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Abstract

The linear mixed effects model has become a standard tool for the analysis of
continuous hierarchical data such as, for example, repeated measures or data from
meta-analyses. However, in certain situations the model does pose unavoidable com-
putational problems. In the context of surrogate markers, this problem has appeared
when using an estimation and prediction-based approach for evaluation of surro-
gate endpoints. Convergence problems can occur mainly due to small between-trial
variability or small number of trials. A number of alternative strategies has been
proposed and studied for normally distributed data, but not such study have been
conducted for other type of endpoints. The idea is to study if such simplified strate-
gies, which always ignore individual level surrogacy, can also be applied when both
surrogate and true endpoints are of failure-time types. It is shown via simulations
that the 3 simplified strategies produced biased estimates, especially for the cases
in which the strength of individual-level association is different from the strength
of trial-level association. For this reason, it is recommended not to use simplified
strategies when dealing with failure time data, in contrast to the case of normally
distributed data, for which simplified strategies are recommended. Possible reasons
for this discrepancy might be that, in this case, ignoring the individual level associa-
tion influences estimates of the mean structure parameters, what results in distorted
estimates of the trial level association.
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1 Introduction

Surrogate endpoints can replace or supplement other endpoints in the evalua-
tion of experimental treatments or other interventions. For example, surrogate
endpoints are useful when they can be measured earlier, more conveniently,
or more frequently than the endpoints of interest, which are referred to as the
“true” endpoints (Ellenberg and Hamilton, 1989). A number of approaches
appeared at the end of eighties to deal with this type of problems. Prentice
(1989) and Freedman, Graubard and Schatzkin (1992) laid the foundations
for the evaluation of surrogate endpoints in randomized clinical studies. Pren-
tice proposed a definition as well as a set of operational criteria. Freedman,
Graubard and Schatzkin (1992) supplemented these criteria with a quantity
called proportion explained (PE). Buyse and Molenberghs (1998), on the
other hand proposed to replace the PE by the relative effect (RE), linking
the effect of treatment on both endpoints, and an individual-level measure of
agreement between both endpoints, after adjusting for the effect of treatment
(adjusted association). The adjusted association carries over when data
are available on several randomized trials, while the RE can be extended to
a trial-level measure of agreement between the effects of treatment of both
endpoints.

Molenberghs et al. (2002) and Alonso et al. (2004) pointed out serious issues
surrounding the Prentice-Freedman framework. It has been asserted that the
criteria set out by Prentice are too stringent (Fleming and DeMets, 1996) and
neither necessary nor sufficient for his definition to be fulfilled, except in the
special case of binary outcomes (Buyse and Molenberghs, 1998). In addition,
Freedman, Graubard and Schatzkin (1992) showed that these criteria were
not straightforward to verify through statistical hypothesis tests. Therefore
the PE was suggested, but this measure is surrounded with difficulties, the
most dramatic being not confined to the unit interval (Buyse et al., 2000).
Buyse et al. (2000) argued that some fundamental criticisms towards the pro-
cess of statistical validation can be overcome by combining evidence from
several clinical trials, such as in a meta-analysis, rather than from a single
study. To this end, they needed to formulate a bivariate hierarchical model,
accommodating the surrogate and true endpoints in a multi-trial setting. As-
suming normality, they carried over the relative effect and adjusted association
to a trial-level R? ., and an individual-level R? . . respectively. Similar routes
of meta-analytic thinking have been followed by Daniels and Hughes (1997)
and Gail et al. (2000).

Of course, the switch to a meta-analytic framework does not solve all problems,
surrounding surrogate marker validation, in a definitive way. First, one has to
carefully reflect upon the question as to how broad the class of treatments
and units, to be included in a validation study, can be. Clearly, the issue



disappears when the same or similar treatments are considered across units
(e.g., in multi-center or multi-investigator studies, or when data are used from
a family of related studies such as in a single drug development line). In a
more loosely connected, meta-analytic setting it is important to ensure that
treatment assignments are logically consistent. This is possible, for example,
when the same standard treatment is compared to members of a class of
experimental therapies.

A result of the change to meta-analysis is that computationally rather in-
volved statistical models have to be used. For the case of surrogates and true
endpoints that are both normally distributed, Buyse et al. (2000) employed
linear mixed effects models (Verbeke and Molenberghs, 2000). Even in this
case, which can be considered a basic one from a statistical modeling point
of view, fitting such linear mixed effects models turns out to be surprisingly
difficult. In order to overcome computational burden Tibaldi et al. (2003) pro-
posed a set of simplified strategies for this particular setting. In other settings,
e.g., when both endpoints are failure-times, the use of a mixed effects model
is even less straightforward.

