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Abstract

The Region Algebra is a set-at-a-time algebra for queryaxg tegions. We show that satisfiability, inclusion, and
equivalence testing of region algebra expressions are EERAmplete. This improves upon the previously known
NP lower bounds and EXPTIME upper bounds.
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1. Introduction length byw|. For a finite set of region namés anR-
text | is a pair (v, 1), wherew is aX-string anda is a
The region algebra was introduced by Consens and fynction mapping each region namefrto a set ofw-
Milo [1], and is a set-at-a-time algebra for manipulat- regions. Here, av-regionis a pair {, j) where 1< i <
ing text regions based on the PAT-algebra [2, 3]. The j < . WhenR is clear from the context, we usually
expressiveness and complexity of the region algebrayrite text instead oR-text.
were investigated by Consens and Milo [1]. Among For instance, leR = {Proc, Func, Var} ands = {a, b,
other things, they show that the satisfiability problem c,...,z). Figure 1 shows a graphical illustration of the
is decidable through a reduction to satisfiability of first- oy | = (w, 1) over R wherew = abcdefghijkimnop,

order logic formulas over trees. Testing the satisfiabil- A(Proc) = {(1,16), (6,10}, A(Func) = {(12 16)}, and
ity of such logical formulas has non-elementary com- A(Var) = {(2,3),(6,7), (12, 13)}.

plexity [4]. Furthermore, they provide an NP lower We say that is aregion in |whenr € A(R), for some
bound. Neven [5] obtained an EXPTIME upper bound g R. For a regionr = (i, j), we denote the begin-
for the satisfiability, inclusion and equivalence problems ning i and finishj of r by b(r) and f(r), respectively.

through a reduction to the corresponding problems for Furthermorew(r) denotes the stringy) .. . as(), for
extended attribute grammars. W=a--a,

In this paper, we provide a matching PSPACE upper For two regions andsin I, define:
and lower bound for the basic decision problems regard- ’ '

ing region algebra expressions. e r < sif f(r) < b(s) (r precedes ¥ and

e r C sif b(s) < b(r), f(r) < f(s),ands #r (ris

2. The Region Algebra included in 3.

For the remainder of the paper we fix a finite alphabet

S. A I-stringw is a finite string oveE. We denote its Ve aiso allow the dual predicates- sandr > swhich

have the obvious meaning. A telxis hierarchicalif
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Figure 1: A text.
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Figure 2: The text tree corresponding to the text in Figure 1.

The text in Figure 1 is hierarchical. Like in [1], we
only consider hierarchical texts. The Region Algebra al-
lows to query such hierarchical texts and thereto makes
additional use of gattern language®. The latter con-
sists of a set opatterns pe #, each of which defines a
set ofZ-strings, denoted(p). An example of a pattern

language is the set of all regular expressions, denoted gnd for« e {<,>,C,0)

RE.
We can now define the Region Algebra.

Definition 2.1. Region Algebra expressions over a pat-
tern language® and a set of region namé&are induc-
tively defined as follows:

e every region nam®&in R is a Region Algebra ex-
pression;

e if & ande, are Region Algebra expressions then

Soareeluezyel_ezielceZlel<e21elje2|
ande; > &; and

o if eis a Region Algebra expression apdnh # is a
pattern therrp(€) is a Region Algebra expression.

The semantics of a Region Algebra expressiamm a
2

text| = (w, 1), denoted f]', is defined as follows:

[R]' = ARy

[op@©]' = {r|re[e]l' andw(r) € L(p)};
[erUe] = [el'ulel’;

[e-e] [ed' -[ed';

{rirefe]' andise[el]
such thar x s}.

[e x ]

We denote by RAP) the set of Region Algebra ex-
pressions using only patterns®f A variety of pattern
languages can be used. We focus on the classe8)RA(
RA(RE), and RA(NFA), where NFA denotes the class
of non-deterministic finite automata.

For instance, the RA(RE) expressioAroc >
ossstare (Proc), defines all thdroc regions which con-
tain aProc region that contains the string start.

