
Optimizing the Region Algebra is PSPACE-complete

Wouter Gelade2, Frank Neven

Hasselt University and transnational University of Limburg,
School for Information Technology

Abstract

The Region Algebra is a set-at-a-time algebra for querying text regions. We show that satisfiability, inclusion, and
equivalence testing of region algebra expressions are PSPACE-complete. This improves upon the previously known
NP lower bounds and EXPTIME upper bounds.

Key words: Computational complexity, Region Algebra, Databases

1. Introduction

The region algebra was introduced by Consens and
Milo [1], and is a set-at-a-time algebra for manipulat-
ing text regions based on the PAT-algebra [2, 3]. The
expressiveness and complexity of the region algebra
were investigated by Consens and Milo [1]. Among
other things, they show that the satisfiability problem
is decidable through a reduction to satisfiability of first-
order logic formulas over trees. Testing the satisfiabil-
ity of such logical formulas has non-elementary com-
plexity [4]. Furthermore, they provide an NP lower
bound. Neven [5] obtained an EXPTIME upper bound
for the satisfiability, inclusion and equivalence problems
through a reduction to the corresponding problems for
extended attribute grammars.

In this paper, we provide a matching PSPACE upper
and lower bound for the basic decision problems regard-
ing region algebra expressions.

2. The Region Algebra

For the remainder of the paper we fix a finite alphabet
Σ. A Σ-stringw is a finite string overΣ. We denote its

Email addresses:wouter.gelade@uhasselt.be (Wouter
Gelade),frank.neven@uhasselt.be (Frank Neven)

1We acknowledge the financial support of FWO-G.0821.09N and
the Future and Emerging Technologies (FET) programme within the
Seventh Framework Programme for Research of the European Com-
mission, under the FET-Open grant agreement FOX, number FP7-
ICT-233599.

2Research Assistant of the Fund for Scientific Research - Flanders
(Belgium)

length by|w|. For a finite set of region namesR, anR-
text I is a pair (w, λ), wherew is aΣ-string andλ is a
function mapping each region name inR to a set ofw-
regions. Here, aw-region is a pair (i, j) where 1≤ i ≤
j ≤ |w|. WhenR is clear from the context, we usually
write text instead ofR-text.

For instance, letR = {Proc,Func,Var } andΣ = {a,b,
c, . . . , z}. Figure 1 shows a graphical illustration of the
text I = (w, λ) overR wherew = abcdefghijklmnop,
λ(Proc) = {(1,16), (6,10)}, λ(Func) = {(12,16)}, and
λ(Var) = {(2,3), (6,7), (12,13)}.

We say thatr is aregion in I whenr ∈ λ(R), for some
R ∈ R. For a regionr = (i, j), we denote the begin-
ning i and finish j of r by b(r) and f (r), respectively.
Furthermore,w(r) denotes the stringab(r) . . . af (r), for
w = a1 · · · an.

For two regionsr ands in I , define:

• r < s if f (r) < b(s) (r precedes s); and

• r ⊂ s if b(s) ≤ b(r), f (r) ≤ f (s), ands , r (r is
included in s).

We also allow the dual predicatesr > sandr ⊃ swhich
have the obvious meaning. A textI is hierarchical if

• λ(R) ∩ λ(R′) = ∅ for all region namesR,R′ in R,
with R, R′; and

• for all regionsr, s in I , with r , s, one of the fol-
lowing holds:r < s, s< r, r ⊂ s, or s⊂ r.

The last condition simply says that if two regions over-
lap then one is strictly contained in the other.

Preprint submitted to Information Processing Letters May 4, 2010

Figure 1: A text.

Figure 2: The text tree corresponding to the text in Figure 1.

The text in Figure 1 is hierarchical. Like in [1], we
only consider hierarchical texts. The Region Algebra al-
lows to query such hierarchical texts and thereto makes
additional use of apattern languageP. The latter con-
sists of a set ofpatterns p∈ P, each of which defines a
set ofΣ-strings, denotedL(p). An example of a pattern
language is the set of all regular expressions, denoted
RE.

We can now define the Region Algebra.

