
Dynamic Distributed User Interfaces: Supporting Mobile

Interaction Spaces.

Geert Vanderhulst

2004 – 2005

Abstract

As the possibilities and popularity of mobile computing devices increases, there is an oppor-
tunity to accomplish more and more desktop-related tasks with them. Most tasks require a
Graphical User Interface (GUI) that allows users to tap buttons, make selections, fill in forms,
etc. Because of the diversity in mobile devices, it is difficult to develop a single GUI that
runs on all of these devices. One of the difficulties is the lack of a common platform and/or
GUI toolkit. The heterogeneity of platforms and toolkits can be masked by using markup
languages to describe an interface on a high level. The use of these description languages is
one of the core ideas in this dissertation. Another concern is the adaptation of the GUI to
the context of use. Our goals are to clarify what adaptation of an interface involves and why
it is important.

Since mobile devices have limited screen space and varying input methods, it may be
appropriate to split up a GUI and distribute parts to several devices. This poses new chal-
lenges such as an efficient distribution mechanism and wireless communication techniques to
let the distributed parts talk with each other and the application logic. We present a frame-
work that is able to generate and distribute GUI descriptions for custom applications, that
can be rendered on a wide variety of (mobile) devices. The emphasis is on open standards,
platform/toolkit/language independence and a light-weight framework.

i

Summary (Dutch)

In deze verhandeling bestuderen we hoe een grafische user interface (GUI) kan gedistribueerd
worden over verschillende apparaten en we stellen hierbij een eigen framework voor. In het bij-
zonder richten we onze aandacht op mobiele toestellen zoals PDAs en smartphones. Mobiliteit
wordt alsmaar belangrijker en het gebruik van zakcomputers neemt toe. Het spreekt echter
voor zich dat een interface voor een PDA aan andere eisen moet voldoen dan een interface
voor een desktop PC. Bij de ontwikkeling van een GUI voor zakcomputers moet er rekening
gehouden worden met de beperkte schermgrootte en liefst ook met de beschikbare invoer-
mogelijkheden (toetsenbord, touchscreen, drukgevoelige pen, . . .) of andere factoren. Het is
belangrijk dat het distributieproces rekening houdt met de verscheidenheid aan toestellen in
de omgeving.

Een eerste vaststelling is dat de traditionele ontwikkeling van een GUI, namelijk recht-
streeks gebruik makende van een grafische toolkit zoals Swing of Qt, weinig geschikt is voor
gedistribueerde interfaces. De hoofdreden hiervoor is dat grafische toolkits over het algemeen
platform en programmeertaal afhankelijk zijn. Een oplossing voor dit probleem bestaat erin
de GUI te beschrijven op een hoog niveau in plaats van deze meteen in programmeercode te
implementeren. Deze beschrijving dient dan op het device zelf gevisualiseerd te worden, met
behulp van een zogenaamde ‘renderer’ die mogelijk gebruik maakt van een beschikbare toolkit.
De beschrijving zelf is porteerbaar naar verschillende toestellen. We maken hierbij een on-
derscheid tussen web interfaces (XHTML, CSS, JavaScript, . . .) en specifieke User Interface
Description Languages (UIDLs). Hoewel web interfaces slechts een beperkte widget set on-
dersteunen, kunnen ze op een grote ondersteuning rekenen. De meeste hedendaagse systemen
hebben een web browser aan boord die web interfaces kan visualiseren. (XML-gebaseerde)
UIDLs hebben dan weer het voordeel dat ze krachtigere mechanismen ondersteunen op gra-
fisch gebied, maar daarentegen moeilijker te renderen zijn op verschillende toestellen. Het is
een gegeven dat een UIDL zonder beschikbare renderers weinig praktisch nut heeft, hoe goed
de specificatie ook moge zijn.

Eigenlijk zou het niet mogen uitmaken voor het besturen van een applicatie of een apparaat
een web interface presenteert aan de gebruiker, dan wel bijvoorbeeld een UIQ gestyleerde
interface. Daarom beschouwen we als kern van een distribueerbare GUI een willekeurige
beschrijving in XML (XHTML, UIML, . . .). Een GUI is distribueerbaar als deze in zijn
geheel of in op voorhand gedefineerde delen kan migreren naar meerdere computers. Een
belangrijke vaststelling hierbij is dat gebruikers vaak slechts behoefte hebben aan afgelijnde

ii

iii

diensten die een applicatie aanbiedt. Als een gebruiker bijvoorbeeld wat achtergrondmuziek
wil opzetten via haar/zijn PDA, heeft deze normaal geen behoefte aan een playlist, maar
play/stop/. . . knoppen zullen voldoende zijn. Het volstaat dan om slechts een deel van een
GUI te distribueren naar het toestel van de gebruiker en optimaal gebruik te maken van
de beschikbare schermruimte. Om een dergelijke ‘slimme’ distributie mogelijk te maken,
gebruiken we een XML-schema taal (RELAX NG) om de structuur, beperkingen en types
van een aantal diensten (delen van een GUI) te beschrijven. Op die manier kunnen we eender
welke XML-gebaseerde beschrijvingstaal gebruiken en op gelijke manier behandelen.

We maken een onderscheid tussen user-driven, system-driven en continuous distributie.
Het verschil tussen user-driven en system-driven distributie ligt vooral in de actor – de ge-
bruiker of het systeem – die beslist welke diensten (delen van de GUI) naar welke toestellen
worden gedistribueerd. Indien het systeem de actor is, is het belangrijk dat eigenschappen
van toestellen in de omgeving in rekening gebracht worden om een optimale distributie te
bepalen. Bovendien kan de inbreng van de gebruiker belangrijk zijn om het distributiepro-
ces enigszins te begeleiden. Verschillende profielen met informatie over diensten, gebruikers
en toestellen spelen dan ook een cruciale rol bij system driven-distributie. Verder kan het
wenselijk zijn om apparaten in de omgeving automatisch te detecteren, hetgeen mogelijk is
met een discovery protocol zoals bijvoorbeeld UPnP. Continuous distributie bestaat erin om
een GUI automatisch te herdistribueren als clients tot de interactieruimte toetreden of deze
verlaten. We moeten echter uitkijken dat de interface niet al te vaak en/of drastisch wijzigt
om de bruikbaarheid te blijven behouden, maar dit is een onderwerp voor verder onderzoek.

In een gedistribueerde omgeving is het belangrijk dat apparaten met elkaar kunnen com-
municeren. Vooral draadloos ethernet en netwerken gebaseerd op het IP-protocol zijn geschikt
om hosts onderling te verbinden. Eén van de voordelen van IP is de directe link met het In-
ternet, waardoor toestellen – naast in een lokaal netwerk – ook overal met elkaar kunnen
communiceren waar een Internet-verbinding beschikbaar is (hotspots, GPRS, UMTS, . . .).
Een interessant protocol dat bovenop IP/TCP opereert is HTTP, vaak gebruikt in combina-
tie met het web of gerelateerde diensten. HTTP wordt ook vaak gehanteerd in middleware
systemen om data uit te wisselen, en meer bepaald RPC-gebaseerde middleware. Een groot
voordeel van middleware is dat het over het algemeen de heterogeniteit van apparaten, net-
werken, besturingssystemen, etc. maskeert en bovendien neemt het heel wat werk uit handen
van de ontwikkelaar. XML-RPC, SOAP en REST zijn vaak gebruikte RPC-mechanismen in
op diensten gerichte omgevingen, en vooral de REST ‘visie’ valt op omwille van de eenvoud.

In het voorgestelde framework maken we gebruik van de RELAX NG schemataal om
GUIs te genereren en distribueren. De kern van het framework bestaat uit de Interface
Distribution Daemon (IDD) waarin een light-weight web server zit ingebouwd. De IDD
biedt een platformonafhankelijke REST API aan die ontwikkelaars kunnen gebruiken om
clients/applicaties aan te melden, actions/events door te sturen, etc. Eén van de problemen
die we hierbij zijn tegengekomen is het feit dat het gebruikte HTTP protocol gericht is op
client-server communicatie, terwijl ons communicatiemodel verwacht dat de server (IDD) ook
de client kan contacteren. De introducie van een extra HTTP methode (LISTEN) blijkt

iv

hiervoor een eenvoudige, maar afdoende oplossing.

We hebben het ontwikkelde systeem toegepast om een audio player (XMMS) en image
viewer (JShow) te bedienen met behulp van een gedistribueerde interface, gespreid over ver-
schillende toestellen (laptop, PDA, . . .). Het framework is zo gebouwd dat ontwikkelaars met
een minimum aan moeite bestaande applicaties kunnen inpluggen op het systeem en voor-
zien van een gedistribueerde interface. Aangezien er enkel gebruik gemaakt wordt van open
standaarden, is er geen nood om een framework-eigen taal te leren en bovendien verloopt
de communicatie tussen gedistribueerde GUI delen onderling en de applicatielogica geheel
transparant voor de ontwikkelaar.

Acknowledgments

In the first place I would like to thank my promotor prof. Karin Coninx, dr. Kris Luyten and
Chris Vandervelpen for guiding me through my thesis, but also for giving me the opportunity
to cooperate with a research paper related with the subject of my thesis.

Special thanks go to my girlfriend Elke Moyens, for always being there and for the valuable
time spent together, and to my family for supporting my studies and providing me with the
necessary equipment.

I also want to express my gratitude to all students and roommates who made life easier
and more fun. Among them are Bert Vangoidsenhoven, roommate and friend who improved
life at the student apartment and campus despite his weird eating habits in the morning; Jan
Bollen, our first class driver and team member in many school projects; and Koen Vanlaer,
an old friend I regularly went out with.

v

Contents

I Research Foundations 1

1 User Interfaces for Mobile Devices 2

1.1 Introduction . 2

1.2 Definition of a ‘good’ User Interface . 2

1.3 User Interface Toolkits . 3

1.4 Markup Languages . 5

1.4.1 User Interface Description Languages 5

1.4.2 Web Interfaces . 7

1.4.2.1 Mobile Web Browsers . 7

1.4.2.2 XForms . 8

1.4.2.3 Local versus Remote Interfaces 8

1.5 Hand-crafted versus automatically generated interfaces 9

1.6 Adapatable User Interfaces . 10

1.6.1 Adaptation to different devices . 10

1.6.2 Adaptation to user preferences . 11

1.6.3 Adaptation to environmental factors 12

1.7 Migratable User Interfaces . 12

1.8 Summary . 13

2 Distributed Communication Techniques 14

2.1 Introduction . 14

2.2 Wireless Communication . 14

2.3 Client-Server and Peer-To-Peer Model . 15

2.4 The HyperText Transfer Protocol (HTTP) . 16

vi

CONTENTS vii

2.5 The XMLHttpRequest object . 18

2.6 Middleware . 20

2.6.1 Remote Procedure Calls . 21

2.6.1.1 XML-RPC . 21

2.6.1.2 SOAP . 22

2.6.1.3 REST . 22

2.6.2 Distributed Objects . 22

2.6.2.1 CORBA . 22

2.6.2.2 DCOM/COM+ . 25

2.6.2.3 Java RMI . 25

2.7 Discovery Protocols . 25

2.8 Summary . 26

II Proposed Framework for Dynamic Distributed User Interfaces. 27

3 Framework Preliminaries 28

3.1 Introduction . 28

3.2 Preliminary Study and Related Work . 29

4 User Interface Generation 31

4.1 Introduction . 31

4.2 Different Viewpoints . 31

4.3 Schema-driven User Interface Generation . 33

4.3.1 RELAX NG . 33

4.3.2 RELAX NG-based Schema to Instance Algorithm 36

5 User Interface Distribution 43

5.1 Introduction . 43

5.2 Distributed Interaction Spaces . 43

5.3 User-driven Distribution . 45

5.4 System-driven Distribution . 46

5.4.1 Profiles . 46

CONTENTS viii

5.4.1.1 Device profile . 47

5.4.1.2 Service Profile . 47

5.4.1.3 User Profile . 49

5.4.2 Patterns . 49

5.5 Continuous Distribution . 52

6 Architecture 53

6.1 Introduction . 53

6.2 RESTful communication . 53

6.3 The LISTEN method . 57

6.4 Actions and events . 59

6.5 Scenario . 61

6.6 Webroot . 65

6.7 Security . 68

7 Deployment 70

7.1 Introduction . 70

7.2 Native applications . 70

7.2.1 XMMS . 70

7.2.2 JShow . 72

7.2.3 The GIMP . 73

7.3 Multimedia Center and Domotica . 79

8 Conclusions 81

8.1 Summary of Results . 81

8.2 Concluding Remarks . 82

List of Figures

1.1 Different widgets supporting the same task, extracted from [6]. 10

1.2 Interface rendered for two devices with different size, extracted from [12]. . . 11

1.3 FlexClock, extracted from [6]. 12

2.1 Client-server (a) and peer-to-peer (b) model. 16

2.2 Use of the XMLHttpRequest object. 18

2.3 Skeleton of an XMLHttpRequest event handler function. 19

2.4 Middleware layer. 20

2.5 XML-RPC request (a) and response (b). 23

2.6 SOAP request (a) and response (b). 24

2.7 REST request (a) and response (b). 24

4.1 Three interface parts for a multimedia player, defined in XHTML between
<div></div> tags. 32

4.2 Description of the interface parts in figure 4.1, rendered in a browser. 32

4.3 DTD and corresponding W3C XML Schema document validating an infinite
number of instances. 34

4.4 XML node with mixed content. 35

4.5 RELAX NG definition of the interface part in figure 4.1(a). 35

4.6 Three different RELAX NG constructions to constrain the appearance of services. 36

4.7 RELAX NG schema defining a web interface for a multimedia player. 41

4.8 Bottom-up construction of a tree representing the information in a RELAX
NG schema. 42

5.1 Web interface for registering clients and requesting service user interfaces. . . 44

ix

LIST OF FIGURES x

5.2 CC/PP profile for a PDA (device profile). 48

5.3 RELAX NG schema skeleton that validates any valid CC/PP profile. 50

5.4 RELAX NG schema that further restricts the schema in figure 5.3 (service
profile). 51

6.1 Architecture: applications, client devices, IDD. 54

6.2 Bidirectional communication problem. 58

6.3 Bidirectional communication realized with the LISTEN method. 59

6.4 Action/event communication model. 60

6.5 Message queue. 60

6.6 Registration procedure. 63

6.7 Interaction through action and event messages. 64

6.8 Configuration file (ui.xml). 67

7.1 Distributed web interface for XMMS, main and settings service rendered in
Mozilla (a) and playlist service rendered in FireFox (b). 74

7.2 Distributed web interface for JShow, default (a) and mac (b) theme rendered
in the FireFox browser and distributed UIML interface rendered using a Java
Renderer from Harmonia. 75

7.3 Distributed web interface for JShow, rendered in Pocket Internet Explorer on
a PDA. 76

7.4 Scenario in which a web interface for JShow is spread over two PDAs and a
laptop. 77

7.5 Abstraction of APIs to ease the application ↔ IDD and client ↔ IDD commu-
nication to developers. 77

7.6 Scenario in which the GIMP toolbox is migrated to a PDA and the drawing
canvas is loaded full screen on a tablet PC. 78

7.7 Garfield comic, copyright by Jim Davis. 79

List of Tables

2.1 HTTP Request Message . 16

2.2 HTTP Response Message . 17

4.1 EvalNode object. 37

4.2 EvalRecord object. 37

4.3 EvalPath object. 37

4.4 RELAX NG pattern mappings. 39

xi

Part I

Research Foundations

1

Chapter 1

Developing Graphical User

Interfaces for Mobile Devices

1.1 Introduction

Technology evolves and in the mobile computer market this results in more powerful devices
with large high resolution screens. These devices give rise to more and more advanced Graph-
ical User Interfaces (GUIs) to interact with programs or just navigate through menus. The
‘mobile interface’ aspect also introduces new opportunities. Handheld devices can be used to
control remote applications and appliances or operate together with PCs [21]. An interest-
ing hypothetical application to take a look at is MANNA [10], since it reveals many of the
challenges posed by UI development for mobile computing.

Many features rely on the portability of a GUI. A single GUI should run on a wide range
of devices. However, few UI developers have the skills to build interfaces for different not to
say all platforms. And even if they have the skills, it would take a lot of time to develop cross-
platform GUIs by conventional and commonly used techniques. We discuss major approaches
to design portable GUIs and focus on issues and requirements.

1.2 Definition of a ‘good’ User Interface

Two important properties of a UI are its usability and its appearance. An interface should be
usable, e.g. have an intuitive placement of controls, clear buttons, obvious menu entries and so
on. Besides, it should be attractive to work with. Of course, different users have different ideas
and preferences of what a UI should look like. No wonder thus that many applications are
customizable nowadays. Common options to personalize a UI are the adaptation of toolbars
(i.e. add or remove buttons), selection of different layouts and skin support.

The usability of a UI is closely related with the device on which it is used. Since UIs are
a means to allow human-computer interaction (HCI), the way on which the interaction takes

2

1.3. USER INTERFACE TOOLKITS 3

place is crucial. Interaction depends on the device’s input method(s). Common input devices
are keyboards, keypads, touchpads, touchscreens + pen, mice, . . . Handhelds often have one
or the other, but a combination like both a pointing device (e.g. mouse) and a keyboard (e.g.
desktops or laptops) is rather seldom. Therefore UIs should be developed with the available
input methods in mind. A GUI for keypad-only cell phones should not offer drag and drop
support or expose a drawing canvas to the user, as both rely on a pointing device. GUIs
with a lot of double-click actions or popup menus (triggered by a right mouse click) should be
avoided on touchscreen devices. Many issues can be thought of, and several usability studies
and guidelines are found in HCI courses.

Interface Consistency

The benefit of consistency is that users can leverage knowledge from previous experiences
with similar interfaces. UIs can be made consistent with:

• each other; e.g. a portable UI rendered on a desktop should at least be recognizable
when it is rendered on a handheld device.

• other (default) interfaces on the platform or device; e.g. Gnome-/KDE-like interfaces,
Symbian Series60/UIQ style, Pocket PC look and feel, . . .

If a user is used to a certain GUI running on Pocket PC, she/he should also be able to
work in short time with a smartphone representation of that GUI. So, both representations
should not differ too much. Controls should look familiar to apply the experience acquired
by using one of the GUIs. On the other hand, it is a good thing if both GUIs share the look
and feel of traditional Pocket PC and smartphone GUIs respectively. This will help users to
apply device knowledge.

