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Discussion of Likelihood Inference for
Models with Unobservables: Another View
Geert Molenberghs, Michael G. Kenward and Geert Verbeke

1. INTRODUCTION

We are grateful for the opportunity to comment on
Professors Lee and Nelder’s work. Like their other,
related papers, they are replete with important ideas
and thought-provoking theses. We will take up just a
few of the topics touched upon and offer some reflec-
tions. In Section 2, we consider models with, and infer-
ences for, unobservables. Section 3 revisits one of the
counterexamples discussed by the authors which turns
out to have insightful connections with the Cauchy
distribution. Connections between generalized estimat-
ing equations and fully specified joint distributions are
touched upon in Section 4. Finally, the position of
the authors’ computational proposals among alterna-
tive routes is explored in Section 5.

2. THE NATURE OF UNOBSERVABLES

Although Lee and Nelder claim, in their Section 4.4,
that unobservables are often verifiable because the un-
observables are latent variables for observed data, we
would like to issue a word of caution. Evidently, using
the authors’ notation, variance components λ and φ are
identifiable from the data, whenever there is replication
within the i levels (e.g., repeated measures j on subject
i, or litter mates j corresponding to dam i). However,
such data-based verification is confined, in the strict
sense, to the way the induced marginal model is ac-
curate. This model is of a compound-symmetry type:

Yi ∼ N(1β,Vi = λJni
+ φIni

).(1)

In other words, one can assess from the data whether Vi

is an accurate description of the variance–covariance
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structure, just as one can verify whether the implied
constant mean is adequate. But whether this provides
an accurate description of the unobservables is another
matter because there is a many-to-one map of hierar-
chical models to (1).

To see this more clearly, we start from this com-
pound-symmetry setting and take an example of Mo-
lenberghs and Verbeke (2010). Consider the following
random-intercepts model:

Yij = x′
ij ξ + bi + εij ,(2)

where Yij is the response for member j = 1, . . . , ni of
cluster i = 1, . . . ,N , xij is a vector of known covari-
ate values, ξ is a vector of unknown regression coeffi-
cients and bi ∼ N(0, λ2) is a cluster-specific random
effect assumed to be independently distributed from
the residual error components εij ∼ N(0, ν2). The im-
plied marginal model is obtained by integrating (2)
over the random effects. Grouping the Yij into a vector
Yi and assembling the rows x′

ij into a matrix Xi , this
marginal distribution is

Yi ∼ N(Xiξ , λ2Jni
+ ν2Ini

),(3)

in which Ini
denotes the identity matrix of dimension

ni , and where Jni
equals the ni × ni matrix containing

only ones. Evidently, (1) is a particular instance of (3).
Traditionally, there have been two views regarding

the variance component λ2 in the above model. In the
first, where the focus is entirely on the resulting mar-
ginal model (3), negative values for λ2 are perfectly
acceptable (Nelder, 1954; Verbeke and Molenberghs,
2000, Section 5.6.2) because this merely corresponds
to the occurrence of negative within-cluster correlation
ρ = λ2/(λ2 + ν2). In such a case, the only requirement
is that λ2 + ν2 > 0 and Vi = λ2Jni

+ ν2Ini
is posi-

tive definite. In the second view, when the link between
the marginal model (3) and its generating hierarchical
model (2) is preserved, thereby including the concept
of random effects bi and perhaps even requiring infer-
ences for them, it has been considered imperative to
restrict λ2 to nonnegative values.

In such a view, it is implicit that any hierarchi-
cal model, corresponding to the compound-symmetry
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model (3), should be of the form (2). But this is not the
case. To see this, we first reiterate that the hierarchi-
cal model, corresponding to a given marginal model,
is nonunique. This originates from the random effects’
latency and is crucial to the theme of Lee and Nelder’s
current paper.