Definition 2.1. Region Algebra expressions over a pat-
tern languageP and a set of region namesR are induc-
tively defined as follows:

• every region nameR in R is a Region Algebra ex-
pression;

• if e1 ande2 are Region Algebra expressions then
so aree1 ∪ e2, e1 − e2, e1 ⊂ e2, e1 < e2, e1 ⊃ e2,
ande1 > e2; and

• if e is a Region Algebra expression andp in P is a
pattern thenσp(e) is a Region Algebra expression.

The semantics of a Region Algebra expressione on a

text I = (w, λ), denoted [[e]] I , is defined as follows:

[[R]] I := λ(R);
[[σp(e)]] I := {r | r ∈ [[e]] I andw(r) ∈ L(p)};
[[e1 ∪ e2]] I := [[e1]] I ∪ [[e2]] I ;
[[e1 − e2]] I := [[e1]] I − [[e2]] I ;

and for⋆ ∈ {<, >,⊂,⊃} :

[[e1 ⋆ e2]] I := {r | r ∈ [[e1]] I and∃s ∈ [[e2]] I

such thatr ⋆ s}.

We denote by RA(P) the set of Region Algebra ex-
pressions using only patterns ofP. A variety of pattern
languages can be used. We focus on the classes RA(∅),
RA(RE), and RA(NFA), where NFA denotes the class
of non-deterministic finite automata.

For instance, the RA(RE) expressionProc ⊃

σΣ∗startΣ∗(Proc), defines all theProc regions which con-
tain aProc region that contains the string start.

As all texts are required to be hierarchical, they can
be modeled naturally as forests. But as we can always
add a unique root, when no unique root is present, we
will consider them to be trees. For a textI , we denote
its text treeby t(I). Figure 2 shows an example of the
text tree corresponding to the text illustrated in Figure 1.
Note that all leaf nodes areΣ-symbols, while the interior
nodes are elements fromR. Moreover, asλ(R) ∩ λ(R′)
must be empty for all distinct region names, every inte-
rior node oft(I) which has only non-leaf nodes as chil-
dren, must have at least two children. Considering only
text trees which satisfy this property, there is a one-to-

2

one correspondence between hierarchical texts and text
trees. Therefore, we can restrict attention to text trees
instead of hierarchical texts in the subsequent proofs.
We usually call them just trees. Furthermore, for a tree
t, [[e]] t equals [[e]] I , whereI is the unique text such that
t = t(I). We say that an expressione selectsa treet
when [[e]] t

, ∅, andoutputsa nodeu of t whenu ∈ [[e]] t.
The set of nodes oft is denoted by Nodes(t).

3. Complexity

We study the complexity of the Region Algebra for
the following decision problems.

Definition 3.1. LetP be a pattern language.

• satisfiability for RA(P): Given an expression e in
RA(P), does there exist a text I such that [[e]]I

, ∅?

• equivalence for RA(P): Given two expressions e,e′

in RA(P), is [[e]] I
= [[e ′]] I , for every text I?

• inclusion for RA(P): Given two expressions e,e′ in
RA(P), is [[e]] I ⊆ [[e ′]] I , for every text I?

The following results are already known.

Theorem 3.2. 1. satisfiability for RA(∅) is NP-
hard [1].

2. satisfiability, equivalence, and inclusion for
RA(DFA) are in EXPTIME [5].

We show that all these problems are in fact PSPACE-
complete.

Theorem 3.3. 1. satisfiability, equivalence, and in-
clusion for RA(∅) are PSPACE-hard.

2. satisfiability, equivalence, and inclusion for
RA(NFA) are in PSPACE.

It immediately follows from this theorem thatsat-
isfiability, equivalence, and inclusion for RA(∅),
RA(DFA), RA(RE), and RA(NFA) are all PSPACE-
complete. The remainder of this article is devoted to
proving Theorem 3.3.

3.1. Lower Bound

For the lower bound it suffices to show thatsatisfi-
ability for RA(∅) is PSPACE-hard. Indeed, as an ex-
pressione is not satisfiable whenever it is equivalent
to (respectively, included in) the expressionR− R for
someR, the PSPACE-hardness then immediately carries
over toequivalence (respectively,inclusion) for RA(∅).
We show thatsatisfiability for RA(∅) is PSPACE-hard

Figure 3: The assignment tree witnessing the satisfiability of the for-
mula∃x1∀x2∃x3∀x4(¬x1 ∨ x2 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ x4).

by a reduction from quantified boolean formula (QBF),
which is PSPACE-complete [6].

