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Abstract

The number of potential surrogate markers for clinical-trial endpoints is increasing rapidly,

not in the least owing to the availability of biomarkers. At the same time, considerable de-

velopment has taken place regarding statistical evaluation paradigms for such markers. As a

consequence, such endpoints are given more extensive consideration for practice than previously

had been the case. A particular but important instance is where the true endpoint is the ul-

timate assessment in a sequence of repeated measures. It is then appealing to consider earlier

measures, either in isolation or several combined, as a potential surrogate endpoint. The length

and cost reducing potential has to be weighed carefully against loss in precision and the risks of

an inappropriate decision regarding a new compound’s fate. Quantitative criteria to do so are

developed, embedded in a meta-analytic framework. The methodology’s behavior is assessed

through simulations and applied to data from a pair of clinical trials, one in opthalmology and

one in schizophrenia.
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1 Introduction

Repeated measures of a quantitative (bio)marker are nowadays commonly obtained in clinical

trials. When such measurements have the ability to predict, and/or explain a large proportion of

the variability of future clinical measurement or status of a patient, then the (bio)marker may be

used as a surrogate for the final measurements or status of a patient at the end of the study. If this

is the case, such a (bio)marker may lead to reduction of the study’s length and/or cost.
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Surrogate-marker evaluation endeavors that have been performed thus far involved two different

endpoints (Buyse et al. 2000, Burzykowski, Molenberghs, and Buyse 2005), where one endpoint is

a candidate surrogate and the other is a true endpoint. Such endpoints may be of the same nature

(e.g., both continuous, binary, or time-to-event) or of a mixed nature (e.g., an ordinal surrogate,

such as tumor response, for a time-to-event endpoint, such as overall survival).

In contrast, the scenario under investigation here has only one endpoint, measured repeatedly over

time. We are then interested in the predictive potential of the earlier clinical measurements for

the later ones, and in particular for the last one. This can be placed within the surrogate-marker

evaluation context, by considering the accumulated first few repeated measurements as potential

surrogates and the outcome, for example at the final measurement occasion, as the true endpoint.

Thus, for each patient, the surrogate is a vector of repeated measurements and the true endpoint

is a scalar. The situation where the surrogate is a single early measurement is, of course, merely a

special case.

The challenge is to determine the number of repeated measures that are required to sufficiently

adequately predict the true endpoint. It is evident that collecting more repeated measurements en-

hances prediction. However, more repeated measurements imply longer study periods and increase

cost. Thus, there must be a balance between cost and precision.

The objective of this article is threefold. First, existing surrogate-marker evaluation procedures will

be tuned to accommodate the present scenario. Second, selection of an optimal number of repeated

measurements will be effectuated using an objective function, designed as a weighted function of

financial cost and predictive precision. The objective function allows tuning to the specific needs

of a particular case study. Third, a simulation study is conducted to investigate the performance

of the proposed procedure under different covariance structures for the repeated measures.

The paper is organized as follows. An introduction to the motivating studies is given in Section 2.

In Section 3, we set out with a concise description of the meta-analytic approach to surrogate

marker evaluation for repeated measurements using canonical correlations, as proposed by Alonso

et al (2004), and then proceed with our modification to the scenario where early measurements on

a longitudinal endpoints are treated as a surrogate for the final measurement. Section 4 provides,
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from a theoretical point of view, the performance of an objective function for two important special

cases. Section 5 provides details on the design and results of our simulation study, and provide

a perspective on the conclusions that can be drawn from it. In Section 6, we briefly introduce a

constrained maximization problem. Section 7 contains the results of the case studies’ analysis.

2 Motivating Case Studies

2.1 Age-related Macular Degeneration Study

This is a clinical trial involving patients with age-related macular degeneration (ARMD), a condition

in which patients progressively lose vision. Overall, 1186 patients from 114 sites participated in the

trial. Patients’ visual acuity was assessed using standardized vision charts displaying lines of five

letters of decreasing size that patients had to read from top to bottom. Visual acuity is captured

as the number of letters correctly read. The binary indicator for treatment is set to Z = −1 for

placebo and Z = 1 for treatment. In the analysis, the sites at which patients were treated will be

considered as units of analysis. Some of the sites participating in the trial enrolled patients only to

one of the two treatment arms and were excluded from further considerations. A total of 82 sites

were thus available for analysis, with the number of individual patients per center ranging from 2

to 19, totaling to 424 patients overall.

2.2 A Meta-analysis of Five Clinical Trials in Schizophernia

The data come from a meta-analysis of five double-blind randomized clinical trials, comparing the

effects of risperidone to conventional antipsychotic agents for the treatment of chronic schizophre-

nia. The treatment indicator for risperidone versus conventional treatment will be denoted by Z.

Schizophrenia has long been recognized as a heterogeneous disorder with patients suffering from

both ‘negative’ and ‘positive’ symptoms. Negative symptoms are characterized by deficits in cog-

nitive, affective, and social functions; for example, poverty of speech, apathy, and emotional with-

drawal. Positive symptoms entail more florid symptoms such as delusions, hallucinations, and

disorganized thinking, which are superimposed on mental status (Kay, Fiszbein, and Opler 1987).

Several measures can be considered to asses a patient’s global condition. One useful and sufficiently

sensitive assessment scale is the Positive and Negative Syndrome Scale (PANSS) (Kay, Opler, and
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Lindenmayer 1988). The PANSS consists of 30 items that provide an operationalized, drug-sensitive

instrument, which is highly useful for both typological and dimensional assessment of schizophre-

nia (Kay, Opler, and Lindenmayer 1988). We will apply the methods proposed to the repeatedly

measured PANSS outcome. The data are made up of five trials, all containing information on the

treating investigators, necessary for defining the units for analysis.

3 Longitudinal Endpoints and Surrogacy

We set out, in Section 3.1 with a brief description of the existing meta-analytic approach to surrogate

marker evaluation for repeated measurements, using canonical correlations as introduced by Alonso

et al. (2004). This will be followed in Section 3.2 by a version tailored to the needs of our goal, i.e.,

the determination of an optimal number of repeated measurements required to accurately predict

the true endpoint. In Section 3.3, we zoom in on the development of an objective function.