As all texts are required to be hierarchical, they can
be modeled naturally as forests. But as we can always
add a unique root, when no unique root is present, we
will consider them to be trees. For a tdxtwe denote
its text treeby t(1). Figure 2 shows an example of the
text tree corresponding to the text illustrated in Figure 1.
Note that all leaf nodes ab&symbols, while the interior
nodes are elements frof. Moreover, asi(R) n A(R)
must be empty for all distinct region names, every inte-
rior node oft(l) which has only non-leaf nodes as chil-
dren, must have at least two children. Considering only
text trees which satisfy this property, there is a one-to-



one correspondence between hierarchical texts and text
trees. Therefore, we can restrict attention to text trees

instead of hierarchical texts in the subsequent proofs.
We usually call them just trees. Furthermore, for a tree
t, [€]l' equals E]', wherel is the unique text such that

t = t(I). We say that an expressi@nselectsa treet
when [€]' # 0, andoutputsa nodeu of t whenu € [€]".

The set of nodes dfis denoted by Nodeg(

3. Complexity

We study the complexity of the Region Algebra for
the following decision problems.

Definition 3.1. Let® be a pattern language.

o satisriaBILITY fOor RA(P): Given an expression e in
RAP), does there exist a text | such that [e} 0?

e EeQuUIVALENCE for RA(P): Given two expressions €
in RAP),is[e]' =[e’]', for every text |?

¢ incLusion for RA@P): Given two expressions € in
RAP),is[e]' c[e’]’, for every text 1?

The following results are already known.

Theorem 3.2. 1. sansriaBiity for RAQ) is NP-
hard [1].
2. SATISFIABILITY, EQUIVALENCE, and iNcrLusioN for
RA(DFA) are in EXPTIME [5].

We show that all these problems are in fact PSPACE-
complete.

Theorem 3.3. 1. SATISFIABILITY, EQUIVALENCE, and IN-
crusioN for RAQ) are PSPACE-hard.
2. SATISFIABILITY, EQUIVALENCE, and IncLusioN for
RA(NFA) are in PSPACE.

It immediately follows from this theorem thatr-
ISFIABILITY, EQUIVALENCE, and incLusion for RA(0),
RA(DFA), RA(RE), and RA(NFA) are all PSPACE-
complete. The remainder of this article is devoted to
proving Theorem 3.3.

3.1. Lower Bound

For the lower bound it dfices to show thagarisri-
asiity for RA(Q) is PSPACE-hard. Indeed, as an ex-
pressione is not satisfiable whenever it is equivalent
to (respectively, included in) the expressiBn- R for
someR, the PSPACE-hardness then immediately carries
over toeQuivALENCE (respectivelyincrusion) for RA(0).

We show thasarisriasiLity for RA(0) is PSPACE-hard
3
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Figure 3: The assignment tree witnessing the satisfiabifithe for-
muladxgVxeAxg¥Xa(=X1 V X2 V Xa) A (X1 V —X3 V Xg).

by a reduction from quantified boolean formula (QBF),
which is PSPACE-complete [6].

In short, QBF is the problem, given a boolean expres-
sion¢ of the form3x¥xz - - - I%-1Y¥n A4 Ci, Where
eachC; is a disjunction of three literals; does there exist
a truth value forx;, such that for all truth values foo,

..., and so up ta,, such thap is satisfied by the overall
truth assignment. We then say thgais satisfiable

Note that each satisfiable formula can be witnessed
by a tree of the form as shown in Figure 3. Here, ev-
ery path from the root to a leaf encodes a satisfying
truth assignment for\", Ci, where xiT (respectively,
xF) assigns true (respectively, false) to variakleFur-
thermore, the branching structure of the tree conforms
to the quantifier nesting ig. That is, the set of root
to leaf paths is precisely the set of variable assign-
ments which need to be checked pil'; Ci. The tree
in Figure 3 witnesses the satisfiability of the formula
AX VX AX3Y Xg(= X1 V X2 V Xg) A (X1 V =Xz V Xq). Given
a formulag, we construcfk ande, such thag, is satis-
fiable if and only ifg is satisfiable. In particulag, will
select all assignment trees witnessing the satisfiability
of ¢.