In short, QBF is the problem, given a boolean expres-
sion φ of the form∃x1∀x2 · · · ∃xn−1∀xn

∧m
i=1 Ci , where

eachCi is a disjunction of three literals; does there exist
a truth value forx1, such that for all truth values forx2,
. . . , and so up toxn, such thatφ is satisfied by the overall
truth assignment. We then say thatφ is satisfiable.

Note that each satisfiable formula can be witnessed
by a tree of the form as shown in Figure 3. Here, ev-
ery path from the root to a leaf encodes a satisfying
truth assignment for

∧m
i=1 Ci , where xT

i (respectively,
xF

i) assigns true (respectively, false) to variablexi . Fur-
thermore, the branching structure of the tree conforms
to the quantifier nesting inφ. That is, the set of root
to leaf paths is precisely the set of variable assign-
ments which need to be checked on

∧m
i=1 Ci . The tree

in Figure 3 witnesses the satisfiability of the formula
∃x1∀x2∃x3∀x4(¬x1 ∨ x2 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ x4). Given
a formulaφ, we constructR andeφ such thateφ is satis-
fiable if and only ifφ is satisfiable. In particular,eφ will
select all assignment trees witnessing the satisfiability
of φ.

DefineR = {xT
j , x

F
j | j ∈ [1,n]}. We first define

the expressionetree selecting any tree which isnot of
the form depicted in Figure 3. That is,etree does not
consider the actual truth values in the tree but checks its
form. Thereto, we write a sequence of expressions each
of which selects a tree when it violates one particular
property. The formulaetree is simply the union of the
given formulas. Here, we abbreviate

⋃
R∈R R, selecting

all nodes, byR; R− ((R−e1)∪ (R−e2)) by e1∩e2; and,
for everyi ∈ [1,n], we abbreviatexT

i ∪ xF
i by xi .

1. The root is not labeledxT
1 or xF

1 . The expression
ψ1 = R ⊂ R outputs all non-root nodes. Then,

(R − ψ1) − x1

outputs the root when it is not labeledxT
1 or xF

1 .

2. For all i, j, with i ≤ j, a node labeledxT
i or xF

i is a
3

descendant of a node labeledxT
j or xF

j :

xi ⊂ x j .

3. For everyi ∈ [1, ⌊n/2⌋], andα ∈ {T, F}, a node
labeledxα2i−1 does not have both nodes labeledxT

2i
andxF

2i as descendants:

xα2i−1 − [(xα2i−1 ⊃ xT
2i) ∩ (xα2i−1 ⊃ xF

2i)] .

4. For everyi ∈ [1, ⌊n/2⌋ − 1], andα ∈ {T, F}, a node
labeledxα2i does not have a node labeledxT

2i+1 or
one labeledxF

2i+1 as descendant:

xα2i − [(xα2i ⊃ xT
2i+1) ∪ (xα2i ⊃ xF

2i+1)] .

Now, why is any tree not satisfying any of the above
formula of the form as depicted in Figure 3? Because of
the first formula, the root of such a tree must be eitherxT

1
or xF

1 . The third family of formulas guarantees that this
root node has bothxT

2 andxF
2 as descendants. Because

of the second family of expressions,xT
2 and xF

2 must,
in fact, be direct children of the root. These, in turn,
must by the fourth family of expressions have a child
labeled eitherxT

3 or xF
3 , and so on. Note, however, that

this tree might well contain additional side branches not
of the form of a proper assignment tree; for instance,
there might be several identical copies of one subtree
under a node. We are therefore only guaranteed that a
subset of the nodes, including the root, forms a proper
assignment tree, but the tree might contain additional re-
dundant nodes. More specifically, any tree not selected
by etree contains a proper assignment tree, and any tree
exactly of the form of a proper assignment tree, is not
selected byetree. This is sufficient for our purposes.