3.1 Canonical Correlation Approach for Two Repeatedly Measured Endpoints

We shall assume that information from i = 1, . . . , N trials is available, in the ith of which, j =

1, . . . , ni subjects are included. We shall further denote the time points at which each subject in

trial i is measured as tik. If Tijk and Sijk denote the associated true and surrogate endpoints at time

k, respectively, and Zij is a binary indicator variable for treatment, Alonso et al. (2004) proposed

the following joint model for both responses:

Sijk = µSi
+ αiZij + θSi

tik + εSijk
, (1)

Tijk = µTi
+ βiZij + θTi

tik + εTijk
, (2)

where µSi
and µTi

are trial-specific intercepts, αi and βi are trial-specific effects of treatment Zij

on the two endpoints, and θSi
and θTi

are fixed trial-specific time effects. The vectors εSij
and εTij

are assumed to have a multivariate normal distribution with mean zero and variance-covariance

matrix

Σi =

(
ΣSSi

ΣSTi

ΣTSi
ΣTTi

)
. (3)

In (3), ΣTTi
and ΣSSi

denote the variance-covariance matrices associated with the true and the

surrogate endpoints, respectively, and ΣTSi
= ΣT

STi
contains the covariances between the measure-
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ments for the true and the surrogate endpoints. In some practical settings, Σi can be modeled

as the Kronecker product of a general correlation matrix that captures the association within the

sequences and an unstructured 2 × 2 matrix that captures the association between the sequences

(Galecki 1994).

One might be interested in studying how an individual’s surrogate score is predictive of the true

score, which is referred to as individual-level surrogacy. Due to the longitudinal nature of the

endpoints, Alonso et al. (2004) extended the ideas of Buyse et al. (2000) for capturing individual-

level surrogacy, based on coefficients of determination, to a multivariate version using the concept

of canonical correlation. Based on model (3), these authors obtained the canonical correlations, ρik

from Σ−1
TTi

ΣTSi
Σ−1

SSi
ΣT

TSi
and proposed a family of measures to evaluate surrogacy at the individual

level. This so-called Ω family is defined as

Ω =

{
ϑ : ϑ =

∑

i

∑

k

αikρ
2
ik, where: αik > 0 ∀(i, k),

∑

i

∑

k

αik = 1

}
. (4)

An important member of the Ω family is the Variance Reduction Factor (VRF) originally introduced

by Alonso et al. (2003) and defined as

V RFind =

∑
i{tr(ΣTTi

)− tr(ΣT |Si
)}∑

i tr(ΣTTi
)

, (5)

where ΣT |Si
denotes the conditional variance-covariance matrix of εTij

given εSij
. Intuitively, (5)

quantifies how much of the total variability in the true endpoint is explained by adjusting for the

treatment effects and the (repeated measurements on) the surrogate endpoints. Values close to 1

indicate that the surrogate is a ‘good’ predictor for the true endpoint while values close to 0 indicate

a ‘poor’ predictor. Evidently, values for V RFind have to be complemented with biopharmaceutical,

regulatory, and other expert opinion.

3.2 Optimal Number of Repeated Measurements

We are interested in predicting a patient’s outcome at a specified point in time from an accumulated

number of repeated measurements at earlier times. To this end, let us denote by Yijk the kth

measurement on subject j in trial i. We shall further assume that the following model holds:

Yijk = (β0 + b1i) + (β1 + b2i)Zij + β2tik + β3Zijtik + εijk, (6)
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where Zij and tik are defined as before, (b1i, b2i) are trial-specific (random) effects, assumed to follow

a zero-mean normal distribution with covariance matrix DL, and the error vector εij is assumed

zero-mean normally distributed with covariance matrix ΣL.

Note that there are some important differences between models (6) and (1)–(2). Indeed, (1)–(2)

is based on two different, repeatedly measured endpoints, while (6) is based on a single sequence

of which earlier components act as surrogates for later ones. In many applications, assuming a

constant treatment effect over time will be unrealistic. We assume a linear treatment effect over

time, constant across trial, but extension of which is straightforward (Alonso et al. 2004).

Let us formally define our surrogate and true endpoints, based on (6). Supposed we intend to

investigate whether the first m accumulated measurements, where 1 ≤ m ≤ K − 1, constitute a

good set of predictors for the outcome measured at time K. Hence, Sijk = Yijk, k = 1, . . . , m, and

Tij = YijK , leading to the following possible model:

Sijk = µ∗
Si

+ α∗
i
Zij + β2tij + β3tijZij + εSijk

,

Tij = µ∗
Ti

+ β∗
i Zij + εTij

, (7)

where the random-effects vector (µ∗
Si

, µ∗
Ti

, α∗
i , β∗

i ) is assumed to be zero-mean normally distributed

with covariance matrix:

D =




dSS dST dSa dSb

dTT dTa dTb

daa dab

dbb




. (8)

and the m+1 dimensional error vector (εT
Sij

, εTij
)T is zero-mean normally distributed with variance-

covariance matrix Σ. The analyst will have to decide on an appropriate structure for Σ, which can

be usefully partitioned as

Σ =

(
ΣSS ΣST

ΣTS ΣTT

)
, (9)

where ΣST is a vector and ΣTT = σTT is a scalar. Similar to Buyse et al. (2000), linear mixed-effects

methodology can be used for parameter estimation and inferences (Verbeke and Molenberghs 2000).

Applying the V RFind in this setting leads to

V RFind =
tr(σTT ) − tr(σT |S)

tr(σTT )
, (10)
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where σT |S denotes the conditional variance of Tij given the surrogates: σT |S = σTT − ΣTSΣ−1
SS ΣST .

We can re-express (10) as

V RFind =
ΣTSΣ−1

SS ΣST

σT T

. (11)

Note that V RFind = 0 if and only if ΣST = 0, i.e., if and only if when Tij and S̃ij are independent,

where S̃ij is the vector grouping the surrogate measures.

The bivariate linear mixed models (BLMM) used by Buyse et al. (2000) are very flexible models,

however, obtaining convergence with such models is a non-trivial task. To address this, Tibaldi et

al. (2003) and Tilahun et al. (2007) proposed and studied a number of simplified fitting strategies.

Here, we will proceed by so-called bivariate general linear models (BGLM), essentially a two-stage,

fixed-effects version of the BLMM, which has shown good performance in both statistical and

computational terms. Precisely, in the first stage of a BGLM, the effects µ∗
Si

, µ∗
Ti

, α∗
i , and β∗

i

in (7) are considered fixed. The error term (εT
Sij

, εTij
)T is assumed to follow a zero-mean normal

distribution with covariance matrix Σ.

