked trees. In Fundamentals of Computation Theory (FCT 2005),
pages 68–79, 2005.

[26] S. Dal-Zilio and D. Lugiez. XML schema, tree logic and sheaves au-
tomata. In Rewriting Techniques and Applications (RTA 2003), pages
246–263, 2003.

[27] Z. R. Dang. On the complexity of a finite automaton corresponding to
a generalized regular expression. Dokl. Akad. Nauk SSSR, 1973.

[28] A. Deutsch, M. F. Fernandez, and D. Suciu. Storing Semistructured
Data with STORED. In Management of Data (SIGMOD 1999), pages
431–442, 1999.

[29] L. C. Eggan. Transition graphs and the star height of regular events.
Michigan Mathematical Journal, 10:385–397, 1963.

[30] A. Ehrenfeucht and H. Zeiger. Complexity measures for regular expres-
sions. Journal of Computer and System Sciences, 12(2):134–146, 1976.

[31] K. Ellul, B. Krawetz, J. Shallit, and M. Wang. Regular expressions:
New results and open problems. Journal of Automata, Languages and
Combinatorics, 10(4):407–437, 2005.

[32] J. Esparza. Decidability and complexity of petri net problems - an
introduction. In Petri Nets, pages 374–428, 1996.

[33] W. Fan, F. Geerts, W. Gelade, F. Neven, and A. Poggi. Complexity
and composition of synthesized web services. In Principles of Database
Systems (PODS 2008), pages 231–240, 2008.

[34] J. Flum and M. Grohe. Parametrized Complexity Theory. Springer,
2006.

[35] M. Fürer. The complexity of the inequivalence problem for regular ex-
pressions with intersection. In Automata, Languages and Programming
(ICALP 1980), pages 234–245, 1980.

[36] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman, 1979.

[37] W. Gelade. Succinctness of regular expressions with interleaving, inter-
section and counting. In Mathematical Foundations of Computer Science
(MFCS 2008), pages 363–374, 2008.

186 Bibliography

[38] W. Gelade, M. Gyssens, and W. Martens. Regular expressions with
counting: Weak versus strong determinism. In Mathematical Founda-
tions of Computer Science (MFCS 2009), 2009.

[39] W. Gelade, M. Marquardt, and T. Schwentick. The dynamic complexity
of formal languages. In Theoretical Aspects of Computer Science (STACS
2009), pages 481–492, 2009.

[40] W. Gelade, W. Martens, and F. Neven. Optimizing schema languages
for XML: Numerical constraints and interleaving. SIAM Journal on
Computing, 38(5):2021–2043, 2009. An extended abstract appeared in
the International Conference on Database Theory (ICDT 2007).

[41] W. Gelade and F. Neven. Succinctness of pattern-based schema lan-
guages for XML. Journal of Computer and System Sciences. To Ap-
pear. An Extended abstract appeared in the International Symposium
on Database Programming Languages (DBPL 2007).

[42] W. Gelade and F. Neven. Succinctness of the complement and inter-
section of regular expressions. ACM Transactions on Computational
Logic. To appear. An extended abstract appeared in the International
Symposium on Theoretical Aspects of Computer Science (STACS 2008).

[43] G. Ghelli, D. Colazzo, and C. Sartiani. Efficient inclusion for a class of
XML types with interleaving and counting. In Database Programming
Languages (DBPL 2007), volume 4797, pages 231–245. Springer, 2007.

[44] G. Ghelli, D. Colazzo, and C. Sartiani. Linear time membership in a class
of regular expressions with interleaving and counting. In Information
and Knowledge Management (CIKM 2008), pages 389–398, 2008.

[45] I. Glaister and J. Shallit. A lower bound technique for the size of nonde-
terministic finite automata. Information Processing Letters, 59(2):75–77,
1996.

[46] N. Globerman and D. Harel. Complexity results for two-way and
multi-pebble automata and their logics. Theoretical Computer Science,
169(2):161–184, 1996.

[47] M. Grohe and N. Schweikardt. The succinctness of first-order logic on
linear orders. Logical Methods in Computer Science, 1(1), 2005.