DefineR = {ij, ij | j € [1,n]}. We first define
the expressiomgee Selecting any tree which isot of
the form depicted in Figure 3. That igyee does not
consider the actual truth values in the tree but checks its
form. Thereto, we write a sequence of expressions each
of which selects a tree when it violates one particular
property. The formulayee is simply the union of the
given formulas. Here, we abbrevidtér.z R, selecting
all nodes, byR; R—((R—e1) U(R—-e&)) by e;ney; and,
for everyi € [1,n], we abbreviatex” U X by x;.

1. The root is not labeled] or x{. The expression
Y1 = R c R outputs all non-root nodes. Then,

R-y1) - %1

outputs the root when it is not labelegi or X[ .
2. Foralli, j, withi < j, a node labeleat” or X" is a



descendant of a node Iabel):e]H or ij:
Xi C Xj.

For everyi € [1,[n/2]], anda € {T,F}, a node
labeledxs, , does not have both nodes labebep
andszi as descendants:

X1 — (61 2 x5) N (xG_; 2 X5)].

For evenyi € [1,|n/2] — 1], anda € {T, F}, a node
labeledxg does not have a node labelef],, or
one Iabeled<§i+l as descendant:

x5 — [ 2 X5,1) U (6 2 X5,1)] -

Now, why is any tree not satisfying any of the above
formula of the form as depicted in Figure 3? Because of
the first formula, the root of such a tree must be eittjer
or x{. The third family of formulas guarantees that this
root node has both} andxg as descendants. Because
of the second family of expressions, and x5 must,
in fact, be direct children of the root. These, in turn,
must by the fourth family of expressions have a child
labeled eithex} or xt, and so on. Note, however, that
this tree might well contain additional side branches not
of the form of a proper assignment tree; for instance,

there might be several identical copies of one subtree
under a node. We are therefore only guaranteed that a
subset of the nodes, including the root, forms a proper
assignment tree, but the tree might contain additional re-
dundant nodes. More specifically, any tree not selected
by eree CONtains a proper assignment tree, and any tree

exactly of the form of a proper assignment tree, is not
selected byeyee This is sificient for our purposes.

We next consider the actual truth values occurring in
the tree. Thereto, we construct an expressgiuia
which selects a tree whenever it contains a path from

the root to a leaf encoding a truth assignment not satis-

fying A; Ci. If a tree contains such a path it is not an
assignment tree witnessing the satisfiabilitysof

To construcimuia, let C be any clause of the form
Yi, V'Yi, V Vi, With iy <z < iz and where each; either
equalsx; or —x;,. Letec be the expression C z C 7,
wherez xiFi wheny;, = x, andz xI wheny;,
X for j € [1, 3]. Then,&ormula = Uin=1 €c;-

Hence, the expressi®rong = ormula U Eree S€lECtS

all trees which are or contain an assignment tree which

does not witness the satisfiability ¢f Consequently,
€all = Bwrong U Uxe(<>.c5) R * Burong SElECES the same
trees a®yrong and additionally outputs all nodes of these
trees. Theng, = R — ey Selects those trees not selected
by ey which are all trees which contain an assignment
4

tree witnessing the satisfiability @f and for which ev-
ery subtree which forms an assignment tree also wit-
nesses the satisfiability @t Obviously, this includes a
normal assignment tree witnessing the satisfiability of
and, henceg; is satisfiable if and only if there exists an
assignment tree witnessing the satisfiabilitysdf and
only if ¢ is satisfiable.

This concludes the proof for the PSPACE-hardness of
saTiSFIABILITY for RA(0).