To illustrate this nonuniqueness, consider the simple
but insightful case of two measurements per subject,
that is, ni = 2. We contrast two models, the first one of
the form (2) with random intercepts bi ∼ N(0, λ2) and
heterogeneous errors εij ∼ N(0, ν2

j ), (j = 1,2). The
second takes the following form:

Yij = x′
ij ξ + b0i + b1i (j − 1) + εij(4)

with two uncorrelated random effects,(
b0i

b1i

)
∼ N

[(
0
0

)
,

(
λ2

1 0
0 λ2

2

)]

and homogeneous error εij ∼ N(0, ν2). The marginal
means are, obviously, equal. At the same time, the mar-
ginal variance–covariance matrix in the first model is

V (1) =
(

1
1

)
(λ2) (1 1 ) +

(
ν2

1 0
0 ν2

2

)

(5)

=
(

λ2 + ν2
1 λ2

λ2 λ2 + ν2
2

)
,

and the counterpart for the second model is

V (2) =
(

1 0
1 1

)(
λ2

1 0
0 λ2

2

)(
1 1
0 1

)

+
(

ν2 0
0 ν2

)
(6)

=
(

λ2
1 + ν2 λ2

1
λ2

1 λ2
1 + λ2

2 + ν2

)
.

Evidently, V (1) and V (2) are equivalent, through the
linear relationships λ2

1 = λ2, λ2
2 = ν2

2 − ν2
1 , and ν2 =

ν2
1 . What this means, in this case, is that the observed

heterogeneity in variance can be ascribed to either het-
erogeneous residual errors or to the presence of a ran-
dom slope. The fitted marginal model, and hence the
data, cannot be used to distinguish between these two
scenarios. Thus, one view is that fitting a marginal

model comes with an entire equivalence class of hierar-
chical models that reduce to the given marginal model.

We now show that another simple extension of the
distributional assumptions of (2) allows for negative
variance components, while maintaining the model’s
random-intercepts interpretation.

We retain the random-intercepts model (2), but now
with the assumption,⎛

⎜⎜⎜⎝
bi

εi1
...

εini

⎞
⎟⎟⎟⎠ ∼ N

⎡
⎢⎢⎣

⎛
⎜⎜⎝

0
0
...

0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

d τ . . . τ

τ σ 2 . . . 0
...

...
. . .

...

τ 0 . . . σ 2

⎞
⎟⎟⎠

⎤
⎥⎥⎦ .(7)

The induced conditional distribution of the measure-
ment error vector, given the random intercept, is

εi |bi ∼ N

[
τbi

d
jni

,
1

d
(dσ 2Ini

− τ 2Jni
)

]
.(8)

Here, jni
is a ni-vector of ones. Note that (7) allows for

marginally uncorrelated measurement errors that be-
come correlated, conditional upon the random effect.

The corresponding marginal model is

Yi ∼ N [Xiξ , (d + 2τ)Jni
+ σ 2Ini

].(9)

Starting from a conventional compound-symmetry
model, it is clear that σ 2 = ν2 and d + 2τ = λ2. Ev-
idently, d and τ are not jointly identified, pointing to
a collection of hierarchical models that all yield the
same marginal model and hence are indistinguishable
based on the data alone. To define the range of this
collection, it is necessary for τ 2 ≤ dσ 2. Together with
τ = (λ2 − d)/2, this leads to the set of allowable solu-
tions,

d = λ2 + 2ν2 + 2να

√
λ2 + ν2,(10)

with α ∈ [−1,1]. From (10), we find

τ = −(
ν2 + να

√
λ2 + ν2

)
.(11)

In other words, we have a decomposition of the vari-
ance and the covariance, as displayed in Table 1. Ob-
serve that, when λ2 is positive, τ = 0 is among the so-
lutions; that is, this recovers the conventional random-
intercepts model with uncorrelated errors. However,

TABLE 1

σ 2 d 2τ

var(Yij ) = ν2 + (λ2 + 2ν2 + 2να
√

λ2 + ν2) + (−2ν2 − 2να
√

λ2 + ν2)

cov(Yij , Yik) = (λ2 + 2ν2 + 2να
√

λ2 + ν2) + (−2ν2 − 2να
√

λ2 + ν2)
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when λ2 < 0, then all values for τ are necessarily neg-
ative.

