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Samenvatting 

In het eerste deel van dit onderzoek wordt ‘model based clustering’ toegepast om 19 
centrale wegen in Hasselt in te delen in verschillende groepen op basis van hun 
gelijkaardige ongevalfrequenties in 3 opeenvolgende periodes van elk 3 jaar: 1992-1994, 
1995-1997, 1998-2000.  Er wordt verondersteld dat het geobserveerd aantal ongevallen 
afkomstig is van een aantal dichtheidsverdelingen waarbij de parameters van de 
verdelingen en het aantal verdelingen of clusters en de grootte van deze clusters 
onbekend zijn.  Het doel van ‘latent class clustering’ is, gegeven de onderliggende data, 
deze afzonderlijke dichtheidsverdelingen en het aantal en de grootte van de clusters te 
identificeren.  Meer bepaald maken we gebruik van een multivariaat Poisson mixture 
model met een gemeenschappelijke covariantieterm om de data te modelleren.  Een 
algemeen algebraïsche modelleringsysteem wordt gebruikt om de loglikelihood functie te 
maximalizeren.  De ongevallendata voor dit onderzoek zijn afkomstig van het Belgisch 
analyseformulier voor verkeersongevallen met lichamelijke letstel.  Deze data bevatten 
een grote hoeveelheid aan informatie omtrent de omstandighden waarin deze ongevallen 
hebben plaats gevonden: verloop van het ongeval, verkeersgegevens, 
omgevingskarakteristieken, wegcondities, menselijke factoren en geografische 
kenmerken.  In het tweede deel van dit onderzoek wordt dan ook gebruik gemaakt van 
de techniek van frequente sets om elke cluster van straten te profileren in termen van de 
bovengenoemde beschikbare ongevalsdata.  De sterkte van deze data mining techniek is 
het identificeren van ongevalskarakteristieken.   
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Summary 

In the first part of this research, model-based clustering is used to cluster 19 central 
roads of Hasselt into distinct groups based on their similar accident frequencies for 3 
consecutive time periods of each 3 years: 1992-1994, 1995-1997, 1998-2000.  The 
observed accident frequencies are assumed to originate from a mixture of density 
distributions for which the parameters of the distribution, the size and the number of 
clusters are unknown.  It is the objective of latent class clustering to ‘unmix’ the 
distributions and to find the optimal parameters of the distributions and the number and 
size of the clusters, given the underlying data.  More specifically, we use a multivariate 
Poisson mixture model with one common covariance term to model the data.  A general 
algebraic modelling system is used to maximise the loglikelihood function.  The accident 
data are obtained from the Belgian “Analysis Form for Traffic Accidents” and contain a 
rich source of information on the different circumstances in which the accidents have 
occurred: course of the accident, traffic conditions, environmental conditions, road 
conditions, human conditions and geographical conditions.  In the second part of this 
paper, the data mining technique of association rules is used to profile each cluster of 
traffic roads in terms of the available traffic accident data.  The strength of this approach 
lies within the identification of accident circumstances that frequently occur together for 
each group of traffic roads.  This can, in turn, make a strong contribution towards a 
better understanding of the accident circumstances in these clusters. 
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1.    IN T R O D U C T I O N 

In Belgium, every year approximately 50.000 injury accidents occur in traffic, with 
almost 70.000 victims, of which 1.500 deaths (Belgian Institute for Traffic Safety, 2000).  
Not only does the steady increase in traffic intensity pose a heavy burden on the society 
in terms of the number of casualties, the insecurity on the roads will also have an 
important effect on the economic costs associated with traffic accidents.  In Belgium, this 
macro-economic loss due to the lack of traffic safety on the roads is estimated at 3.72 
billion Euros per year (Dielemann, 2000).  Accordingly, traffic safety is currently one of 
the highest priorities of the Belgian government.   

 

Cameron (1997) indicates that clustering methods are an important tool when analyzing 
traffic accidents as these methods are able to identify groups of road users, vehicles and 
road clusters which would be suitable targets for countermeasures.  More specifically, 
cluster analysis is a statistical technique that groups items together on the basis of 
similarities or dissimilarities (Anderberg, 1973).  In Ng, Hung and Wong (2002) a 
combination of cluster analysis, regression analysis and Geographical Information System 
(GIS) techniques is used to group homogeneous accident data together, estimate the 
number of traffic accidents and assess the risk of traffic accidents in a study area.  The 
results will help authorities effectively allocate resources to improve safety levels in those 
areas with high accident risk.  In addition, the results will provide information for urban 
planners to develop a safer city. 

 

Furthermore, according to Kononov (2002), it is not possible to develop effective 
countermeasures to improve traffic safety without being able to properly and 
systematically relate accident frequency and severity to a large number of variables such 
as traffic, geometric and environmental factors.  Lee, Saccomanno and Hellinga (2002) 
indicate that in the past, statistical models have been widely used to analyze road 
crashes.  However, Chen and Jovanis (2002) demonstrate that certain problems may 
arise when using classic statistical analysis on datasets with such large dimensions such 
as an exponential increase in the number of parameters as the number of variables 
increases and the invalidity of statistical tests as a consequence of sparse data in large 
contingency tables.  This is where data mining comes to play.  Data mining is the 
nontrivial extraction of implicit, previously unknown, and potentially useful information 
from large amounts of data (Frawley et al, 1991).  From a statistical perspective it can be 
viewed as a computer automated exploratory data analysis of (usually) large complex 
data sets (Friedman, 1997).  Furthermore, data mining has tackled with problems such 
as what to do in situations where the number of variables is so large that looking at all 
pairs of variables is computationally infeasible (Mannilla, 2000).  For the purposes of this 
paper it is sufficient to point out that statistical models are particularly likely to be 
preferable when fairly simple models are adequate and the important variables can be 
identified before modelling.  However, when dealing with a complex data set of road 
accidents, the use of data mining methods seems particularly useful to identify the 
relevant variables that make a strong contribution towards a better understanding of 
accident circumstances.   