[48] H. Gruber and M. Holzer. Finite automata, digraph connectivity, and
regular expression size. In Automata, Languages and Programming
(ICALP 2008), pages 39–50, 2008.

Bibliography 187

[49] H. Gruber and M. Holzer. Provably shorter regular expressions from
deterministic finite automata. In Developments in Language Theory
(DLT 2008), pages 383–395, 2008.

[50] H. Gruber and M. Holzer. Language operations with regular expressions
of polynomial size. Theoretical Computer Science, 410(35):3281–3289,
2009.

[51] H. Gruber and M. Holzer. Tight bounds on the descriptional complex-
ity of regular expressions. In Developments in Language Theory (DLT
2009), pages 276–287, 2009.

[52] H. Gruber, M. Holzer, and M. Tautschnig. Short regular expressions
from finite automata: Empirical results. In Implementation and Appli-
cations of Automata (CIAA 2009), pages 188–197, 2009.

[53] H. Gruber and J. Johannsen. Optimal lower bounds on regular expres-
sion size using communication complexity. In Foundations of Software
Science and Computational Structures (FOSSACS 2008), pages 273–286,
2008.

[54] L. Hemaspaandra and M. Ogihara. Complexity Theory Companion.
Springer, 2002.

[55] J. E. Hopcroft, R. Motwani, and J.D. Ullman and. Introduction to
Automata Theory, Languages, and Computation. Addison-Wesley, third
edition, 2007.

[56] H. Hosoya and B. C. Pierce. Xduce: A statically typed XML processing
language. ACM Transactions on Internet Technologies, 3(2):117–148,
2003.

[57] J. Hromkovic, S. Seibert, and T. Wilke. Translating regular expres-
sions into small epsilon-free nondeterministic finite automata. Journal
of Computer and System Sciences, 62(4):565–588, 2001.

[58] A. Hume. A tale of two greps. Software, Practice and Experience,
18(11):1063–1072, 1988.

[59] L. Ilie and S. Yu. Algorithms for computing small NFAs. In Mathematical
Foundations of Computer Science (MFCS 2002), pages 328–340, 2002.

[60] J. Jȩdrzejowicz and A. Szepietowski. Shuffle languages are in P. Theo-
retical Computer Science, 250(1-2):31–53, 2001.

188 Bibliography

[61] T. Jiang and B. Ravikumar. A note on the space complexity of some
decision problems for finite automata. Information Processing Letters,
40(1):25–31, 1991.

[62] G. Kasneci and T. Schwentick. The complexity of reasoning about
pattern-based XML schemas. In Principles of Database Systems (PODS
2007), pages 155–163, 2007.

[63] P. Kilpeläinen. Inclusion of unambiguous #res is NP-hard, May 2004.
Unpublished.

[64] P. Kilpeläinen and R. Tuhkanen. Regular expressions with numerical
occurrence indicators — preliminary results. In Symposium on Pro-
gramming Languages and Software Tools (SPLST 2003), pages 163–173,
2003.

[65] P. Kilpeläinen and R. Tuhkanen. Towards efficient implementation of
XML schema content models. In Document Engineering (DOCENG
2004), pages 239–241, 2004.

[66] P. Kilpeläinen and R. Tuhkanen. One-unambiguity of regular expres-
sions with numeric occurrence indicators. Information and Computation,
205(6):890–916, 2007.

[67] S. C. Kleene. Representation of events in nerve nets and finite au-
tomata. In Automata Studies, pages 3–41. Princeton University Press,
1956.

[68] C. Koch and S. Scherzinger. Attribute grammars for scalable query
processing on XML streams. VLDB Journal, 16(3):317–342, 2007.

[69] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier. Schema-
based scheduling of event processors and buffer minimization for queries
on structured data streams. In Very Large Databases (VLDB 2004),
pages 228–239, 2004.

[70] D. Kozen. Lower bounds for natural proof systems. In Foundations of
Computer Science (FOCS 1977), pages 254–266. IEEE, 1977.

[71] O. Kupferman and S. Zuhovitzky. An improved algorithm for the mem-
bership problem for extended regular expressions. In Mathematical
Foundations of Computer Science (MFCS 2002), pages 446–458, 2002.