1.3 User Interface Toolkits

A common way for creating a Graphical User Interface (GUI) is by means of a programming
language and a GUI toolkit. Such toolkits offer a high-level API to the programmer which
removes the hassle of drawing individual pixels and lines. Therefore, GUI toolkits facilitate
the creation of graphical interfaces. There is no need for the developer to know about low-level
system calls.

The choice of a GUI toolkit is closely related with the language in which the program
behind the interface is written. For instance, Java programmers will probably use the Swing
or AWT API, while C++ programmers can choose between Qt, GTK, . . . Toolkits like Swing
or Qt (and many others) offer a complete application framework to the developer. They offer
methods to catch mouse clicks, key presses and many other user actions. Unlike these, there
is a lot of libraries providing only the core of a GUI toolkit: widgets. Widgets are specific

1.3. USER INTERFACE TOOLKITS 4

parts of a GUI such as buttons, labels, text fields, . . . Two core properties of GUI toolkits
include:

• Portability: How ‘portable’ is the toolkit, i.e. on what operating systems and devices
can it be used?

• Supported widgets: What are the widgets offered by the toolkit and what are their
properties?

As Java is known as a cross-platform language, one would suggest its GUI toolkits are highly
portable. This is true as far as we consider the major desktop operating systems. Swing
and AWT run on Windows, Mac and Unix based systems. However, when it comes to
mobile operating systems like Palm OS, Symbian OS, Windows Mobile versions, . . . things
are different. In the best case one can force Swing or AWT to work using third party software.
PDAs and smartphones have slower processors and less memory than their desktop variants.
Therefore it figures that trimmed down or specific toolkits are being used on these devices.
When mobile phone companies claim that their devices support Java application/games, they
actually mean that their devices have J2ME class libraries on board. J2ME stands for “Java 2
Platform, Micro Edition” and is – as the name says – a tiny micro edition with a light-weight
Virtual Machine (KVM), compared to the standard or enterprise edition for desktop systems.

Because of the performance gap between handhelds and desktops and especially their
different screen sizes, GUI toolkits are more or less developed for a particular range of (similar)
devices. Also among PDAs and smartphones there is a diversity of used toolkits. For instance,
Symbian phones run different versions of the Symbian OS with different GUI toolkits (known
as Series 60, 80, 90, UIQ, . . . phones). [30] explains how to design portable UIs just for the
different Symbian OS flavours. So if it is even not trivial to develop portable UIs within
successive versions of a mobile OS (using its built-in GUI toolkit), it will definitely be hard
to extend their portability to other mobile platforms.

Toolkits can also be (partially) ported to other operating systems – some actually are –
but this involves a lot of work and they should be maintained. For instance, if the ‘original’
toolkit gets updated with new features or fixes, the ports should be updated too. Therefore
it is probably not the best idea to pick a GUI toolkit and assume it will be supported on all
or most devices. Neither it would be useful, since a (full) Swing to cell phone port would turn
the phone in an overloaded and slow device. The other way round, a handheld GUI toolkit
to desktop port would result in a feature-less toolkit, compared to other desktop UI toolkits.

A better approach is to describe the interface on an abstract and toolkit-independent
manner. The description could then be rendered – in theory – using any toolkit. There is,
however, a big issue: not all GUI toolkits support the same set of widgets. Thereby it can be
difficult to describe an interface in terms of widgets and still require that it can be rendered
on a wide range of devices (using different GUI toolkits). The latter is also related with the
used renderer. A renderer is used to transform the description to the actual interface.

1.4. MARKUP LANGUAGES 5

1.4 Markup Languages

GUIs are usually put down in a programming language. The program code should then be
compiled into (native) machine code. Advantages of this approach are:

• Fast rendering, since machine code is directly understood by the computer (low-level)
or by a Virtual Machine (mid-level).

• Easy integration with applications (i.e. written in the same programming language).

However, major disadvantages are:

• Limited portability: depends on the portability of the programming language as well as
on the portability of the used GUI toolkit.

• The slightest change in the GUI code (program code) requires recompilation.

Apart from programming languages, markup languages can be used to describe an inter-
face. Markup languages are self-describing what makes them both readable to humans and
machines. Their strengths are high degrees of portability and the fact that they need not to
be compiled in order to be understood. What they do need, however, is an interpreter to read
and process data. For example, browsers interpret HTML (HyperText Markup Language)
code and render it to a web page on the fly.

Most markup languages are based on the XML (eXtensible Markup Language) [34] syntax.
XML is standardized by the W3C. It is easy to parse and there are tons of (free) tools to
read, write, transform, . . . XML files on almost every platform (also the mobile ones).

1.4.1 User Interface Description Languages

A User Interface Description Language (UIDL) defines syntax and semantics to describe a
user interface. A UIDL should be declarative so that it can be edited by hand, but it should
also be formal in order to be understood and analyzed by software.

UIDLs can offer different levels of abstraction. On the one hand an abstract high-level
description has the advantage that a UI can be described independently of a widget set what
makes it highly portable. On the other hand, a more concrete UI description (e.g. toolkit-
specific) is easier to render and does not suffer from the fact that GUI toolkits offer varying
widget sets. It applies, in general, that the more abstract a UI description is, the more
complex its renderer(s) will be.

A common technique used in many UIDLs is the mapping of Abstract Interface Objects
(AIOs) to Concrete Interface Objects (CIOs) [31, 27]. A “range indicator” can for example
be mapped on a slider or spinner widget. This mapping is a step towards adaptable UIs,
i.e. dynamically decide what mapping is the most appropriate based on certain constraints.

1.4. MARKUP LANGUAGES 6

More on this in section 1.6. In addition, the CIO can be mapped on a specific toolkit, e.g.
a device’s default toolkit. This way, UIs can be rendered that are consistent with the ones
from (default) applications running on the device.

[26] gives an overview of the most significant XML-compliant UIDLs and compares them
on different areas. These UIDLs include UIML, AUIML, XIML, Seescoa XML, Teresa XML,
WSXL, XUL, XISL, AAIML, TADEUS XML. Although some of them are still in development
phase, it seems there is plenty of choice. Non of the mentioned UIDLs should be considered
as the UIDL. All have their pros and cons, mainly dictated by the goals for which they are
intended. For instance, XIML has a very high expressivity, but it (currently) lacks advanced
tool support. UIML on the other hand is one of the most restrictive UIDLs, but it is the
most supported by software [26]. [26] also endorses the claim that the real attractiveness of a
UIDL heavily depends on its tool support: it is meaningless to possess a refined specification
of a UI that cannot be rendered or only partially.

UIML

UIML (User Interface Markup Language) [1] has two benefits compared with the other UIDLs:
it is being standardized by OASIS and it is rather supported by software. UIML is also in-
dependent of a widget set and it claims to be device-independent as well [18]. A renderer
either interprets and renders UIML directly on the client device or compiles it to another
language (like WML, HTML, program code). Since both approaches generate a UI automat-
ically, without user intervention, it is important that the resulting UI is useful and visually
appealing. Especially for devices with a small screen this is important. For example, a button
may be renderered too small to fit its label. Or the button may be rendered too big so that
other widgets are ‘repressed’ by it. As these and many other possible issues depend on the
renderer, the designer (or should we say ‘describer’?) of the UIML files can do few if anything
to avoid them.

The renderer plays a pivotal role, so let us take a look at the currently available renderers
for UIML. There already are quite a few and they roughly fall apart in two categories: the
ones provided by Harmonia (commercial) and those contributed by individuals (mostly open
source). These include renderers for Java, C++, .NET, Symbian, . . . A smartphone running
Symbian will require another renderer than a Pocket PC with .NET support. In this case we
have a single device-independent UI description, but multiple device-dependent renderers. In
fact, ‘device-dependent’ renderer is not completely true, as a .NET renderer for instance is
portable to different platforms. Unfortunately, it is not portable to all platforms and neither
are the other renderers. It is simply not possible at the moment to write such an all-platforms
supporting renderer, because of the diversity in (mobile) operating systems and their lack of
a common Virtual Machine or API. Therefore it is important that different renderers perform
a good job with the same UIML file(s) as input.

1.4. MARKUP LANGUAGES 7

1.4.2 Web Interfaces

We already mentioned HTML as a markup language, but we did not yet link it with UI
development. (X)HTML1 is the language to layout web pages. It differs from the UIDLs in
the way that XHTML does not describe web pages only in terms of widgets or in an abstract
manner. On contrary, it specifies concretely what the page will look like and how data is
presented: in a table with two columns, in italic or bold, what colour, . . . Yet, XHTML
supports ‘Forms’. XHTML Forms provide a modest set of widgets like buttons, checkboxes,
radio buttons, . . . Note that these Forms (widgets) are just part of the HTML specification,
while widgets are the core elements of any ‘real’ GUI toolkit. If a web page offers controls
to the user to input/change data or execute scripts or (small) applications on the server, we
speak of a Web Interface (WI).

WIs are everywhere. There are thousands of examples on the web. Take for example
an online book shop (e.g. http://www.amazon.com). The web page is in the first place a
frontend for a database. One can search for books on author and title and select the book(s)
she/he wants to buy. Via a simple form one can provide the server with address and payment
information. After confirmation, a book has been ordered through a web interface. Though
most WIs reside somewhere on the web, they are also commonly used in embedded devices
like routers, print servers, surveillance cameras and so on. Their use in embedded devices is
advantageous because:

• The device can be controlled through a web browser; no specific software needs to be
installed.

• HTML (most embedded devices still use HTML instead of XHTML) is widely supported.

• Scripts (e.g. JavaScript) can be integrated in the HTML code and provide the WI with
extra functionality.

• Cascading Style Sheets (CSS) can be used to style the WI.

1.4.2.1 Mobile Web Browsers

Since web browsers have found their way to mobile devices, a router can be controlled with a
PDA or cell phone without specific software. The only requirement is a decent web browser to
render the WI. Nowadays, mobile internet is a hot topic on the feature list of mobile devices.
Most devices have an integrated, pre-installed browser. Besides, a lot of third-party browsers
(free and commercial) are available for the leading platforms. Browsers from Opera (also well-
known on the desktop platforms) and NetFront (by ACCESS) are particularly interesting.
These companies offer different versions of their browsers with the same functionality for
various mobile platforms. For example, the Opera mobile browser runs on Symbian Series 60,

1Roughly spoken, XHTML is an XML-compliant version of the HTML 4 specification. Their descriptive

power is more or less the same. More information can be found at [42].

1.4. MARKUP LANGUAGES 8

Series 80, Series 90, UIQ, EZX, Brew, µltron, Smartphone, Qtopia and Psion devices. This
means that if a WI can be rendered properly on a Series 60 Phone, it can also be rendered
on a Psion device. NetFront also runs on Pocket PC and others, and ACCES provided the
core technology for the Palm OS 5 Browser (based on NetFront v3.0).

Opera and NetFront support recent standards of XHTML [42], CSS [33], DOM [44], EC-
MAScript [16], . . . Furthermore they offer special rendering techniques to cope with the small
screens of mobile devices. Technologies like Smart-Screen Rendering (Opera) and Smart-Fit
Rendering (NetFront) reformat a web page to fit inside the screen width and eliminate the
need for horizontal scrolling.

The availability of mobile browsers with Opera and NetFront as two multi-platform solu-
tions, is highly beneficial. It gives developers the opportunity to design a WI and test it with
Opera/NetFront. The quality and support of the WI can more or less be assured without hav-
ing to test it on different platforms or devices. Remark that this is – at least at the moment –
a fundamental difference with UIDL renderers. A UIDL renderer for Pocket PC may render
a satisfiable UI from a given UI description, while a Symbian renderer may screw things up.
The developer cannot assure the quality of the UI on various devices without extensive tests
on all devices.

An advantage of browsers in general is the fact that they are ‘tolerable’. For instance,
a non-CSS enabled browser will still render a CSS-based web page and just ignore the style
sheets.

Because browsers do not use specific platform-dependent toolkits to render a web page,
web interfaces do not look like the UIs of other applications running on the platform (unless
they are ‘skinned’ to look so). WIs rather offer consistent looks on different devices.

1.4.2.2 XForms

Although web forms are still widely used, the technology is showing its age. Forms have
limited features what makes even the most common tasks dependent on scripting. Other
issues are poor integration with XML and no separation of the purpose from the presentation
of a form. XForms [39] overcome these issues and provide updated and new UI controls as
well as many other improvements.

In time, XForms should replace the current HTML Forms. Unfortunately it will take
months or even years to finalize the XForms standard and get it fully implemented by the
majority of web browsers. Anyway, XForms blow a fresh wind along WIs.

1.4.2.3 Local versus Remote Interfaces

There is a difference between:

• an interface for controlling a remote appliance or application, and

1.5. HAND-CRAFTED VERSUS AUTOMATICALLY GENERATED INTERFACES 9

• an interface for controlling an application running on the same device.

WIs are an attractive option for the former sort of interface. In the latter case, however, it has
little sense to develop a WI for the application. This would require to start the application
and a web browser separately on a single device or use a ‘browser widget’ to render the WI.
The separate web browser way will face the developer with complex communication issues
(UI - application core) that could easily be avoided here. A ‘browser widget’ is neither a
good idea, since it is GUI toolkit specific, rather rare and it may have limited support for
recent standards (XHTML, CSS, . . .). In this case, it is much easier to develop an interface
using a specific GUI toolkit or describe a UI in a UIDL and invoke a renderer from within
the application’s code.

1.5 Hand-crafted versus automatically generated interfaces

Concrete designed UIs have the advantage that they look exactly like the designer intends
them to look. The designer has full control to adapt the interface, change the arrangement
of controls, . . . possibly based on feedback of users. This way, the quality of the UI can
be assured. On the other side, multiple concrete UIs must be provided in order to support
different platforms. These may for instance include a Swing and/or Qt UI for desktop systems,
Series 60/UIQ for mobile phones, . . . A lot of work thus needs to be done by the designer.
Also, if the UI specifications change (e.g. extra controls are requested), all UIs should be
updated separately. Another drawback of this approach is the fact that those statically
designed UIs are not very flexible. In the best case, the UI can be considered flexible if the
underlying UI toolkit or framework is flexible in the sense that widgets can be added/removed
dynamically or adapted to the user’s preferences. Again, this kind of flexibility is toolkit and
thus (in general) platform dependent.

On contrary, a lot of research has been done on generating UIs automatically from an
abstract description. Many model-based approaches have been proposed in the past [10, 27].
A UI model is built from different UI aspects: task information, user knowledge, presentation
environment, . . . Model-based interface systems usually provide design tools to hide the
syntax of the modelling languages and provide a convenient interface to specify the often
large quantities of information that are stored in the UI model (specification).

Present projects that aim to provide (semi-)automatically generated UIs for appliances in-
clude Dygimes [8], Pebbles2 (i.e. the Personal Universal Controller (PUC) [23]) and SUPPLE
[12]. A common idea in these projects is the use of abstract (XML-based) UI specifications
to define what functionality the interface should expose to the user. The presentation of
those features is left to a renderer. Typically, the renderer uses a constraint-based layout
management algorithm to present the UI on a certain display. Different types of constraints
can be incorporated. For example, spatial constraints can define facts like “this button should
always appear right to this text field”. Besides, devices have a natural constraint: their screen

2http://www.pebbles.hcii.cmu.edu/

1.6. ADAPATABLE USER INTERFACES 10

resolution. Several techniques are used to take these and other constraints in consideration
to layout the UI. Two approaches are the use of decision trees [23] and turning the layout
problem into an optimization problem [12].

Note that the job of the UI designer consists in the first place of designing a functional UI
specification. In addition, she/he should possibly provide the renderer(s) with extra informa-
tion (e.g. platform-dependent CIO information [8]). If the designer wants to upgrade the UI
with new features, it is enough to update the functional UI specification. Unfortunately, this
ease of maintenance has a serious cost: the designer loses a lot of control since the renderer
decides at runtime what the UI will look like. But, the advantage with this approach is
its flexibility. The UI renderer can make dynamic decisions based on environmental factors,
device constraints or user preferences.

1.6 Adapatable User Interfaces

If a UI can be rendered or changed on the fly based on certain parameters or user actions,
it is called ‘adaptable’. Adaptable UIs are also referred to as plastic or context-aware UIs.
A lot of research on this area has been collected by the CAMELEON project3. Most auto-
mated UI generation tools give attention to context-awareness (i.e. constraint-based layout
management) [10, 27, 8, 12, 23].

Adaptability of a UI can be interpreted in many ways. The next subsections summarize
some of the most important interpretations.

1.6.1 Adaptation to different devices

Different devices have different screen sizes and features and thus different UI requirements as
explained in section 1.2. UIs can adapt to different screen sizes (resolutions) by reorganizing
and adapting individual widgets. [6] identifies a new generation of widgets: the comets
(COntext of use Mouldable widgETs). As a simple example, [6] shows how a set of radio
buttons can shrink into a combo box (figure 1.1). Note that the combo boxes require less
space than the radio buttons, while they still support the same task.

(a) Label and radio buttons (b) Label and combo box (c) Combo box incorporating

the label

Figure 1.1: Different widgets supporting the same task, extracted from [6].
3http://giove.cnuce.cnr.it/cameleon.html

1.6. ADAPATABLE USER INTERFACES 11

Similar ideas can be found in SUPPLE [12], where slider widgets are found equivalent
with spinners. Figure 1.2 shows two UIs with the same functionality, but with a different
placement of the controls and different widgets. The first UI is intended for large screen
devices, while the second UI is more useful on devices with a smaller screen. The second UI
is also better suited for devices with a touchscreen than the first. Sliders are of little sense for
touchscreen devices, since ‘dragging’ requires a pointer. Spinner widgets are a better choice
here.

(a)

(b)

Figure 1.2: Interface rendered for two devices with different size, extracted from [12].

1.6.2 Adaptation to user preferences

It is very important that end-users are satisfied with the rendered UIs and that they can work
efficiently with them. Therefore users should be able to adapt the UI to their preferences, and
re-arrange for instance some controls or tune their look and feel. Remark that this personal
adaptation could introduce conflicts with the device adaptation. Consider for example Flex-
Clock: a clock that expands or shrinks its UI when the user resizes the window, presented in
[6]. Figure 1.3 shows two states of the UI. These screenshots show that the calendar shows up
when the window is considered ‘large enough’. However, users could prefer that the calendar

1.7. MIGRATABLE USER INTERFACES 12

is always there and that scrollbars appear if the window is shrinked. This example stipulates
that the renderer should somehow decide what adaptation is more important. We believe
that user preferences should always have the highest priority.