3.2. Upper Bound

We show thatsamsriasiiry for RA(NFA) is in
PSPACE, as this also implies thatLusion andequiv-
atence for RA(NFA) are in PSPACE. Indeed, for two
Region Algebra expressioms ande; it holds thate is
included ine; (respectively, equivalent t&) whenever
e1N(R-e) (respectively, & N(R-ez))U(e2N(R—e1)))
is not satisfiable.

To prove that sarisriasiuiry for RA(NFA) is in
PSPACE, we use a crucial property of the Region Al-
gebra proved by Consens and Milo [1].

Theorem 3.4 ([1]). Let e be a Region Algebra expres-
sion. If e is satisfiable, then there exists a text | with
[e] ' # 0 such that(l) has depth at mostg.

Here,|el denotes the size of the expression. This the-
orem hence allows to restrict our attention to text trees
of depth bounded by the size of the expression. Using
this property, we solvaearisriasiity for RA(NFA) by
reducing the problem to emptiness testinefay al-
ternating tree automata (2ATAJefined as follows.

For a set of proposition®, let B(P) be the set of
Boolean formulas ove$, including true and false. A
2ATA Ais atuple QQ, 4, qo) whereQ is the set of states,
Qo is the initial state, and : Qx X — B(Qx{-,—,T,l})
is the transition function. Elementsf{n —, 7, |} denote
directions in the tree. For a noden the treeu- equals
u; u— denotes its right siblingu 7 its parent; andi|
its left most child, when these exist and are undefined
otherwise.

Given a tred and a node of t, arun of A on t starting
from vis a pair §, f) wheres s a finite tree in which
each node is labeled by an element of NogesQ, and
f : Nodesg) — {true falsg is a function assigning truth

values to nodes af such that

e The label of the root o§is (v, qp); and

e For every nodex of s labeled (1, ), where the
label ofuintis a, let S {(d,p) | (d,p) €
(g, a) such thaud is defined. Then,



— The set of labels of the children afin sis
exactly{(ud, p) | (d, p) € S}, and no two chil-
dren carry the same label; and

— Let Syye be the set of thosed(p) € S for
which there exists a chilgt of x, such that
y is labeled ¢d, p) and f(y) = true. Then,
f(x) = true if and only if, iné(q, &), setting
all elements ofSye to true, and all others to
false, satisfies(q, a).

A run (s f) is acceptingwhen f(x) = true, wherex
is the root ofs. A treet is accepteddy A if there exists
an accepting run oA ont starting from the root of.

As mentioned before, we will translate Region Al-
gebra expressions into 2ATA, thus reducing thes-
riaBiLITY problem for RA(NFA) to the emptiness prob-
lem for 2ATA. In general, however, the emptiness prob-
lem for 2ATAs is EXPTIME-complete [7], but when

restricted to bounded depth trees the problem becomes

easier. Although it is not stated explicitly by Benedikt,
Fan, and Geerts, the following theorem is implicit in the
proof of Lemma 7.5 [8].

Theorem 3.5 ([8]). Given a 2ATA A and a number n in
unary, the problem of deciding whether A accepts a tree
of depth at most n is in PSPACE.

We next prove the lemma below. Combining this
with Theorems 3.4 and 3.5 shows thatisriaBiLiTy for
RA(NFA) is in PSPACE.

Lemma 3.6. Let e be a RANFA) expression. A 2ATA
A accepting all trees of depth at md3¢ selected by e,
can be constructed in time polynomial|et

Proof. Let e be a RA(NFA) expression. The automa-
ton A. will be a combination of several automata. In par-
ticular, we first construct a 2ATA.c accepting proper
text trees, i.e., trees which (1) are of depth at m¢ejf 2
(2) havex-symbols as leaf nodes, aftdsymbols as in-
terior nodes, and (3) do not have interior nodes which
have only one child labeled with®&symbol. This can
easily be done by constructing a 2ATA for each of these
three properties and taking the intersection of these au-
tomata.