[72] L. Libkin. Logics for unranked trees: An overview. In Automata, Lan-
guages and Programming (ICALP 2005), pages 35–50, 2005.

Bibliography 189

[73] I. Manolescu, D. Florescu, and D. Kossmann. Answering XML Queries
on Heterogeneous Data Sources. In Very Large Databases (VLDB 2001),
pages 241–250, 2001.

[74] W. Martens and F. Neven. Frontiers of tractability for typechecking
simple XML transformations. Journal of Computer and System Sciences,
73(3):362–390, 2007.

[75] W. Martens, F. Neven, and T. Schwentick. Complexity of decision prob-
lems for simple regular expressions. In Mathematical Foundations of
Computer Science (MFCS 2004), pages 889–900, 2004.

[76] W. Martens, F. Neven, and T. Schwentick. Simple off the shelf abstrac-
tions for XML schema. SIGMOD Record, 36(3):15–22, 2007.

[77] W. Martens, F. Neven, T. Schwentick, and G. J. Bex. Expressiveness and
complexity of XML schema. ACM Transactions on Database Systems,
31(3):770–813, 2006.

[78] W. Martens and J. Niehren. On the minimization of XML schemas and
tree automata for unranked trees. Journal of Computer and System
Sciences, 73(4):550–583, 2007.

[79] A. J. Mayer and L. J. Stockmeyer. Word problems-this time with inter-
leaving. Information and Computation, 115(2):293–311, 1994.

[80] R. McNaughton. The loop complexity of pure-group events. Information
and Control, 11(1/2):167–176, 1967.

[81] R. McNaughton. The loop complexity of regular events. Information
Sciences, 1(3):305–328, 1969.

[82] R. McNaughton and H. Yamada. Regular expressions and state graphs
for automata. IEEE Transactions on Electronic Computers, 9(1):39–47,
1960.

[83] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular
expressions with squaring requires exponential space. In Switching and
Automata Theory (FOCS 1972), pages 125–129, 1972.

[84] D. W. Mount. Bioinformatics: Sequence and Genome Analysis. Cold
Spring Harbor Laboratory Press, September 2004.

[85] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML
schema languages using formal language theory. ACM Transactions on
Internet Technologies, 5(4):660–704, 2005.

190 Bibliography

[86] F. Neven. Automata, logic, and XML. In Computer Science Logic (CSL
2002), pages 2–26, 2002.

[87] F. Neven and T. Schwentick. On the complexity of XPath containment
in the presence of disjunction, DTDs, and variables. Logical Methods in
Computer Science, 2(3), 2006.

[88] Y. Papakonstantinou and V. Vianu. DTD inference for views of XML
data. In Principles of Database Systems (PODS 2000), pages 35–46,
New York, 2000. ACM Press.

[89] H. Petersen. Decision problems for generalized regular expressions. In
Descriptional Complexity of Automata, Grammars and Related Struc-
tures (DCAGRS 2000), pages 22–29, 2000.

[90] H. Petersen. The membership problem for regular expressions with in-
tersection is complete in LOGCFL. In Theoretical Aspects of Computer
Science (STACS 2002), pages 513–522, 2002.

[91] G. Pighizzini and J. Shallit. Unary language operations, state complex-
ity and Jacobsthal’s function. International Journal of Foundations of
Computer Science, 13(1):145–159, 2002.

[92] M. O. Rabin and D. Scott. Finite automata and their decision problems.
IBM Journal of Research, 3(2):115–125, 1959.

[93] F. Reuter. An enhanced W3C XML Schema-based language binding for
object oriented programming languages. Manuscript, 2006.

[94] J. M. Robson. The emptiness of complement problem for semi extended
regular expressions requires cn space. Information Processing Letters,
9(5):220–222, 1979.

[95] A. Salomaa. Two complete axiom systems for the algebra of regular
events. Journal of the ACM, 13(1):158–169, 1966.

[96] R. Schott and J. C. Spehner. Shuffle of words and araucaria trees.
Fundamenta Informatica, 74(4):579–601, 2006.