Figure 1.3: FlexClock, extracted from [6].

1.6.3 Adaptation to environmental factors

A UI may for instance have controls to switch on/off and dim lights and controls to switch
on/off a projector and control its brightness/contrast. Assume the UI is used on a PDA to
control the lights and projector in the room in which the user resides. Since not every room
will have a projector, it has no sense to display the projector controls when the user is in a
room without projector.

This interpretation of adaptability is rather complex because it depends on realtime in-
formation from sensors. In our lights and projector example, the lights and projector(s) in
different rooms must notify their existence to the PDA. Or – more realistic – an external PC
should track the position of the user and inform the PDA of the available lights/projectors.

1.7 Migratable User Interfaces

Portable and context-aware user interfaces are a big step towards ubiquitous computing.
However, the adaptability of a UI has its limits. Even the smartest adaptation algorithms
will turn into problems when they should adapt a heavy desktop PC interface for use on
a handheld device. Take for example the interface of drawing progams like the Gimp or
Photoshop. It is nearly impossible to adapt their interface to a usable tiny handheld interface
that still provides the same functionality.

A way to deal with the small screen size and overcome the adaptation limitations is by
migrating parts of an interface to one or more devices. The user then disposes of a distributed
and possibly mobile version of (parts of) the initial interface. The distribution of specific UI
parts poses new challenges:

1.8. SUMMARY 13

• Parts should be selected carefully to make sure they can be visualised on different
devices, possibly with varying screen sizes.

• Parts should be able to communicate with the main application and vice versa.

• The application state should be kept consistent among the different devices.

• . . .

Notice that migratable UIs do not remove the need for adaptation: UI parts should still adapt
to different devices!

We will elaborate on migratable UIs in part II, where we propose a framework to support
them.

1.8 Summary

We discussed how markup languages and toolkits can go hand in hand and offer a viable option
for cross-platform UI development. We mentioned description languages for UIs and UIML
in particular, and contrasted UIDLs and their renderers with web interfaces. Thereby the
importance of maintained and cross-platform software support was stated. Next, we focused
on some differences between manually designed and automatically generated interfaces from
the developer’s point of view. Different tools aim to generate UIs automatically for different
platforms and most give attention to context-awareness. We explained some interpretations
of context-awareness and saw how GUIs can adapt to devices, user preferences and external
factors. We also introduced migratable UIs which are the core subject of part II.

Chapter 2

Distributed Communication

Techniques

2.1 Introduction

So far, we looked at how user interfaces can be rendered on different devices. However, if
an interface is separated from the application logic (e.g. application and interface run on
different devices), both parties should be able to communicate with each other. There are
many ways to setup a communication channel; they rely on communication protocols from
different layers. We will focus on wireless communication, since we primarily consider mobile
(handheld) devices to render an interface and control remote applications running anywhere.
This chapter also explores specific communication techniques for web browsers, because they
are an attractive option for rendering interfaces on embedded devices. Section 2.5 is entirely
devoted to them.

2.2 Wireless Communication

Computer networks are a rather complex object of study. The term “protocol” is often used in
different contexts which does not make the whole story less complicated. Basically, a network
interconnects different devices and allows them to exchange bits. A single bit corresponds
to a 0 or 1. All data in a computer system is processed and stored in bits (at the lowest
level). Low-level protocols like Bluetooth, WiFi, . . . vary in the way they transfer those bits.
The used strategy and hardware dictate the maximum bitrate, range and other properties of
wireless networks that may differ a lot. Consequently, different protocols are used for different
purposes and network types.

However, we are not much concerned about the details of these low-level protocols, but
rather in their compatibility with common used high-level protocols. Most low-level proto-
cols can deal with the Internet Protocol (IP) on which the whole Internet is based. The

14

2.3. CLIENT-SERVER AND PEER-TO-PEER MODEL 15

IP protocol is often used in conjunction with the Transmission Control Protocol (TCP), a
reliable connection-oriented protocol that allows to transfer a bytestream from one machine
to another on the Internet. IP-based networks are of particular interest because they provide
interoperability between different network types. For example, a mobile phone or PDA con-
nected to the Internet over GPRS (General Packet Radio Service) can establish a connection
with a laptop in the other end of the world that is also on the Internet. It does not matter
whether this laptop is part of a WLAN (Wireless Local Area Network) or if it is directly
connected to the Internet using a dial-up connection, as long as it is visible on the Internet.
Hosts on an IP-based network (i.e. the Internet) have a unique IP address1 by which they
can be accessed.

Nowadays, mobile devices often have wireless ethernet, Bluetooth or a combination of the
two on board. The Bluetooth protocol stack, however, differs quite a lot from the ethernet-
based protocols like 802.11a, 802.11b and 802.11g. For instance, Bluetooth is not IP-based
what makes it difficult to connect a Bluetooth Personal Area Network (PAN) to other net-
works. Bluetooth is rather used for synchronizing a mobile phone with a PC or exchanging
some pictures with other phones (in a close range). It is also often used to connect peripherals
such as keyboards, headsets, . . . to computer devices without wires. An issue with Bluetooth
is that the protocol defines different profiles, but devices are free to implement and offer only
a subset of them. An important profile for developers to setup a connection between two
Bluetooth devices is the Serial Port Profile (SPP), also addressed as the RFCOMM layer.
However, experience learns that e.g. recent Nokia phones lack this profile and leave the de-
veloper in the cold. A (current) advantage of Bluetooth compared to wireless ethernet, is its
lower cost and power consumption.

On contrary, devices with WiFi support (or derivatives) can integrate seamlessly in a
WLAN. The WLAN may or may not be connected to the Internet and/or other networks.
Moreover more and more wireless hotspots can be found in public places, allowing PDAs, lap-
tops, . . . to connect to the Internet. And if no hotspot is around, there is still an opportunity
to access the Internet over GPRS, UMTS (Universal Mobile Telecommunications System) or
any other technology that is available, at least if the device supports it.

2.3 Client-Server and Peer-To-Peer Model

The client-server model (figure 2.1(a)) is the most widely used. It differentiates between
client and server computers in the network. A server offers one or more services by running
a dedicated process that continuously listens for incoming requests and responds to them.
These services can be anything: a web server delivers web sites, while a database server
allows clients to query/manage databases. Clients run software that can connect and interact
with a server. A typical client program is a web browser.

1A dynamic IP address is usually assigned by an Internet Service Provider (ISP) or local router, using the

Dynamic Host Configuration Protocol (DHCP).

2.4. THE HYPERTEXT TRANSFER PROTOCOL (HTTP) 16

The other communication model between computers is peer-to-peer (P2P) (figure 2.1(b)),
where application services do not reside on a central server, but peers directly communicate
and exchange information between each other. To enable that, peers combine client and basic
server functionality. P2P is e.g. used in the vast majority of file sharing tools that allow to
download and upload files from and to peers in the network at the same time.

(a) (b)

Figure 2.1: Client-server (a) and peer-to-peer (b) model.

2.4 The HyperText Transfer Protocol (HTTP)

HTTP is a request/response protocol between clients and servers. An HTTP client, such as a
web browser, typically initiates a request by establishing a TCP/IP connection to a particular
port on a remote host (port 80 by default). An HTTP server listening on that port waits for
the client to send a request string, such as GET / HTTP/1.1 (which would request the default
page of that web server), followed by an email-like MIME message which has a number of
informational header strings that describe aspects of the request, followed by an optional
body of arbitrary data. Some headers are optional, while others (such as Host) are required
by the HTTP 1.1 protocol [15]. Upon receiving the request string (and message, if any), the
server sends back a response string, such as HTTP/1.1 200 OK, and a message of its own, the
body of which is perhaps the requested file, an error message, or some other information.
Table 2.1 and 2.2 show a sample request and response message.

Request-Line GET / HTTP/1.1

Request Header Fields
Host: www.google.com

...

Request Body empty

Table 2.1: HTTP Request Message

The following request methods are defined in the HTTP 1.1 specification: GET, POST, PUT,
DELETE, HEAD, TRACE and CONNECT. We refer to [15] for a detailed explanation of each method.

2.4. THE HYPERTEXT TRANSFER PROTOCOL (HTTP) 17

Status-Line HTTP/1.1 200 OK

Response Header Fields

Content-Length: 3059

Content-Type: text/html

...

Response Body

<html>

<head>...</head>

<body>...</body>

</html>

Table 2.2: HTTP Response Message

The specification document also comprises an overview of possible response status codes (e.g.
the 200 in the status line of table 2.2) and their meaning.

HTTP is one of the most important protocols on the web. Web browsers/servers use it to
transfer files, i.e. web pages. Furthermore, many other protocols are based on it. They rely
on the request/response mechanism to exchange data, e.g. attached as body of an HTTP
message. Some of these protocols are described further in this chapter.

Despite the fact that HTTP is a stateless protocol, it can deal with cookies, an HTTP
State Management Mechanism [14, 22].

Cookies

Cookies are used to maintain the state of an HTTP session. They can store any arbitrary
information the server chooses, much like global variables (without specific type) in a computer
program. A cookie is set by the server in a response message using the Set-Cookie header
field. A client (web browser) then stores the cookie in its cache. It is sent back to the server in
a Cookie header field each time the client fires a request. However, cookies have an optional
path attribute. If a path is set, the cookie is only sent along with a request if the URI of the
request matches the path. Other attributes allow to specify domain, expiration date, secure
flag, . . . and can be looked up in the original Netscape draft specification [22] or in the newer
RFC 2109 specification [14].

Cookies can provide a shopping application running on a server with the ability to keep
track of the currently selected items of a client. They also allow a site to store per-user
preferences on the client, and have the client supply those preferences every time that site
is connected to. Furthermore cookies are often applied to identify a client (in particular a
computer/browser combination), e.g. the server generates a unique id for each client and
stores this in a cookie sent to the clients. A sample cookie that stores information about a
preferred language is shown below.

2.5. THE XMLHTTPREQUEST OBJECT 18

Set-Cookie: language=nl;

2.5 The XMLHttpRequest object

The XMLHttpRequest object2 allows web browsers to execute HTTP transactions in the
background. This allows browsers to dynamically update the content of a page (HTML
elements) without reloading it. The object can handle HTTP transactions synchronously
(blocking) or asynchronously (non-blocking). It can be invoked from within JavaScript code
and can retrieve and submit XML data directly. Received XML documents can be read and
examined via the Document Object Model (DOM) interface. Figure 2.2 lists a JavaScript code
fragment that illustrates how to create an XMLHttpRequest object, open an asynchronous
connection and assign an event handler to it. The listing in figure 2.3 shows a skeletal event
handler function that allows processing of the response content only if all conditions are right.
The link in the footnote is a good source for additional information (methods, properties, . . .)
on the object and features an extra example in which XML data is read from RSS feeds.

var req;

function loadXMLDoc(url) {

// try native object

if (window.XMLHttpRequest) {

req = new XMLHttpRequest();

}

// try ActiveX object

else if (window.ActiveXObject) {

req = new ActiveXObject("Microsoft.XMLHTTP");

}

if (req) {

// open asynchronous connection

req.open("GET", url, true);

// specify event handler

req.onreadystatechange = processReqChange;

// submit the request

req.send(null);

}

}

Figure 2.2: Use of the XMLHttpRequest object.

Similar functionality is covered in a proposed W3C standard, Document Object Model
(DOM) Level 3 Load and Save Specification [45]. In the meantime, growing support for the
XMLHttpRequest object means that it has become a de facto standard that will likely be

2http://developer.apple.com/internet/webcontent/xmlhttpreq.html

2.5. THE XMLHTTPREQUEST OBJECT 19

function processReqChange() {

// check if req shows "loaded"

if (req.readyState == 4) {

// check if the status is "OK"

if (req.status == 200) {

// DOM tree representation of the data returned from the server

var xmlDoc = req.responseXML;

// ...processing statements go here...

}

else {

alert("Error:\n" + req.statusText);

}

}

}

Figure 2.3: Skeleton of an XMLHttpRequest event handler function.

supported even after the W3C specification becomes final and starts being implemented in
released browsers (whenever that might be).

Microsoft first implemented the object in Internet Explorer 5 for Windows as an ActiveX
object. Engineers on the Mozilla project implemented a compatible native version for Mozilla
1.0 (and Netscape 7). Apple has done the same starting with Safari 1.2. Also the Opera
browser has native support for XMLHttpRequest in version 8 for the desktop platform and
hopefully the mobile versions for embedded devices will follow soon. It also works with Pocket
Internet Explorer (Windows Mobile 2003), but unfortunately that browser offers only partial
JavaScript support what makes it difficult to update HTML code dynamically.

The XMLHttpRequest object is currently being used by Google services such as Gmail3

and Google Maps4, two famous sites that collect tons of hits each day. Obviously, browser
developers are eager to support these sites and thereby are more or less forced to implement
XMLHttpRequest (partially).

In recent blog posts5 there is quite some commotion about AJAX (Asynchronous
JavaScript + XML). AJAX is no technology on its own, but it incorporates the use of sev-
eral technologies such as HTML, CSS, JavaScript, XML, DOM, . . . and in particular the
XMLHttpRequest object. The AJAX web application model is very promising and likely to
replace the traditional web application model in time. The idea behind AJAX is to present a
web interface that communicates with the server in the background; user interaction with the
application happens asynchronously and updates to the interface are performed dynamically.
So the user is never staring at a blank browser window and an hourglass icon, waiting around
for the server to do something. With AJAX, it becomes possible to develop web applications

3http://gmail.google.com/
4http://maps.google.com/
5http://adaptivepath.com/publications/essays/archives/000385.php

2.6. MIDDLEWARE 20

with the same responsiveness and richness as desktop applications.

2.6 Middleware

Middleware is a class of software technologies designed to help manage the complexity and
heterogeneity inherent in distributed systems. It is defined as a layer of software above the
operating system but below the application program that provides a common programming
abstraction across a distributed system, as shown in figure 2.4. In doing so, it provides a
higher-level building block for programmers than for instance sockets that are provided by
the operating system. This significantly reduces the burden on application programmers by
relieving them of low-level implementation details. It rather allows developers to write simpler
and portable code and build distributed applications that can interact with other applications
running on various platforms.

Figure 2.4: Middleware layer.

Middleware frameworks are designed to mask some of the kinds of heterogeneity that
programmers of distributed systems must deal with. They always mask the heterogeneity of
networks and hardware and most frameworks also mask heterogeneity of operating systems
or programming languages, or both. The dotted line in figure 2.4 shows a virtual path from
the first host to the second. To the developer, only the middleware API counts to maintain
communication between the hosts. The underlying operating system is hidden, although
the actual communication path (indicated by the solid line) passes through the OS. The
middleware actually calls specific operating system functions to put data on the network and
get data from it, all transparant to the developer.

There are a small number of different kinds of middleware that vary in terms of the pro-
gramming abstraction they provide and the kind of heterogeneity they provide beyond net-

2.6. MIDDLEWARE 21

work and hardware. Three kinds are commonly used: middleware based on Remote Procedure
Calls (RPC), Message Oriented Middleware (MOM) and middleware based on Distributed
Objects. We will take a closer look at the first and the last.

2.6.1 Remote Procedure Calls

Remote Procedure Calls (RPC) is a powerful technique for constructing distributed, client-
server based applications. It is based on extending the notion of conventional, or local pro-
cedure calling, so that the called procedure need not exist in the same address space as the
calling procedure. The two processes may be on the same system, or they may be on different
systems with a network connecting them.

A remote procedure call is analogous to a function call. Like a function call, arguments
can be passed to the remote procedure and the caller waits for a response to be returned.
The flow of activity that takes place during a synchronous RPC call between two networked
systems is as follows. The client makes a procedure call that sends a request to the server and
waits. The client is blocked from processing until either a reply is received, or the request
times out. When the request arrives, the server calls a dispatch routine that performs the
requested service, and sends the reply to the client. After the RPC call is completed, the
client program continues.

Remote procedures are one of core technologies behind web services. The term ‘web
services’ refers to a number of standards that allow web-based applications to interact with
each other through open protocols, languages and well-defined Application Programming
Interfaces (APIs). Examples are Google, Amazon and eBay that evolved from simple web
sites to Service-Oriented Architectures (SOA). They expose an API (publically available),
enabling developers to write custom front-ends or programs to cooperate with them. Because
all communication is in XML, web services are not tied to an operating system or programming
language. A Java application can talk with a Perl service and vice versa.

Three methods are often used to exchange data: XML-RPC, SOAP and REST. However,
REST is different from the other two as it rather is a ‘vision’ on the standard web than a
specific protocol. XML-RPC, SOAP and REST rely on the HTTP protocol (by default) to
exchange XML documents. It is not unlikely that a web-based application running on a server
offers an API for all three protocols. Flickr6, for example, supports them all and in the next
sections we illustrate the use of XML-RPC, SOAP and REST with the services API of this
photo sharing site.

2.6.1.1 XML-RPC

XML-RPC7 is designed to be as simple as possible, while allowing complex data structures
to be transmitted, processed and returned. There are many implementations available that

6http://www.flickr.com/services/api/
7http://www.xmlrpc.com

2.6. MIDDLEWARE 22

span a wide range of operating systems and programming languages. Figure 2.5 shows an
XML-RPC request and response message.

2.6.1.2 SOAP

SOAP (Simple Object Access Protocol) [37] can be considered as a powerful extension of
XML-RPC. It is an XML-based protocol that consists of three parts: an envelope that defines
a framework for describing what is in a message and how to process it, a set of encoding rules
for expressing instances of application-defined datatypes, and a convention for representing
remote procedure calls and responses. SOAP 1.2 is a W3C Recommendation, but is often
criticized for being too complex and overequipped for what should be a simple task. Figure 2.6
shows a SOAP request and response message.

2.6.1.3 REST

REST (REpresentative State Transfer) is different. In the REST approach, a procedure call
is made by a traditional HTTP request where the URI contains the name of the procedure
and its arguments. For REST, no sophisticated technology is needed: a default web server is
sufficient. It is clean and simple, as shown in figure 2.7.