The aim of the paper is to study the possibility of also using simplified strate-
gies when both the surrogate and the true endpoints are of the failure-time
types. In 2001, Burzykowski in his dissertation already proposed a simplified
strategy in this scenario and performed a simulation study, in which a copula
model was used to assess the association at the individual level, and a fixed
effects model was employed to assess the trial level surrogacy. In this paper we
will study simplified modeling strategies that ignore the individual level associ-
ation to evaluate the trial level surrogacy, following similar ideas as in Tibaldi
et al. (2003). A simulation study is carried out to evaluate the performance
of the different simplified strategies, in the setting studied by Burzykowski
(2001). The idea of the paper is to show that even when simplified strategies
performed well in the scenario of normally distributed endpoints, they should
be carefully investigated in other scenarios, because they might produce biased
results.

This paper is organized as follows. First, we present the original setting pro-
posed by Buyse et al. (2000) and the simplified strategies considered by Tibaldi
et al. (2003) (Sections 2 and 3), then extension to the setting for which both
endpoints are of failure-time type, and which will be used throughout the
paper is presented (Section 4). In Section 5 we describe the strategies that
will be used to estimate the parameters of interest. A brief description of the
method proposed by Burzykowski et al. (2001) is presented in Section 6, fol-
low by the description of the simulation study considered (Section 7). The
results obtained are described in Section 8. Discussion in Section 9 concludes
the paper.



2 Setting for Normally Distributed Endpoints

In this section we briefly described the approach proposed by Buyse et al.
(2000) in order to study in details the extension for failure-time data. Let Yz,
and Ys,, be random variables denoting the true and the surrogate endpoints
for subject j = 1,...n, in trial « = 1,... N. Further, let Z;; denote a binary
treatment indicator.

The full random-effects model, as introduced by Buyse et al. (2000), is given
by

YSij = s +ms, + aZiy + a; Zi; + €sij> (1)
YTZ-]- = by + My, + BZU + szz] + €15 (2)

where p1g and g, are fixed intercepts, mg, and m,, are random intercepts for
trial ¢, o and 3 are fixed treatment effects and a; and b; are random treatment
effects. The individual-specific error terms are €5, and er,,, which are zero-
mean normally distributed with variance-covariance matrix

T Oss Osr . (3)
Osr Orr

The vector of random effects, (ms,, ms,, a;,b;)T, is also assumed to be zero-
mean normally distributed with variance-covariance matrix

dss der dsa dsp
dsr drr dra dro
dsa dra daa dap
dsy dsa dap dpp

Buyse et al. (2000) proposed a measure to assess the quality of the surrogate
at the trial level, based on the coefficient of determination

T —1
( dsb ) ( dss dSa ) ( dsb )
dab dsa daa dab
R? . =R} = . 5
) bi|msi,a; dyp ( )

trial (f

A good surrogate, at the trial level, would have (5) close to 1. Similarly, to
measure individual-level surrogacy, Buyse et al. (2000) proposed to use the



coefficient of determination given by

o
Ri2ndiv = i’ (6>

Oss0rT

where 0., 055 and o4 are components of variance-covariance matrix (3). The
authors also proposed a reduce version to evaluate trial-level surrogacy which
is given by the following expression

2 _ P2 _
Rtrial (r) Rb1|a1 -

) 7
daa dbb ( )

This formula is useful when the full random-effects model is hard to fit but a
reduced version, excluding random intercepts, is easier to reach convergence.
Ample details about the approach can be found in Buyse et al. (2000).

3 Simplified Modelling Strategies

Buyse et al. (2000) showed that fitting mixed effects model (1)—(2) can be a
surprisingly difficult task in a number of situations. Especially when the num-
ber of trials or the number of patients per trial is small. Also, situations with
extreme correlations pose problems. It is therefore that approximate strategies
with better computational properties have been studied for this particular set-
ting in which both endpoints are normally distributed. Tibaldi et al. (2003)
consider three dimensions along which simplifications that can be made in
order to deal with computational burden in such setting.

Trial dimension: for which the trial-specific effects can be treated as either
random or fixed.

Endpoint dimension: the surrogate and true endpoints are modelled as a
bivariate outcome or two univariate ones. In the latter case the individual-
level surrogacy is not incorporated into the modeling strategy. However,
throughout this paper the focus is on trial-level surrogacy.

Measurement error dimension: whenever the full mixed effects model is
abandoned, measurement error arises. The authors consider three ways to
account for measurement error: unadjusted (i.e., no correction at all), ad-
justment by trial size, and an approach suggested by Van Houwelingen,
Arends and Stijnen (2001).