[97] M. P. Schutzenberger. On finite monoids having only trivial subgroups.
Information and Control, 8(2):190–194, 1965.

[98] T. Schwentick. Automata for XML - a survey. Journal of Computer and
System Sciences, 73(3):289–315, 2007.

Bibliography 191

[99] H. Seidl. Haskell overloading is DEXPTIME-complete. Information
Processing Letters, 52(2):57–60, 1994.

[100] C. M. Sperberg-McQueen and H. Thompson. XML Schema.
http://www.w3.org/XML/Schema, 2005.

[101] C.M. Sperberg-McQueen. Notes on finite state automata with counters.
http://www.w3.org/XML/2004/05/msm-cfa.html, 2004.

[102] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential
time: Preliminary report. In Theory of Computing (STOC 1973), pages
1–9. ACM Press, 1973.

[103] E. van der Vlist. XML Schema. O’Reilly, 2002.

[104] P. van Emde Boas. The convenience of tilings. In Complexity, Logic and
Recursion Theory, volume 187 of Lecture Notes in Pure and Applied
Mathematics, pages 331–363. Marcel Dekker Inc., 1997.

[105] M. Y. Vardi. From monadic logic to PSL. In Pillars of Computer Science,
pages 656–681, 2008.

[106] V. Vianu. Logic as a query language: From frege to XML. In Theoretical
Aspects of Computer Science (STACS 2003), pages 1–12, 2003.

[107] V. Waizenegger. Uber die Effizienz der Darstellung durch reguläre
Ausdrücke und endliche Automaten. Diplomarbeit, RWTH Aachen,
2000.

[108] L. Wall, T. Christiansen, and J. Orwant. Programming Perl. O’Reilly,
third edition, 2000.

[109] G. Wang, M. Liu, J. X. Yu, B. Sun, G. Yu, J. Lv, and H. Lu. Ef-
fective schema-based XML query optimization techniques. In Inter-
national Database Engineering and Applications Symposium (IDEAS
2003), pages 230–235, 2003.

[110] S. Yu. Regular languages. In G. Rozenberg and A. Salomaa, edi-
tors, Handbook of formal languages, volume 1, chapter 2, pages 41–110.
Springer, 1997.

[111] S. Yu. State complexity of regular languages. Journal of Automata,
Languages and Combinatorics, 6(2):221–234, 2001.

[112] Djelloul Ziadi. Regular expression for a language without empty word.
Theoretical Computer Science, 163(1&2):309–315, 1996.

Samenvatting

De reguliere talen vormen een zeer robuuste verzameling van talen. Zij kunnen
worden voorgesteld door veel verschillende formalismen, waaronder eindige au-
tomaten, reguliere uitdrukkingen, eindige monoides, monadische tweede-orde
logica, rechts-lineare grammatica’s, kwantor-vrije eerste-orde updates, ... Re-
guliere talen zijn gesloten onder een groot aantal operaties en, nog belangrijker,
bijna ieder interessant probleem met betrekking tot reguliere talen is beslis-
baar. Allerhande aspecten van de reguliere talen zijn bestudeerd in de laatste
50 jaar. Vanuit een praktisch perspectief is de meest populaire manier om
reguliere talen te specifiëren, gebruik te maken van reguliere uitdrukkingen.
Ze worden dan ook gebruikt in toepassingen in veel verschillende gebieden van
de informatica, waaronder bio-informatica, programmeertalen, automatische
verificatie, en XML schema talen.