 

Therefore, in this research we will illustrate the possibility of identifying geographical 
locations with high accident risk by means of clustering techniques and profiling them in 
terms of accident related data by means of data mining techniques using a small but 
complex data set of traffic accidents.  In particular, in the first part of this paper we will 
use latent class clustering (also called model-based clustering or finite mixture modelling) 
to cluster traffic roads into distinct groups based on their similar accident frequencies.  In 
the second part of this paper, the data mining technique of frequent item sets is used to 
profile each cluster of traffic roads in terms of the available traffic accident data.   
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The remainder of this paper is organized as follows.  First, an introduction to the 
clustering technique and the concept of frequent item sets is provided.  This will be 
followed by a description of the data set.  Next, the results of the empirical study are 
presented. The paper will be completed with a summary of the conclusions and directions 
for future research.  
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2.    LA T E N T  CL A S S  CL U S T E R I N G 

As mentioned in the introduction of this paper, in this research an innovative method 
based on latent class clustering (also called model-based clustering or finite mixture 
modelling) is used to cluster traffic roads into distinct groups based on their similar 
accident frequencies.  More specifically, the observed accident frequencies are assumed 
to originate from a mixture of density distributions for which the parameters of the 
distribution, the size and the number of clusters are unknown.  It is the objective of 
latent class clustering to ‘unmix’ the distributions and to find the optimal parameters of 
the distributions and the number and size of the clusters, given the underlying data 
(McLachlan and Peel, 2000).   

2.1   Modelling Accident Rates with Poisson Distribution 

Since we do not know exactly what causes traffic accidents to happen, the approach is 
based on the idea of modelling the accident frequency as a Poisson-distributed random 
variable Y.  In general, the Poisson random variable Yi(t) represents the number of 
occurrences of a rare event in a time interval of length t and is therefore well suited for 
modelling the number of accidents at location i over a certain period of time t (Brijs et al, 
2003).  

 

This means that we are given a number of locations (i= 1, …, n) on which the random 
variable Yi (i.e. accident rate) is measured over a certain period of time (t), e.g. weeks, 
months or years.  We assume the discrete random variable Yi(t) to be distributed 
Poisson, where yi = 0, 1, 2, … and the rate parameter λt >0, i.e. 

Poi(Yi(t)= yi | λ)= !
)(

i

tiy

y
et λλ −

 

The mean and the variance of the Poisson distribution are E(Y(t))= λt and Var(Y(t))= λt, 
respectively.  The fact that the mean and the variance of the Poisson distribution are 
identical is however too restrictive in many applications where the variance of the data 
may exceed the mean (Cameron and Trivedi, 1986).  This situation is called 
‘overdispersion’ (McCullagh and Nelder, 1989) and may be due to heterogeneity in the 
mean event rate of the Poisson parameter λ across the sample.  Solutions to the problem 
of overdispersion therefore involve accommodating for the heterogeneity in the model. In 
this research, we will adopt the finite mixture specification. 

2.2   The Finite Mixture Specification 

The finite mixture specification assumes that the underlying distribution of the Poisson 
parameter λ over the population can be approximated by a finite number of support 
points (Wedel et al., 1993), which in the context of this study represent different clusters 
or latent classes of accident locations in the data.  These support points and their 
respective probability masses can be estimated by a maximum likelihood approach.   

 

For instance, in the case of a two-cluster model, we assume that there are two support 
points.  In other words, we assume there are two groups of locations:  

- a group of roads of size p1 whose latent accident parameter λ=θ1  
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- and a second group of roads of size p2=(1-p1) whose average accident rate λ=θ2, 

where 0<pj<1, and ∑
=

k

j
jp

1
=1 are the mixing proportions with k=2.  Note that the 

mixing proportion is the probability that a randomly selected observation belongs 
to the j-th cluster.  

 
Consequently, the two cluster model can be formulated as: 

P[Yi(t)=yi] = P[Yi(t)=yi | group1]. P[group1] +  P[Yi(t)=yi | group2]. P[group2] 

= 
!
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i
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y
et θθ −

.p1 + !
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.(1-p1) 

 

In general, the purpose of model-based clustering is to estimate the parameters ( p1,…, 
pk-1, θ1, …, θk), with k = number of clusters, following the maximum likelihood (ML) 
estimation approach.  This involves maximizing the loglikelihood. 

For the two cluster model, the loglikelihood function is then defined as: 

LL (p1, θ1, θ2| data)=
( )∑

=
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In this paper, we use a non-linear iterative fitting algorithm (nlp) to maximize the 
loglikelihood.  To prevent the algorithm from finding a local but not a global optimum we 
use multiple sets of starting values for the algorithm and we observe the evolution of the 
final likelihood for different restarts of the algorithm. 