This construction reduces the conventional random-
intercepts model (2) to a special case of the extended
family of hierarchical models with correlation between
random effects and measurement errors. Once again, it
is clear that one can make inferences about the random
effects, given that one is prepared to make strong, and
unverifiable assumptions about the hierarchical model,
stemming from the many-to-one map from hierarchical
models to the implied marginal models. In this sense,
the above derivations underscore, not just that every
compound-symmetry model can be induced by a hier-
archical model, but that an entire collection of random-
intercepts models fulfills this role. These differ from
each other by the degree to which the random inter-
cepts and measurement errors are correlated.

The above considerations focus on random effects.
This is but one example of unobservables. Like Lee
and Nelder, Verbeke and Molenberghs (2010) argue
that so-called augmented data, in the sense of sup-
plementing the observed data with latent, unobserved
structures, is common throughout statistics. Exam-
ples include models for incompletely observed data,
describing observed and unobserved outcomes alike,
random-effects models, latent class models, latent vari-
able models, censored survival data, etc. Heitjan and
Rubin (1991) and Zhang and Heitjan (2007) have uni-
fied some of these settings in a concept called coars-
ening, broadly referring to the fact that the observed
data are coarser than the hypothetically conceived data
structures while models target the latter. Generally,
models for augmented structures are identifiable only
by virtue of making sometimes strong but always par-
tially unverifiable modeling assumptions. These set-
tings taken together are termed enriched data by Ver-
beke and Molenberghs (2010). Of course, there is a
subtle distinction between both concepts. In the coarse-
data setting, it is understood that a part of the data
would ideally be observed but are not in practice (e.g.,
actual survival time after censoring, outcomes after
dropout, etc.). Augmented data refers rather to the ad-
dition of useful but artificial constructs to the data set-
ting, such as random effects, latent classes and latent
variables which are never directly observed. Such aug-
mentations permit simple model development and rep-
resent a very powerful tool to succinctly accommodate
posited, potentially very complex, often causal, real-
world structures, a fact of which Lee and Nelder also
make use.

Verbeke and Molenberghs (2010) show that every
model for enriched-data settings can be factored as a
product of two components: the first one, termed the
marginal model, is fully identifiable from the observed
data; the second one, the conditional distribution of the
enriched data given the observed data, is entirely ar-
bitrary. The evident consequence is that the identifica-
tion of such a part can come from assumptions only and
points at the same time to the considerable risk for con-
clusions to be sensitive to such assumptions, and ulti-
mately to the need for conducting sensitivity analyses.
It implies that such non-identified parts can be replaced
arbitrarily, without altering the fit to the observed data
but with potentially huge implications for inferences
and substantive conclusions. Put simply, one’s inferen-
tial conclusions may strongly depend on such unverifi-
able portions of the model.

In the missing data case, studied in more detail by
Molenberghs et al. (2008), one could identify the sec-
ond factor by requiring, for example, that it is of the
MAR type. This means that every model assuming that
the missing data are missing not at random corresponds
to another model, producing exactly the same fit to
the observed data, but now assuming that the miss-
ing data are missing at random. In the context of a
conventional linear mixed model, Verbeke and Molen-
berghs (2010) illustrate the implications of the result
by replacing the conditional distribution of the ran-
dom effects given the data, that is, the random effects’
posterior, by two families of exponential distributions,
special cases of the gamma family for the sake of illus-
tration. This nicely supplements the above compound-
symmetry model with correlated random effects and
measurement errors.

These results imply that one should not simply adopt
a hierarchical model, only because it is convenient,
is in common use, etc. Rather, one should carefully
reflect on that part of the model that cannot be cri-
tiqued by the data. One should strive for (1) better
understanding of the dependence of one’s inferences
on nonverifiable model components and (2) developing
sensitivity analysis tools regarding substantive conclu-
sions with respect to data enrichment. Generally speak-
ing, inferences relative to observed data only, such
as fixed-effects and variance-component parameter es-
timates, are unaffected by the choice of enrichment
model. However, such aspects as empirical Bayes pre-
dictions in linear mixed models, or predictive distri-
butions of unobserved measurements given observed
ones, strongly rest on unverifiable modeling assump-
tions. This points to the need for sensitivity analysis.
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Rather than fitting a single model and putting blind be-
lief in it, it is more reasonable to consider a discrete or
continuous set of alternative model formulations and
assess how key inferences are vulnerable to choices
made. Molenberghs and Kenward (2007) discuss av-
enues for sensitivity analysis.