4 Extension to Failure-Time Endpoints

In order to extend the meta-analytic approach used in the case of two normally-
distributed endpoints described in Section (2), one could consider replacing
model (1)—(2) by the following mixed effects proportional hazards model:

Nijs(Us,, Imis,s 05 ag; €45) = A (s, JeggemsiToZutaidia (8)

)\ijT(yTij mar,; B by; 5z'j) = )\T(yTij)gijemTi+ﬁZij+biZij ) (9)

where 7 indexes the trials, j indexes the subjects and, as in Section (2), mg, and
my, are random intercepts for trial ¢, « and (3 are fixed treatment effects and
a; and b; are trial specific random treatment effects. The vector of random
effects, (ms,, mr,,a;,b;)", is assumed to be zero-mean normally distributed
with variance-covariance matrix

dss dsr dsq dsp
dsr drr drq dry
dsq dra daa dap
dsp dsq dap dpp

The random effects ¢;; are chosen to induce individual-level association be-
tween Ys,, and Y7,,. The major stumbling block in the use of model (8)—(9) is
the presence of individual random effects €;;. Given the current methodology
and available software, fitting the model is practically impossible. Therefore,
we will focus on strategies that ignore the association at the individual level
and concentrate on the evaluation of trial level surrogacy. In the next section
we will briefly describe the simplified strategies considered which focus on
endpoint and trial dimension previously presented.

5 Modelling Strategies

We will consider the following three modelling strategies, in which the individual-
level association is ignored.

5.1 Marginal PH Model with Trial-Specific Fized Effects (MFE).

A Cox proportional hazards model will be fitted separately for each trial and
also for each endpoint. More specifically, the model can be written as
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where oy, and f3; are trial-specific treatment effects. Similar to the approach
proposed by Buyse et al. (2000) for the case of two normally distributed end-
points, at the second stage we compute the determination coefficient (RZ,,, )
from the regression of 5; on «;. To compute its variance we first use the delta

method and treat the determination coefficient as a function of the correlation
Rtrial (r)

Var(Rfml ) ~ 4AR?

trial (

o Var (R ) (13)

Then we use the fact that the variance of Fisher’s transformation Z = % In <%)

is equal to ﬁ (Anderson 1958, p.78). Now, Ri. () can be rewritten as a func-
tion of Z

R e?? —1
trial (r) — €2Z+ 17

so, using the delta method and treating R, ) as a function of Z, we get

(1 - Rt2rlal )

Va‘r(Rtrial (r) ) ~ N 3

(14)

Combining (13) and (14) leads to

) 4Rt2rlal (r) ( Rt2rlal )

N -3

Var(R?

trial (r)

5.2 A Stratified PH Model with Random Trial-Specific Treatment Effects
(SRTE).

In this model we use stratified baseline hazards to account for the between-
trial variability in baseline hazards, and bivariate random effects associated
to the treatment. The model can be written as follows:

)\Z]S( ) = )\Si(ySij>€(a+ai)Zij ) (15>
)\UT(?JT”|57 i) = Ti(yTi]-)e(Beri)Zij ; (16)

where o and [ are fixed treatment effects. The trial specific random effects
a; and b; are assumed to be zero-mean normally distributed with variance-



covariance matrix
daa dd
", (17)
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The trial-level validity of a surrogate is evaluated using the square of the
correlation coefficient based on the estimated variance-covariance matrix (17).
Its variance is estimated using equation (13), with Var(R,.. ) estimated by
applying the delta method to R,.. , treated as a function of the estimated
elements of matrix (17).

5.8 PH Model with Trial-Specific Random Intercepts and Treatment Effects
(RITE).

In this model we consider both random intercepts and treatment effects. The
model is:

Nijs (s, o ais es,5) = As(ys,, ) emsitoZutaidio (18)
A

ijT(yTi]- |B7 bi: gTij) = AT(yTij)eTRTi+5Zij+biZij , (19)

where (mg,, mr,, a;, b;)7 is a vector of random effects, assumed to be zero-mean
normally distributed with variance-covariance matrix (10). The association
at the trial level is evaluated using the determination coefficient computed
using equation (7). The variance of the coefficient is estimated using the same
procedure as in strategy SRTE.

The models were fitted using the SAS procedure PHREG for the MFE ap-
proach and the modified version of the EM algorithm (as described in Cortinas
and Burzykowski (2005), we only considered this approach given that in a com-
parison performed by Cortinias et al. (2007) the estimated values for fixed and
random effects were comparable), implemented using SAS-IML v8.2, for the
SRTE and RITE approaches. We will compare the performance of the sim-
plified strategies with the approach developed by Burzykowski et al. (2001),
which we describe in the next Section.

