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Preface

The most prevalent reason for choosing this thesis was that it seemed an
interesting challenge to me. I found the prospect of learning about different
techniques for realizing multi-device layout management appealing.

The thesis also provided an opportunity for me to find out more about
the problems surrounding multi-device user interface development, a topic
I became acquainted with through my internship at the EDM 1, in July
2004. During this internship I worked on Uiml.net, an open source UIML 2

renderer by dr. Kris Luyten. Uiml.net makes it possible to render a high-
level user interface description in UIML with different widget set backends,
thereby supporting multiple computing platforms.

Another decisive reason for me was the fact that it is a relevant and
important problem. Considering the growing diversity of computing plat-
forms, more efficient techniques for multi-device user interface development
are needed. I experienced first hand that a generic layout management
technique for UIML was needed to easily support multi-device user inter-
face development using Uiml.net. While the larger part of a UIML document
could be shared across widget sets, the layout was specified differently for
each individual widget set. Manual intervention by the interface designer
was thus still required when changing the backend.

I learned a lot about these topics during the course of this thesis. Ad-
ditionally, while studying constraint-based layout management techniques,
I gained knowledge about the problem of constraint solving, which I found
very interesting.

1Expertise Centre for Digital Media
2User Interface Markup Language
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Abstract

The growing diversity of computing environments requires a new, more ef-
ficient methodology for developing user interfaces. With traditional tech-
niques one develops a user interface per computing platform. There is a
plethora of existing research available on the development of multi-device
user interfaces. We can conclude that it is mostly clear how to deduce a set
of generic widgets. It is however difficult to generalize the different layout
mechanisms widget sets use.

We present a generic, constraint-based layout mechanism. It relies only
on the least common denominator of layout management: absolute posi-
tioning. A constraint solver is used to find values for the position and size
of each widget, while adhering to the imposed constraints. These positions
and sizes are then set using absolute positioning.

Automated layout management, although greatly improving on speed
compared to designing a layout by hand, is not guaranteed to produce sat-
isfying results. Human interference is usually still needed. There are many
recurring tasks in user interfaces (e.g. providing a username and password).
For each task, a suitable layout must be determined. Our method supports
layout patterns which enable the designer to reuse existing layouts which
have proven to be usable and aesthetically pleasing.

Our method will be based on the UIML language. While succesfully
achieves abstraction in many ways, there is no generic way to specify the
layout. This makes it more difficult to use one UIML document for several
widget sets, since each widget set requires its own specific layout descrip-
tion. We do not seek to complement the UIML specification with a generic,
multi-modal layout mechanism though: it is limited to 2D graphical user
interfaces.

For the practical part of this thesis, we integrated the layout specification
in Uiml.net, an open source renderer for UIML [LC04]. We also developed
Cassowary.net, a port of the Cassowary constraint solving toolkit to the
.NET platform, which is used to solve the layout constraints.
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Chapter 1

Introduction

Contents

1.1 Problem description . . . . . . . . . . . . . . . . . 7
1.2 Scope of this thesis . . . . . . . . . . . . . . . . . 8
1.3 Outline of this document . . . . . . . . . . . . . . 9

1.1 Problem description

The growing diversity of computing environments requires a new, more ef-
ficient methodology for developing user interfaces. With traditional tech-
niques one develops a user interface per computing platform. A computing
platform (or environment) is an architecture in hardware and/or software
that allows software to run. It typically includes the device’s hardware,
operating system, programming language, runtime libraries and widget set.
With the rise of mobile and embedded devices, the set of different computing
platforms software will need to support grows significantly. It is therefore
beneficial to develop a user interface in a high-level, device-independent way,
in order to minimize the effort in supporting a new platform. Every year,
five times more software is realized for embedded systems than for desktop
systems. The number of companies developing software for embedded sys-
tems is expected to grow to ten million by 2010 [vUvAB+98].

There is a plethora of existing research available on the development of
multi-device user interfaces. We can conclude that it is mostly clear how
to deduce a set of generic widgets. It is however difficult to generalize the
different layout mechanisms widget sets use.

A layout manager is a software component which handles the position-
ing and scaling of individual widgets in a user interface. The most simple
layout manager requires the designer to specify an absolute position for each
widget. We call this absolute positioning. It is clear that this method is not
very flexible and requires a lot of input from the interface designer. It is
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the only layout mechanism available for the MFC 1 widget set for Microsoft
Windows, a toolkit generally known to be complex and difficult for devel-
oping user interfaces. Other techniques can adapt the layout to a certain
degree when the available screen area shrinks or grows. Most noticeable are
the layout managers used by Gtk, Qt, WxWidgets or the Java GUI toolkits
(Swing and AWT). Although these are certainly more flexible than abso-
lute positioning, they cannot stretch as far to handle both desktop systems
and embedded devices [LCC03]. It would be interesting if the user interface
could dynamically adjust itself, in order to better satisfy the constraints of
the new environment. Often we can accomplish the same type of interaction
through different concrete widgets. Selecting a value in a certain range can
for instance be achieved either by a slider widget or by a spinbox. While
a slider widget is usually fairly large in one dimension (be it horizontal or
vertical), the spinbox is very compact. When our interface (or a part of it)
doesn’t fit in the available space, we could substitute every slider widget by
a spinbox widget, thereby freeing up precious screen space. One could also
regroup parts of the interface when there is less space available. A desktop
interface consisting of three columns could by this idiom be regrouped in a
tab view widget, containing the three columns in separate tabpages.

The ideal situation would be to completely automate the layout process.
Unfortunately this seems not yet feasible. Most succesful methods require
some form of designer input. We call this semi-automatic layout manage-
ment. The designer could for example logically group parts of the user
interface. Coming back to our tabpage example, we would put unrelated
groups in different tabpages.

If only the common characteristics of layout mechanisms are extracted,
we end up with a very weak, banal layout mechanism. A lot of possible
solutions, such as spatial constraints, originate from a high-level, abstract
view on the problem. A widget set independent layout mechanism should
ideally support every layout that is possible by each of the specific widget
sets.

1.2 Scope of this thesis

We are searching for possible techniques to make the layout specification
independent of the widget set that is used. As well in the literature as
in existing implementations, possible solutions have been explored. One
possibility is to use spatial constraints and a contraint solving algorithm,
but there are also a number of other solutions that can be used.

Our method will be based on the UIML language. We do not seek
to complement the UIML specification with a generic, multi-modal layout
mechanism though: it is limited to 2D graphical user interfaces. If one wants

1Microsoft Foundation Classes
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to support a speech interface for example, a completely different notion of
layout is needed. That is however, beyond the reach of this thesis.

The practical part of this thesis consists of integrating the layout spe-
cification in Uiml.net, an open source renderer for UIML[LC04].

1.3 Outline of this document

In the next chapters of the preliminaries, we will introduce some general
terminology and provide a detailed overview of UIML, model-based user
interface development and automated layout management.

The next part covers the research that was conducted in the scope of
this thesis. We discuss constraint solvers and flexible presentations.

The last part gives details about the implementation part of this thesis.
In order, we cover Uiml.net, the implementation of the UIML template
element, and the implementation of the constraint solver.

Finally we draw the conclusions and provide a summary of the thesis in
Dutch.



Chapter 2

UIML

Contents

2.1 Structure of a UIML document . . . . . . . . . . 10
2.2 The template element . . . . . . . . . . . . . . . . 11
2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Inter-vocabulary distances . . . . . . . . . . . . . 14

The User Interface Markup Language (UIML) is an XML language that
permits a declarative description of a user interface in a highly device-
independent manner [AP99]. It is a fairly mature language, which is cur-
rently in the process of being standardized by the OASIS Standards Com-
mittee. There is interest in submitting it as a World Wide Web Consortium
(W3C) specification.

UIML is a meta- or extensible language, analogous to XML. It does not
contain widget set specific information. It only contains generic elements
such as part, property or event. UIML allows you to define your own user
interface specification, which is similar to XML in the sense that XML allows
you to define your own data format. Of course, eventually the abstract
concepts must map to their specific counterparts. This is handled by a
so-called vocabulary.

2.1 Structure of a UIML document

We based this text on the latest version of the specification [AH04] currently
available: version 3.1.

In UIML, a user interface is really just a set of interface elements. An
interface element is called a part. Parts may be organized differently, for dif-
ferent end-users or devices. Each interface element has content (being text,
sounds, images, etc.). Of course, an end-user must be able to interact with
the user interface. This is accomplished by the behavior element, which is
built on rule-based languages. Each rule contains a condition and a series of
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actions. When the condition is true, the corresponding actions are executed.
A condition is associated with an event. And as we said earlier, the eventual
mapping of the abstract concepts to their specific counterparts happens in
the presentation element (which is also known as the vocabulary).