2.3   Determining the Number of Clusters 

In some applications of mixture models, there is sufficient a priori information for the 
number of clusters k in the mixture model to be specified with enough certainty.  For 
instance, when the clusters correspond to externally existing groups.  However, in this 
research, the number of clusters has to be inferred from the data, along with the 
parameters.  

 

To decide on the number of components in a mixture model we use the so-called 
information criteria to evaluate the quality of a cluster solution.  Examples include AIC 
(Akaike information criterion), CAIC (Consistent Akaike information criterion) and BIC 
(Bayes information criterion) (Schwarz, 1978): 

AIC= -2Lk + 2 dk 

BIC= -2Lk + ln(n) dk 

CAIC= -2Lk + [ln(n)+1] dk 

 

These are goodness of fit measures, which take into account model parsimony.  The idea 
is that the increase of the likelihood of the mixture model (Lk) on a particular dataset of 
size n, is penalized by the increased number of parameters (dk) needed to produce this 
increase in fit.  The smaller the criterion, the better the model in comparison with 
another. 
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3.    FR E Q U E N T  IT E M  SE T S  

3.1   Association Algorithm 

In the second part of this study, an association algorithm is used to profile each cluster of 
traffic roads in terms of the variables available on the traffic accident form.  This data 
mining technique was first introduced by Agrawal et al. (1993).  It can be used to 
efficiently search for frequently co-occurring variables in large amounts of data.  More 
specifically, the association algorithm produces frequent item sets describing underlying 
patterns in data.  In contrast with predictive accident models, the strength of this 
algorithm lies within the identification of accident circumstances that frequently occur 
together (Geurts et al., 2003)).  Informally, the support of an item set indicates how 
frequent that combination of items or accident characteristics occurs in the data.  The 
higher the support of the item set, the more prevalent the item set is.  It is obvious that 
we are especially interested in item sets that have a support greater that the user-
specified minimum support (minsup).  These items are considered to be “frequent” 
itemsets.  

 

A typical approach (Agrawal et al., 1996)) to discover all frequent item sets is to use the 
insight that all subsets of a frequent set must also be frequent.  This insight simplifies the 
discovery of all frequent sets considerably, i.e.  first find all frequent sets of size 1 by 
reading the data once and recording the number of times each item A occurs.  Then, 
form candidate sets of size 2 by taking all pairs {B, C} of items such that {B} and {C} 
both are frequent.  The frequency of the candidate sets is again evaluated against the 
database.  Once frequent sets of size 2 are known, candidate sets of size 3 can be 
formed; these are sets {B, C, D} such that {B, C}, {B, D} and {C, D} are all frequent.  
This process is continued until no more candidate sets can be formed.   

3.2   Interesting Patterns 

The association algorithm generates all item sets that have support higher than minsup.  
However, a large subset of the generated rules itemsets will be trivial and a filter is 
needed to post-process the discovered item sets.  Two properties of the association 
algoritm can be used to distinguish trivial from non-trivial patterns.  A first, more formal 
method (Brin et al., 1997) to assess the dependence between the items in the item set is 
lift (L): 

)(*)(
),(
BsAs
BAsL =  

The nominator s(A,B) measures the observed frequency of the co-occurrence of the 
items A and B.  The denominator s(A) * s(B) measures the expected frequency of the co-
occurrence of the two items under the assumption of conditional independence.  The 
more this ratio differs from 1, the stronger the dependence.  Table 1 illustrates the three 
possible outcomes for the lift value and their associated interpretation for the 
dependence between the items.   

Table 1: Interpretation of Lift 

Outcome  Interpretation 

+ ∞> L > 1 Positive interdependence effects between A and B 

L = 1 Conditional independence between A and B 

0 < L < 1 Negative interdependence effects between A and B 
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Besides ranking the item sets on their lift value, we can use a second measure, i.e. the 
interestingness measure (I) to limit the accident patterns to only the discriminating or 
useful ones (Anand et al., 1997), Geurts et al., 2003)).   

I = { }12

12
),(,),(max

),(),(
BASBAS
BASBAS −

 

 

This interestingness measure is based on the deviation in support values of the frequent 
item sets discovered for two different clusters.  The nominator S2 –S1  measures the 
difference in support for the accident characteristics in cluster 2 (S2) and cluster 1 (S1).  
The expression max { }12 ,SS  is called the normalizing factor as it normalizes the 
interestingness measure onto the scale [-1,1].   

3.3   Example 

For example, consider the following accident data set containing 3 accidents: 

Accident 1: Rain, crossroad, traffic lights 

Accident 2:  Rain, crossroad, traffic signs 

Accident 3:  Normal weather, zebra crossing, pedestrian 

 

Suppose we set the minimum support value (minsup)=60%.  This means that the 
accident variables should occur in at least 60% of all the accidents before they are 
considered as frequent.  This leads to the following results: 

 

• Frequent item sets of size 1:  Frequent item sets of size 2: 

s (Rain) = 2/3 (66,6%)    s (Rain, Crossroad) = 2/3 (66,6%) 

s (Crossroad) = 2/3 (66,6%) 

 

• Lift (Rain, Crossroad)= s (Rain, Crossroad) / (s (Rain) * s (Crossroad)) 

= (2/3) / ((2/3)*(2/3)) = 3/2 

>1 : Positive interdependence between Rain and Crossroad 

 

Suppose the item set (Rain, crossroad) is also frequent in a second data set:  

s (Rain, Crossroad)= 3/4 (75%).   