2.6.2 Distributed Objects

Distributed object middleware provides the abstraction of an object that is remote yet whose
methods can be invoked just like those of an object in the same address space as the caller.
Distributed objects make all the software engineering benefits of object-oriented techniques
such as encapsulation, inheritance, and polymorphism available to the distributed application
developer. Objects are marshalled by the client, transferred over the network, and unmar-
shalled by the server transparant to the developer. This process is handled by stubs (proxies).
Three commonly used distributed object middleware frameworks are CORBA, Microsoft’s
DCOM/COM+ infrastructure and Java RMI. We will only introduce them shortly and avoid
details, because that would lead us too far.

2.6.2.1 CORBA

The Common Object Request Broker Architecture (CORBA) is a standard for distributed
object computing. It is part of the Object Management Architecture (OMA), developed by
the Object Management Group (OMG), and is the broadest distributed object middleware
available in terms of scope. CORBA runs on many platforms and also offers heterogeneity
across programming language. It is considered by most experts to be the most advanced
kind of middleware available and the most faithful to classical object-oriented programming
principles.

2.6. MIDDLEWARE 23

<?xml version="1.0" encoding="UTF-8"?>

<methodCall>

<methodName>flickr.echo</methodName>

<params>

<param>

<value>

<struct>

<member>

<name>name</name>

<value><string>value</string></value>

</member>

<member>

<name>name2</name>

<value><string>value2</string></value>

</member>

</struct>

</value>

</param>

</params>

</methodCall>

<?xml version="1.0" encoding="UTF-8"?>

<methodResponse>

<params>

<param>

<value>

<string>

<method>flickr.test.echo</method>

<format>xmlrpc</format>

<foo>bar</foo>

...

</string>

</value>

</param>

</params>

</methodResponse>

Figure 2.5: XML-RPC request (a) and response (b).

2.6. MIDDLEWARE 24

<?xml version="1.0" encoding="UTF-8"?>

<s:Envelope

xmlns:s="http://www.w3.org/2001/06/soap-envelope"

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<s:Body>

<x:FlickrRequest xmlns:x="urn:flickr">

<method>flickr.echo</method>

<name>value</name>

</x:FlickrRequest>

</s:Body>

</s:Envelope>

<?xml version="1.0" encoding="UTF-8" ?>

<s:Envelope

xmlns:s="http://www.w3.org/2001/06/soap-envelope"

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<s:Body>

<x:FlickrResponse xmlns:x="urn:flickr">

<method>flickr.test.echo</method>

<format>soap</format>

<foo>bar</foo>

...

</x:FlickrResponse>

</s:Body>

</s:Envelope>

Figure 2.6: SOAP request (a) and response (b).

http://www.flickr.com/services/rest/?method=flickr.echo&name=value

<?xml version="1.0" encoding="UTF-8"?>

<rsp stat="ok">

<method>flickr.test.echo</method>

<format>rest</format>

<foo>bar</foo>

...

</rsp>

Figure 2.7: REST request (a) and response (b).

2.7. DISCOVERY PROTOCOLS 25

2.6.2.2 DCOM/COM+

DCOM is a distributed object technology from Microsoft that evolved from its Object Linking
and Embedding (OLE) and Component Object Model (COM). DCOM’s distributed object
abstraction is augmented by other Microsoft technologies, including Microsoft Transaction
Server and Active Directory. DCOM provides heterogeneity across programming language
but not across operating system as it is focused on the Windows platform. COM+ is the
next-generation DCOM that greatly simplifies the programming of DCOM.

2.6.2.3 Java RMI

Java has a facility called Remote Method Invocation (RMI) that is similar to the distributed
object abstraction of CORBA and DCOM. Since RMI is Java-specific, it can only be used on
platforms running a Java Virtual Machine (that supports RMI).

2.7 Discovery Protocols

In an environment where mobile devices can enter and leave, there may be a need to discover
devices and services they offer. Devices may notify their existence by means of a discovery
protocol:

• As soon as a device enters the environment (e.g. the device is switched on), it can
multicast a “Hello, I am a PDA with multimedia capabilities and. . . ” message, which
is received by one or more devices in the environment.

• A device can listen for incoming discovery requests and answer them with a similar
message. In this case, a specific discovery request is sent by a controller device (control
point).

A good example of a Service Discovery Protocol (SDP) is comprised in the Bluetooth protocol.
If Bluetooth is switched on in a supporting mobile phone, the phone polls on regular intervals
for incoming connections. A Bluetooth headset that is activated (and paired with the phone)
notifies its presence to the phone and a connection is established automatically. If Bluetooth
is enabled on the phone after the headset is turned on, the phone is still able to discover the
headset by sending a discovery request.

Similar functionality is offered by higher-level protocols that are independent of the un-
derlying (IP-based) network technology. Among these are Jini, Universal Plug and Play
(UPnP), Salutation and Service Location Protocol (SLP). These protocols offer broader func-
tionality than pure device/service discovery such as e.g. basic eventing. They are reviewed
and compared in [17].

2.8. SUMMARY 26

2.8 Summary

In this chapter we examined wireless communication protocols and stated that ethernet-
based protocols are better suited than Bluetooth to interconnect the application logic and its
remote interfaces. We differentiated between two network models: client-server and peer-to-
peer. The former model is easier to achieve, since clients pose fewer requirements than peers
which may be important for mobile platforms with limited networking support. Next, we
discussed the HTTP protocol and introduced the promising XMLHttpRequest object used
in web browsers. Then we focused on middleware solutions, and in particular on remote
procedure calls and distributed objects. Especially the REST approach attracts the attention
because of its simplicity. Also CORBA middleware may be worthwhile to integrate in (open
source) UIDL renderers or wrappers, despite its complexity. Finally we got to device and
service discovery, emerging techniques in the context of mobile and wireless computing.

Part II

Proposed Framework for Dynamic

Distributed User Interfaces.

27

Chapter 3

Framework Preliminaries

3.1 Introduction

Developing a framework to support migratable user interfaces for mobile devices is a real
challenge. Besides the already challenging features ‘portability’ and ‘adaptability’, a third
feature is requested: ‘migratability’. In the first place, the framework should be able to
generate interfaces that can be rendered on and adapted to a wide range of devices. Next, the
distribution of interface parts to mobile devices is of particular interest, since it allows users
to interact with an application from anywhere a wireless connection is available. Moreover,
there is an opportunity to exploit the potential of interconnected personal (mobile) devices to
create a distributed interaction space. A distributed interaction space uses various resources
that are available in the user’s environment that can be accessed by the user. We distinguish
two types of distributed interaction spaces: a personal interaction space where one person
interacts with the application and a collaborative interaction space where different persons
can use the (duplicated) distributed user interface parts to interact with the application. The
latter requires a more complex supporting system since distributed locking of application
data is necessary in this situation to ensure a consistent state during the run time use of the
application.

We present a software system to support both types of interaction spaces. Our framework
allows to extend native (existing) applications to support migratable UIs with minimal effort.
An application offers certain services to its users that allow to execute certain tasks or visualize
data. An example of the former are previous and next buttons (e.g. “view” service) to cycle
through pictures in an image viewer and the latter could involve a thumbnail image of the
pictures (e.g. “thumbnail” service). User interfaces that involve one or more of these services
can be generated, distributed to and rendered on different devices (clients) in the interaction
space. The distribution process (i.e. what service(s) should be distributed to what client(s))
can be controlled manually by the user or automatically by the system.

28

3.2. PRELIMINARY STUDY AND RELATED WORK 29

3.2 Preliminary Study and Related Work

One approach to achieve the migration feature is to extend an existing or create a new GUI
toolkit with dynamic and migratable widgets. In [13], Grolaux et. al show a system for
migratable user interfaces that relies on a particular software environment (Oz/Mozart) to
support distribution. The application itself serves as a kind of server by combining receiver
widgets that can receive events from migrated user interface parts. A specialized communi-
cation manager is responsible for redirecting event callbacks in this system. Since this and
similar systems are toolkit-/platform-dependent, we prefer other solutions that are indepen-
dent of the software environment of the system.

The use of description languages for UIs is one step towards a cross-platform solution.
Approaches such as [2, 20, 5] and [19] have shown that a combination of XML-based UIDLs
(section 1.4.1) and model-based interface design (section 1.5) are best suited to adapt the
user interface for new contexts of use. In [2], Bandelloni and Paternò have shown that a web
interface can be partially or completely migrated. Here, partial migration implies the web
interface is split in two or more parts that each run on a separate device. This is accomplished
by exploiting information that is available about the interactive system and by using a flexible
language to describe the interface presentation. The former relies on the models that describe
an interactive system [20] and the latter on a specific user interface description language [5].

Another option may be to integrate migration properties directly in the UIDL. Consider for
instance UIML. We could introduce the tags <splittable></splittable> to indicate that
widgets defined between these tags can be split from the rest of the UI and thus distributed to
other devices (as suggested in [18]). However, this would break the current UIML specification.
It would also imply that UIML renderers should understand these tags and handle migration
or leave it to a server. Anyway, it is a UIDL specific way of defining the migration. We rather
aim for a more general solution to capture the migration feature that is independent of the
used description language. Thereby we assume that the UI is ‘described’ in XML format, e.g.
in an XML-based UIDL or in XHTML1.

It seems like a lot of migration supporting systems try to be all-in-one systems. They
combine adaptation and migration of a UI by delivering a concrete, adapted UI to clients,
generated from a (self-defined) specification language. We rather aim to split this functionality
and allow the system to return an abstract UI specification (i.e. UIML) that can be passed
to a context-aware rendering tool. As in ICrafter [24, 25], we focus on the distribution
of the interface (concrete or abstract). The rendering is left to the client devices, i.e. a
browser, UIML renderer, etc. The ICrafter system also supports the idea of generating and
distributing UIs for services that are available in the environment. An Interface Manager
(IM) is responsible for the generation of a UI for a certain service, requested by the user. A
UI language generator for the service is downloaded from a repository and executed at the
IM to produce e.g. Java Swing or HTML code.

1Because XHTML is widely supported by rather advanced renderers (browsers) and because of its well-

known syntax, we will use it as running example format in the remainder of this text.

3.2. PRELIMINARY STUDY AND RELATED WORK 30

In our framework, we elaborate on the idea of schema-driven interface generation presented
in [11]. Here, Kent Fitch introduces the use of a schema language for dynamically generating
HTML forms. However, a self-defined (example) schema language is used. We believe it is
better to stick to a current schema language specification that is already accepted by a lot
of people and/or standardized by a well-known organization. [11] also illustrates the use of
DOM, JavaScript and the XMLHttpRequest object; techniques that we will be using in our
framework as proof of concept.

Chapter 4

User Interface Generation

4.1 Introduction

In this chapter, we outline an approach to generate concrete or abstract UIs that can be
rendered on various devices. However, an interface cannot be generated out of thin air. There
will always be some (abstract) UI specification to rely on. Two important considerations we
make concerning this specification are:

1. The framework should be applicable to different UIDLs and not stick to a specific
language.

2. It should be easy for the developer to design UIs that can be integrated with the system,
without having to learn some exotic syntax.

What these considerations actually say is that a UI designer should be able to define a UI
in UIML, XIML, XHTML, . . . or any other (XML-based) UIDL and connect the UI with
minimal effort to the framework. The term ‘generating’ a UI may sound odd in this context
(as the specification to generate a UI from already defines UI code), but it will get clear in
the next sections. After all, (parts of) the UI should be distributable.

4.2 Different Viewpoints on Migratable User Interface Devel-

opment

We mention two strategies to develop a migratable UI; the order in which the actions take
place is crucial here.

• 1. Design the interface

2. Define migratable parts

• 1. Design migratable parts

31

4.2. DIFFERENT VIEWPOINTS 32

2. Define the interface

Although the difference is quite subtle, both strategies assume a different reasoning about
the UI. The former approach is probably the most intuitive, but after the first step we get a
complete interface which we should split up again (virtually) in the second step. Notice that
different defined parts are already related to each other after the first step (by design) and
that the developer’s task in the second step consists of indicating somehow that a collection
of widgets form a migratable part.

If we apply the latter strategy, we end up with a number of separate non-related migratable
parts after the first step. These parts can include for example a “main” part, a “playlist”
part and a “settings” part for a multimedia player as shown in figure 4.1(a), 4.1(b) and 4.1(c)
respectively. Figure 4.2 shows a visual representation of these parts, i.e. what they could look
like. The second step, namely ‘defining the interface’, now consists of imposing constraints or
in other words some structure on the parts. Since we use XML-based (part) descriptions, we
can apply general techniques to impose a structure on XML documents. The common way
to constrain the structure of XML documents is by means of an XML schema language.

<div id="main">

...

</div>

(a)

<div id="playlist">

...

</div>

(b)

<div id="settings">

...

</div>

(c)

Figure 4.1: Three interface parts for a multimedia player, defined in XHTML between
<div></div> tags.

Figure 4.2: Description of the interface parts in figure 4.1, rendered in a browser.

4.3. SCHEMA-DRIVEN USER INTERFACE GENERATION 33

We will use the second method to develop distributable UIs.

4.3 Schema-driven User Interface Generation

An XML document can be validated against a schema to check if it matches certain rules.
The validation of XML documents incorporates different aspects:

• analyzing the structure of an XML document

• analyzing the content of each text and attribute node, independent of each other
(datatype checking)

• analyzing constraints on relations between different nodes

• . . .

Popular schema languages like Document Type Definitions (DTDs) and W3C XML
Schema [40] are used in the first place to constrain and validate the structure of XML
documents. Therefore a schema must contain at least information about the structure of
instances it validates. If we look at a (not too complex) schema, we can easily think of an
instance that will be validated by that schema. Moreover it is possible to design an algo-
rithm that generates valid instances from a schema. The algorithm should understand the
semantics of the concerning schema language and be able to convert them to XML instance
data. Developing such an algorithm, however, is not a straigt-forward task because of various
reasons. The most important reason is the fact that schemas can validate multiple and even
an infinite number of XML documents. This is because traditional schema languages allow
choices. Figure 4.3(a) shows a DTD incorporating a choice that validates an infinite number
of instances and figure 4.3(b) lists an equivalent schema in the W3C XML Schema language.
Valid instances include e.g. <a>hello, <a>hello<c>world</c>,
<a>helloworld, . . .

These examples show that the schema to instance algorithm should somehow decice what
choice to make whilst constructing a valid instance. It can non-deterministacally generate a
single instance based on random choices, but we want a deterministic algorithm to guarantee
what the instance will look like. The algorithm should always return the same instance when
it is run multiple times on a certain schema (with the same parameters). On the other hand,
it is inefficient and likely impossible to generate all valid instances deterministically. And
even if it were possible, what instance should the algorithm return?

4.3.1 RELAX NG

One of the advantages of RELAX NG [7, 29] over other schema languages is its simplicity
and flexibility. RELAX NG focuses in the first place on validating the structure of XML

4.3. SCHEMA-DRIVEN USER INTERFACE GENERATION 34

<!ELEMENT a (b*|c*)>

<!ELEMENT b (#PCDATA)>

<!ELEMENT c (#PCDATA)>

(a)

<schema>

<element name="a" type="aty"/>

<complexType name="aty">

<sequence>

<choice>

<element name="b" type="string"

minOccurs="0" maxOccurs="unbounded"/>

<element name="c" type="string"

minOccurs="0" maxOccurs="unbounded"/>

</choice>

</sequence>

</complexType>

</schema>

(b)

Figure 4.3: DTD and corresponding W3C XML Schema document validating an infinite
number of instances.

documents. Hereby, it differentiates itself from W3C XML Schema which offers different
types of validation, resulting in a rather extensive and complex syntax. The syntax of RELAX
NG is kept very simple what makes it easy to learn, read and write, but also to interpret by
computers. Although its simple syntax, RELAX NG is powerful enough to describe practically
every XML vocabulary based on wellformed XML 1.0 and namespaces.

RELAX NG comes in two versions that differ in notation: the RELAX NG XML syntax1

and the RELAX NG simple syntax2. Tools are available to convert both syntaxes to each
other. We will only consider the XML variant as it is the easiest to parse.

Since RELAX NG also allows to define constraints for text values, it is possible to define a
schema for an XML file that only validates that specific file. At least, if the XML file does not
contain mixed content. One of the drawbacks of the current RELAX NG specification is that
it does not allow to constrain text values in mixed content nodes. Consider for instance the
XML document in figure 4.4; the p node contains both text (“hello”) and an element (a) what
is called “mixed content”. The text value “hello” cannot be constrained here. Because of this,
we will assume that user interface related XML documents may not contain mixed content.
Hereby we put a constraint on the XML 1.0 specification [34], but one that is acceptable. In
many cases, mixed content can be avoided and often it even is an ecouraged design principle
to avoid it.

Thus, we can define a unique RELAX NG schema for an XML file by constraining each
element, attribute and text value in the XML file given that it does not contain mixed
content. This means an interface part for a service can be defined in XHTML, e.g. between

1http://www.relaxng.org/tutorial-20011203.html
2http://www.relaxng.org/compact-tutorial-20030326.html

4.3. SCHEMA-DRIVEN USER INTERFACE GENERATION 35

<p>

hello

world

</p>

Figure 4.4: XML node with mixed content.

<div></div> tags and converted to RELAX NG schema code. The XHTML to RELAX NG
schema conversion (algorithm) is very simple as figure 4.5 (partially) illustrates. Furthermore,
the original XML instance can easily be regenerated from the schema.

<define name="main">

<element name="div">

<attribute name="id">

<value>main</value>

</attribute>

</element>

...

</define>

Figure 4.5: RELAX NG definition of the interface part in figure 4.1(a).

We can create RELAX NG schema code for each service an application offers and give
that service a name in the schema3. This allows the inclusion of service definitions of an
application in a RELAX NG schema. This schema describes, for example, a web interface
and constrains the html, head, body, div, . . . elements. It can also constrain the included
service definitions by referring to them inside RELAX NG patterns. Figure 4.6(a) illustrates
how we can define that service S1 and S2 are both optional, while figure 4.6(b) shows that
service S1 and S2 are optional but should always appear together. This can also be interpreted
as “S1 and S2 may split and may appear in an interface instance” and “S1 and S2 may only
appear together in the interface instance” respectively. The RELAX NG construction in
figure 4.6(c) says that either service S1 or service S2 should be included in the final instance.
We can interpret this as “S1 or S2 must appear in the interface instance”. Notice that the
introduction of optional and choice related patterns introduces different paths that can be
followed while generating an actual instance from the schema. Each path results in a specific
user interface that incorporates a number of services.