Summarizing, this is the outline of a UIML document:

• Interface: defines a virtual tree of parts with their associated content,
behavior and style

– Structure: the initial virtual tree organization of parts

– Style: a set of style properties for the interface

– Content: a set of constant values

– Behavior: rules for runtime behavior

• Peers:

– Presentation: mappings of part and event classes, property
names and event names

– Logic: the underlying application logic, the glue between the
user interface described in the UIML document and other code

2.2 The template element

The UIML template element enables user interface designers to create re-
usable interface components. A detailed description of the possible applica-
tions of reusable interface components can be found in Section 6.2. Chapter 8
describes how templates fit in with our approach for layout management.

A template element can be viewed as a separate branch on the UIML
tree [AP99]. A template branch can be joined with the main UIML tree
anywhere there is a similar branch. This means the first and only child of
the template must have the same tag name as the element on the UIML
tree where the join is made. There are three different ways of sourcing a
template element with another UIML element:

• replace: all the children of the element on the main tree that sources
the template are deleted and replaced by the child nodes of the tem-
plate element.

• append : all the children of the element of the main tree that sources the
template are kept, and additionally all the child nodes of the template
element are added to the list too. Name conflicts are handled by
appending the template’s name to the names of its children.

• cascade: the children of the template are added to the element on
the main, but if there is a name conflict, the child of the element on
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the main tree is retained. This is similar to what happens in CSS
(Cascading Style Sheets).

Figure 2.2 gives an overview of the three different sourcing methods.

(a) Part A sources part B using “replace”

(b) Part A sources part B using “append”

(c) Part A sources part B using “cascade”

Figure 2.1: The three sourcing methods

2.3 Examples

Let us look at a few concrete UIML interfaces. The first interface we are
going to cover consists of a combo box packed inside a frame container. A
combo box is a widget supporting the selection of a unique value in a list.
Listing 2.1 shows the UIML document for this interface. Rendering this
document with Uiml.net would result in the interface shown in Figure 2.2.

Listing 2.1: Combo.uiml
<?xml version="1.0"?>
<uiml>

<interface >
<structure >

<part id="Top" class="Frame">
<part class="VBox">

<part class="Label" id="thelabel"/>
<part id="combo1" class="Combo"/>
<part class="Label" id="thelabel2"/>

</part>
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</part>
</structure >
<style >

<property part -name="Top" name="label">
UIML Combo Example

</property >
<property part -name="thelabel" name="text">

Belgian Alternative Music
</property >
<property part -name="thelabel2" name="text">

Pick one!
</property >
<property part -name="combo1" name="content">

<constant model="list">
<constant value="dEUS"/>
<constant value="Nemo"/>
<constant value="The Evil Superstars"/>
<constant value="Channel Zero"/>
<constant value="Star Industry"/>

</constant >
</property >

</style >
</interface >
<peers >

<presentation base="gtk -sharp -1.0. uiml" />
</peers >

</uiml>

The structure section is a hierarchy of parts, with the Top frame as the root
element. Top contains a VBox container, which we will not discuss further
(they are used for layout management in the GTK# widget set). It contains
three parts, two text labels and the combo box.

Every part has a class and an optional id. The class indicates the
type of interactor. This can be a high level interactor (such as Label), or
a widget set specific interactor (such as VBox). The id attribute is used to
uniquely identify each part when they are referred to in other parts of the
UIML document.

Next is the style section, which consists of a list of properties, describing
the style of the interface. In this case, it sets the labels of thelabel and
thelabel2 and initializes the content of combo1. The constant element is
used to populate trees or lists with data.

Finally the peers sections specifies which vocabulary to use. This ex-
ample uses the GTK# vocabulary.
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Figure 2.2: Combo.uiml rendered with Uiml.net

2.4 Inter-vocabulary distances

Of course the goal of an high-level user interface description language is to
minimize the designer’s effort in supporting a different platform, or more
specific a different widget set. The ideal case would be to only change
the vocabulary of the UIML document. Unfortunately different widget sets
have similar widgets in common, but still have other properties [Luy04]. A
commonly used idiom is to provide a generic vocabulary [AnAS02]. However,
interfaces supported by a generic vocabulary tend to be rather trivial.

Uiml.net (see Chapter 7) utilizes a different approach: inter-vocabulary
distance is minimized, not reduced to zero, by following a few simple rules.
The vocabularies use the same naming scheme for the widget mappings.
The semantics of a specific widget determine its name in the vocabulary.
Furthermore, event handling is solely handled by UIML’s behavior section,
and thus completely independent of the specific widget set that is used. This
approach is not yet complete though. Descriptions of widget set specific
layout management in UIML documents widen the gap between different
vocabularies, and makes it hard to switch from one backend to another. It
is necessary to specify layout management in a generic way across different
vocabularies in order for this approach to work.

Figure 2.3 shows a UIML interface rendered with two different rendering
backends: GTK# and System.Windows.Forms. This interface consists of
two entries (for entering text) and two buttons. The upper button copies
the text from the left entry into the right entry, while the lower button
does the opposite (copy from right to left). These actions are specified in
a generic manner in the behavior section of the document. The behavior
section is thus the same for both backends. Figure 2.4 is a graphical view
of the differences between the two UIML documents.

Listing 2.2 and Listing 2.3 show the UIML documents behind these in-
terfaces.

Listing 2.2: GTK# version of the Copy interface
<?xml version="1.0"?>
<uiml>
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(a) GTK# backend (b) System.Windows.Forms
backend

Figure 2.3: SWF and GTK

<interface >
<structure >

<part class="Frame" id="Frame">
<part class="HBox">

<part class="Entry" id="leftentry"/>
<part class="VBox">

<part class="Button" id="copyleft"/>
<part class="Button" id="copyright"/>

</part>
<part class="Entry" id="rightentry"/>

</part>
</part>

</structure >
<style >

<property part -name="Frame" name="label">
Copy

</property >
<property part -name="copyleft" name="label">

copy left
</property >
<property part -name="copyright" name="label">

copy right
</property >
<property part -name="leftentry" name="text">
</property >
<property part -name="rightentry" name="text">
</property >

</style >
<behavior >

<rule>
<condition >

<event class="ButtonPressed"
part -name="copyleft"/>

</condition >
<action >

<property part -name="rightentry" name="text">
<property part -name="leftentry"
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name="text"/>
</property >

</action >
</rule>
<rule>

<condition >
<event class="ButtonPressed"

part -name="copyright"/>
</condition >
<action >

<property part -name="leftentry" name="text">
<property part -name="rightentry"

name="text"/>
</property >

</action >
</rule>

</behavior >
</interface >
<peers >

<presentation
base="gtk -sharp -1.0. uiml" />

</peers >
</uiml>

Listing 2.3: System.Windows.Forms version of the Copy interface
<?xml version="1.0"?>
<uiml>

<interface >
<structure >

<part class="Frame" id="Frame">
<part class="Entry" id="leftentry"/>
<part class="Button" id="copyleft"/>
<part class="Button" id="copyright"/>
<part class="Entry" id="rightentry"/>

</part>
</structure >
<style >

<!-- Absolute positioning -->
<property part -name="Frame" name="position">

5,5
</property >
<property part -name="Frame" name="size">

302 ,150
</property >

<property part -name="leftentry" name="position">
5,50

</property >
<property part -name="leftentry" name="size">
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100 ,25
</property >
<property part -name="rightentry" name="position">

195 ,50
</property >
<property part -name="rightentry" name="size">

100 ,25
</property >

<property part -name="copyleft" name="position">
125 ,25

</property >
<property part -name="copyleft" name="size">

50,50
</property >
<property part -name="copyright" name="position">

125 ,75
</property >
<property part -name="copyright" name="size">

50,50
</property >
<!-- /Absolute positioning -->

<property part -name="Frame" name="label">
Copy

</property >
<property part -name="copyleft" name="label">

copy left
</property >
<property part -name="copyright" name="label">

copy right
</property >
<property part -name="leftentry" name="text">
</property >
<property part -name="rightentry" name="text">
</property >

</style >
<behavior >

<rule>
<condition >

<event class="ButtonPressed"
part -name="copyleft"/>

</condition >
<action >

<property part -name="rightentry" name="text">
<property part -name="leftentry"

name="text"/>
</property >

</action >
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</rule>
<rule>

<condition >
<event class="ButtonPressed"

part -name="copyright"/>
</condition >
<action >

<property part -name="leftentry" name="text">
<property part -name="rightentry"

name="text"/>
</property >

</action >
</rule>

</behavior >
</interface >
<peers >

<presentation
base="swf -1.1. uiml" />

</peers >
</uiml>

The documents are for the greater part alike. There are two main dif-
ferences though:

• layout management specific components in the structure section

• layout management specific properties in the style section

The GTK# version includes special layout management containers in the
structure section, namely parts of the HBox and VBox classes. These define
the layout of their child widgets. HBox lays out its children horizontally,
while VBox does so vertically. These containers can be nested inside each
other to create a more complex layout.