 

• Interestingness= s1 (Rain, Crossroad) – s2 (Rain, Crossroad) / max {s1, s2} 

  = ((2/3) – (3/4)) / (3/4) = - 0,11 

  <1 : This value is close to ‘0’, indicating that although the item set 
(Rain, Crossroad) is very descriptive for both data sets (lift 
value>1), this item set is not very discriminating between the two 
data sets.   
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4.    DA T A 

This study is based on a data set of traffic accidents obtained from the National Institute 
of Statistics (NIS) for the region of Flanders (Belgium) for the years 1992-2000.  The 
data are collected by means of the Belgian “Analysis Form for Traffic Accidents” that 
should be filled out by a police officer for each traffic accident that occurs with injured or 
deadly wounded casualties on a public road in Belgium.  These traffic accident data 
contain a rich source of information on the different circumstances in which the accidents 
have occurred: course of the accident (type of collision, road users, injuries, …), traffic 
conditions (maximum speed, priority regulation, …), environmental conditions (weather, 
light conditions, time of the accident, …), road conditions (road surface, obstacles, …), 
human conditions (fatigue, alcohol, …) and geographical conditions (location, physical 
characteristics, …).  On average, 45 attributes are available for each accident in the data 
set.  More specifically, this analysis will focus on 19 central roads in the city of Hasselt for 
3 consecutive time periods of 3 years each:1992-1994, 1995-1997, 1998-2000.  In total, 
142 accidents are included in the analysis.  
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5.    EM P I R I C A L  ST U D Y  

5.1   Clustering Traffic Roads 

5.1.1   3-Variate Poisson Distribution with Common Covariance 

As explained in the previous section, the number of accidents on 19 (n = 19) similar 
roads in Hasselt (Belgium) are considered for 3 following time periods of each 3 years.  
The idea is to cluster the traffic roads in groups based on the similarities in the number of 
accidents that occurred on the roads during each time period.   

 

Therefore, a 3-variate Poisson distribution (Y1, Y2, Y3) with one common covariance term 
is defined for each cluster (Li et al., 1999): 

Y1 = X1 + X123   (period 1= 1992-1994) 

Y2 = X2 + X123  (period 2= 1995-1997) 

Y3 = X3 + X123  (period 3= 1998–2000) 

with Yi = the number of accidents on a traffic road in period i and all X‘s independent 
univariate Poisson distributions with respective parameters (λ1, λ2, λ3, λ123).   

 

Since a large number of variables that influence the number of accidents in a certain time 
period will be time specific (e.g. traffic intensities), we will use one Poisson distribution 
for each time period to approximate the number of accidents in period i (Xi).  
Furthermore, it can easily be seen that the occurrence of accidents on a traffic road over 
several time periods may be related (e.g. due to bad infrastructure).  Therefore, 
correlations between the observations in each cluster are allowed by identifying the 
parameter λ123, which  can be considered as a covariance factor that measures the risk of 
the area common to all time periods (Karlis, 2000).  

5.1.2   Mining the Algorithm 

The algorithm is sequentially applied to the data for 1 to 5 clusters (k =1, …,5).  
Furthermore, in order to overcome the dependence on the initial starting values for the 
model parameters, resulting in a local optimum instead of a global optimum value, 
different sets of starting values for pi and λi are chosen.  However, results show that 
dependencies on the initial starting values only occur for large values of k, while for 
smaller values of k the algorithm terminates at the same solution with the same 
parameter values, indicating that the global optimum has very likely been achieved.  

 

Figure 1 and figure 2 show the evolution of respectively the loglikelihood and the 
information criteria for different clusters (k=1, …,5) of the 3-variate Poisson Mixture 
Model with common Covariance. 

 

These figures indicate the use of the goodness of fit measures to determine the number 
of clusters: although the loglikelihood of the model increases when the number of 
clusters increases, the information criteria will not choose the maximum possible clusters 
to cluster the data.  Considering the model complexity, the AIC selects 3 clusters 
whereas the CAIC and the BIC select only 2 clusters.  This difference can be explained by 
the fact that the AIC does not consider the size of the dataset, whereas the CAIC and the 
BIC do penalize for this factor.  However, note that the difference between the AIC value 
for 2 clusters (219,8) and for 3 clusters (220,3) is very small.   
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Figure 1: Loglikelihood against the number of clusters for the 3-variate Poisson Mixture 
Model with common Covariance 
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Figure 2: AIC, CAIC and BIC against the number of clusters for the 3-variate Poisson 
Mixture Model with common Covariance 

 

5.1.3   Parameter Estimates 

Table 1 and table 2 contain the parameter estimates and the size of each cluster (p) for 
the model with 2 and 3 clusters respectively.  One can see that the cluster solutions are 
different.  

 

In the 2-components common covariance model the average number of accidents 
increases per period for the first cluster and decreases per period for the second cluster.  
Furthermore, the observed average accident rate per period for cluster 1 is mainly 
dependent on the average accident frequency of the concerning period (λi) and less on 
the covariance factor (λ123).  For cluster 2, the covariance term does play an important 
role in the observed average accident rate per period.  This can be explained as for this 
cluster there is a strong common factor in all periods that has to do with the accident risk 
on these roads, for example due to bad infrastructure, constant high traffic volume.  
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However, note that for this second cluster there is a strong decrease in the average 
number of accidents from period 2 (λ2) to period 3 (λ3).  This could be an indication of 
infrastructural changes between these two periods.  