Figure 4.7 lists a RELAX NG schema that includes (lines 34 – 39) the service interface
code from figure 4.1 wrapped in named RELAX NG patterns, like in figure 4.5. Lines 21 –
31 relate and constrain the appearance of the services. What this schema actually says is
that the “main” service may appear and that or the “playlist” or the “settings” service must
appear in a valid user interface instance. Also, if the “main” service is selected, it will appear

3RELAX NG supports so called “named patterns”. A part of a RELAX NG schema can be given a name

by which it can be referred in the rest of the schema.

4.3. SCHEMA-DRIVEN USER INTERFACE GENERATION 36

<optional>

<ref name="S1"/>

</optional>

<optional>

<ref name="S2"/>

</optional>

(a)

<optional>

<ref name="S1"/>

<ref name="S2"/>

</optional>

(b)

<choice>

<ref name="S1"/>

<ref name="S2"/>

</choice>

(c)

Figure 4.6: Three different RELAX NG constructions to constrain the appearance of services.

above the “playlist” or “settings” service and there will be a blank line (
) between both
interface parts. It should be clear that different constraints can easily be put on the referred
services by ‘playing’ with the appropriate RELAX NG patterns. It can e.g. be defined that
the “main” and “playlist” service part may appear next to each other by placing them in an
HTML table.

Note that this schema is quite restrictive, since the “playlist” or “settings” part must
appear in any generated UI. In general, migratable UIs are preferred to be more flexible, i.e.
users may wish to hide the playlist which is not allowed according to the schema. However,
this schema is well suited as example in the next section, where we outline our algorithm for
generating XML (user interfaces) instances from a RELAX NG schema.

4.3.2 RELAX NG-based Schema to Instance Algorithm

There is a publicly available tool called Sun XML Instance Generator4 (written in Java) that
generates instances from different schema languages, also RELAX NG. However, it generates
random instances and it is intended for testing purposes. Moreover, it relies on old and
deprecated JDK classes. We did not find any other relevant (open source) tools or algorithms
to build upon. Therefore we wrote our own algorithm from scratch.

The algorithm operates in two phases. After the first phase, user interaction is requested
before going on with the second phase.

Phase 1

Input I = S with S the schema to generate (an) instance(s) from.

First, the schema S is parsed and read into a DOM object [44] (in main memory). The
algorithm traverses the XML tree in depth-first order and constructs a new (customized) tree
from it. It does so by calling a specific evaluator for each RELAX NG pattern node it meets.
An element node triggers an ElementEvaluator, an optional node an OptionalEvaluator

and so on. Each evaluator calls on its turn evaluators for nested pattern nodes and returns an
4http://www.sun.com/software/xml/developers/instancegenerator/

4.3. SCHEMA-DRIVEN USER INTERFACE GENERATION 37

EvalNode object (table 4.1). An EvalNode object stores extra information in an EvalRecord,
compared with a traditional DOM node (table 4.2). This extra information mainly consists
of a list of possible paths that can be followed from the context node (table 4.3).

EvalNode

text Text value copied from the DOM tree, like the
name of an element, attribute, . . . as it would ap-
pear in an instance.

record EvalRecord

parent Pointer to the parent node.
child nodes Pointers to child nodes.

Table 4.1: EvalNode object.

EvalRecord

paths List of EvalPath objects.

Table 4.2: EvalRecord object.

EvalPath

services List of services that will be reached from the context
node, when following this path.

choice indexes List of indexes that indicate what choice path (child
node) to choose when arriving at a choice node.

optional flags List of boolean values that indicate whether an op-
tional node should be chosen or not.

Table 4.3: EvalPath object.

The construction of this tree is simulated in figure 4.85 for the schema in figure 4.7. The
three group nodes in the third level match the service references on lines 23, 29 and 30 in the
example schema. Notice the ns attribute in the ref nodes. The namespace attribute could
for instance hold the name of the application. This attribute is a hint for the algorithm to
indicate that we refer to a specific service user interface (part). If it is left out, the algorithm
cannot know that we are referring to a service, since it could also be a schema construction.
For example, <ref name="main"/> can refer to a defined element named “main” that has
nothing to do with a service.

The references can be replaced by the definition of the RELAX NG code they refer to
(figure 4.5 and similar). Within the <definition></defintion> tags, one or more child
nodes may occur; in our example this is a single element node (div). The child nodes
together are evaluated as a group by a GroupEvaluator that returns the GroupNode objects
(nodes) shown in the figure. The child nodes generated in a lower level (combined with node

5We left out the parent and child node pointers.

4.3. SCHEMA-DRIVEN USER INTERFACE GENERATION 38

data from the DOM tree) are used as input to generate the parent node in a higher level.
The depth-first traversal recursively backtracks to the higher level and when each of a node’s
child nodes are evaluated, the node itself is constructed. Hereby we differentiate between the
following RELAX NG container patterns:

• optional: The child nodes of an optional node may but must not occur. This introduces
two possible paths: one that does not choose the child nodes to be included, and one
that does so. The paths are marked with an optional flag “false” and “true” respectively
(second level in figure 4.8 on the left).

• choice: One of the child nodes of a choice node must be chosen. Thus, there are n

possible paths where n is the number of child nodes. Each path is marked with the
according child index i where i = 0, . . . , n− 1 (second level in figure 4.8 on the right).

• group: A group indicates that each child node must occur in the order specified in
the XML file. This implies that record data from the child nodes should be merged.
In particular, all possible path combinations should be calculated. Notice that the
<group></group> tags may be specified explicitly, but often it will not because RELAX
NG implicitly assumes that child nodes form a group, unless specified otherwise (e.g.
by the interleave pattern). Thereby child nodes of e.g. an element node can be
evaluated as a group (first level in figure 4.8).

Other RELAX NG container patterns namely interleave, mixed, zeroOrMore and
oneOrMore are mapped on the above mentioned patterns, since we believe they do not add
extra (useful) power for the generation of instances. The mappings are described in table 4.4.
Notice that we do not break the RELAX NG specification by these mappings! We only stick
to a subset of the RELAX NG expressive power to put constraints on XML data, i.e. user
interface parts.

In figure 4.8 we only listed the most important part of the tree for the schema in figure 4.7
(to keep the overview). The missing nodes on the bottom of the tree only contain values
like the name of elements (div, p, a, . . .), attributes (id, class, . . .) or text values. Their
EvalRecord fields are expected to be empty. It has no sense to use choice related patterns
in a strict RELAX NG definition of XML code of an interface part (figure 4.5). The html

root node left out on the top of the tree will have the same EvalRecord as the RELAX NG
encoded body node in the first level. Only its text value will differ.

The root node now contains information about all valid paths that result in a specific
instance matching the schema. Moreover a list of possible service combinations can easily be
retrieved from the root node. From our example schema a UI for the “playlist” and “settings”
service separately as well as for the “main” and “playlist” or “main” and “settings” service
together can be generated. Other combinations (e.g. only the “main” service) would violate
the constraints specified in the schema.

4.3. SCHEMA-DRIVEN USER INTERFACE GENERATION 39

EvalPath

interleave → group The interleave pattern indicates that the
order of the nodes nested between it does
not matter6. We choose the default order
by substituting interleave by group.

mixed → group The mixed pattern is nothing more than a
shorter notation for the interleave of text
and element nodes (mixed content). There-
fore we can also replace the mixed pattern
by the group pattern for the same reason
as with interleave.

zeroOrMore → optional We try to fulfill the semantics of this pat-
tern in the least possible way. This means
that the content may or may not ap-
pear which resembles the semantics of the
optional pattern.

oneOrMore → group The same reasoning as with the zeroOrMore
pattern applies. The oneOrMore pattern
can be restricted to the group pattern by
avoiding repetitions of the node’s content.

Table 4.4: RELAX NG pattern mappings.

To go on with phase 2, one of the possible paths should be chosen. A path can either be
selected manually by the user (section 5.3) or automatically by the system (section 5.4).

Phase 2

Input I = (T, p) with T the tree constructed in phase 1 and p the selected path.

To generate an instance, it suffices to traverse T by following the path indications stored in
p and transform data values in each node to XML code. For simplicity reasons, the algorithm
operates in two passes in this phase. In the first pass, the tree is pruned, i.e. optional

and choice nodes are pruned. While traversing the tree in depth-first order, each optional

node that has a corresponding “false” flag in p is removed. If a schema tree contains three
optional nodes, then each EvalPath object in the root node will have three optional flags
corresponding with these nodes. The same applies for choice nodes, but instead of removing
such a node it is replaced by one of its child nodes with index i where i is also deduced from
p. As soon as all choice related nodes are eliminated, the tree represents a fixed instance. In
the second pass, the algorithm traverses T for the second and last time to generate the actual
XML code.

4.3. SCHEMA-DRIVEN USER INTERFACE GENERATION 40

Evaluation

Each phase of the algorithm presented here can be evaluated separately. The first phase
should only be executed once. The tree outputted by this phase can be stored in main
memory and duplicated and pruned concurrently in the second phase. Unfortunately the
number of possible paths can grow fast, since all possible options are combined. Thus, the
more (possibly nested) choice related patterns are used in a schema, the more paths will be
created. However, this is no big deal because an application’s interface is expected to offer
only a limited number of migratable parts (services). A limited number of services also means
a limited number of schema defined constraints and thus possible paths. It is very difficult to
calculate an average cost for this pass as it depends in the first place on the structure of the
input schema and less on its length.

The cost of the second phase is dictated by the cost of traversing a tree with n nodes
in depth-first order. This only requires linear time in the number of nodes n. The second
phase could also be executed in a single pass by traversing the tree only once. However, we
obtained for two passes because of practical reasons (e.g. easier to debug). The performance
gain of a single pass algorithm would be negligible, especially compared with the time it takes
to render the generated interface (a few miliseconds versus a few tenths of a second or more,
depending on the renderer).

4.3. SCHEMA-DRIVEN USER INTERFACE GENERATION 41

1 <?xml version="1.0" encoding="UTF-8"?>

2
3 <grammar xmlns="http://relaxng.org/ns/structure/1.0" ns="http://www.w3.org/1999/xhtml

">

4 <start>

5 <ref name="html"/>

6 </start>

7 <!-- definition of "html" node -->

8 <define name="html">

9 <element name="html">

10 <ref name="head"/>

11 <ref name="body"/>

12 </element>

13 </define>

14 <!-- definition of "head" node -->

15 <define name="head">

16 ...

17 </define>

18 <!-- definition of "body" node -->

19 <define name="body">

20 <element name="body">

21 <!-- UI parts -->

22 <optional>

23 <ref name="main" ns="xmms"/>

24 <element name="br">

25 <empty/>

26 </element>

27 </optional>

28 <choice>

29 <ref name="playlist" ns="xmms"/>

30 <ref name="settings" ns="xmms"/>

31 </choice>

32 </element>

33 </define>

34 <!-- definition of "main" part -->

35 <include href="main.rng"/>

36 <!-- definition of "playlist" part -->

37 <include href="playlist.rng"/>

38 <!-- definition of "settings" part -->

39 <include href="settings.rng"/>

40 </grammar>

Figure 4.7: RELAX NG schema defining a web interface for a multimedia player.

4.3. SCHEMA-DRIVEN USER INTERFACE GENERATION 42

. . .
↑

ElementNode

body

EvalRecord

EvalPath

main,playlist
true
0

EvalPath

main,settings
true
1

EvalPath

playlist
false
0

EvalPath

settings
false
1

↑

OptionalNode

EvalRecord

EvalPath

main
true

EvalPath

false

↑

ChoiceNode

EvalRecord

EvalPath

playlist

0

EvalPath

settings

1

↑

GroupNode

EvalRecord

EvalPath

main

↑
. . .

↑

GroupNode

EvalRecord

EvalPath

playlist

↑
. . .

↑

GroupNode

EvalRecord

EvalPath

settings

↑
. . .

Figure 4.8: Bottom-up construction of a tree representing the information in a RELAX NG
schema.

Chapter 5

User Interface Distribution

5.1 Introduction

An algorithm for generating user interfaces is one thing, but it still should be invoked with
the right parameters (e.g. schema, path, . . .). Furthermore the generated UI should be
‘transferred’ to the client device whilst both parties should be able to communicate with each
other. For this purpose, we built a light-weight HTTP-based daemon into our framework.
The daemon supports traditional methods like GET, POST, HEAD, DELETE and PUT
to exchange data and messages and is discussed in detail in chapter 6. Hereby we combine
schema-driven UI generation (section 4.3) with the REST approach (section 2.6.1.3). We shall
refer to the combination of both core modules as the Interface Distribution Daemon (IDD).
This chapter elaborates on the IDD and explains how the distribution of an application’s UI
is realized.

5.2 Distributed Interaction Spaces

Before a distributed session can take place, one or more applications should register with
the IDD and transfer the necessary data such as the RELAX NG schemas to generate UIs
from. An application should indicate what services it offers and make them available to
clients. A service can be marked as “distributable to only one client” or “distributable to
multiple clients”. The former is applicable for most control-driven UIs, to avoid that clients
can execute conflicting actions. Once a service is taken, it is marked as “unavailable” in this
setting. The latter setup allows a service to be duplicated among different devices. This
can be useful to show a thumbnail image on each device in the interaction space or general
information like the current song playing.

The registration process is handled over the HTTP-protocol, by sending the appropriate
messages to the IDD. Clients can register in a similar way, but rather than sending raw
messages we opted for a user-friendly web interface that simplifies the registration proces. The

43

5.2. DISTRIBUTED INTERACTION SPACES 44

web interface can be rendered and used in any web browser supporting (basic) JavaScript. It
takes the user through three to four stages. Figure 5.1 shows a screenshot of each stage.

(a) (b)

(c) (d)

Figure 5.1: Web interface for registering clients and requesting service user interfaces.

First, the user points the device’s web browser to the IP-address of the IDD or its URI
when a Dynamic Name Service (DNS) is in use in the environment. The IDD returns the
login dialog (figure 5.1(a)) and the user can login with username and password. The user
now gets an overview of the applications that have registered with the IDD (figure 5.1(b)).
She/he can select one and possibly choose between different schema “types” in the next stage
(figure 5.1(c)). Since a schema can constrain any XML-based vocabulary, an application
can provide schemas for different languages, e.g. one that generates XHTML code, one for
UIML, . . . Apart from the schema type, the user can also select the schema’s “name”. This is
because an application may provide different schemas for a single UI language, say XHTML.

5.3. USER-DRIVEN DISTRIBUTION 45

This allows skinning, but it can also offer the option to generate a tiny or a more advanced
concrete UI for certain services. Next, the user can choose between manual or automatic
distribution1. We distinguish three different distribution types: user-driven, system-driven
and continuous distribution that will be discussed in detail in the remainder of this section.
The main difference between the former two is in the applicant of the services. The user may
choose to request services manually by selecting them in the service dialog (figure 5.1(d)2).
Notice that a UI schema for an application may offer only a subset of the application’s
services. This will typically be the case with ‘special-purpose’ skins, e.g. for devices with
special requirements. The user can also let the system decide what services to include and
generate/distribute a UI automatically. Hereby the IDD may be guided by different profiles
that include information about the schema, the user and the device.

Although the web interface is a convenient instrument for registering clients manually, it
can be difficult to register a number of clients by hand. Suppose for example that a user
wants to setup an interaction space with all client devices in the room involved. It is more
convenient for the user if she/he can tell to the system “look for available devices and register
them automatically”, especially if some devices are used to visualize data rather than to
control an application. This can be realized by multicasting a discovery request that clients
may answer by sending a registration message to the IDD (see section 2.7). Once clients are
registered, the IDD can calculate an optimal distribution (possibly guided by the user) and
migrate useful UIs to the appropriate devices.

5.3 User-driven Distribution

User-driven distribution relies on the initiative of the user: the end-user connects with the
IDD and requests an interface for her/his personal interaction space by choosing one or more
services, offered by a registered application. The IDD looks for a path to generate a UI
from (see section 4.3) that contains all the selected services. Hereby the IDD may operate
in strict mode, in which a path should contain exactly the selected services and no others.
On contrary, non-strict mode allows a path to have services other than the selected ones. By
default, strict mode is applied. If no path is found, the IDD informs the client of this, and
possibly suggests some viable service combinations, based on the chosen services.

In many cases, user-driven distribution is preferred since the end-user has full control over
the distribution of a UI to device in her/his personal interaction space.

1In the case of automatic distribution, the user may also want to specify the device she/he is using (see

section 5.4.1)
2Services marked in green are available, in red are unavailable (taken by another client) and in blue can

migrate to multiple clients at once.

5.4. SYSTEM-DRIVEN DISTRIBUTION 46

5.4 System-driven Distribution

With system-driven distribution the IDD itself decides what services are distributed to what
clients. The IDD will typically broadcast a discovery request that may trigger clients to
register them on the IDD and choose for automatic distribution. However, users can also opt
for automatic distribution through the IDD’s web interface.

Once the IDD knows about all the clients that registered for a system-driven distribution
session, it can trigger its distribution algorithm. The algorithm tries to perform an optimal
distribution of services among the clients. Notice that ‘optimal’ is not formally specified. For
one person, optimal distribution may entitle to distribute as many services as possible to all
devices. Another person may prefer to distribute only those services that fit well to the user’s
PDA screen. Still, many other scenarios are conceivable. Therefore it is crucial that the
IDD does not define itself what optimal distribution should involve, but leave that decision
to the end-user(s). The combination of profiles and patterns allows us to define various key
information to feed the algorithm with and guide the distribution process. We will now give
a formal definition of the system-driven distribution problem in the context of our framework
and then explain the role of profiles and patterns in a solution for it.

Given a collection of paths3 VP = {P1, P2, ..., Pn} and a collection of devices
VD = {D1, D2, ..., Dm}, try to assign to each device D ∈ VD a path P ∈ VP in a
way that none of the assigned paths Pi, Pj ∈ VP with i 6= j are conflicting. Two
paths cause a conflict if they share a service that is only distributable to a single
device.

5.4.1 Profiles

Profiles are used to check if a given service can migrate to a given device. We distinguish
three different profile types that are closely related with each other:

• Device profile: A device profile specifies the characteristics of a device, like its screen
size, whether is can render images, if it runs a Java VM and so on.

• Service profile: A service profile defines the requirements a device should fulfill in
order to have the service distributed to it. It can e.g. define that a minimum screen
resolution of 320x240 pixels is required.