The System.Windows.Forms version on the other hand uses special lay-
out properties in the style section. These specify the absolute position and
size of each widget, in order to realize a similar layout as the GTK# version.
This method also known as absolute positioning which we briefly discussed
in Section 1.1.

Although this is a fairly simple example, more complex form-based in-
terfaces are also mostly similar between different backends except for these
two differences. In other words, these two differences occur independent of
the complexity of the user interface [Luy04].

Layout management should be expressed in a generic manner, if we want
to easily switch from one widget set to another (let alone switch from one
platform to another). The style and structure sections are not sufficient
for generalizing layout management across different widget sets. Another
representation of graphical layout is needed for UIML.
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Figure 2.4: Differences between the GTK# and System.Windows.Forms
versions of the same interface
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As we discussed earlier in the problem description, the rise of embedded
and mobile devices poses a series of unique challenges for user interface
design and development. User interfaces must run on a broad range of
computing platforms, each having its own constraints.

To meet these challenges, the most frequently adopted practice consists
in developing unique interfaces for each case. Clearly, this is not an effi-
cient approach. First of all, there is an unnecessary repetition involved in
implementing a UI for each platform and usage case. One must guarantee
a consistent design across these platforms, although these different inter-
faces are likely implemented by many different designers. Revisions to the
design, must be separately implemented on each specific interface. Finally,
the introduction of a new device requires a complete re-implementation of
the UI.

Current practices for multi-device user interface development are thus in
need of significant improvement. User interface modelling is proposed as a
possible solution [EVP01]. User interface modelling consists of the creation
of knowledge bases, describing various components of the user interface,
such as the presentation, the platform, the task structure, the context, etc.
We can exploit these knowledge bases to automatically produce a usable
UI matching the requirements of each context of use. Model-based user
interface development is supported by tools such as Mobi-D [Pue97] or Dy-
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gimes [CLV+03].

3.1 The user interface model

A set of model-based techniques can be used to greatly improve the design
and development of multi-device user interfaces. They all depend on the de-
velopment of a user-interface model, which is a formal, declarative, implementation-
neutral description of the UI. We will overview three relevant model com-
ponents: the platform model, the presentation model and the task model.

A platform model describes the various computer systems that may run
a UI, including their features and constraints. This model can be exploited
at design-time only, or be dynamically exploited at run-time (which is pre-
ferred). When used at run-time, it can be sensitive to changes, such as a
reduction in bandwidth. The user interface could then respond appropri-
ately.

A presentation model describes the visual appearance of the UI. It in-
cludes information about the hierarchy of windows and their widgets, style
attributes, and the selection and placement of these widgets. Each widget
is modeled abstractly as an AIO : an abstract interaction object. AIOs are
platform-neutral. Furthermore, each AIO is associated with several CIOs:
conrete interaction objects which are specific to a certain platform. This
allows our UI to run on any computing platform, as long as the appropriate
CIOs are present. Figure 3.1 describes the relationship between an AIO (the
Push Button), several related CIOs, and the platforms on which they are
instantiated.

Figure 3.1: CIOs are subclassed from an AIO, and are then mapped on to
specific platforms

A task model is a structured, hierarchical representation of the tasks that
the user of the software may want to perform. It supports a clear abstrac-
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tion of the interactive system without omitting the significant details that
matter in UI design [LCA05]. The task model is decomposed into subtasks.
Additional information may be supplied (goals, preconditions, postcondi-
tions, etc.). The model also includes whether a task is optional, whether
it may be repeated and whether it enables another subtask (meaning the
subtask is available through this task).

Of course these are not the only relevant models. However, the model-
based techniques described in [EVP01] depend only on these three models.
The connections between the various model components are stressed to be
very important. They define the interactive behavior of a UI. For instance,
the connection between the platform model and the presentation model
describes how the constraints posed by various platforms will influence the
visual UI.

3.2 Model-based techniques

Every technique involves creating mappings between the various model com-
ponents. These mapping can be interpreted to produce a customized UI for
the relevant device and context of use.

3.2.1 Handling platform constraints

We will use the display resolution as an example of a platform constraint.
It is also very useful for our purpose (layout management), and often per-
ceived as the most difficult constraint to deal with. Other constraints such
as bandwidth and interaction capabilities can be dealed with in a similar
manner.

The screen resolution is expressed in pixels (e.g. 1024x768). It should not
be confused with the screen surface area: two displays having different sized
surfaces can share the same resolution. Many mobile systems have small-
size, low-resolution displays. An optimal layout for a desktop display may
be simply impossible to render on a PDA. There are three main influences
on the amount of display size required by a certain user interface [EVP01]:
size of each interactor, layout of interactors within a window and allocation
of interactors among several windows.

Interactor size

Individual interactors (or interaction objects) can be shrunk or replaced.
When shrinking an interactor, one must of course take usability into account.
For example, experiments have shown that an icon may not be smaller than
8 by 6 pixels, otherwise it becomes illegible. Not every interactor can be
significantly shrunk. It is then more suitable to replace that interactor by a
smaller alternative.



3.2 Model-based techniques 23

Although reducing the size of interactors provides an immediate im-
provement, often a more global solution is necessary: we must also examine
window layout and allocation of interactors among windows.

Selecting the appropriate presentation structure

The layout of interactors within a windows and allocation of interactors
among several windows together form the presentation structure. We want to
select the appropriate presentation structure, given the amount of available
screen space.

Therefore we would need a set of alternative presentation structures,
either manually created by an interface designer, or generated by the system.
Then we would have to create mappings between each platform and its
appropriate presentation structure.

However, this can also be done automatically. The platform model
already includes the screen resolution of each platform. We could also rep-
resent the amount of screen space required by each presentation structure in
the presentation model. This knowledge can then be used to allow a medi-
ator agent to select the appropriate presentation structure for each platform.
The mediator would choose a presentation structure whose required amount
of screen space falls just under the maximum screen resolution.

The dynamic solution is clearly preferable. The screen resolution may
change at runtime. Only the amount of required screen space has to be
specfied. The mediator will then automatically select the appropriate present-
ation structure.

Generating the appropriate presentation structure

It is still up to the designer to specify the alternative presentation structures.
It would be better though if the correct structure could be generated by the
system, given a set of user-defined constraints.

Therefore we need additional abstractions in our presentation model [EVP01]:

• Logical Windows (LW ): any grouping of AIOs—a physical window, a
dialog box, a panel, etc.

• Presentation Unit (PU ): a complete presentation environment required
for carrying out a certain, interactive task. Each PU consists of several
LWs, which may be displayed simultaneously, alternatively or a com-
bination thereof. Each PU has at least one window called the main
window, from which the user can navigate to other windows.

These abstractions can be structurized in a hierarchy as depicted in Fig-
ure 3.2. We can use this hierarchy to generate specific, platform-optimized
presentation structures from a original, platform-neutral presentation struc-
ture. Two strategies are available to do so:
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Figure 3.2: Hierarchy of presentation concepts (extracted from [EVP01])

• Rearranging LWs within a PU : the contents of the initial LWs are
redistributed into new LWs within a single PU. An LW can be un-
grouped into several smaller LWs; a number of LWs can be grouped
into a single LW; and AIOs can be moved from one LW to another.

• Rearranging AIOs within a LW : the contents of an initial LW are
redistributed into new AIOs, composite or simple. AIOs are thus
replaced by other AIOs that offer the same functionality.

Spatial constraints can assist in the rearrange process, ensuring the hier-
archy respects the platform constraints. For more information on spatial
constraints we refer to Section 4.2.1.

3.2.2 Focusing on contexts of use

Often the user will not want to accomplish the same set of tasks on each
device. Some devices are especially suited for a specific subset of the overall
task model. For example, tracking the user’s current location on a map
would not be suited for a desktop workstation, because a desktop pc mostly
stays at the same location, but this task would be very suited for a PDA.

It is possible to optimize the UI for each device by creating mappings
between platforms (or classes of platforms) and tasks (or sets of tasks).
There are several ways in which a presentation model can be optimized
for the performance of a specific subset of tasks. A common principle is:
important tasks should be represented by AIOs that are easily accessible.
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3.3 Conclusion

In this chapter, we discussed model-based user interface development, and a
couple of model-based techniques which simplify the design of multi-device
user interfaces. Many approaches concerning automatic layout management
center around a model-based methodology. This chapter will thus prove
useful for better understanding the other material presented in this thesis.
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Layout refers both to the process of determining the sizes and positions
of the visual objects that are part of an information presentation, and to
the result of that process. A presentation is material that is intended to be
viewed and manipulated by people (e.g. UIs, webpages, newspapers, etc.).
Automated layout refers to the use of a computer program to automate either
all or part of the layout process. This field lies on the crossroads between
artificial intelligence and human computer interaction [LF01].

A presentation’s layout can have a significant impact on how well it com-
municates information to and obtains information from those who interact
with it [LF01]. For example, the relations between individual objects can
be made clear by the layout. A well laid out presentation can visually guide
the viewer to infer correct relationships about its objects and help the user
to accomplish tasks quickly and correctly, increasing the efficiency of the
presentation. Thus, layout determines in part the time, efort and accurarcy
with which tasks can be accomplished.