We next consider the actual truth values occurring in
the tree. Thereto, we construct an expressioneformula

which selects a tree whenever it contains a path from
the root to a leaf encoding a truth assignment not satis-
fying

∧
i Ci . If a tree contains such a path it is not an

assignment tree witnessing the satisfiability ofφ.
To constructeformula, let C be any clause of the form

yi1 ∨ yi2 ∨ yi3, with i1 < i2 < i3 and where eachyi j either
equalsxi j or¬xi j . Let eC be the expressionz3 ⊂ z2 ⊂ z1,
wherezj = xF

i j
whenyi j = xi j andzj = xT

i j
whenyi j =

¬xi j , for j ∈ [1,3]. Then,eformula =
⋃n

i=1 eCi .
Hence, the expressionewrong = eformula∪ etree selects

all trees which are or contain an assignment tree which
does not witness the satisfiability ofφ. Consequently,
eall = ewrong ∪

⋃
⋆∈{<,>,⊂,⊃} R ⋆ ewrong selects the same

trees asewrong and additionally outputs all nodes of these
trees. Then,eφ = R−eall selects those trees not selected
by eall which are all trees which contain an assignment

tree witnessing the satisfiability ofφ, and for which ev-
ery subtree which forms an assignment tree also wit-
nesses the satisfiability ofφ. Obviously, this includes a
normal assignment tree witnessing the satisfiability ofφ

and, hence,eφ is satisfiable if and only if there exists an
assignment tree witnessing the satisfiability ofφ if and
only if φ is satisfiable.

This concludes the proof for the PSPACE-hardness of
satisfiability for RA(∅).

3.2. Upper Bound

We show that satisfiability for RA(NFA) is in
PSPACE, as this also implies thatinclusion andequiv-
alence for RA(NFA) are in PSPACE. Indeed, for two
Region Algebra expressionse1 ande2 it holds thate1 is
included ine2 (respectively, equivalent toe2) whenever
e1∩(R−e2) (respectively, (e1∩(R−e2))∪(e2∩(R−e1)))
is not satisfiable.

To prove that satisfiability for RA(NFA) is in
PSPACE, we use a crucial property of the Region Al-
gebra proved by Consens and Milo [1].

Theorem 3.4 ([1]). Let e be a Region Algebra expres-
sion. If e is satisfiable, then there exists a text I with
[[e]] I

, ∅ such that t(I) has depth at most2|e|.

Here,|e| denotes the size of the expression. This the-
orem hence allows to restrict our attention to text trees
of depth bounded by the size of the expression. Using
this property, we solvesatisfiability for RA(NFA) by
reducing the problem to emptiness testing of2-way al-
ternating tree automata (2ATA), defined as follows.

For a set of propositionsP, let B(P) be the set of
Boolean formulas overS, including true and false. A
2ATA A is a tuple (Q, δ,q0) whereQ is the set of states,
q0 is the initial state, andδ : Q×Σ→ B(Q×{-,→, ↑, ↓})
is the transition function. Elements in{-,→, ↑, ↓} denote
directions in the tree. For a nodeu in the tree,u - equals
u; u→ denotes its right sibling;u↑ its parent; andu↓
its left most child, when these exist and are undefined
otherwise.

Given a treet and a nodev of t, arun of A on t starting
from v is a pair (s, f) wheres is a finite tree in which
each node is labeled by an element of Nodes(t)×Q, and
f : Nodes(s)→ {true, false} is a function assigning truth
values to nodes ofssuch that

• The label of the root ofs is (v,q0); and

• For every nodex of s labeled (u,q), where the
label of u in t is a, let S = {(d, p) | (d, p) ∈
δ(q,a) such thatud is defined}. Then,

4

– The set of labels of the children ofx in s is
exactly{(ud, p) | (d, p) ∈ S}, and no two chil-
dren carry the same label; and

– Let Strue be the set of those (d, p) ∈ S for
which there exists a childy of x, such that
y is labeled (ud, p) and f (y) = true. Then,
f (x) = true if and only if, inδ(q,a), setting
all elements ofStrue to true, and all others to
false, satisfiesδ(q,a).