6 A Copula Modelling Approach

Burzykowski et al. (2001) assumed that the variables Yz, (the true endpoint)
and Yj,, (the surrogate endpoint) were distributed according to a bivariate



distribution with the joint survival function

P(Ysij > Ysijs YTij > yTij) =Cp {FYSZ-J- (ysij)7 FYTU (yTij)} ) (20>

where Cy{.,.} is a copula function. In particular, they considered the use of
the Clayton copula

1

Co(u,v) = (u' +0' 0 = 1) 9> 1. (21)

The marginal survivor functions Fy;, (ys,;) and Fy, (Yr,;) were modeled us-
ing PH models. The use of the copula allows to assess the individual-level
surrogacy by Kendall’s 7, which for the Clayton copula (21) can be computed
as a simple function of :
0—1

=9 1
Furthermore, Y7, and Yj,, were assumed to be exponentially distributed, with
the marginal survivor functions FYT” and FYsij defined as

{mg, +(ata;)Z;;}

FYsij (ySij) — e—ysij)\s.e ’ (22)

—yry Mt AL R CRELT

FYTZ.]. (yTij) =e€ ) (23)

where 7 indexes the trials, j indexes the subjects, mg, and m,, are ran-
dom intercepts for trial ¢, @ and ( are fixed treatment effects and a; and
b; are trial specific random treatment effects. The vector of random effects,
(ms,, mr,, a;, b;)T, was also assumed to be zero-mean normally distributed with
variance-covariance matrix (10).

Variables Y7, and Y, are assumed exponentially distributed with marginal
survival functions given by (22)—(23) and the joint survival function (20)—(21),
were generated using the conditional distribution method (Nelsen , 1999).
Note, that the marginal survivor functions are also conditional on the random
effects mg,, m,,, a; and b;.

Burzykowski (2001) proposed to use the maximum likelihood estimates of the

parameters of model (20)—(21), assuming the fixed effects representation of
(22)-(23)

Z

FYsij (ysij) _ efysi].)\si.eai ij, (24)

BiZ;j
FYTZ-]- (yTij> = einij)\Ti.e ’ ) (25)



In (20), trial-specific treatment effects were estimated as fixed effects «; and
Bi in the marginal PH models for Fy,, (ys,,) and Fy;,_(yr,,), respectively. The
trial level surrogacy was evaluated using the determination coefficient from
the linear regression of ; on «;.

The main advantage of the approach proposed by Burzykowski et al. (2001)
is that it does allow for the evaluation of the individual level association.
However, in the approach treatment effects are modelled as fixed rather than
random effects. The strategies proposed in Section 5 (SRTE and RITE) use
random effects at the trial level, but ignore individual level association. The
question is, how much does this influence the performance of the simplified
strategies. To answer this question, a simulation study is conducted.

7 Simulation Study

To investigate the performance of the various strategies presented in Section 5,
a simulation study was undertaken. The strategies were compared against
each other and against the copula approach developed by Burzykowski et
al. (2001). In the simulations, data for N randomized clinical trials with n;
observations (subjects) within a trial were generated. A single binary covari-
ate Z;; was considered, corresponding to a treatment randomization within
each trial. The data were generated using model (8)—(9), exponential marginal
models were considered and the baseline hazards were assumed constant, with
As(ys,;) = 0.69 and Ar(yr,;) = 1.39, resulting in median times equal to 1 and
0.5 respectively. Two settings for treatment effects were considered: « = 3 =0
(no treatment effect) or « = § = —0.4 (corresponding to 33% reduction in fail-
ure rate). The variance-covariance matrix of the normally distributed random
effects (ms,, mr,, a;, b;)T, was assumed to be equal to

1p00
p100
001p
00pl

D = ¢

The value of 02 was set to equal 0.2, while p was set to v/0.5 or /0.9, resulting
in the trial-level R? of 0.5 and 0.9, respectively. The individual random

trial (r)
effects €;; were considered gamma distributed with density function

2—-60
ro-1e 7

711((9%1) (27)
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In this way, the data generated using model (8)—(9) were comparable to those
generated by Burzykowski (2001) using the Clayton copula (21). Two hundred
and fifty datasets were simulated for every setting, with NV = 10 or N = 20
trials each. The number n; of observations (subjects) per trial was assumed
to equal 50, 100 and 200. The copula parameter 6 was assumed equal to 3
or 19, resulting in Kendall’s 7 of 0.5 and 0.9, respectively, for the association
between Yz, and Y, (conditional on the random effects mg,, m,,, a; and b;).
We considered no censoring or homogeneous censoring. In the latter set-up,
Y, and Ys,; were assumed to be simultaneously censored by an independent
variable C;; uniformly distributed on the interval [0, d.]. The parameter ¢, was
chosen to be 2.3 for @ = 3 = 0, resulting in 50 % of the observations of Yz, (the
true endpoint) and 30 % of the observations of Yy, (the surrogate endpoint)
censored, similar to the censoring schemes considered by Burzykowski (2001).