• User profile: A user profile indicates which requirements in the service profile are
relevant to the user and which are not. For example, a user profile may define that the
screen size is irrelevant and thereby override the service profile.

With the help of these profiles, the following subproblem can be solved:
3We refer again to section 4.3 where we discussed paths in the context of a RELAX NG schema used to

generate a UI. Table 4.3 gives an idea of the computer representation of such a path.

5.4. SYSTEM-DRIVEN DISTRIBUTION 47

Given a collection of services VS = {S1, S2, ..., Sn} and a collection of devices
VP = {D1, D2, ..., Dm}, output for each device D ∈ VP the subset of services
(⊂ VS) that can be distributed to D according to the information in the various
profiles.

We will now take a closer look at the different profiles.

5.4.1.1 Device profile

For the device profiles, we built upon CC/PP profiles [43] as a proof of concept. These profiles
describe the capabilities of a device in Resource Description Framework (RDF) [36] syntax.
RDF is written on top of XML (further abstraction) and is one of the core technologies used
to realize the Semantic Web [3]. The RDF language is used to annotate data, give it well-
defined meaning. Hereby the notion of ontologies is important, as an ontology represents a
concrete domain that can be queried by web agents. For example, an ontology may represent
the domain of computer devices and define that each device has a processor, but that there
is a difference between a mobile phone, a PDA, . . . , although they also have some things
in common like a display with a certain resolution. Notice the importance of this meta-
information: an agent could query a computer network using the ontology and ask e.g. for
all devices that have a minimum screen resolution of 320x240 pixels! Nowadays, the semantic
web and everything that is related with it is a hot topic. Since RDF-based profiles fit in the
semantic web picture, they have great potential.

Figure 5.2 lists a (partial) CC/PP profile for a generic PDA. However, the example does
not comply with the current CC/PP Recommendation. This is because we splitted

<prf:ScreenSize>320x240</prf:ScreenSize>

as indicated by the W3C Recommendation in

<prf:ScreenSizeWidth>320</prf:ScreenSizeWidth>

<prf:ScreenSizeHeight>240</prf:ScreenSizeHeight>

to become two tags specifying an integer value. The reason for this will be clear when we
arrive at the service profiles.

5.4.1.2 Service Profile

A service profile actually constrains a device as it says that it should be able to render images
and/or have a minimal screen size of 320x240 pixels. We want to be able to tell if device D is
suited for service S. We can formulate this problem as follows: check if a device profile (D)
matches a service profile (S). This again resembles validating an instance against a schema.
The instance is the device profile and is already defined, while the schema consists of the

5.4. SYSTEM-DRIVEN DISTRIBUTION 48

<?xml version="1.0" encoding="UTF-8"?>

<RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:prf="http://www.wapforum.org/UAPROF/ccppschema-20000405#">

<rdf:Description ID="Profile">

<prf:component>

<rdf:Description ID="HardwarePlatform">

<prf:ScreenSizeWidth>320</prf:ScreenSizeWidth>

<prf:ScreenSizeHeight>240</prf:ScreenSizeHeight>

<prf:BitsPerPixel>8</prf:BitsPerPixel>

<prf:ColorCapable>Yes</prf:ColorCapable>

<prf:TextInputCapable>Yes</prf:TextInputCapable>

<prf:ImageCapable>Yes</prf:ImageCapable>

<prf:Vendor>Generic PDA</prf:Vendor>

...

</rdf:Description>

</prf:component>

...

</rdf:Description>

</RDF>

Figure 5.2: CC/PP profile for a PDA (device profile).

service profile. But, what schema language is preferred? Since device profiles are defined
in the RDF format, a logical step is to look after schema languages for RDF. Among them
are RDF Schema (RDFS) [35] and the more powerful Web Ontology Language (OWL) [38].
However, there are two objections against these languages:

1. They are still poorly supported and (offline) maintained validators are rare, not to say
unavailable.

2. We aim to support all kind of device profiles, also non-RDF-based profiles.

Therefore we descend one layer on the abstraction ladder and arrive at the XML level. A
schema language for XML can also constrain RDF instances because RDF conforms to the
XML standard. So far, we have had good experiences with RELAX NG and again, it will
proof its strength here. First, we designed a schema prototype that validates all well-formed
CC/PP profiles, shown in figure 5.3. Though the schema in the figure is incomplete, it should
be clear that it can be constructed. Note that the schema utilizes of a datatype library,
namely the W3C XML Schema Type Library. Datatype libraries are some kind of extension
to RELAX NG, to support datatype validation. Hereby it is for instance possible to check if
a value is a valid integer. The W3C XML Schema datatypes that can be used in a RELAX
NG schema are the predefined W3C XML Schema types, defined in the Recommendation.
Furthermore, custom datatype libraries can be created and integrated with a supporting
RELAX NG validator. Also, restrictions can be applied to these datatypes using the RELAX

5.4. SYSTEM-DRIVEN DISTRIBUTION 49

NG param pattern, so customization is possible. Figure 5.4 list a service profile, i.e. a more
restricted version of the RELAX NG schema in figure 5.3. The profile includes the default
CC/PP definitions and overrides the definitions it wants to constrain more. For example,
the definition of the prf:ScreenSizeWidth element has been redefined, in order to accept
only those device profiles having a value of at least 320. See here the reason why we divided
the CC/PP proposed prf:ScreenSize element in a width and height component: it is much
easier to validate two separate integer values than a ‘320x240’ construction. Nevertheless, a
datatype can be created to validate the latter.

5.4.1.3 User Profile

The service and user profiles may seem to be contradictory at first sight. The first specifies a
number of requirements, while the second specifies which requirements should be taken into
account and which not. The reason for this is to avoid that the IDD does not distribute certain
services to a client because the system discovers that the client’s screen size is too small, whilst
the user believes it is large enough. Assume for instance that service S, in general, really
needs a screen resolution of 320x240. However, we bought a brand new smartphone with a
screen size of only 160x120 pixels, but the phone supports new scaling techniques that allow it
to render a UI with S included like a charm. Thereby the minimum screen size constraint in
the service profile is a thorn in the flesh since it disallows the distribution of S to the phone.
One option to overcome this, is to set a fake screen resolution in the device profile, but this
may result in unwanted side effects. A better solution is to setup a user profile and specify
that the screen size should not be taken into account (for a particular user and/or service).

5.4.2 Patterns

Thanks to the information in the profiles, the system-driven distribution algorithm is able
to tell if a service S can migrate to a device D. Thus, the algorithm can calculate a possi-
ble distribution, but it still has no clues about an optimal distribution. This is where the
distribution patterns come in. A pattern rule resembles a regular expression that guides the
distribution process in a session with m devices. Suppose for example the following rule:

1:S1,S2,(S3|S4)

that applies to an interaction space with only one device (D) involved (indicated by the “1”
before the “:”). The rule states that the IDD should try to distribute services S1, S2 and
S3 or S4 to the device. Notice the stress on try : there are no guarantees that the pattern
can be matched! After all, service S1 may not be migratable to D at all, according to the
device/service/user profiles. In that case, the IDD shall distribute the services S2 and S3

or S2 and S4 to D. Thus, the patterns are hints to guide the distribution process, but the
profiles still have absolute priority.

A pattern rule for two or more devices is a little more complicated, e.g.

5.4. SYSTEM-DRIVEN DISTRIBUTION 50

<?xml version="1.0" encoding="UTF-8"?>

<grammar xmlns="http://relaxng.org/ns/structure/1.0"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:prf="http://www.wapforum.org/UAPROF/ccppschema-20000405#"

datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

<start>

<element name="RDF">

<ref name="Profile"/>

</element>

</start>

<!-- Profile -->

<define name="Profile">

<element name="rdf:Description">

<attribute name="ID">

<value>Profile</value>

</attribute>

<interleave>

<ref name="HardwarePlatform"/>

<ref name="SoftwarePlatform"/>

...

</interleave>

</element>

</define>

<!-- HardwarePlatform -->

<define name="HardwarePlatform">

<element name="prf:component">

<element name="rdf:Description">

<attribute name="ID">

<value>HardwarePlatform</value>

</attribute>

<interleave>

<ref name="ScreenSizeWidth"/>

<ref name="ScreenSizeHeight"/>

<ref name="ColorCapable"/>

...

</interleave>

</element>

</element>

</define>

...

</grammar>

Figure 5.3: RELAX NG schema skeleton that validates any valid CC/PP profile.

5.4. SYSTEM-DRIVEN DISTRIBUTION 51

<?xml version="1.0" encoding="UTF-8"?>

<grammar xmlns="http://relaxng.org/ns/structure/1.0"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:prf="http://www.wapforum.org/UAPROF/ccppschema-20000405#"

datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

<include href="ccpp.rng">

<!-- override ScreenSizeWidth -->

<define name="ScreenSizeWidth">

<element name="prf:ScreenSizeWidth">

<data type="integer">

<param name="minInclusive">240</param>

</data>

</element>

</define>

<!-- override ScreenSizeHeight -->

<define name="ScreenSizeHeight">

<element name="prf:ScreenSizeHeight">

<data type="integer">

<param name="minInclusive">240</param>

</data>

</element>

</define>

</include>

</grammar>

Figure 5.4: RELAX NG schema that further restricts the schema in figure 5.3 (service profile).

5.5. CONTINUOUS DISTRIBUTION 52

2:S1,S2;S3,S4

where the “;” separates the two patterns to aim for. This rule applies to a distribution
space that involves two devices, say D1 and D2. The extra difficulty lays in the following
choice: what device should try to match what pattern? Here, D1 could strive for the S1,S2

pattern, but what if none of these services can be distributed to D1, but only to D2? It
then figures that it is better to let D2 match the first pattern and let D1 aim for S3,S4 as
more services will be distributed. Therefore we first calculate all possible permutations of m

devices/patterns. There are m! such permutations and the one with the (first) highest sum
of distributed services will be chosen.

5.5 Continuous Distribution

When a user is engaged in a distributed interaction session, changes in her/his interaction
space may trigger dynamic changes in the distribution of the user interface. Two main causes
of environment changes can be distinguished in this context: client devices entering or leaving
the interaction space.

When a client leaves the interaction space its registration with the IDD will be canceled.
This implies that the services held by the client, come available for other clients. These
services may be distributed automatically among the devices in the interaction space without
disturbing the execution of the application. Therefore, the IDD looks for clients in the
environment that satisfy the requirements of one or more services and migrates the updated
service UI(s).

When a new client enters the environment it announces its presence and registers with the
IDD. If the new client device better fulfills the requirements for a particular service already
running in the interaction space, the IDD can decide to migrate the service interface to the
new client. Hereby the IDD relies on profiles and patterns, like in system-driven distribution
(section 5.4).

Important to notice is that continuous distribution in an interaction space implies some
usability issues. This has to do with the fact that the user interface changes while the user is
interacting with it. This may be very frustrating for the user when client devices enter and
leave the environment all the time. To make this process more manageable, the user may
define some constraints for this process in her/his user profile. This, however, is outside the
scope of our work and will be a subject for further research.

Chapter 6

Architecture

6.1 Introduction

In the previous chapters, parts of the architecture were already introduced. This chapter glues
the various parts together and gives a global overview on the architecture of the framework.
The IDD is the central entity (server) and both applications as client devices (clients) are
connected with the IDD. This is shown in figure 6.1. The programming language of the
applications nor the operating system on which they run does matter. Client devices can be
any computing device: PDA, desktop PC, tablet PC, laptop with a projector attached, etc.
With this picture in mind, we are ready to take a closer look at the architecture of the IDD
and explore how distributed user interfaces can talk with the application logic.

6.2 RESTful communication

The architecture is based on the REST principle, outlined in section 2.6.1.3. Clients and
applications can communicate with the IDD by exchanging HTTP messages. The built-in
HTTP server processes an HTTP request and replies to it with an HTTP response message.
The daemon is developed with the HTTP 1.1 specification [15] in mind and currently supports
the GET, POST, HEAD, DELETE and POST methods. One of our design goals is to keep
the framework as light-weight as possible which is also reflected in the HTTP daemon. The
implementation only relies on the default Java classes as provided with the JDK 1.5, and does
not support PHP, CGI, Java Servlets, . . . However, we do need a way to process data sent to
the server, e.g. parameters in a URI, form data, XML data in a message body, etc. Therefore
we developed a module system that is similar to Apache’s module system1 and that does not
require external software like Apache Tomcat2 (to host Java Servlets).

1http://modules.apache.org/
2http://jakarta.apache.org/tomcat/

53

6.2. RESTFUL COMMUNICATION 54

Figure 6.1: Architecture: applications, client devices, IDD.

Modules

A module can be triggered from within an HTTP request by the GET or POST method.
Data is posted directly to the module which will be executed with the data of the request
data as input. The following HTTP header shows how to trigger a module:

POST /_my_mod HTTP/1.1

The “ ” before “mod name” tells the IDD that it should look for a module named “my mod”,
instead of a file in the webroot. The HTTP daemon reads and parses the request and passes
its data to the module. In fact, modules are nothing more than regular Java classes that
implement the Module interface. The modules are loaded dynamically by a ModuleLoader (a
derived Java ClassLoader) when requested. Modules are advantageous because:

• They can be coupled tightly with the framework itself (both Java code). This is a must
because the modules trigger all vital actions like converting a schema to an instance or
registering clients/applications.

• They can react fast because they are precompiled, just like Java Servlets.

6.2. RESTFUL COMMUNICATION 55

• They provide a means to extend the system. A module can be compiled separately
against the Module interface and placed in the appropriate directory (in binary form)
and used without having to recompile the framework or even restart it when it is in use.

In the next few sections, we give an overview of the currently available modules. A module
replies a request with an OK response (status code 200) by default, unless specified otherwise.
The client, application and session ids mentioned below are HEX-encoded, random generated
hash values. The module overview can be seen as ‘the REST API of the IDD’.

mod register client

Input : user, password
Output : clientId

The module registers a client on the IDD given that a valid username and password are
provided. A unique client id is generated and returned in a cookie.

mod unregister client

Input : clientId

Output : –

The module unregisters the client with the given id.

mod register application

Input : appName, appKey
Output : appId

The module looks for an application map with the given application name in
/applications. If found, it looks for a file “ui.xml” and parses this file (see section 6.6
for more information). The appName and appKey values are verified with the according values
specified in the file. If both match, the application’s services are registered and made available
to clients. A unique application id is generated and returned in a cookie.

mod unregister application

Input : appId

Output : –

The module unregisters the application with the given id.

6.2. RESTFUL COMMUNICATION 56

mod request ui

Input : clientId, appName, schemaName, schemaType, deviceId, services
Output : sessionId

The module generates and distributes a UI to the client with the given id. If one or more
services are provided, user-driven distribution (section 5.3) is chosen. Otherwise, system-
driven distribution (section 5.4) is applied. Here, a device profile (linked with the device’s id) is
needed to assure optimal distribution of services. The appName, schemaName and schemaType

parameters guide the module to the schema to use as input for the RELAX NG schema to
instance algorithm. If the client is not yet involved in a distribution session, a new session is
created. The id of the session is returned in a cookie. The module replies the request with a
SEE OTHER response (status code 303) to redirect the client to the UI.

mod dismiss ui

Input : sessionId, service
Output : –

The module removes the indicated service from the services assigned to the client. These
are stored in its session which is identified by an id. The RELAX NG schema to instance
algorithm is invoked (user-driven distribution) with the current services. If the service com-
bination does not result in a satisfiable path, the session is reset, i.e. all services are released
and the UI is disposed. This is also achieved if the module is called with “all” as service.
The module replies the request with a SEE OTHER response (status code 303) to redirect
the client to the UI or to the web interface if the session has been reset.

mod action

Input : sessionId

Output : –

The module forwards the message in the request’s body to the application involved in the
distribution session. The message should be in XML and describe an action triggered by the
client. It may be validated against a schema, but the validation is not performed by default
for performance reasons.

mod event

Input : appId, eventId
Output : –

The module forwards the message in the request’s body to all clients that are involved

6.3. THE LISTEN METHOD 57

in a distribution session with the given application and that registered to get notified of the
concerning event (indicated by the event id). The message should be in XML and describe
an event fired by the application. Although the event id is specified in the message, it should
also be provided as paramater in order to inform the module of the event id without having to
parse the message. The event message may be validated against a schema, but the validation
is not performed by default for performance reasons.

mod last event

Input : sessionId, eventId
Output : –

The module returns the last event message with the given id that has been sent by the
application involved in the session.

mod ls

Input : path

Output : <listing/>

The module returns a directory listing in XML format. The given path is relative to the
webroot.

6.3 The LISTEN method

One of the main challenges we identified is that the HTTP protocol is focused on one-way
client-server communication, while our communication model assumes bidirectional commu-
nication. Figure 6.2 shows that a client can send a message to the IDD (anytime). The
IDD’s built-in HTTP daemon accepts the connection from the client, receives the message
and replies to it. However, the figure also illustrates that the other way round (IDD → client)
is all but trivial. This is because the client does not run a server to listen for incoming
requests at a certain port. No wonder, because servers always form a potential danger for
attacks and clients do not really need them in general. Think for instance of web browsers
or UIDL renderers: (basic) server functionality will make them heavier and more vulnerable
which may result in a range of security issues and exploits in no time. In the case of standard
browsers it is even very difficult – not to say impossible – to listen for incoming connections,
without the help of plugins like Java (applets) or ActiveX (which are not supported/available
on all platforms). Moreover clients are not expected to process HTTP requests, and neither
it is likely that servers would send them. Thereby we can conclude that the HTTP protocol
with its default methods and use is not suited for bidirectional communication, given that we
consider only one server (the IDD). Nonetheless, we still want to stick to the HTTP protocol,

6.3. THE LISTEN METHOD 58

since it is widely used (i.e. each web browser ‘speaks’ HTTP) and because it is fundamental
in the REST approach.

Figure 6.2: Bidirectional communication problem.

Two-way communication between clients and application is a must: if the state of the
application changes, the client should be notified and if a client triggers an action, the appli-
cation should know about it. The IDD mediates between both parties (see section 6.4). Two
solutions to realize the IDD → client/application communication are Client Pull and Server
Push3. Client Pull is to let clients/applications poll for actions/events by sending a request
to the IDD on regular intervals and let the IDD reply to it with a void or action/event mes-
sage if one is available. However, polling should be avoided, since it wastes CPU cycles and
bandwidth. The IDD should be able to address a client or application directly (i.e. interrupt
it) and tell it about an action/event. The Server Push technique allows this in a certain
extent: a client sends a request, the connection is kept open, and the server can send multiple
responses over the connection and trigger the client in time. Although this technique is a
very efficient approach, currently it is difficult to use in combination with XMLHttpRequest
implementations. It may also be an issue that the IDD does not know if a client/application
has actually received the event/action and if it has updated its state while using Server Push.