3.3 Cost Function and Optimal Number of Measurements

To determine the optimal number of measurements (mo), we will consider the following cost func-

tion, introduced by Winkens et al. (2005):

FC = NC1 + NKC2. (12)

Here, FC represents the fixed total financial cost, N is the total number of patients in the study,

K is the number of planned repeated measurements per subjects, C1 is the cost of recruiting a

patient to the study, and C2 is the cost per measurement and per subject. Let R = C1/C2 be

the ratio of both costs; usually the cost of recruiting a patient to the study is higher than the

cost per measurement, i.e., R > 1. We can then re-write (12) as FC = NC2(R + K). Suppose

now that, instead of taking K measurements, we take m, 1 ≤ m ≤ K − 1, measurements and

use this information to predict the outcome at the Kth time point, the financial cost for the m

measurements is then given by FC(m) = NC1 +NmC2. Thus, the proportion of the total financial

cost required to take m measurement is PFC(m) = (R + m)/(R + K). It is easy to show that the

variance of the prediction, based on m observations, of the outcome at the last time point takes
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the form [1 − V RFind(m)]σTT . Note further that σTT is constant, irrespective of the number of

repeated measurements used as a surrogate; thus a standardized version of the prediction variance,

1−V RFind(m), will be used. Finally, a weighted linear combination of the prediction variance and

the financial cost can be used to define an objective function as shown in (13), with weights w1 and

(1 − w1), respectively. An advantage of standardizing the prediction variance and financial cost

for a given number of repeated measurements m is the relative ease of specifying w1, compared to

using the non-standardized versions:

CPR0(m) = w1 · [1− V RFind(m)] + (1 − w1) ·
R + m

R + K
, (13)

The quantity CPR0(m) balances the lack of surrogacy, 1 − V RFind(m), on the one hand, and the

proportion of total financial cost required to take m measurements, (R+m)/(R+K), on the other

hand. Retaining more measurements reduces the first term, because the VRF will go up, but at

the same time leads to an increase in the cost term. The relative importance attributed to the

terms is captured by the weight w1, with a user-assigned value between 0 and 1. The number mo

is determined as that minimizing CPR(m).

Let us consider some extensions. The objective function assumes that the cost of each measurement

is the same, which may be unrealistic for some situations; for example, when patients have to stay

in a hospital or health institute, where the waiting time may incur additional costs, a feature not

accommodated by (13). One can therefore elect to introduce a third term accounting for time lag:

CPRI(m) = w1 · [1− V RFind(m)] + w2 ·
R + m

R + K
+ w3 ·

tm − t0
tk − t0

, (14)

If the repeated measures are equidistant with time lag 4, then tm = t0 + 4M and tk = t0 + 4K.

Hence, (14) takes the form

CPRI(m) = w1 · [1− V RFind(m)] + w2 ·
R + m

R + K
+ w3 ·

M

K
. (15)

If in addition we assume that the waiting cost for the first measurement is zero, then:

CPRII(m) = w1 · [1− V RFind(m)] + w2 ·
R + m

R + K
+ w3 ·

M − 1

K
. (16)

These objective functions assume that the cost is constant across treatment arms, whether of a

placebo, standard-therapy, or experimental nature. When deemed unrealistic, appropriate modifi-

cations can be implemented. Arguably, the choice of a cost function will have to balance simplicity
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with it being a realistic representation of reality. In what follows, objective function (13) will be

employed, unless otherwise stated.

Starting from 13, it is insightful to derive what is needed to have the VRF go up by a given amount

∆. If the CPR is to remain identical, them the new optimum number of measurements m1, is an

increase over the original optimum m0, as follows:

m1 = m0 +
w1

1 − w1
(R + K)∆.

Obviously, the smaller the weight, the less sensitive the number of measurements becomes. It is

informative to derive the corresponding cost increase, starting from 12:

N
w1

1 − w1
(R + K)∆C2.

Also here, the dampening effect of a smaller wi is clearly visible.

4 Some Important Special Cases

In this section, we aim to aid understanding of the nature of the cost functions through theoretical

considerations for two special, important cases.

4.1 Compound Symmetry Structure

Assume that the covariance structure of (6) is compound symmetry, i.e., ΣL = σ(1−ρ)IK +σρJK ,

where σ denotes the variance of the response at each time point, ρ is the correlation between two

observations, IK is a K-dimensional identity matrix and JK is a K-dimensional square matrix of

ones. It is easy to show that, in this setting,

V RFind(m) =
mρ2

1 + (m − 1)ρ
.

Let us study the predictive characteristics of this case. It follows that V RFind(m) is an increasing

function of m as far as ρ 6= 0, 1 and, therefore, the more observations we include in S̃ij , the more

precise our prediction of Tij will be. Turning to ρ, the question is how the correlation influences

the amount of information that S̃
ij

brings about Tij. To usefully study this, let us calculate the
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additional information that one extra observation will bring, quantified using the ratio:

g(ρ) =
V RFind(m + 1)

V RFind(m)
=

(
m + 1

m

)(
1 + (m − 1)ρ

1 + mρ

)
.

Some elementary calculations show that g(ρ) is a decreasing function of ρ and therefore, the higher

the correlation the less we gain by taking additional observations, rather an intuitive result. Indeed,

if the correlation is very high, then all the measurements are nearly deterministically related, and

having observed one or a few of them will allow us to predict with high precision all the others.

For instance, in the extreme case when ρ = 1 the V RFind(m + 1) = V RFind(m) for all m and the

first observation will be sufficient to predict the true endpoint without error.

Coherent with the nature of compound symmetry, the position in the sequence of the m observations

that constitute the surrogate is totally irrelevant. It is easy to show that in this setting the CPR

function takes the form

CPR(m) = w1 ·
(1− ρ)(1 + mρ)

1 + (m− 1)ρ
+ (1− w1) ·

R + m

R + K
, (17)

of which the extremes are easy to determine: (17) reaches its minimum at m+ and m− when ρ > 0

and ρ < 0 respectively, where

m± = −

(
1 − ρ

ρ

)
±

√
w1(R + K)(1− ρ)

1 − w1
. (18)

Obviously, in many practical situations, m± will not be integers, in which case they will have to

be rounded. There is also a possibility for m± to assume a negative value for some combinations

of K, ρ, R, and w1. When this happens, m± should be set to one.