8 Results of the Simulation Study

The results of the simulations are shown in Tables 1-4, note that column
quoted as Burzykowski means that we displayed the results obtained by Burzykowski
(2001) for the case of unadjusted R?*; MFE refers to marginal PH model with
trial-specific fixed effects; SRTE to stratified PH model with random trial-
specific treatment effects and RITE to PH model with trial-specific random
intercepts and treatment effects results. The %NC represents the % of sam-
ples with non-convergence and %bias the bias relative to the true value of the
parameter (in %). The tables show the relative bias of RZ for different
values of 7, B2 o (= p%), a, B, and different censoring schemes. It is worth
noting that the results displayed for the method proposed by Burzykowski et
al. (2001) are based on 500 simulations. For the latter method and 7 = 0.9
the percentage of samples with non-convergence is also shown (for 7 = 0.5
there were no convergence problems). The simplified strategies proposed in

Section 5 do not suffer from convergence problems.
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Table 1

The mean estimates of trial level R%,, () for the method proposed by Burzykowsk:
(2001) and the simplified strategies when 7 = 0.5 and RZ,, = =p? =05 In
parentheses: the mean model-based and empirical (first and second number) standard

error.

Burzykowski MFE SRTE RITE

N n; %bias %bias %bias %bias

No censoring, no treatment effect (o = 5 = 0)

10 50 -0.2(0.225;0.228) -0.5(0.236;0.220) -3.4(0.226;0.219) 0.6(0.230;0.218)
100 1.4(0.224;0.226) -7.6(0.241;0.223) -1.5(0.212;0.209) -1.5(0.218;0.214)
200 1.7(0.225;0.220) -9.7(0.240;0.226) -0.3(0.211;0.210) -0.3(0.214;0.210)

20 50 5.5(0.154;0.164) -1.0(0.161;0.166) -2.7(0.169;0.156) -1.7(0.162;0.157)
100 2.6(0.158;0.156) -8.7(0.165;0.169) -0.6(0.151;0.145) -0.6(0.149;0.146)
200  0.9(0.158;0.168) -12.5(0.167;0.170) -0.3(0.141;0.135) -0.2(0.137;0.134)

No censoring, 33% reduction in the failure rate (o = 8 = —0.4)

10 50 4.4(0.227;0.215) -0.4(0.236;0.221) -1.6(0.233;0.218) 0.7(0.229;0.216)
100 4.3(0.225;0.220) -7.9(0.242;0.222) -1.5(0.224;0.214) -1.4(0.226;0.215)
200 0.5(0.228;0.221) -9.8(0.240;0.226) -0.3(0.218;0.212) -0.3(0.214;0.210)

20 50 2.9(0.157;0.161) -1.2(0.162;0.166) -2.3(0.168;0.154) -1.8(0.162;0.157)
100 7(0.157;0.154) -8.8(0.165;0.169) -0.7(0.153;0.147) -0.6(0.149;0.146)
200  0.3(0.159;0.163) -12.6(0.167;0.170) -0.2(0.141;0.136) -0.1(0.137;0.133)

Homogeneous Censoring (50%/30%), no treatment effect

10 50 -12.6(0.228;0.233) -4.7(0.235;0.235) -4.9(0.247;0.239) -4.3(0.256;0.243)
100 -7.2(0.228;0.235) -4.1(0.239;0.227) -3.3(0.229;0.222) -2.1(0.228;0.221)
200 -1.9(0.228;0.225) -10.4(0.2400.222) -4.1(0.229;0.223) -2.6(0.225;0.221)

20 50 -19.1(0.167;0.167) -4.6(0.164;0.161) -5.7(0.161;0.154) -3.7(0.164;0.157)
100 -9.7(0.163;0.169) -6.0(0.164;0.166) -2.9(0.154;0.148) -1.8(0.151;0.147)
200 -5.4(0.163;0.162) -12.1(0.167;0.163) -2.5(0.147;0.142) -1.7(0.144;0.141)
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Table 2

The mean estimates of trial level R%,, () for the method proposed by Burzykowsk:
(2001) and the simplified strategies when 7 = 0.9 and RZ,, = =02 =09 In
parentheses: the mean model-based and empirical (first and second number) standard
error.

Burzykowski MFE SRTE RITE

N n; %NC %bias Y%bias %bias %bias

No censoring, no treatment effect (a =0)

10 50 0.4 0.7(0.0650.065) -1.8(0.094;0.085) 2.1(0.091;0.076) -1.3(0.076:0.064)
100 0.2 -0.7(0.073;0.082) -1.7(0.092;0.079) -0.7(0.078;0.068) -0.7(0.074;0.067)
200 1.0 -0.2(0.071;0.068) -4.1(0.105;0.086) -0.6(0.069;0.065) -0.2(0.073;0.069)

20 50 0.2 1.0(0.042;0.045) -1.1(0.054;0.054) -0.4(0.056;0.043) -0.2(0.049;0.044)
100 0.8 0.3(0.045;0.044) -1.4(0.055;0.049) -0.7(0.046;0.037) -0.6(0.043;0.039)
200 0.2 -0.2(0.046;0.049) -3.4(0.063;0.060) -0.2(0.041;0.039) -0.1(0.042;0.039)