XML is de lingua franca en de de facto standaard voor het uitwisselen van
data op het Web. Wanneer twee partijen data uitwisselen in XML, voldoen
de XML documenten meestal aan een bepaald formaat. XML schema talen
worden gebruikt om vast te leggen welke structuur een XML document mag
hebben. De meest gebruikte XML schema talen zijn DTD, XML Schema,
beide W3C standaarden, en Relax NG. Vanuit het oogpunt van de theorie
der formele talen is ieder van deze talen een grammatica-gebaseerd formalisme
met reguliere uidrukkingen aan de rechterkant. Deze uitdrukkingen verschillen
echter van de standaard reguliere uitdrukkingen omdat zij zijn uitgebreid met
extra operatoren, maar ook beperkt door de vereiste dat zij deterministisch
moeten zijn. Hoewel deze zaken zijn opgenomen in W3C en ISO standaarden,
is het niet duidelijk wat hun impact is op de verschillende schema talen. Het
doel van deze thesis is daarom een studie van deze gevolgen. In het bijzonder
bestuderen we de complexiteit van het optimaliseren van XML schema’s in
de aanwezigheid van deze operatoren, we illustreren de moeilijkheden in het
migreren van een schemataal naar een andere, en we bestuderen de implicaties
van de eis tot determinisme (ook in de aanwezigheid van een tel-operator), en

194 Samenvatting

proberen de vereiste toegankelijk te maken in de praktijk.
Hoewel de vragen die we ons stellen hoofdzakelijk geinspireerd zijn door

vragen over XML, geloven we dat de antwoorden ook interessant zijn voor de
algemene theoretische informatica gemeenschap. Daarom bestaat deze thesis
uit twee delen. Na de inleiding en definities in de eerste twee hoofdstuk-
ken, bestuderen we in het eerste deel fundamentele aspecten van reguliere
uitdrukkingen. In het tweede deel passen we deze resultaten toe op vragen
met betrekking tot XML schema talen. Hoewel het grootste deel van het werk
van fundamentele aard is, ontwikkelden we ook software om deze theoretische
inzichten naar de praktijk over te brengen.

Fundamenten van Reguliere Uitdrukkingen

In Hoofdstuk 3 behandelen we de beknoptheid van reguliere uitdrukkingen.
In het bijzonder behandelen we de volgende vragen, waarbij, zoals gewoon-
lijk, L(r) staat voor de taal gedefinieerd door een reguliere uitdrukkingen r.
Gegeven reguliere uitdrukkingen r, r1, . . . , rk over een alfabet Σ,

1. wat is de complexiteit van het construeren van een reguliere uitdrukking
r¬ die Σ∗ \ L(r) definieert, i.e., het complement van r?

2. wat is de complexiteit van het construeren van een reguliere uitdrukking
r∩ die L(r1) ∩ · · · ∩ L(rk) definieert?

In beide gevallen vereist het naieve algoritme dubbel exponentiële tijd in
de grootte van de invoer. Inderdaad, voor het complement, vertaal r naar een
NFA en determiniseer deze (eerste exponentiële stap), complementeer deze en
vertaal terug naar een reguliere uitdrukking (tweede exponentiële stap). Voor
intersectie is er een gelijkaardige procedure met behulp van een vertaling naar
eindige automaten, het product van deze automaten te construeren, en terug
te vertalen naar een reguliere uitdrukking. Merk op dat beide algoritmen niet
enkel dubbel exponentiële tijd vereisen, maar in het slechtste geval ook uit-
drukkingen van dubbel exponentiële grootte construeren. We tonen aan dat
deze naieve algoritmen niet substantieel kunnen worden verbeterd door een
klasse van reguliere uitdrukkingen te construeren waarvoor deze dubbel expo-
nentiële vergroting van de expressies niet kan worden vermeden. De grootste
technische contributie van dit hoofdstuk is een veralgemening van een resul-
taat van Ehrenfeucht en Zeiger. We construeren een familie van talen over
een alfabet dat slechts twee symbolen bevat en tonen aan dat deze talen niet
kunnen worden gedefinieerd door kleine reguliere uitdrukkingen. Hieruit volgt
bovendien dat, in het slechtste geval, een vertaling van DFAs1 naar reguliere

1We gebruiken in deze nederlandse samenvatting toch de engelstalige afkortingen, zoals
hier van Deterministic Finite Automaton.

Samenvatting 195

uitdrukkingen exponentieel is, zelfs wanneer het alfabet slechts uit 2 symbolen
bestaat.