 

Analogously, the results for the 3-components common covariance model can be 
analysed.  One should remark that the value for λ1 in cluster 1 and λ2 in cluster 2 will be 
very small, meaning that the total average accident frequency for cluster1 in the first 
period and cluster 2 in the second year will mainly be influenced by the overall accident 
risk on the roads.  Corresponding with the previous results, for cluster 3 a strong 
decrease in the average number of accidents from period 2 (λ2) to period 3 (λ3) can be 
found.  This could be an indication of infrastructural changes between these two periods.  

 

Table 1: Estimated parameters for the 2-components common covariance model  

 Parameters 

Cluster λ1 λ2 λ3 λ123 p 

1 0,631 0,930 1,089 0,005 0,688 

2 4,149 3,490 1,790 3,726 0,312 

 

Table 2: Estimated parameters for the 3-components common covariance model  

 Parameters 

Cluster λ1 λ2 λ3 λ123 p 

1 0,000 1,041 0,991 0,104 0,506 

2 1,819 0,000 0,790 0,675 0,229 

3 4,518 4,106 1,930 4,042 0,265 

 

5.2   Profiling Traffic Roads 

In the last part of this paper, we will use frequent item sets to profile each cluster of 
traffic roads.  More specifically, we will focus on the results of the 2-components common 
covariance model which groups the traffic roads in two clusters.  Since these clusters 
show different results for the overall accident ‘risk’ on the roads, one could expect that 
not every accident variable will be of equal importance when describing the different 
groups of traffic roads.  Therefore, a comparative analysis between the accident 
characteristics that frequently occur together in the different clusters is conducted, which 
provides new insights into the complexity and causes of road accidents.   

 

Two data sets of traffic accidents are defined according to the traffic roads belonging to 
cluster 1 and cluster 2.  This is determined by estimating the posterior probability wij, i.e. 
the posterior probability for location i to belong to cluster j.  This probability can be 
obtained for each observation vector yi according to Bayes’ rule.  Indeed, after 
estimation, we know the density distribution f (yi | θj) with θj = vector of parameters for 
cluster j, and we know the cluster size pj of each component such that we can calucalate 
the posterior distribution as: 
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Assigning the accident locations to the cluster with the highest posterior probability 
resulted in a total of 35 traffic accident records that were included for the analysis of 
cluster 1 (13 traffic roads) and 107 traffic accidents that were included for the analysis of 
cluster 2 (6 traffic roads).  Figure 1 and Figure 2 give an overview of these clusters.   

…Cluster 1= Windmolenstraat; Jan van Helmontlaan; Vuurkruisenlaan; Zeven 
Septemberlaan; Weerstandslaan; Heldenplein; Nicolaas Cleynaertslaan; Helbeekplein; 
Kroonwinningsstraat; Elf Novemberlaan; Jan Palfijnlaan; Daniëlsstraat; Lentestraat 

 Cluster 2= Kunstlaan; Casterstraat; Harpstraat; St. Katarinalaan; St. Katarinaplein ; 
Oude Luikerbaan 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: City map of Hasselt 

 

 
Figure 2: Traffic roads belonging to cluster 1 (…) and cluster 2 (). 
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We distinguish different steps in the mining process: a pre-processing step and a 
transformation step in which the available data are prepared for the use of the mining 
technique, a mining step for generating the frequent item sets and a post-processing 
step for evaluating and interpreting the most interesting patterns.   

5.2.1   Pre-processing and Transforming the Data Set  

Some variables have a continuous character.  Discretization of these continuous variables 
is necessary, since generating frequent item sets requires a data set for which all items 
are discrete.  The intervals for these variables were created on the basis of expert 
knowledge on traffic safety issues such as traffic rush hours, types of road users (drivers 
license) in Belgium.  For example, six new attributes were created from the continuous 
variable ‘time of accident’: morning rush hour (7am-9am), morning (10am-12am), 
afternoon (1pm-3pm), evening rush hour (4pm-6pm), evening (7pm-9pm) and night 
(10pm-6am).  A second example includes the variable age for which six new intervals 
were created: age between 0 and 17, age between 18 and 29, age between 30 and 45, 
age between 46 and 60 and age over 60.  Other intervals were created by looking at the 
frequency tables for each variable.  For variables where no domain knowledge for 
grouping the attribute values could be found, we used the Equal Frequency Binning, a 
discretization method to generate intervals containing an equal number of observations 
(Holte, 1993).  Furthermore, attributes with nominal values had to be transformed into 
binary attribute values.  This means that dummy variables were created by associating a 
binary attribute to each nominal attribute value.Finally, irregularities such as data 
inconsistencies, missing values, redundant variables and double counts are tracked, 
listed and removed from the data sets.   

 

A first analysis of these data sets shows that the two clusters of traffic roads have some 
common accident characteristics.  For example, in both clusters most of the time 2 road 
users are involved in the accident (> 80%).  Furthermore, most accidents occur on a 
crossroad (70-80%) with priority to the right (70-80%) where no priority was given (70-
80%).  Additionally, in both clusters most accident occurred in daylight (>80%), on a 
weekday (70-80%) with normal weather (> 80%) and on a dry road surface (70%).   
 