A run (s, f) is acceptingwhen f (x) = true, wherex
is the root ofs. A treet is acceptedby A if there exists
an accepting run ofA on t starting from the root oft.

As mentioned before, we will translate Region Al-
gebra expressions into 2ATA, thus reducing thesatis-
fiability problem for RA(NFA) to the emptiness prob-
lem for 2ATA. In general, however, the emptiness prob-
lem for 2ATAs is EXPTIME-complete [7], but when
restricted to bounded depth trees the problem becomes
easier. Although it is not stated explicitly by Benedikt,
Fan, and Geerts, the following theorem is implicit in the
proof of Lemma 7.5 [8].

Theorem 3.5 ([8]). Given a 2ATA A and a number n in
unary, the problem of deciding whether A accepts a tree
of depth at most n is in PSPACE.

We next prove the lemma below. Combining this
with Theorems 3.4 and 3.5 shows thatsatisfiability for
RA(NFA) is in PSPACE.

Lemma 3.6. Let e be a RA(NFA) expression. A 2ATA
Ae accepting all trees of depth at most2|e| selected by e,
can be constructed in time polynomial in|e|.

Proof. Let e be a RA(NFA) expression. The automa-
tonAe will be a combination of several automata. In par-
ticular, we first construct a 2ATAAtree accepting proper
text trees, i.e., trees which (1) are of depth at most 2|e|,
(2) haveΣ-symbols as leaf nodes, andR-symbols as in-
terior nodes, and (3) do not have interior nodes which
have only one child labeled with aR-symbol. This can
easily be done by constructing a 2ATA for each of these
three properties and taking the intersection of these au-
tomata.

We next construct the 2ATAAformula which, given a
proper text treet of depth at most 2|e|, checks whethere
selectst. Recall that a 2ATA accepts a tree if it has an
accepting run starting from the root of the tree. To ob-
tain Aformula, we construct, by induction on the structure
of e, a 2ATA A which has an accepting run starting from
a nodeu of t, if and only if eoutputs this node oft. The
automatonAformula visits all nodes oft and runsA from

each of these nodes; ifA accepts at least one of them,
Aformula accepts, otherwise, it does not.

Hence, it only remains to constructA = (Q, δ,q0) by
induction on the structure ofe. We only consider the
base casee = R, and the induction casese = e1 ⊃ e2,
e= e1 < e2, ande= σB(e1) and omit the others as they
are either very similar or straightforward.

• e= R, for someR ∈ R. Then,Q = {q0}, δ(q0,R) =
true, andδ(q0,a) = false, for alla ∈ Σ ∪ R \ {R}.

• e = e1 ⊃ e2, whereAi = (Qi , δi ,qi) is the in-
ductively obtained 2ATA forei , with i = 1,2. In
a nodeu, A needs to check whethere1 outputs
u, by runningA1, and whether there is a descen-
dant of u which e2 outputs. Thereto, letQ =

Q1 ⊎ Q2 ⊎ {q0, p}. Then, for everya ∈ Σ ∪ R,
δ(q0,a) = δ1(q1,a)∧ (p, ↓), andδ(p,a) = δ(q2,a)∨
(p,→) ∨ (p, ↓). Here,p is the state which visits all
descendants ofu to check whether one of them is
output bye2.

• e = e1 < e2, whereAi = (Qi , δi ,qi) is the in-
ductively obtained 2ATA forei , with i = 1,2. In
a nodeu, A needs to check whethere1 outputs
u, by runningA1, and whether there is a nodev
output by e2 such thatv follows u in the depth
first traversal oft, but is not a descendant ofu.
Let Q = Q1 ⊎ Q2 ⊎ {q0, p↑, p↓}. Then, for every
a ∈ Σ ∪ R, δ(q0,a) = δ1(q1,a) ∧ [(p↓,→) ∨ (p↑, ↑
)], δ(p↓,a) = δ2(q2,a) ∨ (p↓,→) ∨ (p↓, ↓), and
δ(p↑,a) = (p↓,→) ∨ (p↑, ↑).