Most layouts created today are done manually: they are almost com-
pletely created from start to finish by a human graphic designer. These
people spend years learning the craft of designing effective layouts, and may
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need hours or even days to create a single screen of a presentation. Clearly,
designing presentations by hand is too expensive and too slow, as we also
discussed in Section 1.1.

4.1 Simple techniques

Most modern user interface toolkits support layout managers, mainly to
assist the interface designer in creating a hierarchy of nested objects and
containers, without having to specify the absolute position and size of each
object [LF01]. They allow the programmer to specify that a button should
be added, or added to a part of the window. Optionally, additional numeric
constraints can be specified. A layout manager makes it possible to create
layouts that can adapt to a certain degree when their container changes in
size.

A layout manager has a set of constraints provided by a simple, built-
in layout policy and parameters specified by the programmer. These are
used to choose positions and sizes at runtime for the objects it controls.
Typical policies include strict row (horizontal) or column (vertical) layout;
row-major or column-major layout in which objects wrap to the next row
or column to avoid exceeding the managed container’s bounds; border lay-
out where objects can be specified to reside in one of the managed con-
tainer’s borders (north, south, east, west) or in the center of the container;
and grid layout in which objects reside at one position in a programmer-
specified 2D grid. Programmer-specified parameters include preferred, min-
imum and maximum widths and heights; and spacing, both between objects
and between the objects and the managed container. Managed containers
can be nested inside other managed containers in order to create more com-
plex layouts. They are treated just like other objects by their encompassing
container.

The programmer thus designs a layout as a hierarchy of managed con-
tainers, further constrained by programmer-specified paramters. A layout
manager does not actually design a layout, but rather instantiates a layout
at run-time from the structure and parameters specified by the programmer.
Creating a simple layout is very easy for the programmer. Complex layouts
are possible, but tedious and difficult, especially if they need to behave ro-
bustly when resized. The popularity of layout managers stems mostly from
the ease of implementing the managers themselves and the relative ease with
which programmers can specify simple layouts. Additionally, because a final
layout is only determined at run-time, the system works fairly well under
changing conditions.

Word-processing and presentation systems intended primarly for sequen-
tial presentations (e.g. Microsoft Word, Powerpoint), provide a set of pre-
defined style templates (and the ability to create new ones). These systems
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are usually simpler than layout managers [LF01].
The TEX typesetting system uses a more sophisticated layout algorithm [Knu84].

It decomposes a page into a hierarchy of cells (also called boxes). At the
smallest level we have character glyphs, which can be combined into words.
Words can be grouped in lines, which can again be combined in paragraphs
and so on. So in fact, a TEX document is just a combination of vertical
and horizontal layouts (also called vboxes and hboxes), similar to the row
and column layout commonly used by layout managers. A set of lines has
a vertical layout, while each line has a horizontal layout of words. In order
to create correct spacing between boxes (e.g. spaces between words), TEX
uses a concept called glue. Glue has three attributes: its natural space, its
ability to grow and its ability to shrink. Glue is placed between boxes and
grows or shrinks in order to comply to the preferred size of its parent con-
tainer. This is similar to so-called springs in layout managers, which fulfill
the same task. TEX’s line-breaking algorithm is very advanced and takes a
lot of details into account, such as general typesetting rules.

4.2 Constraint satisfaction

Since the very beginning of graphical user interfaces, researchers explored
constraint-based methods for addressing the layout problem. The vast ma-
jority of research in automated layout to date, is still centered around this
approach. Representing a layout as a set of constraints is very intuitive, as
depicted in Figure 4.1. A constraint-based automated layout system takes

Figure 4.1: Spatial and abstract constraints describing the relations between
a number of components

as input a constraint network and generates a set of positions and sizes for
each of the components in the network.
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Equation 4.1 is an example of a constraint system. Figure 4.2 depicts the
corresponding one-way constraint graph. One-way constraints have only one
output variable, all other variables are read-only. The algorithm for solving
such a system is very simple: all it has to do is decide which constraints
to solve and in what order. Once this topology is constructed, it can easily
be maintained, allowing for incremental solving. In Figure 4.2, when x1

changes, the topology is traversed and new values for each variable are cal-
culated. New values are found (in order) for x2, m and r. Constructing the
topology is also known as the planning phase, while calculating new values
for each variable is called the execution phase [Bad00]. For more information
about the terminology of constraint solving we refer to Section 5.2.

C1 : m =
(x1 + x2)

2
C2 : x1 = pointer position

C3 : x2 = x1 + 6
C4 : r = m2 (4.1)

Figure 4.2: One way (directed) constraint graph for Equation 4.1 (extracted
from [Bad00])

4.2.1 Types of constraints

Most constraints can be classified as either abstract or spatial. Abstract
constraints describe a high-level relationship between two components (e.g.
caption DESCRIBES picture), while spatial constraints enforce position
or size restrictions on the components (e.g. caption BELOW picture).
Spatial constraints can be fed directly into a constraint solver, while abstract
constraints must first be reduced to spatial constraints. This reduction can
often be quite challenging.

Most systems use a combination of both abstract and spatial constraints.
Spatial constraints alone are known to generate efficient layouts. On the con-
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trary, abstract constraints alone are not enough to create visually pleasing,
esthetic layouts. An example can be seen in Figure 4.3.

(a) A simple layout that can
be generated by a system that
only considers abstract re-
lationships between compon-
ents

(b) A layout of the same com-
ponents where additional spa-
tial constraints are specified
so that each component com-
pletely fills a regular grid and
leave margins between the ele-
ments

Figure 4.3: Abstract versus spatial constraints

Abstract constraints

As we said earlier, abstract constraints express high-level relationships between
the different components, to be placed in a layout. They are sufficiently high-
level that content authors can easily specify them. Futhermore, abstract
constraints can be specified without much technical or artistic knowledge.

The conversion from abstract to spatial constraints is done by a transla-
tion component, before the constraints are passed to the numeric constraint
solver. This component can choose any set of spatial constraints to repres-
ent the abstract constraint. Although one might conclude that the abstract
constraint caption DESCRIBES picture implicates that caption is placed
below to picture, that is not always the case. Multiple solutions are possible.
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Spatial constraints

Spatial constraints directly represent the geometric structure of the present-
ation. For example, one could require that each component would occupy a
space equal to or an integral multiple of a certain size.

There are a number of situations where spatial constraints are useful.
They can improve upon the visual quality and esthetics of the presentation,
by expressing simple legibility rules (e.g. text cannot be shrunk to a height
smaller than 6 pixels) and style guidelines (e.g. captions are placed beneath
their associated figures). Earlier, we discussed Figure 4.3(b), which shows
the effect of adding spatial constraints on the esthetics of the presentation.

It is possible to use concepts from graphic design to create a legible and
pleasing output. These systems often enforce the presentation to conform
to a grid system. In a grid system, every screen or page of the presentation
is divided into upright rectangles. Each object must occupy one or more
complete rectangles. A complication with this system is that a component
may need to be cropped, padded with a border or non-uniformly scaled (which
means its aspect ratio will change). This is because uniform scaling may not
be sufficient for the object to occupy an integral number of rectangles.

Automated layout systems for well-defined environments, such as net-
work diagrams, often employ spatial constraints exclusively. Abstract con-
straints can be used for formatting (e.g. important cities use a bigger icon
and a bigger font for their name), but are generally not utilized for layout
directly.

Some systems allow the specification of abstract data constraints, sep-
arately from spatial constraints. This is mainly useful for maintaining a
separation between content authors and layout experts.

4.2.2 Expressing constraints

One could define a formal grammar for representing constraints. Using this
approach, we would be able to leverage a rich body of existing research
for manipulating and parsing constraints. Such grammar may also be dif-
ficult to use, if they try to be overly general. Additionally, a very complex
solver would be needed to solve the constraint systems expressed with such
a system.

Another powerful approach is the use of Boolean predicates. This method
is quite contrary to the previous one. It tries to avoid the problems caused by
a very expressive grammar, by limiting the space of what can be expressed.
It also eases the process of solving the set of constraints, because the input
now requires almost no translation before being fed to the solver.
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4.2.3 Obtaining constraints

For our purpose, there are three possible approaches of obtaining constraints.
The most obvious one is where the user declaratively specifies the con-
straints. While this is doable for simple examples, it becomes quite tedious
when dealing with complex layouts. Another method is a tool that allows
the user to interactively specify the constraints and preview the results. A
similar tool has been created for Dygimes [CLV+03]. Finally, it is also pos-
sible to use predefined sets of constraints, similar to the approach taken by
layout managers described in Section 4.1.

4.2.4 Constraint solvers

A constraint solver is a component which calculates a solution to a con-
straint system. For a more thorough overview of constraint solvers and the
associated difficulties in developing one, we refer to Chapter 5.