We next construct the 2ATAwmuia Which, given a
proper text tre¢ of depth at most[g, checks whethes
selects. Recall that a 2ATA accepts a tree if it has an
accepting run starting from the root of the tree. To ob-
tain Asormula, W€ construct, by induction on the structure
of e, a 2ATA Awhich has an accepting run starting from
a nodeu of t, if and only if e outputs this node df The
automatonsormula Visits all nodes of and runsA from
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each of these nodes; X accepts at least one of them,
Arormula @Ccepts, otherwise, it does not.

Hence, it only remains to construst= (Q, d, do) by
induction on the structure af. We only consider the
base case = R, and the induction cases= e; > &,

e = e < &, ande = og(e1) and omit the others as they
are either very similar or straightforward.

e e=R, for someR € R. Then,Q = {do}, 6(qo, R) =
true, and5(qo, @) = false, forallae U R\ {R}.

e = e D &, whereA = (Q,6,q) is the in-
ductively obtained 2ATA forg, withi = 1,2. In

a nodeu, A needs to check whethex outputs

u, by runningA;, and whether there is a descen-
dant of u which e, outputs. Thereto, leQ =
Q1 W Q2 W {do, p}- Then, for everya € T U R,
0(do, @) = 01(ds, @) A (P, 1), ands(p, @) = 5(dz, @) v
(p,—) v (p, ). Here,pis the state which visits all
descendants af to check whether one of them is
output bye,.

e = g < &, whereA = (Q,6,q) is the in-
ductively obtained 2ATA forg, withi = 1,2. In

a nodeu, A needs to check whethex outputs
u, by runningA;, and whether there is a node
output bye, such thatv follows u in the depth
first traversal oft, but is not a descendant of

Let Q = Q1w Q2 W {do, Py, Py}. Then, for every
aexu R! 6(Q0v a) = 51((11, a) A [(pl’ _)) 4 (pT»T

)1, o(pr,@) = 02(d.@) v (p1,—) V (P, 1), and
o(pr,a@) = (P, =) vV (pr, 7).

e = og(e1), whereA; = (Qq1,61,Q1) is the 2ATA
recursively obtained fog; andB = (Q, 62, q;, F2)

is an NFA. In a nodeu we now have to check
whether it is output bye; (by running A;) and
whether theX-string below it is accepted bp.

To check whether the latter holds we do a depth
first traversal, starting from, and runB over the
string encountered at the leafs in this traversal (this
is exactly the desired string). Here it is crucial
to recognize the moment at which the depth first
traversal is finished, i.e., when we arrive back at
u. Thereto, when visiting a node we also keep
track of the current depth with respegtor, equiv-
alently, the length of the path fromto v. Hence,
once the depth is 0, we have finished the traversal
and can check whethd® accepts the string it has
read. Here, we use the fact that we are only consid-
ering trees of depth at most= 2|e}, which allows

to encode the current depth in the states.



Formally,Q = Q1w {q},q; | i € [0,n],q € Q} v
{To, Gtrue}- Then:

— Foreveryae X U R,

% 0(Crue, @) true, and 6(qo, a)
61(qu. @) A (gf 5 L)

x for all q € Qq, 6(q, ) = 61(q, a);

+ forall q € Fp, 6(q), @) = 6(c?, @) = true;
and

+ forallge Q2 \ Fz, 6(cf, @) = 6(af. @) =
false.

— Foreveryge Q,,i € [1,n]andR e R,
* 5(qil, R) = (q‘fl, 1) wheni < n; and

* 5(qip R) = (qil’ =)V [~(thrues _>)/\(qiT_l, T
)], where =(ggue, —) is true in a node
which does not have a right sibling.

— Foreveryge Qi € [1,nandb e %,
* 6(q, b) [~ (Grue =) A (Di{l, IY
V pesiqp) 9(P}, —); and
+ 6(d}, b) = false.

4. Conclusion

The present paper pins down the theoretical complex-
ity of optimization problems related to the region alge-
bra. It remains open whether there are interesting frag-
ments for which these problems become tractable. Of
course, equivalence testing is just one of the possibili-
ties for optimization. Other optimization procedures are
known which avoid equivalence testing (e.g., [9, 10]).
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