Bovendien behandelen we dezelfde vragen voor twee deelverzamelingen:
enkel-voorkomende en deterministische reguliere uitdrukkingen. Een regu-
liere uitdrukking is enkel-voorkomend wanneer ieder alfabetsymbool slechts
éénmaal voorkomt in de uitdrukking. Bijvoorbeeld, (a + b)∗ is een enkel-
voorkomende reguliere uitdrukking (SORE) terwijl a∗(a + b)+ dat niet is.
Ondanks hun eenvoud omvatten SOREs toch de overgrote meerderheid van
XML schema’s op het Web. Determinisme vereist intüıtief dat, wanneer een
woord van links naar rechts tegen een uitdrukking wordt gevalideerd, het al-
tijd duidelijk is welk symbool in het woord overeenkomt met welk symbool in
de uitdrukking. Bijvoorbeeld, de uitdrukking (a+ b)∗a is niet deterministisch,
maar de equivalente uitdrukking b∗a(b∗a)∗ is het wel. De XML schema talen
DTD en XML Schema vereisen dat alle uitdrukkingen deterministisch zijn.
Zonder in detail te gaan, kunnen we stellen dat voor beide klassen het com-
plementeren van uitdrukkingen makkelijker wordt, terwijl intersectie moeilijk
blijft.

Waar Hoofdstuk 3 de complexiteit van het toepassen van operaties op regu-
liere uitdrukkingen onderzocht, bestuderen we in Hoofdstuk 4 de beknoptheid
van uitgebreide reguliere uitdrukkingen, i.e. uitdrukkingen uitgebreid met ex-
tra operatoren. In het bijzonder bestuderen we de beknoptheid van uitdruk-
kingen uitgebreid met operatoren om te tellen (RE(#)), doorsnede te nemen
(RE(∩)), en woorden te mengen (RE(&)). De tel-operator laat expressies zoals
a2,5 toe, die uitdrukt dat er minstens 2 en ten hoogste 5 a’s moeten voorko-
men. Deze RE(#)s worden gebruikt in egrep en Perl uitdrukkingen en XML
Schema. De klasse RE(∩) is een goed bestudeerde extensie van de reguliere
uitdrukkingen en wordt ook vaak de half-uitgebreide reguliere uitdrukkingen
genoemd. De meng-operator laat uitdrukkingen zoals a& b& c toe, die specifi-
eert dat a, b, en c in eender welke volgorde mogen voorkomen. Deze operator
komt voor in de XML schema taal Relax NG [22] en, in een zeer beperkte
vorm, XML Schema. We geven een volledig overzicht van de beknoptheid
van deze klassen van uitgebreide reguliere uitdrukkingen met betrekking tot
standaard reguliere uitdrukkingen, NFAs, en DFAs.

De belangrijkste reden om de complexiteit van een vertaling van uitgebrei-
de reguliere uitdrukkingen naar standaard reguliere uitdrukkingen te bestude-
ren, is om meer inzicht te krijgen in de kracht van de verschillende operatoren.
Deze resultaten hebben echter ook belangrijke gevolgen met betrekking tot de
complexiteit van het vertalen van een schemataal naar een andere. Zo tonen
we bijvoorbeeld aan dat in een vertaling van RE(&) naar standaard RE een
dubbel exponentiële vergroting in het algemeen niet vermeden kan worden.
Aangezien Relax NG de meng-operator toelaat, en XML Schema deze alleen

196 Samenvatting

in een zeer beperkte vorm toelaat, impliceert dit dat ook in een vertaling van
Relax NG naar XML Schema zo een dubbel exponentiële vergroting niet te
vermijden is. Desondanks, aangezien XML Schema een wijdverspreide W3C
standaard is, en Relax NG een meer flexibel alternatief is, zou zo een vertaling
meer dan wenselijk zijn. Ten tweede bestuderen we de beknoptheid van re-
guliere uitdrukkingen ten opzichte van eindige automaten aangezien, wanneer
algoritmische problemen worden beschouwd, de gemakkelijkste oplossing vaak
via een vertaling naar automaten gaat. Onze negatieve resultaten tonen echter
aan dat het vaak een beter idee is om gespecialiseerde algoritmen, die zulke
vertalingen vermijden, voor deze uitgebreide uitdrukkingen te ontwikkelen.