4.3 Evaluation of a layout

In the field of layout, a good layout, can refer to the usability (e.g. whether
the user’s tasks can be accomplished efficiently), and the esthetics of the
presentation. Most techniques focus around heuristic inferences or quantit-
ative metrics. Heuristics are more flexibile, while metrics can be more easily
incorporated into computer systems. It is for example possible to measure
the amount of mouse movement a user needs to accomplish a task associated
with the presentation.

SUPPLE treats automated layout management as an optimization prob-
lem [GW04]. The system tries to minimize the estimated effort for the user’s
expected interface actions while still adhering to the device’s constraints.
It is innovative in that it takes into account a user- and device-specific
cost function. An essential component of the cost function are user traces.
SUPPLE uses these metrics to dynamically adapt the layout at runtime.
Suppose a user has to click two distant buttons very often due to some ex-
ternal factor, SUPPLE could recalculate the layout, and place these buttons
closer together. It is however uncertain which exact changes will be incor-
porated by the system, and whether these will always improve the usability.
It is possible SUPPLE’s rearrangements and remappings break the user’s
mental model of the interface. Furthermore, it is not clear how the designer
can influence SUPPLE’s behavior.

4.4 Conclusion

We gave a broad overview of existing work on automated layout manage-
ment, and further deepened our knowledge in this field. We introduced
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simple techniques used in modern UI toolkits, along with constraint-based
techniques. Finally, we briefly discussed computer-based mechanisms for
evaluating a layout.
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5.1 Introduction

5.1.1 Constraints

A constraint restricts possibilities. We use constraints daily when we de-
scribe things. For example, one could describe a basketball as being round
and orange. When someone thinks about this description, he or she auto-
matically rules out other geometric forms and other colours. We effectively
restrict the set of objects that correspond to the description, by requiring
them to be round and orange.

Although this is a intuitive description of a basketball, it is not complete.
In the winter (when there’s snow on the field), soccer footballs are orange
too. This kind of football also corresponds to our description of a basketball.
We could limit the possibilities even more by adding additional constraints
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(such as requiring the ball to be approved by the FIBA 1).
Eventually we would have created a list of constraints, that describe our

object sufficiently. A list of constraints is called a constraint system.
We can conclude that constraints are a very natural way for describing

things. It is therefore also a good choice for describing a graphical layout.
One could for example specify that the layout consists of three columns,
thereby limiting the position of widgets or widget groups to these three
columns. One would then further refine the constraint system, until the
generated layout represents what the designer had in mind.

In essence, a constraint is a relation we would like to maintain. The
key advantage of constraints is the separation of what relation we specify
from how we actually maintain it [Bad00]. The user can declaratively state
a relation that they want to be satisfied, instead of writing a procedure
to maintain the relation himself [FBMB90]. Constraints therefore fit in
seamlessly with a declarative description of a user interface.

In a more mathematical sense, a constraint is a mathematical relation:
a Cartesian product over a number of domains [Bad00]. A relation over the
domains X1, X2, ..., Xn can be formally described as follows:

R = (X1, ..., Xn, G(R))

where:
G(R) ⊆ X × Y

G(R) is thus a subset of the Cartesian product of X and Y .
Constraints don’t have to be spatial. The domain can be anything. How-

ever, in layout management, abstract constraints are generally converted to
spatial constraints at a later stage [LCC03]. Therefore we only consider
spatial constraints from now on.

5.1.2 Applicability

There is a constant trade-off between expressibility and performance [Bad00].
We must be able to express interesting, non-trivial relationships, while still
supporting interactive applications.

Maximum expressiveness can be obtained from arbitrary constraints,
but unfortunately solving such systems is undecidable. On the other hand,
there are many systems that provide excellent performance, but are limited
in expressiveness.

The interface designer should be able to understand and predict the
resulting solution to a certain system of constraints. By doing so, he can
figure out which constraints to add, edit or remove in order to acquire the
desired result.

These problems should be taken into consideration when choosing a con-
straint solving algorithm, and a notation for constraints.

1International Basketball Federation
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5.1.3 Constraint solvers

A constraint solver is an application that takes a constraint system as input
and produces a set of values for each of the featured variables as output.

5.2 Basic principles and techniques

5.2.1 Local versus global propagation

The main limitation of local propagation solvers is that they only examine
individual constraints in isolation. When cycles occur in the constraint
graph, more advanced algorithms must be called upon to handle the more
complex relations [Bad00].

5.2.2 Read-only annotations

Variables can be marked as read-only in a certain constraint, which means
the solver cannot change their value in order to satisfy the constraint. This
annotation is specific to a particular constraint though. Other constraints
may change the values of these variables.

5.2.3 One- versus multi-way constraints

One-way constraints

A one-way constraint has a single method for maintaining it. This method
calculates a new value for a single output variable. Easy to satisfy when
there are no circularities.

Multi-way constraints

A multi-way constraint has several methods for maintaining the constraint.
In general a method for calculating a value for each of the variables it con-
strains, in terms of the values of the other variables.

Advantages over one-way constraints

• more general

• every one-way constraint can be represented by a multi-way constraint
with all but one of its variables marked as read-only

• more powerful

• the choice of method to use can solve problems that one-way con-
straints cannot
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• clearer and more uniform way to specify relationships. It’s more intu-
itive to represent a multi-directional relationship with multi-way con-
straints instead of multiple one-way constraints

Disadvantages

• complexity. It’s more difficult to predict and control the behavior of a
network of multi-way constraints.

Conclusion

The greater expressive power of multi-way constraints justifies the additional
complexity for many applications.

5.2.4 Constraint hierarchies

If multi-way constraints are used or if there are cycles in the constraint
graph, there may be many ways to satisfy the constraints. We don’t want
to specify declaratively what to change when perturbing a constraint system
however.

A constraint hierarchy consists of required and preferential constraints.
The required constraints must hold. The system should try to satisfy the
preferential constraints if possible. Preferential constraints may be defined
in multiple levels of strength, each successive level more weaker than the
previous one. A stay constraint is an example of a preferential constraint,
indicating that a variable’s value should not be changed, if possible.

A constraint hierarchy is a set of labeled constraints. The label is the
level of the constraint. Level 0 is a required constraint. Levels 1, ..., n are
the preferential constraints.

5.2.5 Comparators

A solution to a constraint hierarchy is a valuation for all the free variables
in it. We have to define a comparator for choosing the best solution: the
solution which satisfies the required constraints, and additionally satifies the
preferential constraints the best according to their relative strengths.

The remainder of this subsection will discuss two commonly used com-
parators.

Locally-predicate-better

A possible comparator is the locally-predicate-better comparator, which is
used in DeltaBlue (see Section 9.1.1). It only concerns itself with whether
or not a certain constraint is satisfied, rather than how nearly satisfied it is.
By the locally-predicate-better comparator, it is more desirable to have a
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solution that satisfies all required constraints and a single strong constraint,
rather than one that satisfies all the required constraints and twenty (or
even millions of) weak constraints [Bad00]. The definition is as follows:

Solution x is locally-predicate-better than solution y for con-
straint hierarchy C if there exists some level k such that for
eveyr constraint c in levels C1 through Ck−1, x satisfies c if and
only if y satisfies c, and at level Ck, x satisfies every constraint
that y does, and at least one more.

By definition, S will not contain any solutions that are worse than some
other solution. However, S may contain multiple solutions, none of which is
better than the others [FBMB90].

Locally-error-better

This comparator is often used for satisfying inequality constraints. It takes
into account the error in satisfying a constraint. This error is 0 if and only if
the constraint is satisfied, and becomes larger the further away the solution
is from a satisfying one. The definition is:

A solution x is locally-error-better if there is no other solution
y that is better than x. Informally, y is better than x if there
is some level k in the hierarchy such that the errors for all the
constraints in levels 0 through k − 1 are exactly the same for
y and x, and at level k the errors in satisfying each constraint
using y are less than or equal to the errors using x, and strictly
less for at least one constraint.

In general, there may be more than one locally-error-better solution to a
given hierarchy [BAFB96].

5.2.6 Perturbation versus refinement model

Perturbation model

At the beginning variables have specific values associated with them that
satisfy the constraints. This is useful for layout management, since widgets
have a specific position. The constraint solver adjusts the values of the
variables when one of the variables is changed by an outside influence, so
that the constraints are again satisfied. This outside influence could be a
change in screen size for example. Adding and removing constraints can be
done in any order (which is again useful for our problem).
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Refinement model

Variables are initially unconstrained. As constraints are added, the per-
missible values of the variables get refined. Variables have no unique value,
which is not useful for graphical user interfaces.

5.2.7 Cycle avoidance

Redundant constraints may introduce cycles in the constraint graph. Con-
straint solvers that cannot handle cycles, need to call a specialized cycle
solver to eliminate the cycle.