No censoring, 33% reduction in the failure rate (o = = —0.4)

10 50 0.6 -0.1(0.068;0.089) -2.7(0.099;0.090) -2.2(0.083;0.077) -1.3(0.076;0.062)
100 0.6 0.7(0.065;0.066) -2.4(0.0960.082) -0.9(0.085:0.075) -0.7(0.074;0.067)
200 0.4 0.0(0.070;0.068) -4.8(0.109;0.091) -0.5(0.074;0.068) -0.1(0.073;0.067)

20 50 0.2 1.4(0.040;0.040) -1.8(0.057;0.057) -0.6(0.053;0.043) -0.2(0.049;0.044)
100 0.2 0.1(0.045;0.052) -2.0(0.057;0.052) -0.8(0.049;0.041) -0.5(0.043;0.038)
200 0.0 0.1(0.045;0.044) -4.0(0.065;0.061) -0.3(0.045;0.040) -0.1(0.043;0.039)

Homogeneous Censoring (50%/30%), no treatment effect

10 50 0.6 -3.1(0.086;0.096) -10.2(0.139;0.128) -8.5(0.123;0.106) -7.9(0.113;0.101)
100 0.2 -1.4(0.077;0.079) -9.3(0.135;0.120) -8.6(0.116;0.108) -7.6(0.111;0.104)
200 0.8 -1.1(0.075;0.086) -10.5(0.140;0.139) -8.4(0.140;0.134) -7.3(0.137;0.133)

20 50 0.2 -2.8(0.054;0.089) -9.6(0.085;0.086) -8.8(0.083;0.069) -6.8(0.076;0.068)
100 0.8 -1.0(0.049;0.053) -9.1(0.084;0.083) -7.8(0.078;0.070) -6.4(0.073;0.068)
200 0.6 -1.0(0.049;0.050) -8.9(0.083;0.080) -7.3(0.080:0.075) -6.1(0.079;0.075)
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Table 3

The mean estimates of trial level R%,, () for the method proposed by Burzykowsk:
(2001) and the simplified strategies when 7 = 0.5 and RZ,, = =02 =09 In
parentheses: the mean model-based and empirical (first and second number) standard

Error.

Burzykowski MFE SRTE RITE

N n; %bias Y%bias %bias %bias

No censoring, no treatment effect (a« = 5 = 0)

10 50 -8.5(0.114;0.119) -30.7(0.211;0.201) -30.9(0.187;0.179) -28.1(0.181;0.171)
100 -4.8(0.096;0.094) -27.5(0.201;0.186) -25.4(0.173;0.159) -23.3(0.168;0.159)
200 -3.7(0.088;0.105) -24.4(0.191;0.186) -17.6(0.122;0.121) -15.2(0.126;0.119)

20 50 -8.0(0.074;0.078) -30.3(0.140;0.143) -31.5(0.135;0.125) -31.1(0.131;0.125)
100 -4.8(0.063;0.065) -27.3(0.133;0.135) -23.2(0.113;0.105) -21.7(0.106;0.103)
200 -2.6(0.055;0.057) -24.5(0.128;0.120) -16.1(0.076;0.071) -14.4(0.074;0.069)

No censoring, 33% reduction in the failure rate (o = 8 = —0.4)

10 50 -9.4(0.118;0.125) -30.7(0.211;0.201) -30.2(0.188;0.179) -27.8(0.181;0.171)
100 -5.9(0.102;0.101) -27.7(0.202;0.185) -25.3(0.171;0.163) -23.5(0.167;0.158)
200 -2.5(0.084;0.080) -24.5(0.191;0.186) -17.8(0.123;0.121) -15.2(0.126;0.120)

20 50 -9.0(0.077;0.083) -30.4(0.140;0.143) -31.5(0.141;0.130) -31.0(0.131;0.125)
100 -4.3(0.061;0.067) -27.4(0.133;0.135) -23.1(0.113;0.105) -21.8(0.106;0.103)
200 -2.0(0.053;0.057) -24.5(0.128;0.120) -16.2(0.076;0.072) -14.4(0.074;0.069)

Homogeneous Censoring (50%/30%), no treatment effect

10 50 -32.7(0.202;0.206) -36.9(0.224;0.217) -36.6(0.215;0.200) -34.5(0.213;0.202)
100 -20.8(0.166;0.173) -31.1(0.213;0.199) -31.0(0.187;0.178) -30.7(0.184;0.175)
200 -12.2(0.131;0.140) -28.3(0.203;0.191) -27.3(0.167;0.158) -25.5(0.162;0.154)

20 50 -33.4(0.141;0.151) -36.2(0.151;0.148) -36.4(0.148;0.135) -34.2(0.140;0.134)
100 -20.0(0.111;0.107) -31.0(0.141;0.140) -30.4(0.122;0.115) -29.0(0.119;0.114)
200 -12.4(0.089;0.092) -28.3(0.136;0.124) -26.3(0.099;0.093) -24.6(0.098;0.092)
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Table 4

The mean estimates of trial level R%, () for the method proposed by Burzykowsk:
(2001) and the simplified strategies when 7 = 0.9 and RZ,, = p? = 05. In
parentheses: the mean model-based and empirical (first and second number) standard
error.