Zooming in on m+ reveals that, when less weight is assigned to the precision part of the cost

function, an increase in R has little influence on m+ but its influence increases as more weight is

assigned to precision. This is to be expected because when the cost of recruiting patients is much

higher than taking more measurements on subjects, the obvious way to increase precision is through

taking more measurement per subject. An increase in the correlation ρ between measurement leads

to a decrease in m+ when the weight assigned to precision is small to moderate. When the weight

increases, the value of m+ increase for ρ in [0; 0.5] and decreases in [0.5; 1]. Also, a increase in K

generally leads to a slight increase in m+.
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4.2 First-order Auto-regressive Process

Another association structure frequently encountered in longitudinal data is the first-order auto-

regressive one, with ρt the correlation between two measurements, t time units apart. In this case,

ΣSS is also an (m×m) AR(1) matrix, ΣST = ΣT
TS = ρK−mδT

1 with δT
1 = (ρm−1, . . . , 1) and σTT = σ.

It then follows that V RFind(m) = ρ2(K−m)σδT
1 Σ−1

SSδ1. Further, using the expression for the inverse

of an AR(1) matrix (Graybill 1983), one can prove that σδT
1 Σ−1

SSδ1 = 1 and therefore V RFind(m) =

ρ2(K−m). Like in the compound-symmetry case, here the V RFind(m) is an increasing function of m.

However, unlike before, it is also an increasing function of ρ, implying that the higher ρ, the more

advantageous it is to include more observations into the surrogate. This is again a very intuitive

result. This is intuitively plausible because, under AR(1), the correlation decreases rapidly with

time lag; hence it is recommendable to consider surrogate outcomes that are collected sufficiently

closely to the true endpoint. More generally, the position of the surrogate measures within the

sequence of repeated measures is now relevant. For instance, if we now consider as the surrogate

marker a sub-sequence of m observations starting at time point s + 1, then V RFind(s+1)(m) =

ρ2(K−s−m). Obviously, V RFind(s+1)(m) ≥ V RFind(m), for s ≥ 1, and therefore considering m

observations closer to the true endpoint will result in a surrogate with more predictive power. In

this scenario, the CPR function takes the form:

CPR(m) = w1 ·
(
1 − ρ2(K−m)

)
+ (1− w1) ·

R + m

R + K
. (19)

Interestingly, (19) does not reach its minimum value in the interval (1, K−1) and therefore CPR(m)

will always lead to choosing the first observation only if the cost is the impelling criterion or choosing

the entire K − 1 sequence if prediction is the more important factor. This result also holds if the

longitudinal surrogate sequence is started at a time point different from the first one. Thus, the

CPR(m) seems to indicate that in this scenario the surrogate should contain one observation only

and therefore, the most rational choice would be to consider a value sufficiently close to the true

endpoint so that a reasonable level of precision can be achieved in the prediction. Obviously, the

closer this observation is to the true endpoint the better the prediction will be but the longer we

will have to wait. A compromise between these two considerations should be found in this setting

using external elements such as, for example, expert opinion.
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5 Simulation Study

Even though the previous results are enlightening, not all cases are analytically tractable. Moreover,

even in those cases where analytic results are obtainable it is still of great interest to study the

performance of the proposed method when parameters have to be estimated. A simulation study

was performed to investigate further these issues, with focus on the two association structures of

Section 4.

5.1 Data Generation

Equally spaced longitudinal data were generated based on (6) and using a two-stage approach. In

the first stage, random trial-specific intercepts and treatment effects, b1i and b2i respectively, were

generated from a zero-mean normal distribution with covariance matrix

DL =

(
1.5 2.098

2.098 3.26

)
.

Additionally, error terms εijk were generated from a zero-mean normal distribution with covariance

matrix ΣL, either first-order autoregressive, AR(1), or compound symmetry, CS. The variance in

ΣL was assumed constant and the correlation between successive measurements was set to either

0.3, 0.6, or 0.9. The fixed-effects vector was set to βT = (2.5, 4.3, 0.78, 3.5). Using these, the

outcomes were obtained from (6).

The data generation scheme discussed earlier assumes that the treatment-by-time interaction is

constant across trials. To increase flexibility, a more general framework, where the treatment effect

is allowed to randomly vary over time and across trials was adopted. The first stage now involved

generation of random trial-specific time effects and random slopes, in addition to random trial-

specific intercepts and treatment effects, b1i and b2i, from a zero-mean normal distribution with

covariance matrix

DL =




1.0 0.8 0.00 0.00

0.8 1.0 0.00 0.00

0.0 0.0 1.00 0.95

0.0 0.0 0.95 1.00




.

The error terms were, again, generated from a zero-mean normal distribution with AR(1) or CS
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covariance matrix ΣL, The outcome vector Yijk then takes the form:

Yijk = (β0 + b0i) + (β1 + b1i)Zij + (β2 + b2i)tij + (β3 + b3i)Zijtij + εijk.

The number of trials was set to either 10, 20, 30, or 40. Two sets of trial sizes were considered. The

first set of smaller trial sizes consists of 20, 40, and 60 subjects per trial. The second set of larger trial

sizes consists of 100, 200, and 300 subjects per trial. The simulation consists of a full combination

of the specified correlation values, covariance matrix structures, number of trials, and trial sizes.

For each combination, 100 datasets (samples) where generated as described in Section 5.1, analyzed

and the optimal number of measurements determined as described in Section 3.

In principle, simulations based on 100 runs are in jeopardy of large Monte Carlo errors. However,

because we predominantly determine the optimal number of measurements, a discrete quantity,

there is little gain to be expected from increasing the number of runs.

5.2 Simulation Study Results

The results of the simulation for the case of R = 4 and K = 10 are summarized in Tables 1–

4. In the tables, V RFind(mo) is the usual individual-level surrogacy for the optimal number of

measurements, while V RFind(K − 1) corresponds to the entire K − 1 sequence being used as a

surrogate. Furthermore, f represents the percentage of datasets that resulted in a given mo as the

optimal number of measurements. The weight, w1, was set to either 0.3, 0.5, or 0.7.