We introduce the HTTP LISTEN method that allows us to simulate bidirectional com-
munication. The idea is simple: a client (or application) sends a LISTEN request to the IDD,
but the request is not answered immediately. On contrary, the IDD waits until it receives
an event (e.g. from the application) and then replies the LISTEN request with the event
message attached as body. Once the client receives the response, it sends another LISTEN
request and so on. The use of the LISTEN method is shown in figure 6.3.

However, this only works on condition that the connection (socket) over which the LISTEN
request is sent, does not timeout. The connection may not be closed, otherwise the server
cannot reply on that particular socket and trigger the client. Since we built our own HTTP-
based daemon, we can easily avoid timeouts from the server side. Also client-side, we did not
discover any problems with timeouts, as browsers or other HTTP supporting clients seem to
rely on server side timeouts or provide an option to set an infinite timeout value.

The LISTEN method is a tradeoff between the introduction of a new method and posting
to a ‘listen-module’. The latter does not require a new method and can easily offer the same

3http://wp.netscape.com/assist/net sites/pushpull.html

6.4. ACTIONS AND EVENTS 59

Figure 6.3: Bidirectional communication realized with the LISTEN method.

behavior. Though, traditional web servers respond as fast as possible to POST and GET
messages. Therefore it seems unnatural if this general expectation would be broken. The
LISTEN method is more intuitive in this context and the HTTP 1.1 specification [15] allows
the introduction of new methods.

The LISTEN method can be used by clients as well as by applications. The server auto-
matically detects whether a client or application performed the request by its cookie. Thus,
the cookie is obliged; the IDD will ignore the request if no or an invalid cookie is specified.
A valid LISTEN call could be:

LISTEN / HTTP/1.1

Cookie: appId=d667cc822d3ebe15b174d3fb07105c237806e9ce

6.4 Actions and events

Clients and applications can communicate with each other by sending action and event
messages4. These messages are typically XML-based, although plain text is also allowed.
We assume that messages have the form <action id="...">...</action> or <event

id="...">...</event> where the id identifies the kind of action/event. Their structure is
left to the application developer. An application is expected to offer schemas that constrain
the structure of valid actions/events. Those schemas can be considered as a ‘distributed API’,
since they provide developers or even agents (e.g. RELAX NG schemas are easy to parse and
interpret) with information about what actions are understood by the application and what
they should look like (i.e. which tags are implied, which are optional, etc). The same applies
for the possible events an application can fire.

If the user performs an action (e.g. she/he presses a button), an action message is sent to
the IDD. The IDD forwards this message to the application. The application can trigger an
event and send an event message to the IDD with updated state information. The IDD now
forwards this event message to all clients that registered interest in this particular event type.
Thereby a user action performed on one device can trigger an event that is sent to multiple

4Action and event messages are encapsulated inside HTTP messages (as body).

6.4. ACTIONS AND EVENTS 60

devices. The interface rendered on all of these client devices will be updated according to the
new application state. The most recent event message of each kind is stored in a repository,
so that new clients entering the interaction space can request them and update their state.

The action/event communication model is exposed in figure 6.4. It actively depends on the
LISTEN method to send messages immediately, whenever an action or event occurs. Notice,
however, that the model in the figure is a little simplified as it only shows one client and
one application. If multiple clients are involved, the IDD will forward an event message over
multiple LISTEN streams to all interested clients. In that situation, clients are also likely to
trigger actions simultaneously and flood the IDD with messages. Therefore the IDD has a
built-in message queue to cache messages and control their flow (figure 6.5). This allows an
application to retrieve the actions on its own rhythm, instead of drowning in them.

Figure 6.4: Action/event communication model.

Figure 6.5: Message queue.

Global states

An application may drop some action messages, e.g. if message A1 (sent by client C1) causes
a change in the application state that disallows the execution of A2 (sent simultaneously by
client C2), then A2 should be ignored. But, it should be clear that this situation is far from
optimal and may cause conflicts, because often an application will not be able to tell if an
action Ai is valid or not. The critical situation arises from an inconsistent application state.
If client C2 was informed of the changed state (e.g. by event E1) before it triggered A2, its
UI would have been updated. For example, a button may have been disabled, disallowing to
send A2. But, message E1 and A2 crossed each other and client C2 received E1 after it sent
A1. The application and client C2 temporarily faced a different state. This illustrates that

6.5. SCENARIO 61

the application and all its distributed UIs must have a synchronized global state anytime!
This is one of the main difficulties identified in distributed systems. Different mechanisms
and algorithms to solve the problem of keeping the global state consistent are outlined in
[9]. It is not that difficult to implement such an algorithm in the IDD and guarantee a
global consistent state, but it will decrease performance (a lot). Think for example of an
interaction space with two clients: one has a fast network connection and one has a slower. If
the application transmits an event message, the IDD will forward it and block until it is sure
that both clients received the event and updated their state. In particular, the IDD waits
for a notification message from each client. The client with the fast connection receives the
event first, updates its state, and notifies the IDD. The client with the slow connection does
the same, but it takes more time. At this point, the fast client has to wait for the slow client
to notify and unblock the IDD and allow further interaction.

In many cases, crossing messages will have no side effects and in these cases, distributed
locking is only overhead and becomes redundant. As long as two clients cannot trigger actions
that influence the same global variables or dependencies, there is no problem.

6.5 Scenario

This section aims to clarify the architectural concepts discussed in the previous sections via
an example scenario. The scenario is visualized in figures 6.6 and 6.7. The first figure shows
the registration procedure of an application and a client. Here, the application is a simple
music player and the client represents a JavaScript-enabled web browser that supports the
XMLHttpRquest object. The registration of the application is the simplest: the application
sends a registration request which is answered by the IDD with an OK response. Then the
application sends a LISTEN message. For the client, we assume that it uses the IDD’s web
interface (figure 5.1) to register. The client sends a registration message and the IDD replies
with a SEE OTHER message that redirects the client to another web page (with an overview
of all applications that registered with the IDD). Next, the user selects the application to
interact with and chooses for manual distribution. A message with the selected application,
schema and services is posted to the IDD. The IDD now disposes of the required information
to generate a UI. All files related with the UI are transferred to the client device. The client
renders the UI and transmits a LISTEN request.

Once registered, the client → application interaction can begin as shown in the second
figure. The user presses a “play” button and thereby triggers an action message. The IDD
receives the message, puts it in the message queue and responds to it with an OK message.
Next, the IDD dequeues the message and forwards it to the application as reply on the previ-
ously issued LISTEN request. The application immediately sends a new LISTEN request and
parses the action message. It notices the play command and starts playing. The application
informs the client of its new state by sending an event message, that contains information
about the current song. This event message is stored in a repository and forwarded to the
client, also in response of a LISTEN request. Finally, the client issues a new LISTEN request,

6.5. SCENARIO 62

so it is ready to receive future events. Likewise, the application is prepared for new actions.

6.5. SCENARIO 63

Figure 6.6: Registration procedure.

6.5. SCENARIO 64

Figure 6.7: Interaction through action and event messages.

6.6. WEBROOT 65

6.6 Webroot

/

/applications /app1

ui.xml

/sessions

/html

/uiml

/patterns

/profiles

...

/users

users

user1.xml
...

/devices device1.xml
...

/dist

applications.html

applications.xml

/app1

dist.html

/html

/uiml

...

/applications

The application branch contains a map for each application that pre-registered with the
framework. A map contains in the first place the necessary RELAX NG schemas to generate
UIs from and related documents (scripts, stylesheets, action/event schemas, . . .), but it also
holds service profiles (section 5.4.1.2) and a pattern list (section 5.4.2). A session directory is
empty by default and is used to cache the distributed UI documents. There is, however, no
implied structure on an application map. Instead, a configuration file is used that points to
important files and provides the IDD with the necessary settings. This file is named “ui.xml”
and is obliged. It is read and parsed when the application registers with the IDD. The next
section is devoted to this file.

ui.xml

We will take a closer look at the dummy configuration file in figure 6.8, although the semantics
of most tags should be clear. In lines 11 – 24, all the services that the application offers are
defined. Notice that next to a description, the events to listen for can be specified. A service

6.6. WEBROOT 66

can listen for all events (<AnyEvent/>) or for particular events (<event>...</event>). Often,
the latter setting is preferred, as it allows the IDD to forward events only to those clients
having a service in their distributed UI that is interested in the event. Next, lines 26 –
29 provide links to the available root RELAX NG schemas. Each schema element has an
id and type attribute; their combination is unique and thereby points to a single schema.
The schema definitions in the demo configuration file indicate that the IDD will be able to
generate/distribute UIs in XHTML and UIML format. The former type of UIs also come
in two flavors: “default” and “skin1”. Lines 31 – 37 define the service profiles in function
of a schema id. Different RELAX NG schemas (skins) can have different profiles associated.
Finally, line 40 lists a reference to a pattern list. A pattern list is nothing more than a text file
with a number of pattern definitions 1:P1, 2:P2a;P2b, . . . , one per line. It may be desirable
in the future to support multiple pattern lists and thereby allow to choose among various
‘distribution schemes’.

/users

The user profiles are stored here. User profiles can be uploaded to this map. The folder also
contains a “user” file with all valid username:password combinations. When a user tries to
register with the IDD, its provided username and password are verified against the entries in
this file.

/devices

The device profiles are stored here. Device profiles can be uploaded to this map.

/dist

The dist branch hosts the IDD’s web interface. It is updated all the time, e.g. when clients
or applications enter/leave the interaction space or if services are distributed. Web agents
or non-HTML-based clients may be interested in the “applications.xml” file that contains
information about the registered applications and their services and schemas. In fact, that
file is transformed to the actual web interface with the help of an XSLT stylesheet [41].

6.6. WEBROOT 67

1 <?xml version="1.0" encoding="UTF-8"?>

2
3 <application>

4 <!-- general -->

5 <name>demo</name>

6 <key>key</key>

7 <description>Demo application.</description>

8 <version>1.0</version>

9 <group>Multimedia</group>

10
11 <!-- services -->

12 <service name="service1">

13 <description>Service 1.</description>

14 <anyEvent/>

15 </service>

16 <service name="service2">

17 <description>Service 2.</description>

18 <anyEvent/>

19 </service>

20 <service name="service3">

21 <description>Service 3.</description>

22 <event>event1</event>

23 <event>event2</event>

24 </service>

25
26 <!-- schemas -->

27 <schema id="default" type="html">html/default/demo.rng</schema>

28 <schema id="skin1" type="html">html/skin1/demo.rng</schema>

29 <schema id="default" type="uiml">uiml/default/demo.rng</schema>

30
31 <!-- profiles -->

32 <profile schema="default" service="service1">

33 profiles/default/service1.rng

34 </profile>

35 <profile schema="skin1" service="service1">

36 profiles/skin1/service1.rng

37 </profile>

38
39 <!-- pattern lists -->

40 <pattern>patterns/patterns.lst</pattern>

41 </application>

Figure 6.8: Configuration file (ui.xml).

6.7. SECURITY 68

6.7 Security

Although security is no primary concern in our framework, we have taken care of a number of
security flaws. If a server-based framework is built without any notion of possible exploits, the
architecture may turn out to be poorly designed when it ever comes to implementing security
precautions. Here, [28] was a helpful source to get insight in possible network security issues
and solutions.

Secure connections

If messages are sent unencrypted, it figures that it is easier for an attacker to intercept them
as if they were encrypted. A (silent) attacker may eavesdrop on a connection or even worse,
manipulate data. On a secure line, data is encrypted and thus meaningless for attackers, as
long as there are no clues about decryption keys. Connections over the HTTP protocol are
typically secured using SSL (Secure Socket Layer). When HTTP is used over SSL, it is called
HTTPS (Secure HTTP). Our framework supports both unsafe HTTP connections (default
sockets) and secure HTTPS-connections (SSL sockets).

Authentication

Both clients and applications should specify a password (key) in order to register with the
IDD. However, the system administrator may allow clients to login anonymously. Of course,
sensitive information like passwords are best sent over a secure connection.

Session Management

If an application receives an action message, it must be sure that this message comes from
a valid client in the interaction space. Also, if a client receives an event message, it must
accept that it comes from the expected application. In both situations, the IDD is the central
entity that delivers the messages, i.e. forwards them. The IDD should verify all incoming
messages to be sure they are not sent by a third party (spoofing). It does so by comparing
clientIds, appIds and sessionIds (accompanying the message in a cookie) with an internal list
of active ids. Notice that these (random) ids are created upon registration or at the start of
a distributed session and thereby act as temporary keys to allow the delivery of messages. If
an id does not match or is not specified, the message is rejected. The ids are also used to
identify a client/application and look up the (final) destination(s) of the message.

Read and write permissions

Filesystems often allow to set permissions and restrict read/write access to certain files or
directories. The same idea is applicable to web servers that require authentication for certain

6.7. SECURITY 69

files, or – if they e.g. support the PUT method – only allow to upload files to specific
directories. In the context of the IDD, read access should be restricted as we do not want
users to view an application’s configuration file or a list of users/passwords, given that these
files (currently) reside in the webroot. Off course, write access should also be restricted to
well-defined directories, e.g. to upload profiles. However, we did not elaborate on this and
just rely on filesystem permissions.

Chapter 7

Deployment

7.1 Introduction

A framework may offer powerful technology, but as long as this technology cannot be joined
with applications people are used to work with, it has little chance to become a success.
If developers/users see hail in the technology, it is important that they are able to use and
incorporate it with minimal effort. We tried to achieve this goal in our framework by means of
high-level APIs that allow the developer to focus on the design of a distributable UI instead of
on the framework itself. The developer does not need to learn a framework-specific language,
but she/he can use an XML-based UIDL language (HTML, UIML, . . .) of choice. In the
next sections, we explain how we extended an audio player (XMMS) and an image viewer
(JShow) with the ability to offer distributed service UIs. We also outline what is to be done
to integrate the framework with an (advanced) drawing program (the GIMP). Migratable
UIs create new opportunities and one of them is to replace traditional appliance remotes. We
discuss a PDA/UI combination to control a home multimedia system and domotica software.

7.2 Native applications

7.2.1 XMMS

One of the first objectives was to connect a simple yet well-known application with the
IDD and allow it to be controlled by means of a distributed UI. The choice fell on XMMS1, a
popular linux audio player. Important to notice is that XMMS already has a (even skinnable)
GUI. The application logic is no stripped terminal program running on some server, but just
the regular application as it is used and known by people. In fact, many solutions exist to
control XMMS from various devices. They broadly fall apart in two categories. On the one
hand there is the web server approach: a web interface is hosted on a web server and with

1http://www.xmms.org

70

7.2. NATIVE APPLICATIONS 71

the help of technologies such as PHP, users are able to control the music player from a web
browser. On the other hand there is the client and server program solution: a server program
(perhaps a plugin) is installed on the PC running XMMS and a (mostly platform-dependent)
client program is installed on the device to control XMMS from. The latter setup requires a
lot of work as the emphasis is on the application and the target platform to control it from.
Sure the remote UI (client program) is probably visually appealing and works just fine, but it
is no generic solution that can be ported with little effort to other applications and platforms.
The web server way is more interesting in this context, since most devices have a web browser
on board and thus are able to render compliant web sites. However, a web interface is not
closely integrated with the operating system and has different looks and behavior than the UI
of native applications. This may not be desirable. Another issue is the server-side scripting
and programming work involved to make things work. The use of the IDD overcomes these
issues and adds some extra advantages:

• The IDD acts as middleware between XMMS and the client device(s) to control it. The
REST API offers the necessary functions to have client devices communicate with the
application logic. Thereby it relieves the UI designer of many programmatic squirms.

• A UI can be distributed (and even duplicated) among different devices. The UI can be
offered in several formats (HTML, UIML, . . .) and visualized by a renderer of choice.
This can be a web browser, but also a UIDL renderer that uses the platform’s default
UI toolkit to render the UI.

• There is no need for XMMS to be installed on the same PC as the IDD.

We designed two simple shell scripts in order to pass actions to XMMS and forward events
to the IDD. We could have written a plugin for XMMS as well, but the scripts are easier to
adapt since they do not need to be compiled or installed. In fact, the scripts rely on an
existing XMMS plugin: xmmsctrl. This plugin allows to control XMMS from the command
line. It accepts a bunch of parameters such as play/stop/. . . and it also gives information
on the current song playing. The scripts use the CURL library2 to send and receive HTTP
messages. One script periodically polls XMMS for changes and the other listens for incoming
actions by using the LISTEN method (section 6.3), but none of them run a server. Action
commands (e.g. play) are just sent in plain text in the body of an HTTP message. The same
applies for event data such as name and artist of the current song or an entire playlist.

Then a web interface for XMMS was built that consists of three parts, like described in
section 4.2. Designing the parts is the same as designing a regular XHTML-compliant web
page. JavaScript and the XMLHttpRequest object are used for background communication
with the IDD, thereby supporting the AJAX web application model (section 2.5). A single
JavaScript source file provides the necessary functions to interact with the IDD. This file is
included in the web interface so that its functions can be invoked. Notice that the source file
can be reused since it has nothing to do with XMMS specifically! It can be considered as a

2http://curl.haxx.se/

7.2. NATIVE APPLICATIONS 72

binding between a web browser and the IDD. Once the parts (XHTML code) are ready, they
should be converted to RELAX NG schemas. This is very simple and the process can easily
be automated. Finally, a “ui.xml” file is needed before merging the service interfaces (main,
playlist, settings) into the IDD’s webroot.

Figure 7.1 gives an idea of the result: a distributed UI for XMMS is split among two
clients. The first client has the main and settings service, while the second disposes of the
playlist service. Notice that JavaScript is used to add local functionality to the UI for the
playlist service. Once the playlist (we refer to the actual list of songs loaded in XMMS here,
not the service) is received, it is possible to filter songs on the fly without interacting with
the IDD or XMMS. They are filtered client-side, and if a song is clicked, the track id is sent
to the IDD and forwarded to XMMS that starts playing the song.