In Hoofdstuk 5 bestuderen we de complexiteit van het equivalentie, in-
clusie, en intersectie niet-leegheid probleem voor verschillende klassen van re-
guliere uitdrukkingen. Deze klassen zijn algemene reguliere uitdrukkingen,
uitgebreid met tel- en meng-operatoren, en ketting reguliere uitdrukkingen
(CHAREs), uitgebreid met de tel-operator. Deze CHAREs vormen een ande-
re eenvoudige subklasse van de reguliere uitdrukkingen. De grootste motivatie
voor het bestuderen van deze klassen ligt in het feit dat ze gebruikt worden
in XML schema talen, en we in Hoofdstuk 8 de complexiteit van dezelfde
problemen voor deze schema talen zullen bestuderen, gebruik makend van de
resultaten in dit hoofdstuk.

In Hoofdstuk 6 bestuderen we deterministische reguliere uitdrukkingen uit-
gebreid met de tel-operator, aangezien dit essentieel de reguliere uitdrukkingen
zijn die voorkomen in XML Schema. De meest gebruikte notie van determinis-
me is zoals we ze eerder definieerden: een expressie is deterministisch wanneer
het bij het valideren van een woord steeds duidelijk is welk symbool in het
woord overeenkomt met welk symbool in de uitdrukking. We kunnen echter
bijkomend vereisen dat het ook steeds duidelijk is hoe er van één positie naar
de volgende in de uitdrukking moet gegaan worden. De eerste notie zullen we
zwak determinisme noemen, en de tweede sterk determinisme. Bijvoorbeeld,
(a∗)∗ is zwak deterministisch, maar niet sterk deterministisch, aangezien het
niet duidelijk is over welke ster we moeten itereren bij het gaan van één a naar
de volgende.

Voor standaard reguliere uitdrukkingen wordt het verschil tussen deze twee
noties zelden opgemerkt, aangezien ze voor deze uitdrukkingen bijna overeen-
komen. Dit kunnen we zeggen omdat iedere zwak deterministische uitdrukking
in lineaire tijd naar een sterk deterministische uitdrukking kan worden ver-
taald. Deze situatie verandert echter volledig wanneer de tel-operator wordt
toegevoegd. Ten eerste, het algoritme om te beslissen of een uitdrukking al dan
niet deterministisch is, is allesbehalve eenvoudig. Bijvoorbeeld, (a2,3 +b)2,2b is
zwak determintisch terwijl (a2,3+b)3,3b dat niet is. Ten tweede, zoals we zullen
aantonen, zijn zwak deterministische uitdrukkingen met tel-operator strikt ex-

Samenvatting 197

pressiever dan sterk deterministische uitdrukkingen met tel-operator. Daarom
is het doel van dit hoofdstuk een studie van de noties van zwak en sterk deter-
minisme in het bijzijn van de tel-operator met betrekking tot expressiviteit,
beknoptheid, en complexiteit.

Toepassingen voor XML Schema Talen

In Hoofdstuk 7 bestuderen we patroon-gebaseerde schema talen. Dit zijn
schema talen equivalent in expressieve kracht met enkel-type EDTDs, de vaak
gebruikte abstractie van XML Schema. Een voordeel van deze taal is dat ze
de expressieve kracht van XSDs duidelijker maakt: het inhoud model van een
element hangt enkel af van reguliere woord-eigenschappen gevormd door de
voorouders van dat element. Patroon-gebaseerde schema’s kunnen daarom
gebruikt worden als een type-vrije front-end voor XML Schema. Aangezien ze
zowel in een existentiele als in een universele semantiek kunnen gëınterpreteerd
worden, bestuderen we in dit hoofdstuk de complexiteit van vertalingen tussen
de twee semantieken en vertalingen naar de formalismen DTDs, EDTDs, en
enkel-type EDTDs, de vaak gebruikte abstracties voor respectievelijk DTD,
Relax NG en XML Schema.