5.2.8 Conflict resolving

Another common cause for the failure of a constraint solver are conflict-
ing constraints (e.g. x ≥ 5 and x ≤ 3). Constraint hierarchies already
provide a good solution to resolve conflicts when the conflicting constraints
have different strengths. Weaker constraints can be dropped in favor of the
stronger ones. However, a system with two conflicting required constraints
for example, cannot be satisfied. An error should be given in this case.
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6.1 Self-adaptable widget mappings

A more intelligent layout management approach could use remappings to
dynamically switch between several CIOs starting from a certain AIO. An
abstract range widget could for example be represented as a slider when
there is enough screen size available, and switch to a spinbox when the area
becomes too small.

In the remainder of this section we discuss a couple of techniques for
realizing remappings. Additionally, we provide a detailed description of
how remappings could be implemented in UIML (using UIML’s template
element).

6.1.1 Graceful degradation

Graceful degradation is a technique to guarantee maximum continuity between
platform-specific versions of a high-level user interface [FV04].

Users expect to be able to employ their existing knowledge when using
a service on another platform. This implies that the transition between
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different platform versions has to be very smooth. In other words, we have
to guarantee continuity between these different versions.

Graceful degradation centers the design effort on a single source inter-
face which is designed for the least constrained platform. Then a set of
transformation rules are applied to this source interface in order to pro-
duce specific interfaces for the other platforms. For example, if we want to
provide interfaces for a cellphone, a PDA and a desktop PC, we would use
the desktop interface to generate versions for the PDA and cellphone.

We call the process a degradation because we produce more constrained
interfaces. The degradation is graceful because we strive to guarantee con-
tinuity.

Graceful degradation is tailored towards model-based user interface de-
velopment (MBUID). There are rules for several models in the development
process. We refer to Chapter 3 for more information about MBUID.

Rules at the CUI level

There are two important kinds of rules for the Concrete User Interface level :
rules that transform the layout relationships between graphical objects, and
rules that modify the number and nature of the graphical objects.

Transformations of layout relationships There are three different types
of rules for layout relationships: resizing rules, that modify the dimensions
of a graphical object; reorientation rules, that modify the orientation of an
object without changing its size or position; and moving rules that modify
the localization of a graphical object. Resizing rules must keep in mind
the minimum width and height to which a graphical object can be shrunk
and if we want to preserve the aspect ratio. Of course, we have to take
into account the limits of human perception (the user must be able to read
and distinguish each graphical object). Reorientation rules are useful when
switching from landscape to portrait mode or vice versa. They can only be
applied to a small set of objects (e.g. labels). Moving rules can be used
when components don’t fit in a one dimension and there is space left in the
other dimension; when we wan to avoid scrolling in one dimension (hori-
zontal scrolling for example); and when some ergonomic rule or convention
on the target platform has to be respected.

Transformations of graphical objects Object transformations can take
three different forms: modification, substitution and removal. Modification
rules act upon the appearance of the graphical object (e.g. represent an
emergency by a red background on a workstation and by a flickering screen
on a cellphone). They modify the physical rendering of a semantic feature.
Substitution rules replace an interactor (i.e. an interactive graphical object)
by an alternate interactor that enables the same type of functionaltities.
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Substitution rules are mainly used when a certain interactor is not available
on the target platform, or when the interactor requires a too large screen
area. There are three types of substitutions:

• simple substitution (1 → 1): interactor X on the source platform is
replaced by interactor Y on the target platform.

• regrouping (N → 1): a set of interactors on the source platform is
replaced by a single interactor on the target platform.

• splitting (1 → N): a single interactor on the source platform is is
replaced by a set of interactors on the target platform.

The last type of graceful degradation rule for graphical objects is the removal
rule. One could for example delete pictures on a cellphone, because of space
constraints.

Rules at the AUI level

The Abstract User Interface level defines the distribution of interactive tasks
among the presentation units. A presentation unit groups logically linked
low level tasks that are to be achieved in the same presentation (window,
panel, etc.).

There are two useful graceful degradation rules here: splitting rules and
reorganization of tasks within the same presentation unit. Splitting rules
split a presentation unit in the source interface into two or more present-
ation units for the specific interface. Reorganization of tasks occurs when
the frequency of certain tasks on the target platform changes compared to
the frequency on the source platform. For example, the consultation of an
address book would be more frequent on a cellphone than on a desktop PC.

Rules at the Task and Concepts level

At the Tasks and Concepts level, a broad range of graceful degradation
rules can be applied. We can apply rules to general functionalities (high
level tasks), to the procedures the user must follow in order to complete the
general functionalities (low level tasks), to the temporal ordering between
tasks, and finally to the concepts.

Transformations of general functionalities Two types of rules apply
here: high level task deletion and high level task insertion. Tasks may be
removed when they are inappropriate for or impossible on the target plat-
form (e.g. manipulating complex graphics on a cellphone). Tasks may be
added for the same reason (changes of interaction capabilities or changes of
the typical context of use on the target platform).
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Transformations of procedures As with high level tasks, there are
again two types of transformations here: subtask deletion and subtask in-
sertion. Subtasks can be deleted because they are unnecessary on the new
platform (e.g. entering the user’s location on a platform with a GPS sys-
tem), or because they require too many resources (e.g. one can still book
theatre tickets but not the subtask of viewing the free seats in a picture
of the hall). Insertion of a subtask can occur because the target platform
does not permit several tasks to be executed at the same time (e.g. it is not
possible to edit several information items simultaneously on a cellphone),
or because additional navigation tasks are needed when a task needs to be
split.

Transformations of temporal ordening Tasks can be sequentialized
when the style of interaction changes (e.g. from a graphical interface to
a speech-based interface). Conversely, sequential tasks can of course also
become concurrent when the style of interaction changes.

Transformations of concept level Graceful degradation can change the
way some concepts are viewed: information can be summarized or cut, some
attributes can be masked, alternative shorter labels can be chosen, . . .

Graceful degradation rules and continuity

Of course not all rules we apply on the source interface have the same impact
on the continuity within the multiplatform system. Intuitively, low level
rules are expected to generate less discontinuity than rules applied at a
higher level.

A priority ordering between different rules is proposed. Rules with a
high priority generate less discontinuity than rules with a lower priority,
and should thus be tried first when adapting the source interface to the
target platform. Let’s have a look at a list of rules, starting with the rules
with the highest priority to the rules with the lowest priority:

• Layout transformation

– resizing objects

– reorienting objects

– moving objects

• Graphical object transformation

– modification of appearance

– simple substition

∗ with shape preserved
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∗ without change of shape

– regrouping or splitting

– interactor removal

• Task reorganization

– task reorganization within the same presentation unit

– task reorganization across several presentation units (splitting
rules)

• Transformations at the tasks and concepts level

– temporal ordering transformations

– concept level transformations and precedure transformations

– general functionality transformations

For transformations at the tasks and concepts level, a higher priority is
given to temporal ordering transformation rules that preserve the displayed
information and the available tasks. Concept level transformations and pro-
cedure level transformations introduce more discontinuity. General func-
tionality transformations significantly modify a system, and thus are given
the lowest priority.

6.1.2 Comets

Comets (COntext of use Mouldable widgETs) are a new generation of wid-
gets, that can adapt to the context of use. A comet is an introspective widget
that is able to self-adapt (or can be adapted by a tier-component) to some
context of use, or can be dynamically discarded (versus recruited) when it is
unable (versus able) to cover the current context of use. To do so, a comet
publishes the quality in use it guarantees, the user tasks and the domain
concepts that it is able to support, as well as the extent to which it supports
adaptation [CCODD04]. Let us start with some definitions.

By context of use we mean a triple <user, platform, environment>. The
user denotes the person who is intended to use the interactive system. The
platform corresponds with the same definition of computing platform we
supplied in Section 1.1: a computing platform is an architecture in hardware
and/or software that allows software to run. Finally, the environment refers
to the physical and social conditions in which the interaction takes place.

To master the diversity of contexts of use, the plasticity property has
been introduced. Plasticity is defined as the ability of an interactive system
to withstand variations of context of use while preserving quality in use.
Basically, plasticity refers to the adaptation to context of use that preserves
the user’s needs and abilities. Quality in use is defined by the ISO standards
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committee [703]. It refers not only to usability but is based on both internal
and external properties, including usability, which is depicted in Figure 6.1.
Plasticity is thus not limited to the user interface alone, but may also impact

Figure 6.1: Quality models for quality in use and internal and external
qualities (extracted from [CCODD04])

the functional core. A typical example is services discovery. Because Bob is
now in a place that makes a new service available, the service now appears
on his PDA. Thus, plasticity refers to the capacity of interactive system,
not only a UI, to adapt to the context of use. An interactive system is
said to be “plastic for a set of properties and a set of contexts of use” if it
is able to guarantee these properties whilst adapting to another context of
use. Plasticity is thus not an absolute property, it is specified and evaluated
against a set of relevant properties.