• e = σB(e1), whereA1 = (Q1, δ1,q1) is the 2ATA
recursively obtained fore1 andB = (Q2, δ2,qI , F2)
is an NFA. In a nodeu we now have to check
whether it is output bye1 (by running A1) and
whether theΣ-string below it is accepted byB.
To check whether the latter holds we do a depth
first traversal, starting fromu, and runB over the
string encountered at the leafs in this traversal (this
is exactly the desired string). Here it is crucial
to recognize the moment at which the depth first
traversal is finished, i.e., when we arrive back at
u. Thereto, when visiting a nodev, we also keep
track of the current depth with respectu, or, equiv-
alently, the length of the path fromu to v. Hence,
once the depth is 0, we have finished the traversal
and can check whetherB accepts the string it has
read. Here, we use the fact that we are only consid-
ering trees of depth at mostn = 2|e|, which allows
to encode the current depth in the states.

5

Formally,Q = Q1 ⊎ {qi
↓
,qi
↑
| i ∈ [0,n],q ∈ Q2} ⊎

{q0,qtrue}. Then:

– For everya ∈ Σ ∪ R,

∗ δ(qtrue,a) = true, and δ(q0,a) =

δ1(q1,a) ∧ (q1
I ↓, ↓);

∗ for all q ∈ Q1, δ(q,a) = δ1(q,a);

∗ for all q ∈ F2, δ(q0
↓
,a) = δ(q0

↑
,a) = true;

and

∗ for all q ∈ Q2 \ F2, δ(q0
↓
,a) = δ(q0

↑
,a) =

false.

– For everyq ∈ Q2, i ∈ [1,n] andR ∈ R,

∗ δ(qi
↓
,R) = (qi+1

↓
, ↓) wheni < n; and

∗ δ(qi
↑
,R) = (qi

↓
,→)∨[¬(qtrue,→)∧(qi−1

↑
, ↑

)], where¬(qtrue,→) is true in a node
which does not have a right sibling.

– For everyq ∈ Q2, i ∈ [1,n] andb ∈ Σ,

∗ δ(qi
↓
,b) = [¬(qtrue,→) ∧ (pi−1

↑
, ↑)] ∨

∨
p∈δ(q,b) δ(p

i
↓
,→); and

∗ δ(qi
↑
,b) = false.

�

4. Conclusion

The present paper pins down the theoretical complex-
ity of optimization problems related to the region alge-
bra. It remains open whether there are interesting frag-
ments for which these problems become tractable. Of
course, equivalence testing is just one of the possibili-
ties for optimization. Other optimization procedures are
known which avoid equivalence testing (e.g., [9, 10]).

References

[1] M. P. Consens, T. Milo, Algebras for querying text regions: Ex-
pressive power and optimization, J. Comput. Syst. Sci. 57 (3)
(1998) 272–288.

[2] A. Salminen, F. Tompa, PAT expressions: an algebra for text
search, in: Papers in Computational Lexicography (COMPLEX
92), 1992, pp. 309–332.

[3] G. Gonnet, Examples of PAT applied to the oxford english dictio-
nary, Tech. Rep. OED-87-02, University of Waterloo (1987).

[4] E. Börger, E. Gr̈adel, Y. Gurevich, The Classical Decision Prob-
lem, Perspectives in Mathematical Logic, Springer, 1997.

[5] F. Neven, Attribute grammars for unranked trees as a query lan-
guage for structured documents, J. Comput. Syst. Sci. 70 (2)
(2005) 221–257.

[6] L. J. Stockmeyer, A. R. Meyer, Word problems requiring expo-
nential time: Preliminary report, in: STOC, 1973, pp. 1–9.

[7] M. Y. Vardi, Reasoning about the past with two-way automata,
in: ICALP, 1998, pp. 628–641.

[8] M. Benedikt, W. Fan, F. Geerts, XPath satisfiability in the pres-
ence of DTDs, J. ACM 55 (2).

[9] M. Young-Lai, F. W. Tompa, One-pass evaluation of region alge-
bra expressions, Inf. Syst. 28 (3) (2003) 159–168.

[10] J. A. List, V. Mihajlovic, G. Raḿırez, A. P. de Vries, D. Hiem-
stra, H. E. Blok, Tijah: Embracing ir methods in xml databases,
Inf. Retr. 8 (4) (2005) 547–570.

6