Burzykowski MFE SRTE RITE

N n; %NC Y%bias %bias %bias %bias

No censoring, no treatment effect (a« = 5 = 0)

10 50 0.6 16.2(0.211;0.209) 71.7(0.110;0.096) 72.8(0.086;0.079) 71.2(0.084;0.071)
100 0.2 6.9(0.225;0.217) 66.7(0.123;0.108) 72.5(0.107;0.089) 71.0(0.096;0.087)
200 0.4 3.9(0.224;0.217) 55.7(0.153;0.125) 60.6(0.091;0.087) 59.4(0.095;0.091)

20 50 0.4 10.2(0.150;0.161) 73.0(0.064;0.061) 75.4(0.055;0.047) 73.5(0.055;0.049)
100 0.8 5.3(0.156;0.155) 67.9(0.074;0.068) 68.9(0.059;0.049) 67.8(0.053;0.050)

)

200 0.2 0.8(0.159;0.153) 57.0(0.095;0.089) 57.1(0.058;0.055) 56.7(0.060;0.057

No censoring, 33% reduction in the failure rate (o« = = —0.4)

10 50 0.6 13.6(0.209;0.217) 70.1(0.115;0.100) 72.8(0.085;0.079) 70.9(0.084;0.070
100 0.0 6.8(0.218;0.225) 65.3(0.127;0.111) 72.5(0.104;0.091) 70.7(0.096;0.088

( )

200 0.0 7.0(0.220;0.223) 53.8(0.157;0.130) 59.4(0.097;0.092) 58.6(0.094;0.092
( )
( )

) ) 72.5( (
) ) 59.4( (
20 50 0.0 14.5(148;0.146) 71.5(0.068;0.065) 75.9(0.055;0.046) 73.6(0.055;0.049
100 0.6 8.6(0.153;0.156) 66.4(0.077;0.071) 68.9(0.057;0.050) 67.5(0.053;0.050
200 0.0 1.7(0.158;0.161) 55.4(0.098;0.092) 56.7(0.061;0.057) 56.2(0.060;0.057

~— ~— ~— |~ ~—~ ~~—

Homogeneous Censoring (50%/30%), no treatment effect

10 50 0.6 16.6(0.209;0.215) 60.8(0.141;0.127) 58.3(0.123;0.106) 55.8(0.116;0.101
100 1.4 10.5(0.215;0.220) 61.5(0.139;0.125) 57.5(0.126;0.111) 55.2(0.115;0.108

100 0.4 10.1(0.151;0.156) 61.5(0.088;0.090) 53.6(0.080;0.071) 50.2(0.077;0.071

( (
( (
200 0.4 5.1(0.220;0.225) 56.8(0.150;0.146) 48.9(0.149;0.140) 47.3(0.145;0.139
( (
( (
200 1.2 4.6(0.156;0.159) 59.9(0.090;0.088) 49.1(0.085;0.079) 44.9(0.084;0.079

( ) 61.5( ) )
( ) 56.8( ) )
20 50 0.2 16.1(0.147;0.138) 61.7(0.087;0.084) 60.2(0.081;0.069) 58.4(0.075;0.068
( ) 61.5( ) )
( ) 59.9( ) )

A few general observations can be made. First, we can note that the presence
of a treatment effect does not have much influence on the relative bias of the
estimation of R? . Also, under no censoring the relative bias in absolute
value is smaller than when censoring is considered. One can also observe that
for MFE, model-based estimates of the standard error of R, overestimate
the empirical standard errors. The other approaches yield comparable model-
based and empirical standard errors of the estimates of R?_ .

Table 1 shows the simulation results for 7 = 0.5 and p? = 0.5. In terms of
point estimation it can be seen that, in general, RITE approach yields the