6.1.3 Remappings in UIML

As we discussed earlier we would like to use remapping to dynamically switch
between different CIOs. We would like an abstract class (d-class) to have a
couple of alternative mappings. This can be realized by using the template
element (for more information, see Section 2.2).

In fact, all we have to do is change the source attribute of the abstract
d-class in the vocabulary in order to change it from one specific CIO to
another. Of course we have to make sure that both CIOs support the same
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set of properties. We can thus state that UIML has fairly good support for
remapping widgets.

When do we switch between CIOs? An easy solution is to let the layout
manager decide. Unfortunately, this requires metadata about the interaction
objects. Each CIO should be given a weight, including amongst others its
relative dimensions compared to other CIOs deriving from the same AIO.
This weight could then be used to decide which CIO to choose in particular
situation.

For graceful degradation and comets it would be beneficial to provide
a set of rules that specify when a switch should occur. This could then be
passed to the UIML renderer or layout manager.

6.1.4 Visual techniques

[VG94] describes visual techniques exported from the area of visual design,
and a set of guidelines for effectively applying these visual techniques. A
visual technique relies on a commonly accepted visual principle to suggest
the arrangement of the layout components. Examples of these techniques
are symmetry, realism, grouping, etc.

However, it seems rather difficult to integrate these techniques in an
automated layout management system. Physical visual techniques are easily
computed, but there are also techniques that are difficult to evaluate using
a machine (e.g. photographic visual techniques). There have been some
systems (e.g. GRIDS) that incorporated a subset of the visual techniques
though [VG94].

6.1.5 Conclusion

Graceful degradation and comets are complementary techniques to our no-
tion of remappings. We can use the graceful degradation rules for defining
when and which remapping to apply. Of course, only the rules at the con-
crete and abstract user interface level are suitable for our purpose. Comets
are more general than our remappings. They react to different changes in
context of use, while remappings only take into account the layout.

Dynamically remapping and rearranging widgets would certainly in-
crease the degree of plasticity. However, a difficult problem is how to decide
when remappings or rearrangements should occur. It would be possible to
let the layout manager handle the remappings. This would require metadata
about each CIO though.

Visual techniques are again a set of rules we could take into account
when generating a layout. It seems difficult to effectively integrate these
techniques into the automated layout management system though.
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6.2 Patterns

Simply stated, a pattern is a proven solution to a recurring design prob-
lem [Bor01]. It pays special attention to the context in which it is applicable
and to the positive and negative consequences of its application.

The architect Christopher Alexander introduced the idea of patterns in
the early 1970s [Ale79]. His original definition stated:

Each pattern is a three-part rule, which expresses a relation
between a certain context, a problem and a solution.

Alexander presented patterns as a way to quickly solve architectural prob-
lems that occurred over and over again in a particular environment, by
providing commonly accepted solutions. Design patterns solve recurring
problems in object-oriented development [GHJV95]. They became very
popular in the software engineering community and are probably the most
well-known example of patterns in software development.

Over the last years, there has been a lot of momentum around HCI
patterns. A HCI pattern is a named, reusable solution to a recurrent prob-
lem in a particular context of use. At the moment there exist a number
of HCI pattern catalogues, carrying a welth of reusable design knowledge.
HCI patterns are applicable to different levels of abstraction, and can in
fact be used to drive the entire UI design process [Bor01]. Because pat-
terns exist on different levels of abstraction, they can be used to migrate
a user interface from one platform to another. The same patterns can still
be applied, but are converted to a more suitable, platform-specific imple-
mentation. Pattern descriptions should include advice for selecting the most
suitable implementation for a given context.

6.2.1 Assisting in user interface migration

Two approaches can be used when migrating UIs from one platform to
another [JSES04]:

• Reengineering reuses the original system with the goal of maintaining
it and adapting it to required changes

• Redesign is a simplified version of reengineering, and can be more
practical in certain contexts

Redesign takes advantage of HCI patterns by incorporating pattern map-
ping. The patterns of the existing UI are transformed or replaced in order
to redesign and reimplement the interface. Patterns include information
about design solutions and context of use, causing platform capabilities and
constraints to be automatically addressed in the transformed patterns.

Reengineering is more complex. It consists of three phases:
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1. Reverse engineering phase: uses a pattern extraction and abstraction
phase to create a platform-independent UI model

2. Transformation phase: analyzes patterns and designs in the platform-
independent UI model and transforms them if appropriate.

3. Forward engineering phase: first instantiates the UI to different plat-
forms based on constraints and capabilities, and later implements the
patterns on different platforms

The reverse engineering phase tries to extract patterns, and abstract these
in high level design strategies (e.g. query-based navigation). In the end a
platform-independent UI model is constructed. The transformation phase
transforms the abstract model in a restructured abstract model, taking new
design requirements (e.g. new user requirements or task-based changes) into
account. The forward engineering phase first of all instantiates the platform-
independent UI model to target devices based on their constraints and abil-
ities. It is only here that platform-specific decisions are made. Different
presentation components may apply for each pattern and design strategy.
Other patterns may be simplified according to the limitations of the target
device. The second step of forward engineering is pattern implementation,
which actually applies and combines the instantiated patterns.

The main disadvantage of redesign is that we have to repeat the same
exercise for each platform [JSES04]. Reengineering can easily support mul-
tiple target devices due to its creation of a platform-independent UI model.
Furthermore it increases coherence between each platform. The platform-
independent UI model facilitates future maintenance, since we only have to
change the model, instead of each platform-specific version. The reverse
engineering phase encourages re-evaluation of the requirements for the sys-
tem, resulting in improved usability. Reengineering is time-consuming and
complex though, and requires a lot of information about the patterns (e.g.
a pattern taxonomy, implementation strategies for each pattern, depending
on the platform used, etc.).

6.2.2 Layout Patterns

Chapter 4 discussed that it is difficult and tedious to design an efficient and
visually pleasing user interface by hand. Automated layout management,
although greatly improving on speed compared to designing a layout by
hand, is not guaranteed to produce satisfying results. Human interference
is usually still needed. There are many recurring tasks in user interfaces
(e.g. providing a username and password). For each task, a suitable layout
must be determined. It would thus be beneficial to provide layout patterns
for these tasks. Layout patterns could also be more general (e.g. a two-
column layout). A pattern should always include a detailed description
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of its applicability, allowing the designer to pick a suitable pattern for his
problem.

[LCA05] presents an approach for multi-device user interface develop-
ment, based on task-centered design. Tasks are related to user interface
building blocks. Building blocks correspond to the presentation units, which
we discussed in Section 3.2.1. They specify the interface in an abstract way.
This method uses UIML to describe a building block, because of UIML’s
good support for mapping AIOs to CIOs through its vocabulary. From the
task specification, a dialog model is generated.

Layout patterns are used as guidelines for relating different building
blocks to each other when merged in an integrated presentation. Places
in the layout pattern are filled according to the interaction or output type
of the task that is related to the building block to be placed in the lay-
out. Possible interaction and output types are selection, control, editing,
text, feedback, etc. A lot of flexibility is achieved by combining layout pat-
terns with the other design artifacts suitable for model-based user interface
development [LCA05].

6.2.3 Conclusion

We can conclude that HCI patterns, and more specificly layout patterns,
are an interesting tool for multi-platform user interface development. They
must be supported in the presentation model however. It is thus certainly
useful to include support for layout patterns in our implementation.
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Our layout management specification for UIML was implemented in
Uiml.net. This chapter gives a bit more information about this framework,
in order to better place the following chapters into context.

Uiml.net is an open source UIML renderer for the .NET framework,
developed at the Expertise Centre for Digital Media (EDM) [LC04]. We
gave a quick overview of UIML in Section 2.

The .NET framework offers interesting capabilities for implementing a
UIML renderer compared to Java, including but not limited too on-the-fly
code generation, better integration with web services and support for mul-
tiple native widget sets, such as System.Windows.Forms, Gtk and WxWid-
gets. .NET is also available for mobile devices through the .NET Compact
version.

Uiml.net is a portable, cross-platform application. It has been tested on
the Microsoft .NET framework as well as on the Mono implementation of
.NET and the .NET Compact version for mobile devices.

7.1 Architecture of the renderer

A high-level user interface description (HLUID) like UIML can either be
rendered or compiled. When compiling a HLUID, program code is generated.
When rendering it, there is a rendering engine that interprets the interface,
and renders it appropriately. In fact this is comparable to the approach
taken by a HTML rendering engine, used in web browsers.

Uiml.net uses the rendering approach, which is more complex but also
more flexibile [LC04]. It supports rapid prototyping because a UIML doc-
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ument can be tested immediately. Again, this is comparable to the devel-
opment of a HTML webpage. Furthermore, it can offer dynamic changes in
the user interface and a transparent mechanism for connecting the rendered
UI with the application logic.

Figure 7.1 gives a schematic overview of Uiml.net’s overall design.