However, some variables will occur more frequently in one cluster than in the other 
indicating differences between the accident characteristics on the roads of cluster 1 and 
cluster 2.  For example, in cluster 2 the number of accidents involving a bicycle (18%) is 
almost twice as high as in cluster 1 (10%).  Furthermore, in both clusters most accidents 
occurred in the morning (29%), however compared to cluster 1 in cluster 2 the number 
of accidents that occurred in the afternoon is relatively higher (24% compared to 17%) 
while the number of accidents that occurred in the morning rush hour is relatively lower 
(22% compared to 14%).  Additionally, in cluster 2 the number of female road users 
involved in the accidents is slightly higher (44%) compared to cluster 1 (34%).  Finally, 
in cluster 2 most road users are of the age between 18 and 29 (35%) and less of the 
other age categories while in cluster 1 most road users are of the age between 18 and 29 
(33%) or 30 and 45 (33%).   

 

These results already give an indication of the differences in accident characteristics 
between cluster 1 and cluster 2.  In the following step, we will generate frequent item 
sets to identify combinations of accident characteristics that frequently occur together.   

5.2.2   Generating Frequent Items Sets  

A minimum support value of 30 percent was chosen for the analysis by means of 
frequent sets.  It could be argued that the choice for the value of this parameter is rather 
subjective. This is partially true, however a trial and error experiment indicated that 
setting the minimum support too low, leads to exponential growth of the number of items 
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in the frequent item sets. Accordingly, the number of rules that will be generated will 
cause further research on these results to be impossible due to computer memory 
limitations. In contrast, by choosing a support parameter that is too high, the algorithm 
will only be capable to generate trivial rules.  

 

From cluster 1, with a minsup=30 percent, the algorithm obtained 29415 frequent item 
sets of maximum size 4.  Although these results relate to a relatively small number of 
accident records, they are quite reasonable since an average of 40 items is available per 
accident, allowing the algorithm to generate multiple combinations of size 4 item sets.  
With the same support parameter the second analysis resulted for cluster 2 in 28541 
frequent item sets of maximum size 4.  These rules are further processed to select the 
most interesting rules. 

5.2.3   Post-processing the Frequent Item Sets 

As stated in the introduction of this paper, the emphasis in this part of the study lies on 
the profiling of clusters of traffic roads in terms of accident related data and the degree in 
which these accident characteristics are discriminating between the different clusters.  
Therefore, we will first discuss the item sets that are frequent for both clusters of 
accident locations.  These accident patterns are descriptive for cluster 1 and for cluster 2.  
However, the occurrence of these patterns will not be equally strong in both data sets.   

 

Selecting these frequent item sets resulted in 24562 accident patterns.  The 
discriminating character of these accident patterns can be determined by means of the 
interestingness measure.  In this research, we will pay special attention to the item sets 
with a positive interest value, i.e. approximating ‘1’ since these accident patterns are 
stronger for cluster 2, i.e. the cluster with the highest accident risk.   

 

Accordingly, selecting the item sets with I > 0,3 resulted in 12 item sets of size 2, 75 
item sets of size 3 and 309 item sets of size 4.  Table 3 gives an overview of the most 
interesting of these frequent item sets.   

 

Table 3: Frequent Item Sets for Accidents in Cluster 1 and Cluster 2. 

N Item1 Item2 Item3 Item4 S2 Lift2 S1 Lift1 I 

1 Weekday Inside built up area 2 road users  71,96% 1,02 45,16% 0,94 0,37 

2 Weekday Age road user 18-29   59,81% 1,02 38,71% 0,92 0,35 

3 Weekday Inside built up area Female road user  52,33% 1,01 32,25% 0,99 0,38 

4 Weekday Inside built up area Female Road user  Car 54,20% 1,01 32,25% 0,75 0,40 

5 Straight direction 50 km/h Daylight  46,72% 1,06 32,25% 1,10 0,30 

6 Sideways collision 50 km/h   48,59% 1,01 32,25% 1,05 0,33 

7 Sideways collision Inside built up area Weekday Car 57,94% 1,09 38,70% 1,03 0,33 

8 Sideways collision Inside built up area 2 road users Weekday 57,94% 1,11 38,70% 1,20 0,33 

9 Sideways collision Female road user Normal condition  55,14% 1,02 35,48% 0,88 0,35 

10 Dry road surface Inside built up area Weekday  57,94% 0,99 38,70% 0,84 0,33 

11 Normal weather Inside built up area Weekday 
Straight 
direction 

52,33% 0,97 32,25% 0,74 0,38 
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Results of table 3 show that the accident patterns that occur more frequently in cluster 2 
than cluster 1 often occur on a weekday, inside the built up area with 2 road users 
[N=1], with one road user’s age being between 18 and 29 [2].  Additionally, these 
accidents often involve a female road user [3], driving a car [4].  Furthermore, one road 
user is frequently driving in a straight direction with a speed limit of 50 kilometres per 
hour in daylight [5], These accidents frequently result in a sideways collision [6, 7, 8] 
with at least one road user in a normal condition [9].   