Let us focus on the first data-generation scheme, where the treatment-by-time interaction is assumed

constant across trials. We learn that the V RFind(m) increases with increasing number of repeated

measurements. When the data are generated under AR(1) but analyzed using an unstructured

covariance matrix, the optimal number of time points was chosen to be either 1 or 9, depending on

the weights assigned. When the correlation was set to 0.9, assigning more weight to precision or

equal weights to both precision and financial cost requires all 9 repeated measurements to minimize

the objective function. For the other possible values of the correlation, i.e., 0.30, 0.60, or 0.71, if

more weight is assigned to financial cost or equal weights are assigned to financial cost and precision

then the optimum simply is the first measurement only. However, the entire sequence is needed

when progressively more weight is assigned to the precision. This result is in agreement with
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Section 4, where we have shown that, under AR(1), CPR(m) does not reach its minimum value in

the interval (1, K−1) and therefore it will always lead to taking either only one observation or the

entire K − 1 subsequence. Hence, this result carries over to the simulation setting, in spite of the

added variability coming from parameter estimation.

When the data are generated using CS and analyzed with either unstructured or CS (Table 2),

then 1, 2, 3, or 4 repeated measurements may be required to predict the outcome at the last time

point, with differing percentages of the sample depending on the weight assigned. When less weight

is assigned to precision, the first observation is selected and the optimal number of measurements

equals one, for both CS and unstructured.

Note that, in Table 2, missing entries are not due to convergence issues, for example. Actually

those spaces are left for conveniently putting the results for CS and UN in one table. For example,

for CS structure with a weight of 0.7 and correlation of 0.71, when the analysis was done with a CS,

time point 3 was selected as optimal with 100 percent of the samples. Whereas, when the analysis

is conducted with UN, time points 2 and 4 were also selected as optimal with percentages of 14 and

6 respectively. These two time points were not picked before and hence the space corresponding

to time points 2 and 4 is left blank in the columns corresponding to CS. We have added this

explanation to the manuscript.

In the second data-generation scheme, where treatment effects are allowed to vary, the same results

followed, for both AR(1) and CS.

We also gave some consideration to the Toeplitz, or banded, structure, where the correlation be-

tween pairs of measurements varies with the time lag between them, in an unstructured way, but

is independent of the actual times at which the measurements are taken. Furthermore, an AR(1)-

type structure was assumed where the decline in autocorrelation is expressed in terms of the square

root of the time lag, denoted by AR(1)-Sq. The results are summarized in Tables 3–4. For the

Toeplitz structure up to five time points and for the unstructured matrix up to six time points were

selected as optimum, depending on the weight assigned to the precision part of the cost function.

For the AR(1)-Sq structure, the optimal time point swings between taking the first measurement

or the entire sequence. However, it picks the first time point as optimal more often, except when

14



Table 1: Simulation study. Results for the optimal number of measurements with AR(1). (ρ:

correlation between successive time measurements; w1: weight assigned to the precision part of the
objective function; mo: optimal number of measurements; V RFind(m): individual-level surrogacy for

the optimal number of measurements; V RFind(K − 1): expected value of individual-level surrogacy;
f : percentage of datasets resulting in mo is 100% in all cases.)

V RFind(m) V RFind(m)

w1 mo as AR(1) as CS w1 mo as AR(1) as CS

ρ = 0.30 & V RFind(K − 1) = 0.09 ρ = 0.71 & V RFind(K − 1) = 0.50

0.7 1 0.00003 0.0006 0.7 9 0.50 0.50

0.5 1 0.00003 0.0006 0.5 1 0.0032 0.0032

0.3 1 0.00003 0.0006 0.3 1 0.0032 0.0032

ρ = 0.60 & V RFind(K − 1) = 0.36 ρ = 0.90 & V RFind(K − 1) = 0.81

0.7 9 0.36 0.42 0.7 9 0.81 0.81

0.5 1 0.07 0.07 0.5 9 0.81 0.81

0.3 1 0.07 0.07 0.3 1 0.15 0.15

the weight assigned to precision is as high as 70% and correlation values are 0.60 and 0.90. For a

correlation of 0.30, it invariably picks the first time point only, even when the weight is as high as

70%.

6 Constrained Maximization

There are circumstances in which clinical trials are faced with budget constraints and yet are

expected to produce acceptable results. This predicament motivates the use of constraint maxi-

mization to arrive at an optimal number of subjects and/or repeated measures per subject, thereby

not exceeding the budget available. Translated to our setting, we aim at maximizing the individual

level surrogacy measure, subject to cost and time constraints. We first maximize V RFind(m) sub-

ject to (R + m)/(R + K) ≤ δ1 and then later subject to two constraints: (R + m)/(R + K) ≤ δ1

and (tm − t0)/(tk − t0) ≤ δ2, where both δ1 and δ2 assume values between zero and one.

Without loss of generality, if we assume that the measurements are equally spaced with fixed time

interval 4, then tm = t0 + 4M and tk = t0 + 4K and hence the second constraint reduces to

M/K ≤ δ2. Using a Lagrange multiplier for the first optimization problem, one can show that, for

CS with positive ρ, the optimal number of repeated measures required for a percentage budget of

15



Table 2: Simulation study. Results for the optimal number of measurements with CS. (ρ: correlation

between successive time measurements; w1: weight assigned to the precision part of the objective
function; mo: optimal number of measurements; V RFind(m): individual-level surrogacy for the

optimal number of measurements; V RFind(K − 1): expected value of individual-level surrogacy; f :
percentage of datasets resulting in mo.)

as CS as UN

w1 mo V RFind(m) f V RFind(m) f

ρ = 0.30 & V RFind(K − 1) = 0.24

0.7 1 0.11 18 0.10 18

0.7 2 0.14 6 0.12 34

0.7 3 0.16 60 0.17 22

0.7 4 0.19 16 0.19 26

0.5 1 0.09 100 0.09 100

0.3 1 0.09 100 0.09 100

ρ = 0.60 & V RFind(K − 1) = 0.56

0.7 3 0.49 60 0.48 62

0.7 4 0.52 40 0.51 38

0.5 1 0.37 30 0.37 18

0.5 2 0.44 70 0.43 82

0.3 1 0.36 100 0.36 100

ρ = 0.71 & V RFind(K − 1) = 0.68

0.7 2 0.58 14

0.7 3 0.62 100 0.62 80

0.7 4 0.64 6

0.5 3 0.62 70

0.5 4 0.64 6

0.5 1 0.51 30

0.5 2 0.58 70 0.57 24

0.3 1 0.50 100 0.50 100

ρ = 0.90 & V RFind(K − 1) = 0.89

0.7 2 0.85 100 0.85 100

0.5 1 0.81 100 0.81 100

0.3 1 0.81 100 0.81 100

δ1 is given as:

M =





δ1(R + K) − R if (R + 1) − δ1(R + k) ≤ 1
ρ ,

2
(

1−ρ
ρ

)
− δ1(R + K) + R if (R + 1) − δ1(R + k) ≥ 1

ρ .
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Table 3: Simulation study. Results for the optimal number of measurements with: unstructured
covariance and Toeplitz correlation structure with slowly declining correlation ( w1: weight assigned

to the precision part of the objective function; mo: optimal number of measurements; V RFind(m):
individual-level surrogacy for the optimal number of measurements; V RFind(K − 1): expected value
of individual-level surrogacy; f : percentage of datasets resulting in mo.)

w1 mo V RFind(K − 1) f

Unstructured

V RFind(K − 1) = 0.995

0.1 1 0.53 100

0.3 1 0.53 100

0.5 4 0.86 92

0.5 5 0.91 8

0.7 6 0.96 100

0.6 4 0.86 29

0.6 5 0.91 57

0.6 6 0.96 14

Toeplitz

V RFind(K − 1) = 0.75

0.1 1 0.15 100

0.3 2 0.16 80

0.3 3 0.22 20

0.5 4 0.38 100

0.6 4 0.38 98

0.6 5 0.42 2

0.7 5 0.42 100

In a similar manner, for AR(1) with ρ ≥ 0, the optimal number of repeated measures for a given

percentage of the budget is M = δ1(R + K) − R. If we now maximize the association measure

subject to both budget and time constraint, we find M = min[δ1(R+ K)−R, δ2K] for the optimal

number of repeated measures for both CS and AR(1).

To enhance insight, we carried out a limited set of simulations for both AR(1) and CS. The sim-

ulation has revealed that as R increases, the optimal M diminishes. Results are summarized in

Table 5. This is in line with intuition because the total cost and the number of patients in the study
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Table 4: Simulation study. Results for the optimal number of measurements with: AR(1) with

square root of time lag analyzed as conventional AR(1). ( w1: weight assigned to the precision
part of the objective function; mo: optimal number of measurements; V RFind(m): individual-level

surrogacy for the optimal number of measurements; V RFind(K − 1): expected value of individual-
level surrogacy; f : percentage of datasets resulting in mo.)

w1 mo V RFind(K − 1) f

AR(1)-Sq

ρ = 0.30 & V RFind(K − 1) = 0.22

0.1 1 0.0016 100

0.3 1 0.0016 100

0.5 1 0.0016 100

0.6 1 0.0016 100

0.7 1 0.0016 100

AR(1)-Sq

ρ = 0.60 & V RFind(K − 1) = 0.50

0.1 1 0.052 100

0.3 1 0.052 100

0.5 1 0.052 100

0.6 9 0.052 100

0.7 9 0.052 100

AR(1)-Sq

ρ = 0.90 & V RFind(K − 1) = 0.86

0.1 1 0.21 100

0.3 1 0.21 100

0.5 1 0.21 100

0.6 1 0.21 100

0.7 9 0.86 100

are fixed and hence to maintain a low cost, the only option is to reduce the number of repeated

measures. It also follows that, for some values of R, it is not possible to obtain a value of M

for which the percentage of cost incurred is lower than the specified δ value. In such cases, only

the first time point or the entire sequence could be taken, depending on the magnitude of M . In

this context, it is also worth noting that, although there is no difference in the optimal number of

repeated measures for CS and AR(1), the same number of repeated measures in the two covariance

structures will nevertheless not yield identical V RFind(m) values.
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Table 5: Simulation study for constraint maximization. Results for the optimal number of mea-
surements for ρ= 0.3 with CS and AR(1). (δ: percentage of cost available; R: cost ratio; mo:

optimal number of measurements; V RFind(m): individual-level surrogacy for the optimal number of
measurements mo.)

CS AR(1)

δ R m0 V RFind(m) δ R m0 V RFind(m)

0.2 1 1 0.10979 0.2 1 1 2.29E-14

0.3 1 2 0.13882 0.3 1 2 4.44E-09

0.4 1 3 0.16273 0.4 1 3 4.11E-08

0.5 4 3 0.17758 0.5 4 3 4.11E-08

0.6 4 4 0.19843 0.6 4 4 2.85E-07

0.8 4 7 0.21728 0.8 4 7 0.000584203

0.6 10 2 0.19843 0.6 10 2 4.44E-09

0.7 10 4 0.20691 0.7 10 4 2.85E-07

0.8 10 6 0.21728 0.8 10 6 4.68688E-05

0.9 10 8 0.22203 0.9 10 8 0.007548459

7 Application to the Case Study

The two case studies introduced in Section 2 are analyzed here and the results displayed in Tables 6

and 7, respectively. For the data coming from the opthalmology experiment, measurements of visual

acuity were taken at baseline and every sixth week there after up to 54th week giving 10 repeated

measures. For the schizophrenia study, the PANSS values were measured at five different time

points, taken at the baseline and every two weeks thereafter. In both cases, the objective is to

predict the ultimate measurement using earlier ones from the sequence, thereby accounting for

cost. In both cases, an unstructured variance-covariance matrix fits the data best.

Now focusing attention on the data coming from the opthalmology experiment, we find that, with

increasing weight attributed to precision: the first one; the first and the second; the first, the

second, and the third; the first eight; or all nine time points were required to optimally predict the

final measurement. Note that one time unit corresponds to 6 weeks. Thus, for example, taking the

first three time points amounts to using measurements from 18 weeks to predict a response at the

54th week. In conclusion, even though necessarily a bit subjective, it seems that 3 measurements

leads to reasonably good quality, while reducing the study time to a third.
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For the schizophrenia experiment, first, to stabilize the variance, a linear transformation of the

outcome and a non-linear transformation of time, taking the form Yij = −3.5675+0.0484 ·PANSSij

and tj,new = e−tj/4, respectively, were applied. It follows that, with increasing weight assigned to

precision: the first one; the first and the second; or all four time points were required to optimally

predict the final measurement. In this case, with similar logic as in the previous case study, it

appears that two measurements provides reasonable results, while leading to a 50% study-time

reduction.

In line with intuition, in both cases, the number of time points required also changes with increasing

R. Setting R = 0 corresponds to assuming that patients are recruited at no cost or when interest

is solely with the cost per additional measurement occasion.

To accommodate the waiting time in the decision making process, we also studied the optimal

number of time points based on the modified cost functions (15) and (16). Results can be found in

Table 7 for schizophrenia and Table 8 for opthalmology. The modified functions lead to the same

results when R = 0, but, as R increases, the modified cost functions are more prudent and tend to

select less time points.