7.2.2 JShow

A second supported application is JShow, a simple image viewer we wrote. It can be used
as a stand-alone application (just like any other image viewer), but it can also be controlled
remotely. Its services become available to clients as soon as JShow is connected with the IDD
(remote control enabled). These services are:

• browser: browse through the file system and open a directory with images.

• picture: shows the full sized image, possibly in a scrollable canvas if it is too large to
fit.

• scroll: scroll left/right/up/down.

• thumbnail: shows a thumbnail version of the current image.

• view: jump to the first/previous/next/last image.

• zoom: zoom in/out on the image.

We designed two web interface themes for these services, likewise as described in the
previous section. The first (default) supports all services and is shown in figure 7.2(a). The
main RELAX NG schema that constrains the structure of this web interface, defines that the
thumbnail service may not be distributed together with the picture service. It also says that
scroll and zoom parts should appear next to each other, while the other parts should be put
below each other. The other theme (mac) is limited to the thumbnail and view service; it
is shown in figure 7.2(b). The mac theme is optimized for devices with a small screen. We
also designed a simple UIML interface; a screenshot is shown in figure 7.2(c). Both the web
interface as the UIML interface can be used concurrently and services can migrate from the
one to the other. Figure 7.3 shows a UI for JShow rendered in Pocket Internet Explorer on
a PDA (Pocket PC), and figure 7.4 shows an interaction space with different client devices
involved.

7.2. NATIVE APPLICATIONS 73

The communication between JShow and the IDD happens through a ‘connector’ API.
This is a simple Java library independent of the application that acts as a bridge between
the application and the IDD, just like the XMLHttpRequest driver script discussed in the
previous section is a binding between the IDD and a web browser. The abstraction is outlined
in figure 7.5. Thanks to the high-level APIs, all transactions are handled transparent to the
developer.

7.2.3 The GIMP

We will shortly outline what is to be done to get drawing programs such as the GIMP3 work
with the framework. A useful scenario might be the following: a tablet PC exposes the image
canvas full screen so that the user can directly ‘draw’ on the screen of the device. A second
device, a PDA, shows the toolbox and allows to change from pencil to color picker or any
other tool. In this scenario (figure 7.6), the GIMP itself can run on the tablet PC and show its
canvas maximized. The GIMP should be connected with the IDD and have a distributable UI
for the toolbox that can talk with the GIMP core. Therefore a plugin is required that is able
to parse and interpret XML-based action messages and translate them to native function
calls. Fortunately, the source code for such a plugin can be kept very simple, since there
are XML toolkits and HTTP libraries around for practically every operating system and
programming language that take most of the work out of the hands of the developer. It can
be kept even simpler as soon as there is an independent, reusable library (API) for the C(++)
programming language, binding an arbitrary C(++) application with the IDD, analogous to
the Java-based connector used by JShow (figure 7.5). Writing this API is no big deal either.
The required plugin thus basically consists of dispatch code and will count only a few lines.
The UI for the GIMP toolbox (service) can be created similarly as the ones for XMMS and
JShow. Likewise, UIs for other GIMP components (e.g. layers dialog) can be created and
distributed to different devices in the environment. Again, we want to emphasize that there
is no need to stick to a web interface.

3http://www.gimp.org/

7.2. NATIVE APPLICATIONS 74

(a)

(b)

Figure 7.1: Distributed web interface for XMMS, main and settings service rendered in Mozilla
(a) and playlist service rendered in FireFox (b).

7.2. NATIVE APPLICATIONS 75

(a)

(b)

(c)

Figure 7.2: Distributed web interface for JShow, default (a) and mac (b) theme rendered in
the FireFox browser and distributed UIML interface rendered using a Java Renderer from
Harmonia.

7.2. NATIVE APPLICATIONS 76

Figure 7.3: Distributed web interface for JShow, rendered in Pocket Internet Explorer on a
PDA.

7.2. NATIVE APPLICATIONS 77

Figure 7.4: Scenario in which a web interface for JShow is spread over two PDAs and a laptop.

Figure 7.5: Abstraction of APIs to ease the application ↔ IDD and client ↔ IDD communi-
cation to developers.

7.2. NATIVE APPLICATIONS 78

Figure 7.6: Scenario in which the GIMP toolbox is migrated to a PDA and the drawing
canvas is loaded full screen on a tablet PC.

7.3. MULTIMEDIA CENTER AND DOMOTICA 79

7.3 Multimedia Center and Domotica

Lately, there is a growing interest in silent and stylish PCs integrated in the living room.
These small PCs (called ‘barebones’) can replace the VCR, DVD recorder, tuner, CD player
and other appliances. A multimedia barebone may be connected with a large LCD panel
and 7.1 surround sound set. A music collection can be stored right on its hard disk and
played through the surround speakers. TV programs can be recorded on the hard disk and
shared over the home network. Nowadays, multimedia barebones are typically delivered with
Windows XP Media Center Edition and a basic IR (infrared) or RF (radio frequency) remote.
In our experience, this remote spoils the beauty of the barebone setup. A multimedia center
offers so many options and a traditional remote cannot possibly deal with them all on its
own. The cartoon in figure 7.7 captures the abundance of features in a nice way. The fact
that a remote can only have a limited number of buttons is solved by letting it operate a
GUI (running on the barebone) by means of arrow/ok/cancel buttons. Hence, the remote is
to be used in conjunction with the LCD panel on which the GUI is shown. However, plastic
or rubber feeling buttons are not the most comfortable way to browse through menus and
execute actions.

Figure 7.7: Garfield comic, copyright by Jim Davis.

An option is to replace the remote by a PDA to control the home entertainment. This
can be achieved by installing the IDD somewhere, preferrably on a PC that acts as residential
gateway, and registering the software that runs on the barebone with the IDD. The idea is
to let the user request a distributed UI for the service she/he wants to use. For example, if
one intends to program a recording, only a UI for that specific task is needed. In the case of

7.3. MULTIMEDIA CENTER AND DOMOTICA 80

a PDA, buttons can be pressed by tapping on the screen. Visual feedback is given directly
on the PDA display and/or on the LCD panel. The distributed UI also allows to select songs
or program recordings from anywhere in the house (WLAN) or even in the world (WLAN +
Internet). PDA-like touch screen devices are also found in the Philips Pronto Series4. These
devices are able to transmit and record IR and/or RF codes and offer a local, customizable
UI to the user. The UI resides on the device itself and is not distributed, but the way of
interacting with appliances is highly comparable.

There is also an opportunity to exploit the IDD for domotica purposes and connect it
with a domotica software system. This way, the IDD can offer service UIs to switch on/off or
dim the lights, set the temperature, open/close the shutters, . . . If these services are available
over the Internet, security is an important concern as we do not want strangers to switch off
the central heating or set the thermostat to 40 degrees.

4http://www.pronto.philips.com/

Chapter 8

Conclusions

8.1 Summary of Results

To overcome the diversity in mobile devices and design portable GUIs, User Interface Descrip-
tion Languages (UIDLs) proof to be very useful. The idea is to describe a GUI in high-level
terms and render the actual GUI from this description by means of a native widget set avail-
able on the target device. A similar approach is to use the matured (X)HTML markup
language to design web interfaces, possibly in combination with stylesheets (CSS) and scripts
(JavaScript). Although developers of web interfaces have to deal with a limited set of widgets,
they can profit from the fact that practically every platform supports a web browser able to
visualize the interface. It has little sense to describe a GUI in a powerful UIDL if there are
no maintained renderers available for that UIDL.

Since these high-level descriptions are fairly portable, they are a good base for our primary
objective: distributable interfaces. We call a UI distributable if it can migrate as a whole to
a single device or in predefined parts to multiple devices. An important observation in this
context is that users are likely to use only a few specific services an application offers. In this
case, only parts of a GUI are needed and distributed to the user’s device. A smart distribution
of those parts that are needed to fulfill a certain task is a must, given the limited screen size
of most portable devices. An XML-schema language (RELAX NG) is applied to describe the
structure, constraints and types of a set of service UIs. We distinguish between user-driven,
system-driven and continuous distribution. The main difference between the former two is
the actor – the user or the system – that decides what services (UI parts) are distributed to
what devices in the interaction space. Continuous distribution involves the redistribution of
a GUI if clients enter or leave the interaction space, yet this is a topic for future research.

In a distributed environment, communication between devices is of considerable impor-
tance. Wireless ethernet and in particular IP-based networks are well suited to interconnect
hosts in the interaction space. One of the advantages of the IP protocol is its direct link with
the Internet, which stands guarantee for a wide coverage. An attractive higher-level protocol
that runs on top of the IP/TCP protocol stack is HTTP, commonly used in combination with

81

8.2. CONCLUDING REMARKS 82

the web or related services. RPC-based middleware systems often piggyback on the HTTP
protocol and are of particular interest in service-oriented environments. Especially the REST
‘vision’ attracts the attention because of its simplicity.

In the framework presented, we combine schema-driven UI generation/distribution with
REST. The framework is successfully applied to control a native audio player and image
viewer by means of a dynamic distributed interface, spread over one or more devices (laptop,
PDA, . . .). It is built so that developers can extend applications with minimal effort and
focus on the design of a distributable GUI without the need to learn a framework-specific
language or worry about distributed communication.

8.2 Concluding Remarks

In advance to this text, a paper [32] has been accepted by the International Conference on Web
Engineering1 that discusses some of the major foundations outlined here. The paper focuses
on web interfaces (XHTML), but the presented framework can deal with any XML-based
description language. Some words from the reviewers of the paper:

The distribution of a web page, along with its services, is an interesting topic that
is not yet completely solved. The distribution problems makes really sense when
different computing platforms are used, perhaps with different sets of constraints.
The system presented in the paper takes into account some constraints (mainly,
the screen resolution) of the computing platforms available to distribute the web
page. The paper clearly shows the problem posed by web distribution and demon-
strates that the authors have handled the problem very straightforwardly. A very
nice differentiation is made between personal interaction space and collaborative
interaction space.

Movies, screenshots and some full sized images of the system in use are available on the
following URLs:

• http://research.edm.luc.ac.be/cvandervelpen/research/icwe2005/

• http://lumumba.luc.ac.be/gvanderh/projects/thesis/

1http://www.icwe2005.org

Bibliography

[1] Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal, Stephen M. Williams,
and Jonathan E. Shuster. UIML: An Appliance-Independent XML User Interface Lan-
guage. Computer Networks, 31(11-16):1695–1708, 1999.

[2] Renata Bandelloni and Fabio Paternò. Flexible Interface Migration. In Proceedings of
Intelligent User Interface 2004 (IUI 04), pages 148–155, 2004.

[3] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific Amer-
ican, May 2001.

[4] Philip A. Bernstein. Middleware: a Model for Distributed System Services. Communi-
cations of the ACM, 39(2):86–98, 1996.

[5] Silvia Berti, Francesco Correanim, Fabio Paternò, and Carmen Santoro. The TERESA
XML Language for the Description of Interactive Systems at Multiple Abstraction Lev-
els. In 1st Annual International Conference on Mobile and Ubiquitous Systems 2004
(MOBIQUITOUS 04), pages 103–110, 2004.

[6] Galle Calvary, Joëlle Coutaz, Olfa Dâassi, Lionel Balme, and Alexandre Demeure. To-
wards a new generation of widgets for supporting software plasticity: the “comet”. In
The 9th IFIP Working Conference on Engineering for Human-Computer Interaction,
Jointly with The 11th International Workshop on Design, Specification and Verification
of Interactive Systems, 2004.

[7] James Clarck and Makoto Murata. RELAX NG Specification. World Wide Web, http:
//www.relaxng.org/spec-20011203.html, 2001.

[8] Karin Coninx, Kris Luyten, Chris Vandervelpen, Jan Van den Bergh, and Bert Creemers.
Dygimes: Dynamically Generating Interfaces for Mobile Computing Devices and Embed-
ded Systems. In Mobile HCI, pages 256–270, 2003.

[9] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed systems: Concepts
and Design. Addison-Wesley, 3rd edition, 2001.

[10] Jacob Eisenstein, Jean Vanderdonckt, and Angel R. Puerta. Applying model-based
techniques to the development of UIs for mobile computers. In Intelligent User Interfaces,
pages 69–76, 2001.

83

BIBLIOGRAPHY 84

[11] Kent Fitch. Schema Driven User Interface Generation. http://ausweb.scu.edu.au/

aw02/papers/refereed/fitch/paper.html, 2002.

[12] Krzysztof Gajos and Daniel S. Weld. SUPPLE: Automatically Generating User Inter-
faces. In IUI, Funchal, Portugal, 2004.

[13] Donatien Grolaux, Peter Van Roy, and Jean Vanderdonckt. Migratable User Interfaces:
Beyond Migratory Interfaces. In Sattelite workshop of Advanced Visual Interfaces (AVI
2004), pages 422–430, 2004.

[14] The Internet Engineering Task Force (IETF). HTTP State Management Mechanism.
http://www.ietf.org/rfc/rfc2109.txt, February 1997.

[15] The Internet Engineering Task Force (IETF). Hypertext Transfer Protocol – HTTP/1.1.
http://www.ietf.org/rfc/rfc2616.txt, June 1999.

[16] ECMA International. ECMAScript Language Specification. http://www.

ecma-international.org/publications/standards/Ecma-262.htm, 3rd edition, De-
cember 1999.

[17] Choonhwa Lee and Sumi Helal. Protocols for Service Discovery in Dynamic and Mobile
Networks. International Journal of Computer Research, 11(1):1–12, 2002.

[18] Kris Luyten and Karin Coninx. UIML.NET: An open UIML renderer for the .NET
framework. Technical report, Limburgs Universitair Centrum, 2004.

[19] Guido Menkhaus and Sebastian Fischmeister. Dialog model clustering for user interface
adaptation. In Web Engineering, Proceedings of the International Conference on Web
Engineering 2003 (ICWE 03), volume 2722 of LNCS, pages 194–203. Springer Verlag,
2003.

[20] Giulo Mori, Fabio Paternò, and Carmen Santoro. Design and development of multi-
device user interface through multiple logical descriptions. Transactions on Software
Engineering, 30(8), 2004.

[21] Brad A. Myers. Using handhelds and PCs together. Commun. ACM, 44(11):34–41, 2001.

[22] Netscape. Persistent Client State HTTP Cookies. http://wp.netscape.com/newsref/
std/cookie spec.html, 1999.

[23] Jeffrey Nichols, Brad A. Myers, Michael Higgins, Joe Hughes, Thomas K. Harris, Roni
Rosenfeld, and Mathilde Pignol. Generating Remote Control Interfaces for Complex
Appliances. CHI Letters: ACM Symposium on User Interface Software and Technology.
In UIST, Paris, France, October 2002.

[24] Shankar Ponnekanti, Brian Lee, Armando Fox, Pat Hanrahan, and Terry Winograd.
ICrafter: A Service Framework for Ubiquitous Computing Environments. In Proceedings
of the 3rd International Conference on Ubiquitous Computing (UBICOMP 01), pages
56–75. Springer-Verlag, 2001.

BIBLIOGRAPHY 85

[25] Shankar Ponnekanti, Luis Alberto Robles, and Armando Fox. User Interfaces for Network
Services: What, from Where, and How.

[26] Nathalie Souchon and Jean Vanderdonckt. A Review of XML-Compliant User Interface
Description Languages. In Joaquim A. Jorge, Nuno Jardim Nunes, and João Falcão
e Cunha, editors, DSV-IS, volume 2844. Springer, 2003.

[27] Pedro Szekely. Retrospective and Challenges for Model-Based Interface Development.
In F. Bodart and J. Vanderdonckt, editors, Design, Specification and Verification of
Interactive Systems, pages 1–27, Wien, 1996. Springer-Verlag.

[28] Andrew S. Tanenbaum. Computer Networks. Prentice-Hall, 4th edition, 2003.

[29] Eric van der Vlist. RELAX NG. O’Reilly and Associates, 2003.

[30] Sander van der Wal. Designing and building portable UIs for Symbian OS: Using multiple
controllers. Technical report, mBrain Software, March 2004.

[31] Jean Vanderdonckt and François Bodart. Encapsulating knowledge for intelligent auto-
matic interaction objects selection. In Proceedings of the SIGCHI conference on Human
factors in computing systems 1993 (CHI 93), pages 424–429. ACM Press, 1993.

[32] Chris Vandervelpen, Geert Vanderhulst, Kris Luyten, and Karin Coninx. Light-weight
Distributed Web Interfaces: Preparing the Web for Heterogeneous Environments. 2005.

[33] World Wide Web Consortium (W3C). Cascading Style Sheets (CSS). http://www.w3.

org/Style/CSS/.

[34] World Wide Web Consortium (W3C). Extensible Markup Language (XML). http:

//www.w3.org/XML/.

[35] World Wide Web Consortium (W3C). RDF Vocabulary Description Language 1.0: RDF
Schema. http://www.w3.org/TR/rdf-schema/.

[36] World Wide Web Consortium (W3C). Resource Description Framework (RDF). http:

//www.w3.org/RDF/.

[37] World Wide Web Consortium (W3C). Simple Object Access Protocol (SOAP). http:

//www.w3.org/TR/soap/.

[38] World Wide Web Consortium (W3C). Web Ontology Language (OWL).
http://www.w3.org/2004/OWL/.

[39] World Wide Web Consortium (W3C). XForms - The Next Generation of Web Forms.
http://www.w3.org/MarkUp/Forms/.

[40] World Wide Web Consortium (W3C). XML Schema. http://www.w3.org/XML/Schema.

[41] World Wide Web Consortium (W3C). XSL Transformations (XSLT) Version 2.0. http:
//www.w3.org/TR/xslt20/.

BIBLIOGRAPHY 86

[42] World Wide Web Consortium (W3C). The Extensible HyperText Markup Language
(XHTML). http://www.w3.org/TR/xhtml1/, January 2000.

[43] World Wide Web Consortium (W3C). Composite Capability/Preference Pro-
files (CC/PP): Structure and Vocabularies 1.0. http://www.w3.org/TR/

CCPP-struct-vocab/, 2004.

[44] World Wide Web Consortium (W3C). Document Object Model (DOM). http://www.

w3.org/TR/DOM-Level-3-Core, April 2004.

[45] World Wide Web Consortium (W3C). Document Object Model (DOM) Level 3 Load and
Save Specification. http://www.w3.org/TR/DOM-Level-3-LS/, 2004.