Hiervoor maken we gebruik van de resultaten in Hoofdstuk 3 en tonen aan
dat in het algemeen vertalingen van patroon-gebaseerde schema talen naar
de andere formalismen, exponentiële of zelfs dubbel exponentiële tijd vragen.
Bijgevolg is er weinig hoop om patroon-gebaseerde schema’s, in hun meest
algemene vorm, als een nuttige front-end te gebruiken voor XML Schema.
Daarom bestuderen we ook meer beperkte klassen van schema’s: lineaire en
sterk lineaire patroon-gebaseerde schema’s. De meest gerestricteerde klasse,
sterk lineaire patroon-gebaseerde schema’s, laten efficiente vertalingen naar
andere talen en efficiente algoritmes voor beslissingsproblemen toe, en zijn bo-
vendien expressief genoeg om de overgrote meerderheid van XSDs voorkomend
op het Web uit te drukken. Vanuit een praktisch oogpunt is dit dus een zeer
interessante klasse van schema’s.

In Hoofdstuk 8 bestuderen we de impact van het toevoegen van tel- en
meng-operator aan reguliere uitdrukkingen voor de verschillende schema ta-
len. We beschouwen het equivalentie-, inclusie-, en intersectie niet-leegheid
probleem aangezien deze de bouwstenen voor algoritmen voor het optimalise-
ren van XML schema’s zijn. We beschouwen ook het simplificatie probleem:
Gegeven een EDTD, is deze equivalent met een enkel-type EDTD of een DTD?

Ten slotte, in Hoofdstuk 9, geven we algoritmen waarmee je kan omgaan
met de vereiste in DTD en XML dat alle reguliere uitdrukkingen determinis-
tisch moeten zijn, i.e. de UPA vereiste in XML Schema. In de meeste boeken
over XML Schema wordt de UPA vereiste uitgelegd met behulp van een voor-

198 Samenvatting

beeld, in plaats van een duidelijke syntactische definitie. Wanneer bijgevolg,
na het opstellen van het schema, één of meerdere expressies worden geweigerd
omdat ze niet-deterministisch zijn, is het zeer moeilijk voor gebruikers, die
geen expert zijn om de reden van de fout te vinden, en nog moeilijker om deze
te corrigeren. Het doel van dit hoofdstuk is om methodes te onderzoeken om
niet-deterministische uitdrukkingen te vertalen naar kleine en leesbare deter-
ministische uitdrukkingen die ofwel dezelfde taal definiëren, ofwel een goede
benadering zijn. We stellen het supac algoritme voor dat kan gebruikt worden
in een slimme XSD tester. Naast fouten te vinden in XSDs die niet conform
UPA zijn, kan het bovendien ook goede alternatieven suggereren. Op deze
manier is de gebruiker ontlast van de vervelende UPA vereiste, en kan hij zich
concentreren op het ontwerpen van een juist schema.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20090817103644
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 908
 73
 None
 Right
 2.8346
 0.0000

 Both
 2
 AllDoc
 5

 CurrentAVDoc

 Uniform
 28.3465
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 0
 204
 203
 204

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 281.79, 99.39 Width 1.07 Height 3.21 points
 Mask co-ordinates: Horizontal, vertical offset 278.57, 69.39 Width 27.86 Height 32.14 points
 Origin: bottom left

 1
 0
 BL

 Both
 1
 CurrentPage
 3

 CurrentAVDoc

 281.7854 99.3906 1.0714 3.2143 278.5711 69.3907 27.8571 32.1428

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 20
 204
 20
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 273.21, 64.03 Width 34.29 Height 40.71 points
 Origin: bottom left

 1
 0
 BL

 Both
 1
 CurrentPage
 3

 CurrentAVDoc

 273.214 64.0335 34.2857 40.7142

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 116
 204
 116
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 272.14, 71.53 Width 36.43 Height 22.50 points
 Origin: bottom left

 1
 0
 BL

 Both
 1
 CurrentPage
 3

 CurrentAVDoc

 272.1425 71.5335 36.4286 22.5

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 188
 204
 188
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: before current page
 Number of pages: 1
 same as current

 1
 1

 D:20080509091424
 841.8898
 a4
 Blank
 595.2756

 3
 Tall
 402
 339

 CurrentAVDoc

 SameAsCur
 BeforeCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