8 Discussion

Our simulation study involved varying numbers of trials and subjects within trials. Unlike conven-

tional surrogate marker validation, which involves two separate outcomes where one is used as a

potential surrogate for the other, here we have studied a scenario where there is a single outcome

only, measured repeatedly over time. The objective was to assess the performance of accumulated

measures of an equally spaced longitudinal sequence as a possible surrogate for a final outcome

and to determine the optimal number of repeated measures required to adequately attain ‘good’

surrogacy. The individual-level surrogacy was assessed using the canonical correlation approach,

introduced by Alonso et al (2004) and discussed in Section 3. The determination of the optimal

number of measurements requires striking a balance between precision and cost of incorporating

a long sequence of repeated measures. To this end, an objective function has been utilized. The

objective function has two parts, which takes care of the cost and precision components. The im-
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Table 6: Case study in opthalmology. Results for the optimal number of measurements based on
cost function (14). (w1: weight assigned to the precision part of the objective function; mo: optimal

number of measurements;R = C1/C2 be the cost ratio ; V RFind(m): individual-level surrogacy for
the optimal number of measurements; V RFind(K−1): expected value of individual-level surrogacy.)

V RFind(K − 1) = 0.91

w1 R mo V RFind w1 R mo V RFind

0.1 0 1 0.18 0.1 4 1 0.18

0.3 0 1 0.18 0.3 4 1 0.18

0.4 0 2 0.34 0.4 4 3 0.45

0.5 0 3 0.45 0.5 4 8 0.85

0.7 0 9 0.91 0.7 4 9 0.91

0.1 1 1 0.18 0.1 6 1 0.18

0.3 1 1 0.18 0.3 6 2 0.34

0.4 1 2 0.34 0.4 6 3 0.45

0.5 1 3 0.45 0.5 6 8 0.85

0.7 1 9 0.91 0.7 6 9 0.91

0.1 2 1 0.18

0.3 2 1 0.18

0.4 2 2 0.34

0.5 2 3 0.45

0.7 2 9 0.91

portance of both components is gauged through the use of weights. Whenever it is felt that the

importance of precision outweighs cost, more weight will be assigned to the precision part and vice

versa.

The objective function can be modified to accommodate other possible sources of cost. One such

cost is the cost of waiting time. This can be incorporated through a third component which

accounts for the time lag between the start of the study and the optimal time point. This calls

for assigning three possible weights, corresponding to financial cost, time cost, and precision cost,

respectively. Similarly, when it is deemed better to detect a condition early rather than late. A

possible extension of our work would be to incorporate the cost of a failure to detect the condition

early, when treatments are more effective or when a change to an alternative therapy may be more

beneficial than when such a switch is effectuated at a later stage.
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Table 7: Case study in schizophrenia. Results for the optimal number of measurements based on
cost function (14) and modified cost function (15). (w1: weight assigned to the precision part of the

objective function; mo: optimal number of measurements; R = C1/C2 be the cost ratio ; V RFind(m):
individual-level surrogacy for the optimal number of measurements; V RFind(K − 1): expected value
of individual-level surrogacy.)

V RFind(K − 1) = 0.85

Cost function (14) Cost function (15)

w1 R mo V RFind(m) w1 w2 w3 R mo V RFind(m)

0.1 0 1 0.20 0.1 0.1 0.8 0 1 0.20

0.3 0 1 0.20 0.3 0.1 0.6 0 1 0.20

0.5 0 2 0.59 0.5 0.1 0.4 0 2 0.59

0.7 0 4 0.85 0.7 0.1 0.2 0 4 0.85

0.1 1 1 0.20 0.1 0.1 0.8 1 1 0.20

0.3 1 2 0.59 0.3 0.1 0.6 1 1 0.20

0.5 1 2 0.59 0.5 0.1 0.4 1 2 0.59

0.7 1 4 0.85 0.7 0.1 0.2 1 4 0.85

0.1 2 1 0.20 0.1 0.1 0.8 2 1 0.20

0.3 2 2 0.59 0.3 0.1 0.6 2 1 0.20

0.5 2 2 0.59 0.5 0.1 0.4 2 2 0.59

0.7 2 4 0.85 0.7 0.1 0.2 2 4 0.85

0.1 4 1 0.20 0.1 0.1 0.8 4 1 0.20

0.3 4 2 0.59 0.3 0.1 0.6 4 1 0.20

0.5 4 4 0.85 0.5 0.1 0.4 4 2 0.59

0.7 4 4 0.85 0.7 0.1 0.2 4 4 0.85

0.1 6 1 0.20 0.1 0.1 0.8 6 1 0.20

0.3 6 2 0.59 0.3 0.1 0.6 6 1 0.20

0.5 6 4 0.85 0.5 0.1 0.4 6 2 0.59

0.7 6 4 0.85 0.7 0.1 0.2 6 4 0.85

The results of the simulation study for two data-generation schemes, based on CS and AR(1),

respectively, have revealed that, depending on the correlation structure of the data and the weights

assigned, the first few repeated measures or the entire K−1 sequence might be needed to adequately

predict the outcome at the last time point. Assuming that the outcome has an AR(1) structure, we

showed theoretically and via simulations that either only the first measurement or the entire K −1

sequence is required to predict the true endpoint, depending on the weights chosen and the level

of the AR(1) correlation. This is a very interesting characteristic of the first-order auto-regressive
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Table 8: Case study in opthalmology. Results for the optimal number of measurements based on
modified cost function (15) and (16); ( w1-w3): weights assigned to the precision, financial cost

and waiting time parts of the objective function; mo: optimal number of measurements; R = C1/C2

be the cost ratio; V RFind(m): individual-level surrogacy for the optimal number of measurements;
f = 100: percentage of datasets resulting in mo, in all cases.)