As soon as one is aware of the lack of identifi-
cation, there is reasonable latitude in making prag-
matic identification choices. For example, with random
effects or other latent structures, one could express
a preference for conjugate priors (Lee and Nelder,
1996, 2001, 2003) because, in the absence of identi-
fication, the convenience and appeal of conjugacy may
be invoked.

3. BAYARRI’S EXAMPLE AND A CAUCHY-TYPE
FAMILY OF DISTRIBUTIONS

Lee and Nelder, in their Section 4.2, revisit Bayarri’s
example. There is something rather peculiar about it,
because it is of a Cauchy type. We will show this in
what follows. Owing to the model’s absence of finite
moments, it seems natural that an estimation method
ought to encounter problems. Indeed, any approach
that does purport to provide estimates in such circum-
stances must raise concerns about its properties.

Consider a Weibull model for repeated measures
with gamma random effects:

f (yi |θ i ) =
ni∏

j=1

λρθij y
ρ−1
ij e

x′
ij ξ

e
−λy

ρ
ij θij e

x′
ij

ξ

,(12)

f (θ i ) =
ni∏

j=1

1

β
αj

j (αj )
θ

αj−1
ij e−θij /βj .(13)

Here, i and j are as in Section 2, θij are gamma random
effects, xij are covariates, ξ regression parameters, ρ

the Weibull shape parameters, and αj and βj the pa-
rameters governing the gamma distribution for the j th
component.

Rather than the above two-parameter gamma den-
sity, it is customary in a gamma frailty context (Ducha-
teau and Janssen, 2007) to set αjβj = 1, for reasons of
identifiability.

In line with Bayarri’s example, we use the less con-
ventional constraint αj = 1 and βj = 1/δj , leading to

f (θ i ) =
ni∏

j=1

δj e
−δj θij(14)

and implying that the gamma density is reduced to an
exponential one. Details can be found in Molenberghs
et al. (2009).

The moments take the following form:

E(Y k
ij ) = δ

k/ρ
j k

λk


(
1 − k

ρ

)


(
k

ρ

)
(15)

× exp
(
− k

ρ
x′
ij ξ

)
.

Reducing the Weibull distribution to the exponential
one, that is, setting ρ = 1, we further find

E(Y k
ij ) = δk

j k

λk
(1 − k)(k) exp(−kx′

ij ξ).(16)

The cases corresponding to (15) and, especially, (16)
will allow us to make our point about Lee and Nelder’s
example. Generally, (α−k/ρ) poses a problem when
α − k/ρ is a negative integer. For simplicity focusing
on a single outcome Y for the case where α = 1 and
β = 1/δ, assembling the linear predictor in μ, and writ-
ing ϕ = λeμ, we find

f (y) = ϕρyρ−1δ

(δ + ϕyρ)2 ,(17)

E(Y k) = k

ρ

(
δ

ϕ

)kρ

· (1 − k/ρ) · (k/ρ).(18)

Note that (17) provides a family of distributions, spe-
cial cases of the Weibull-gamma model that are termed
Weibull-exponential by Molenberghs et al. (2009).
Considering further the exponential case with ρ = 1,
yields exponential-exponential distributions, with

f (y) = ϕδ

(δ + ϕy)2 ,(19)

E(Y k) = k

(
δ

ϕ

)k

· (1 − k) · (k).(20)

Clearly, (19) defines a family of distributions without
finite moments similar to the Cauchy distribution be-
cause (1 − k) is undefined for k = 1,2, . . . . When
ρ �= 1 but is fractional, some but not all moments exist
whereas for irrational values of ρ, all moments in (18)
are properly defined. Finally, observe that in the gen-
eral case, there are combinations possible for (α,ρ, k)

that would lead to negative integers and hence unde-
fined moments (15).