 

The relatively young age (between 18 and 29) of the road users involved in the accidents 
on the traffic roads of cluster 2 could indicate that in this high risk cluster young parents 
are involved who drive their children to school.  However, additional information on the 
traffic roads shows us that the schools are located on the traffic roads of cluster 1.  On 
the traffic roads of cluster 2 the church, music academy, cultural centre and most 
important shops (e.g. bakeries, newspaper shops, hairdressers, laundry services, banks) 
are located.  This information indicates that these accident patterns do not occur in the 
immediate environment of the schools but will most likely occur on the roads leading to 
and from the schools where the shops are located.  Indeed, when looking at the time of 
accident, 14,5% of the accidents take place between 7am and 9am and 18,3% of the 
accidents take place between 4pm and 6pm.  Furthermore, 29% of the accidents take 
place between 10am and 12am and 23,7% between 1pm and 3pm, which correspond 
with the opening hours of most shops.  Remarkably less accidents occur in the evening 
(5,3% between 7pm and 9pm) and at night (9,2% between 10pm and 6am) when the 
shops are closed.  Additionally, the accidents occurring on a weekday, inside the built up 
area and resulting in a sideways collsion mostly occurred on a crossroad (71,6%).   

 

Furthermore, results of table 3 show that compared to cluster 1 the accidents on traffic 
roads belonging to cluster 2 occur more frequently on a dry road surface [10] and with 
normal weather [11].  However, note that for both clusters these accident patterns have 
a lift value smaller than ‘1’.  This means that although in cluster 2 more accidents occur 
under normal weather conditions and on dry road surfaces than in cluster 1, these 
accident patterns still occur less frequently than expected for both clusters.   

 

These accident patterns indicate that most accidents that occur on a traffic road 
belonging to the high risk cluster (cluster2) take place under no special variable 
environmental circumstances (e.g. rain, alcohol).  Therefore, it can be expected that the 
high number of accidents on these traffic roads can be explained by an unsafe 
infrastructure or a high traffic volume for all time periods, confirming our previous results 
of a high common covariance factor for this cluster.   

 

Next, we will discuss the accident patterns that are frequent for cluster 2 but not for 
cluster 1.  These item sets represent very characteristic combinations of accident 
circumstances for the traffic roads with a high accident risk.  More specifically, we are 
interested in the frequent item sets with lift values differing from ‘1’ since these item sets 
represent strong dependencies between the different items of the item set.  However, 
note that we should not compare the absolute lift values of the item sets of different 
sizes, since the more items the item set consists of, the higher the lift value will become.   

 

Selecting the item sets that are unique for cluster 2 resulted in 3943 frequent accident 
patterns.  Table 4 gives an overview of the most interesting of these frequent item sets.   
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Table 4: Frequent Item Sets for Accidents in Cluster 2. 

N Item1 Item2 Item3 Item4 SupportLift 

12 Sideways collision Female road user No priority given  41,12% 1,23 

13 Sideways collision Female road user No priority given Crossroad 34,57% 1,58 

14 50 km/h Brakes  No priority given  30,84% 1,40 

15 50 km/h Car 
Age road user
between 18 and 29 

 39,25% 1,19 

16 Weekday Bicycle   33,64% 1,09 

17 Weekday Bicycle  2 road users  30,84% 1,14 

18 0 deadly injured Bicycle   36,44% 1,13 

 

Conform with the results of table 3, results of table 4 show that sideway collisions 
involving female road users are a typical accident pattern for traffic roads with a high 
accident risk [12, 13].  Again, these results indicate that this type of accident occurs 
frequently while the maximum speed limit was 50 kilometres per hour for these 
accidents, while no priority is given [12, 13, 14] and the age of at least one road user 
was between 18 and 29 [15]. 

 

A second important accident type that is reflected in the results of table 4 are the 
accidents involving a bicycle.  These accidents often take place on a weekday [16] with 2 
road users [17] and frequently coincide with 0 deadly injured victims [18].  Note that 
these accident patterns are not very surprising as such, but remark that they do not 
appear for the accidents of cluster 1.  Again, this could be explained by the proximity of 
shops, the cultural centre, music academy, church etc. on the traffic roads of cluster 2.  
The intensity of bicyclists will probably be much higher on these roads compared to 
majority of the roads of cluster 1 where in general none of these centres or stores are 
located.  Since this traffic intensity of bicyclists will more or less be the same over all 
time periods, this factor will probably contribute to the high common covariance term for 
cluster 2.   

 

However, since the schools are located on the traffic roads of cluster 1 and accordingly 
the intensity of bicyclists will also be high in these specific streets, it is surprising that 
these accident patterns with bicyclists do not occur at all in cluster 1.  Again, this 
indicates that accidents with bicycles do not frequently occur in the immediate 
environment of the schools but will most likely occur on the roads leading to and from 
the schools.   

 

Finally, we will discuss the item sets that are unique for the accidents related to cluster 
1.  These item sets represent very characteristic combinations of accident circumstances 
for the traffic roads with a low accident risk.  Again, we are interested in the frequent 
item sets with lift values differing from ‘1’.   

 

Selecting the item sets that are unique for cluster 1 resulted in 4879 frequent accident 
patterns.  Table 5 gives an overview of the most interesting of these frequent item sets.   
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Table 5: Frequent Item Sets for Accidents in Cluster 1. 
 