Cost Ratios

Weights R = 0 R = 1 R = 2 R = 4 R = 6

w1 w2 w3 mo V RFind mo V RFind mo V RFind mo V RFind mo V RFind

Modified cost function (15)

0.1 0.1 0.8 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18

0.3 0.1 0.6 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18

0.4 0.1 0.5 2 0.34 2 0.34 2 0.34 2 0.34 2 0.34

0.5 0.1 0.4 3 0.45 3 0.45 3 0.45 3 0.45 3 0.45

0.7 0.1 0.2 9 0.91 9 0.91 9 0.91 9 0.91 9 0.91

0.1 0.2 0.7 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18

0.3 0.2 0.5 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18

0.4 0.2 0.4 2 0.34 2 0.34 2 0.34 2 0.34 2 0.34

0.5 0.2 0.3 3 0.45 3 0.45 3 0.45 3 0.45 3 0.45

0.6 0.2 0.2 8 0.85 8 0.85 8 0.85 9 0.91 9 0.91

0.1 0.3 0.6 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18

0.3 0.3 0.4 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18

0.4 0.3 0.3 2 0.34 2 0.34 2 0.34 2 0.34 2 0.34

0.5 0.3 0.2 3 0.45 3 0.45 3 0.45 3 0.45 8 0.85

0.6 0.3 0.1 8 0.85 8 0.85 8 0.85 9 0.91 9 0.91

Modified cost function (16)

0.1 0.1 0.8 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18

0.3 0.1 0.6 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18

0.4 0.1 0.5 1 0.18 1 0.18 2 0.34 2 0.34 2 0.34

0.5 0.1 0.4 2 0.34 3 0.45 3 0.45 3 0.45 3 0.45

0.7 0.1 0.2 9 0.91 9 0.91 9 0.91 9 0.91 9 0.91

0.1 0.2 0.7 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18

0.3 0.2 0.5 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18

0.4 0.2 0.4 2 0.34 2 0.34 2 0.34 2 0.34 2 0.34

0.5 0.2 0.3 3 0.45 3 0.45 3 0.45 3 0.45 3 0.45

0.6 0.2 0.2 8 0.85 8 0.85 8 0.85 8 0.85 8 0.85

0.1 0.3 0.6 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18

0.3 0.3 0.4 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18

0.4 0.3 0.3 2 0.18 2 0.18 2 0.34 2 0.34 2 0.34

0.5 0.3 0.2 3 0.45 3 0.45 3 0.45 3 0.45 3 0.45

0.6 0.3 0.1 8 0.85 8 0.85 8 0.85 9 0.91 9 0.91
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structure. Our results illustrate that here no balance between precision and cost is possible, because

the CPR always leads to the two extreme situations. If precision is the driving requirement, then

the entire K − 1 subsequence is the best option, whereas if cost if the impelling factor then the

surrogate should never contain more than a single observation. In such a situation, the best strategy

will be to use only one measurement, located somewhere in the interval (1, k− 1). Obviously if the

observation is taken at the end of the sequence, more predictive power will be achieved but a longer

waiting time will also be needed. Arguably, a decision should then be taken based on other field

related factors and the opinion of the experts in the area will be important. Moreover, at most

six measurements, about 60% of the entire sequence, are required to adequately predict the final

measurement if the outcome has a CS or a Toeplitz structure, or a general structure with slowly

decaying correlation between repeated measures.

Based on these findings, it seems promising to use the proposed approach to balance between cost

and precision in the process of evaluating the performance of a few repeated measures taken early as

possible surrogates to adequately predict the outcome and/or treatment effect of the final measure.

Our simulation study, while relatively broad, is intrinsically limited, as is the case for every simula-

tion study. A number of extensions could be considered. First, while the first-order autoregressive

structure applies to equally spaced measures only, this is not the case for the compound symmetry

and unstructured covariances. In principle, further structures for unbalanced data, such as general

special functions, as available in the SAS System, could be considered. Second, our derivations cru-

cially rely on the continuous nature of the outcome, and hence on the linearity of the expressions

involved, enabling the derivation of explicit expressions. Should the outcome be non-Gaussian,

then relevant model choices are generalized estimating equations (GEE, Liang and Zeger 1986) or

generalized linear mixed models (GLMM, Breslow and Clayton 1993), for example. A review of

this and additional methodology is provided in Molenberghs and Verbeke (2005). Such models,

however, raise a number of complexities. The presence of a mean-variance link and the non-linear

nature of the link function defeats the derivation of explicit analytical expressions like in the con-

tinuous case. Of course, one might make progress through the use of approximate expressions, or

by way of Monte-Carlo-based evaluations. These are just two examples of how extensions could be

considered.

24



The analyses in this paper can be carried out using commonly available software such as SAS. A

SAS macro can be obtained from the authors’ web pages.

Acknowledgments

Financial support from the IAP research network #P6/03 of the Belgian Government (Belgian

Science Policy) is gratefully acknowledged. The authors are indebted to (OSI) Eyetech Pharma-

ceuticals for the kind permission to use their clinical-trial data.

References

Alonso, A., Geys, H., Molenberghs, G., and Kenward, M.G. (2003). Validation of surrogate

markers in multiple randomized clinical trials with repeated measures. Biometrical Journal,

45, 931–945.

Alonso, A., Geys, H., Molenberghs, G., Kenward, M., and Vangeneugden, T. (2004). Valida-

tion of surrogate markers in multiple randomized clinical trials with repeated measurments:

Canonical correlation approach. Biometrics, 60, 845–853.

Breslow, N.E. and Clayton, D.G. (1993). Approximate inference in generalized linear mixed

models. Journal of the American Statistical Association, 88, 9–25.

Burzykowski, T., Molenberghs, G., and Buyse, M. (2005). The Evaluation of Surrogate Endpoints.

New York: Springer.

Buyse, M., Molenberghs, G., Burzykowski, T., Renard, D., and Geys, H. (2000). The validation

of surrogate endpoints in meta-analyses of randomized experiments. Biostatistics, 1, 49–67.

Galecki, A. (1994). General class of covariance structures for two or more repeated factors in

longitudinal data analysis. Communications in Statistics: Theory and Methods, 23, 3105–

3119.

Graybill, F.A. (1983). Matrices with Applications in Statistics ( 2nd ed.) Belmont, California:

Wadsworth.

25



Kay, S.R., Fiszbein, A., and Opler, L.A. (1987). The Positive and Negative Syndrome Scale

(PANSS) for Schizophrenia. Schizophrenia Bulletin 13, 261–276.

Kay, S.R., Opler, L.A., and Lindenmayer, J.P. (1988). Reliability and validity of the Positive and

Negative Syndrome Scale for Schizophrenics. Psychiatric Research 23, 99–110.

Liang, K.-Y. and Zeger, S.L. (1986). Longitudinal data analysis using generalized linear models.

Biometrika, 73, 13–22.

Molenberghs, G. and Verbeke, G. (2005). Models for Discrete Longitudinal Data. New York:

Springer.
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