In the light of the above developments, we are con-
cerned that Lee and Nelder provide us with point esti-
mates for moments that are undefined.
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4. THE NATURE OF GENERALIZED ESTIMATING
EQUATIONS

Lee and Nelder touch upon the use of generalized
estimating equations (GEE), as opposed to fully spec-
ified probability models. We agree that a compari-
son between GEE to generalized linear mixed mod-
els (GLMM) or hierarchical generalized linear models
(HGLM) is like a comparison of apples to oranges be-
cause GEE is an estimating method which can be ap-
plied to random-effects models too (Zeger, Liang and
Albert, 1988) and to HGLM for that matter. Therefore,
again in agreement with Lee and Nelder, we would like
to reiterate that a proper basis of comparison is between
marginal and random-effects models. Thus, while part
of the literature is sloppy in making comparisons us-
ing sloppy categorizations, it should not deflect from
the real issues. Nevertheless, we would like to reflect
on whether GEE are indeed less appealing because of
their alleged lack of a probabilistic basis.

There are two important points in our view. First, a
fully specified probability model is not always essen-
tial when making inferences about a particular aspect
of the model, such as mean functions, as long as the ap-
propriate regularity conditions are satisfied. For exam-
ple, when estimating mean parameters, it is imperative
that the mean exists and is finite.

Second, as Molenberghs and Kenward (2010) point-
ed out, the lower-order moments that need to be for-
mulated when setting up GEE, correspond to at least
one fully specified probabilistic model, even though
it may not be of the simple, elegant type, one has in
mind a priori, such as the Bahadur (1961) or odds-ratio
model (Molenberghs and Lesaffre, 1994). Their work
addresses the concern regarding whether the model
portions used in GEE can always be viewed as a par-
tially specified version of a model with full distribu-
tional assumptions, or rather, whether such a parent
simply does not exist. To this end, they use the hy-
brid models (in the sense of being partially marginally
and partially conditionally specified) of Fitzmaurice
and Laird (1993) and Molenberghs and Ritter (1996).
The results by Molenberghs and Kenward (2010) are
broadly valid. First, they are valid for a wide class of
semi-parametric models where specification is done in
terms of (parts of) the exponential-family formulation,
including binary, nominal, ordinal, and Poisson out-
comes. Second, it is also valid when the outcome vec-
tor combines outcomes of different types. Third, us-
ing transformations, the result can be applied as well
when the semi-parametric specification is not directly

in terms of the exponential family, such as logistic re-
gressions for binary data coupled with pairwise corre-
lation, as in classical generalized estimating equations.

5. COMPUTATIONAL APPROACHES

We are convinced that h-likelihood is a tremen-
dously appealing and important addition to the liter-
ature. Other computational principles and techniques
for maximizing a likelihood with unobservables ex-
ist as well. Each one of them has its advantages and
drawbacks. For example, Taylor-series-based methods,
such as PQL and MQL, and Laplace approximations
often lead to substantial bias. This is important to real-
ize because they have been in common use, neverthe-
less, not in the least because they are implemented in
standard statistical software such as the SAS procedure
GLIMMIX. The numerical-integration-based method-
ology, implemented for example in the SAS procedure
NLMIXED, is frequently slow and/or extremely sensi-
tive to starting values. See also Molenberghs and Ver-
beke (2005). Also Bayesian methods, sometimes be-
lieved to be free of the issues arising in a likelihood or
frequentist context, also have their problems. For one,
the sensitivity arising from unobservables, as discussed
in Section 2, is equally present in this framework. It is
clear to us that none of the computational approaches
will be able to claim uniform superiority over all oth-
ers.