smallest relative bias in absolute value, followed by SRTE approach, while
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the largest bias is observed for MFE approach. It can also be noted that the
RITE and SRTE approaches are subject to similar empirical variability as in
the method proposed by Burzykowski et al. (2001), with the MFE approach
showing larger variability. For the other settings (Tables 2—4), in general, the
smallest relative bias in absolute value is observed for the method proposed
by Burzykowski et al. (2001), while the MFE approach yields estimates with
the largest relative bias in absolute value. It is worth noting that the three
simplified strategies produce substantially biased estimates of RZ,, ., when
the association at the individual level (measured by 7) and the association
at the trial level (measured by p?) are different. It can be also observed that
if p> = 0.9, the Burzykowski et al. (2001) approach produces estimates with
the smallest empirical standard error, while the MFE approach produces es-
timates with the largest standard errors. If p> = 0.5, the RITE approach
yields estimates with the smallest variability, while the approach proposed
by Burzykowski et al. (2001) produces estimates with the largest variability.
It is important to note that for different values of p? when the value of 7 is
kept the same, only moderate changes in the magnitude of the variability of
the estimates produced by the simplified strategies are observed. Thus, if the
individual level is ignored in the fitting process, the value of 7 may determine
the magnitude of the variability of the estimates. From the evaluation of the
relative bias one can conclude that the use of the simplified strategies does not
yield reasonable results. This is in contrast to the case of normally distributed
data considered by Tibaldi et al. (2003). In order to investigate the cause of
the large relative bias in absolute value produced by the simplified strate-
gies, we evaluated the estimated cumulative baseline hazards when the RITE
approach was used for two particular settings under no censoring (Setting I:
N =20, n; = 50, 7 = 0.5, p?> = 0.9; Setting II. N = 20, n; = 50, 7 = 0.9,
p> = 0.5). Figure 1 shows the estimated cumulative baseline hazard func-
tions (step curves) versus the observed time for both endpoints and settings
I and II. From this figure, it can be concluded that the estimated cumulative
baseline hazards do not correspond to the true cumulative hazard function
(thick solid line) used to generate the data. This suggests that ignoring indi-
vidual level association results in a strong modification of the baseline hazard.
Consequently, the estimates of the mean structure parameters are affected,
which in turn influences the trial-specific treatment effects and the estimation
of the trial-level association in MFE approach. It is also important to note
that Cortinas et al. (2004) have also observed similar problems, when they
fitted a hierarchical model ignoring a level, and the variance associated to the
level was of the same magnitude or larger than the variance at the higher
level, the association at the higher level was affected. Here a similar pattern
can be observed. When ¢;; is gamma-distributed with density function (27),
the logarithm of &;; will have variance ¢/(325), where ¢/() is the trigamma
function (Johnson and Kotz, 1970, p. 181). For 6 = 3, ¢/(355) = 4.9, while

for § = 19, ¥/(547) = 325.5. It is clear that the variance at the individual
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level is much larger than the variance at the trial level. Thus, if the individ-
ual level is ignored, and by analogy to the results obtained for the normallly
distributed data case, the trial-level variability is probably contaminated with

(1
% x 100% of the variance at the individual level, what results in bias
observed for SRTE and RITE strategies.

Fig. 1. Graphical representation of the estimated cumulative baseline hazard (step
curves) versus time. The thick solid line corresponds to the cumulative hazard used
to generate the data.

Left column: surrogate endpoint; right column: true endpoint.

Top row: 7 = 0.5 and p? = 0.9; bottom row: 7 = 0.9 and p? = 0.5.
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9 Conclusions

In this paper we have investigated the use of several strategies for the eval-
uation of the trial level surrogacy in the case of two failure-time endpoints.
In particular, we have considered three strategies which may reduce the com-
putational burden and the complexity of the model. The first one (marginal
PH model with trial-specific fixed effects) is a very simple procedure, which
can easily be implemented with standard software. This model is compara-
ble to the simplest model used in Tibaldi et al. (2003), in which only fixed
effects are used, every endpoint is modeled separately, and we do not adjust
for measurement errors. In the second strategy, random effects are considered,
but stratified baseline hazards are used in order to capture the between-trial
variability in baseline hazards (SRTE). The third strategy is a PH model with
trial-specific random intercepts and treatment effects (RITE). It is shown via
simulations that the three simplified strategies produce highly biased esti-
mates, especially for the cases in which the strength of the individual-level
association is different from the strength of the trial-level association. For this
reason, the simplified strategies should not be used in the case of two failure
time endpoints. This is in contrast to the case of normally distributed data
(see Tibaldi et al. (2003), for more details). In this scenario simplified mod-
eling strategies produce untrustful results, thus they should not be employed
to evaluate surrogacy. For the MFE approach the possible reason for this dis-
crepancy is that, in the case of failure-time data, ignoring the individual level
association influences estimates of the mean structure parameters, what re-
sults in distorted estimates of the trial level association. It is important to
note that, in this paper we did not study methods that correct for measure-
ment error, as it has been done in Tibaldi et al. (2003). In this respect, a GEE
approach might be of interest. This is a topic for further research. Another
way of handling the complexities in the model is to use a bayesian modeling
framework, which could handle the hierarchical structure on the hazard scale
very easily, but this is out of the scope of the paper, since we would like to be
able to use easy to implement procedures in standard software, but unfortu-
nately in this setting with two failure time endpoints simplified strategies do
not provide promising results.
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