N Item1 Item2 Item3 Item4 SupportLift 

20 Crossroad Priority to the right    61,61% 1,40 

21 Crossroad Priority to the right Daylight  41,93 1,47 

22 Normal weather Priority to the right 
Age road user
between 30 and 45 

 32,25% 1,16 

23 Normal weather Dry road surface Crossroad 
Age road user
between 46 and 60 

35,48% 1,07 

24 Car 
Age road user
between 46 and 60 

  35,48% 1,07 

25 Inside built up area  weekend   32,25% 1,14 

 

Results of table 5 show that an important accident type for the traffic roads with low 
accident risk are the accidents on crossroads with priority to the right [20, 21].  These 
accidents take up 61,61% of all accidents on these roads.  However, in contrast with the 
previous results, these accidents more frequently than expected involve a road user with 
age between 30 and 45 [22].  Additionally, when an accident occurs on a crossroad with 
normal weather on a dry road surface, at least one road user of the age between 46 and 
60 is involved [23, 24].  These results show that the age of the road user is not as 
pronounced for the accidents occurring on the low accident risk traffic roads.  

 

Finally, an important accident pattern involves the accidents that occur inside the built up 
area in the weekend [25].  Note that these weekend accidents did not appear for the 
traffic roads with high accident risk.  
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6.    CO N C L U S I O N S  AN D  FU R T H E R  RE S E A R C H 

In the first part of this research, model-based clustering is used to cluster 19 central 
roads of Hasselt into distinct groups based on their similar accident frequencies for 3 
consecutive time periods of each 3 years: 1992-1994, 1995-1997, 1998-2000.  The 
strength of this technique lies in the identification of the optimal number of clusters and 
the size and parameters of each cluster.  Results showed that the optimal number of 
clusters can vary from 2 to 3 clusters, depending on the chosen information criterion.  
For the two components model parameter estimates show that the average number of 
accidents increases per period for the first cluster and decreases per period for the 
second cluster. Furthermore, the observed average accident rate per period for cluster 1 
is mainly dependent on the average accident frequency of the concerning period and less 
on the covariance factor. For cluster 2, the covariance term does play an important role 
in the observed average accident rate per period. This can be explained as for this cluster 
there is a strong common factor in all periods that has to do with the accident risk on 
these roads. 

 

In the second part of this paper, the association algorithm was used on a data set of 
traffic accidents to profile the two clusters of traffic roads.  The analysis showed that by 
generating frequent item sets the identification of accident circumstances that frequently 
occur together is facilitated.  This leads to a strong contribution towards a better 
understanding of the occurrence of traffic accidents.  This is particularly useful when 
dealing with a large and complex data set of traffic accidents of which the important 
variables.  However, frequent item sets do describe the co-occurrence of accident 
circumstances but they do not give any explanation about the causality of these accident 
patterns.  Therefore, their role is exploratory and to give direction to more profound 
research since the use of some additional techniques or expert knowledge will be 
required to identify the most important causes of these accident patterns, allowing 
governments to better adapt their traffic policies to the different kind of accident 
circumstances.  Furthermore, the results indicate that the use of the association 
algorithm not only allows to give a descriptive analysis of accident patterns within one 
cluster, it also creates the possibility to find the accident characteristics that are 
discriminating between two groups of traffic roads.   

 

The most important results indicate that sideway collisions on a weekday involving young 
road users are a typical accident pattern for traffic roads with a high accident risk.  
Furthermore, bicycle accidents are an important traffic safety problem in this cluster.  
These results could be explained by the proximity of shops, the cultural centre, music 
academy, church etc. and the resulting high traffic volume on these traffic roads.  
Accordingly, the roads belonging to this cluster should be considered as dangerous at all 
times resulting in a high number of accidents in all time periods.  Furthermore, these 
accident patterns do not occur as frequently in cluster 1 although the schools are located 
in this cluster.  For these traffic roads with a low accident risk crossroads with priority to 
the right are an important accident problem.  However, in contrast with the results for 
the high accident risk traffic roads, these accidents occur in diverse age categories and 
also in the weekend.  Therefore, we can conclude that on the traffic roads of cluster 1 
most accidents occur by chance and less due to bad infrstructure.  In conclusion, this 
analysis shows that a special traffic policy towards these clusters should be considered, 
since each cluster is characterized by specific accident circumstances, which require 
different measures to improve the traffic safety.  

 

Although the association analysis carried out in this paper revealed several interesting 
patterns, which, in turn, provide valuable input for purposive government traffic safety 
actions, several issues remain for future research.  First, the inclusion of domain 
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knowledge (e.g. traffic intensities, a priori infrastructure distributions) in the association 
algorithm would improve the mining capability of this data mining technique and would 
facilitate the post-processing of the association rules set to discover the most interesting 
accident patterns.  Furthermore, the identified interesting accident patterns can be used 
in more statistical models to test their significance and to evaluate the difference in 
importance of these effects in the different clusters.  Finally, the Poisson mixture 
regression model (Wedel et al., 1993) can be used to identify groups of locations with a 
different impact of the road characteristics on the accident risk.  Indeed, it is possible 
that a specific combination of road characteristics is more dangerous for one group of 
locations while less dangerous for a second group of locations, depending on the other 
environmental factors that are not included in the analysis.  The number of groups and 
the size of each group will be automatically identified by the technique and accordingly 
do not need to be defined in advance by the researcher.    
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