Molenberghs et al. (2009) provide an overview of
computational methods, including some less familiar
ones. Their context is a hierarchical model with both
normally distributed and conjugate or other random
effects. Each of them deals in its own way with the
lack of closed-form expression for the marginal like-
lihood, even though Molenberghs et al. (2009) derive
such closed forms for more settings such as general
Poisson, probit and Weibull models with random ef-
fects.

One approach, very specific to the setting of Molen-
berghs et al. (2009), is to integrate analytically over
conjugate random effects and then further numerically
over the normally distributed random effects.

For the specific case of the marginalized probit
model, the computational challenge stems from the
presence of a high-dimensional multivariate normal in-
tegral in the marginal distribution. Zeger, Liang and
Albert (1988) derived the marginal mean function,
needed for their application of generalized estimating
equations as a fitting algorithm for the marginalized
probit model. It is one of the first instances of the use
of GEE to a nonmarginally specified model.
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In the same spirit, pseudo-likelihood can be used
(Aerts et al., 2002; Molenberghs and Verbeke, 2005).
This is particularly useful when the joint marginal dis-
tribution is available but cumbersome to manipulate
and evaluate, such as in the probit case. This is the idea
followed by Renard, Molenberghs, and Geys (2004)
for a multilevel probit model with random effects.

Schall (1991) proposed an efficient and general es-
timation algorithm, based on Harville’s (1974) mod-
ification of Henderson’s (1984) mixed-model equa-
tions. Hedeker and Gibbons (1994) and Gibbons and
Hedeker (1997) proposed numerical-integration based
methods, thus considering neither marginal moments
(means, variances) nor marginalized joint probabili-
ties. Guilkey and Murphy (1993) provide a useful early
overview of estimation methods and then revert to
Butler and Moffit’s (1982) Hermite-integration based
method, supplemented with Monte Carlo Markov
chain ideas. Also the EM algorithm can be used, in
line with Booth et al. (2003) for the Poisson case. The
EM is a flexible framework within which random ef-
fects can be considered the “missing” data over which
expectations are taken. Booth et al. (2003) also consid-
ered nonparametric maximum likelihood, in the spirit
of Aitken (l999) and Alfò and Aitkin (2000).

A suite of methods is available that employ trans-
formation results, essentially based on transforming
the nonnormal random effects to normal ones, or vice
versa. Liu and Yu (2008) propose a simple transfor-
mation of a nonnormal random effect to a normal
one, at density level, upon which the SAS proce-
dure NLMIXED or similar software can be used. Nel-
son et al. (2006) advocate the transformation, ui =
F−1

u [(�(ai)] where Fu is the cumulative distribution
function (CDF) of ui , and �(·) is the standard nor-
mal CDF, as before. The method of Nelson et al.,
labeled probability integral transformation (P.I.T.),
comes down to generating normal variates and then
inserting these in the model only after transformation,
ensuring that they are of the desired nature. Lin and
Lee (2008) present estimation methods for the specific
case of linear mixed models with skew-normal, rather
than normal, random effects.

Quite apart from the choice of estimation method, it
is important to realize that not all parameters may be
simultaneously identifiable. For example, the gamma-
distribution parameters in the Poisson case, α and β ,
such as in (13), are not simultaneously identifiable
when the linear-predictor part is also present because
there is aliasing with the intercept term. Therefore, one
can set, for example, β equal to a constant, removing

the identifiability problem. It is then clear that α, in
the univariate case, or the set of αj in the repeated-
measures case, describes the additional overdispersion
in addition to what stems from the normal random ef-
fect(s). A similar phenomenon also plays in the binary
case, where both beta-distribution parameters are not
simultaneously estimable.

6. CONCLUDING REMARKS

We end by sincerely thanking Professors Lee and
Nelder for their important, thought-provoking, and
practically relevant work in this rapidly evolving area.
Their paper has allowed us to elaborate on a number
of statistical issues put forward in their paper, such
as the implications of formulating models with un-
observables and generating distributions with peculiar
moment-properties. It further gave us the opportunity
to reflect on some conceptual aspects of generalized es-
timating equations on one hand, and elaborate on com-
putational strategies for models of the type discussed
here on the other.
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