Figure 7.1: Overview of Uiml.net’s architecture (extracted from [LC04])

7.1.1 Main components

Uiml.net consists of a few distinct parts:

Interface reader Before we can do anything useful, we must of course
parse the UIML document. The Interface reader processes the document
and represents it in appropriate datastructures. These are kept in memory
during the lifespan of the user interface, allowing for dynamic changes in
the style and structure of the interface. The corresponding vocabulary is
stored in a searchable structure in order to easily find the concrete widget
corresponding to an abstract interaction object.

Rendering Backends Uiml.net supports several rendering backends. A
rendering backend implements a layer which knows how to generate a specific
interface, starting from a UIML document and its vocabulary. Each widget
set (System.Windows.Forms, Gtk#, . . . ) has his own rendering backend.

System Glue The system glue connects the user interface with the ap-
plication logic. It allows for subscribing to certain events from the UIML in-
terface, and provide appropriate actions when these events occur. Moreover,
we can describe mappings to library routines in the vocabulary, which can
then be used in the UIML document itself (using the <call> element).
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7.1.2 Dynamic design

The renderer is highly dynamic: there is a seperate layer which has specific
knowledge of the widget set. The layer corresponding to the vocabulary of
the UIML document, will be loaded at runtime. This approach is very flex-
ible. It relies heavily on reflective programming. The rendering engine has
no notion of the concrete widgets. It uses solely the vocabulary to dynam-
ically load widgets by examining the available libraries for the appropriate
classes. Reflection then allows us to create new instances of these classes,
without knowing their name or structure. There is only a small part of the
rendering engine that is widget set-specific: the rendering backend.

This design has several advantages

• The base rendering engine is reusable for every widget set (it does not
explicitly create the concrete widgets)

• The vocabulary is independent of the renderer. When a widget set is
updated, mostly only its vocabulary has to be updated.

• The renderer is more portable, since there is almost no widget set- or
platform-specific code.
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As we described in Section 6.2, a pattern is a proven solution to a re-
curring design problem [Bor01]. Chapter 4 discussed that it is difficult and
tedious to design an efficient and visually pleasing user interface by hand.
Automated layout management, although greatly improving on speed com-
pared to designing a layout by hand, is not guaranteed to produce satisfying
results. There are many recurring tasks in user interfaces (e.g. providing a
username and password). For each task, a suitable layout must be determ-
ined. It would thus be beneficial to provide layout patterns for these tasks.
Layout patterns could also be more general (e.g. a two-column layout).
A pattern should always include a detailed description of its applicability,
allowing the designer to pick a suitable pattern for his problem.

8.1 Layout Patterns in UIML

It is possible to support layout patterns in UIML. The UIML template ele-
ment is perfectly suited for this purpose [AP99]. We refer to Section 2 for
more details. A layout pattern is built out of several parts or UI building
blocks, and has an associated layout between these parts.

Once we define a general layout pattern, we can use it to built several
specific user interfaces. It enables user interface designers to reuse exist-
ing layouts which have proven to be usable and esthetically pleasing. Each
building block of the pattern is mapped to a specific hierarchy of user inter-
face elements.

We use a constraint solver to determine the layout between building
blocks, and inside each building block. This corresponds to the technique of
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a local constraint solver, discussed in Section 5.2.1.
Let us look at an example. Listing 8.1 shows a simple two-column layout,

consisting of two parts: left and right.

Listing 8.1: Two-column layout pattern
<uiml>

<interface >
<structure >

<part id="left" source="prefs.uiml#menu" />
<part id="right" source="prefs.uiml#content" />

</structure >
...

</interface >
...

</uiml>

Listing 8.2 shows a template structure used to fill in the parts. It describes
a preferences interface for a internet browser.

Listing 8.2: Preferences layout (prefs.uiml)
<uiml>

<template id="menu">
<part id="menuFrame">

<part id="prefList" class="ListBox">
<style >

<property part -name="prefList" name="content">
<constant model="list">

<constant value="Appearance"/>
<constant value="Privacy"/>
<constant value="Proxy"/>
<constant value="Navigation"/>

</constant >
</property >

</style >
</part>

</part>
</template >
<template id="content">

<part id="contentFrame">
...

</part>
</template >

</uiml>

The content will change according to which value is selected in prefList.
We did not go into detail on the content part and layout constraints because
that would lead us too far. It’s important to note that it is very simple to
reuse existing patterns this way.
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The children of the parts in the layout pattern are replaced by the tem-
plate element’s children corresponding to the template referenced in the
source attribute of the part. The generic left and right parts can be
replaced by any part of UIML code, defined in the template.

8.2 Implementation

Recall that templates are resolved when they are sourced by an element.
Whenever this happens, a new instance of the Template class is created
from the source attribute. It is then resolved by a object implementing the
ITemplateResolver interface, according to the how attribute.

Each element that can be sourced is derived from the Sourceable ab-
stract class. This class implements the same Process() method as other
elements. Derived classes call this Process() method before doing their
own processing. Listing 8.3 shows the implementation of Process().

Listing 8.3: The Sourceable#Process() method
public void Process ()
{

ReadAttributes ();

if (Source != null)
ApplyTemplate(Source , How)

}

If a template is sourced, the ApplyTemplate() method gets called. Its
implementation is depicted in Listing 8.4.

Listing 8.4: The Sourceable#ApplyTemplate() method
public void ApplyTemplate ()
{

Template t = new Template(new Uri(Source ));
ITemplateResolver tr = Template.GetResolver(How);
tr.Resolve(t, this);

}

Summarizing, a new Template class is created from source. Then a new
template resolver is created according to the how attribute, which finally
resolves the template.

There are three types of template resolvers, corresponding with each
possible value of the how attribute:

• UnionTemplateResolver

• ReplaceTemplateResolver

• CascadeTemplateResolver
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Each of these classes is implements the interface ITemplateResolver, which
in fact just consists of the Resolve method. For further details concerning
the three possible resolving methods, we refer to Section 2.2.
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In order to generate a layout for the constraints specified inside a building
block, we had to integrate a constraint solver in the Uiml.net renderer. There
were a few requirements, it had to:

• be suitable for interactive applications

• support required and preferential constraints

• handle cycles gracefully

• support (linear) equality and inequality constraints

Clearly the constraint solver has to be suitable for real-time, interactive
applications. The solver must be able to find a new solution without dis-
turbing the interactivity of the system. This is commonly realized by using
an incremental algorithm.

Additionally, support for required as well as preferential constraints is
necessary. Required or hard constraints have to be enforced, while the sys-
tem will try to satisfy preferential or soft contraints if possible. The ability



60 Constraint solver

to specify both types, and thus form a constraint hierarchy is useful for
handling conflicts. Furthermore, we would like to be able to express a pref-
erence for stability. Objects should stay where they were, unless there is
a reason for them to move (this particular relation is also known as a stay
constraint).

Cycles will most probably occur in our constraint network. They could
have been introduced by redundant relations, or the problem could just be
intrinsically cyclic. To illustrate how easily cycles are introduced, let’s have
a look at a simple constraint system containing a cycle [Bad00]:

C1 : x + y = 6 C2 : x− y = 2

The solution to this constraint system is obviously:

x = {4} y = {2}

Solvers that cannot deal with cycles would not be able to find this solution.
The constraint graph is cyclic because constraint C1 as well as C2 relate
both variables. It would be an added burden on the interface designer if he
had to analyze the constraint system himself to detect cycles. A constraint
solver that can handle cycles gracefully is thus preferred.

Finally, linear equality and inequality constraints, such as above, left-of,
inside, etc. are needed for geometric relations [Bad00]. Geometric relations
are of course very common in the specification of a graphical layout.

In the remainder of this chapter, we’ll discuss a couple of possible can-
didates, explain our choice, and conclude with the actual implementation
and integration in Uiml.net.

9.1 Candidate solvers

9.1.1 DeltaBlue

DeltaBlue is an incremental version of the Blue algorithm [FBMB90]. Blue is
a multi-way local propagation solver, which respects constraint hierarchies.

At a first glimpse, DeltaBlue seems a good algorithm to use. It is also
fairly easy to implement and efficient. Let’s have a closer look.

Algorithm

DeltaBlue constructs an incremental algorithm out of Blue by maintaining
an evolving solution to the constraint hierarchy as constraints are added
and removed. It takes advantage of the fact that the external factors often
only have local effects on the constraint hierarchy. Changes mostly occur
gradually: for example when resizing a window. It is therefore beneficial
to reuse the previous solution instead of solving the system from scratch
everytime.
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DeltaBlue uses a constraint hierarchy: there are a number of constraints
with labeled strengths. The strongest level represents required constraints.
The algorithm tries to find a solution which satisfies all required constraints,
and satisfies the preferential constraints as well as possible according to their
relative strength. This is accomplished by using the locally-predicate-better
comparator which we discussed in Section 5.2.5.

A high-level description of the algorithm would be:

• decide which constraints should be satisfied

• decide which method should be used to satisfy each constraint

• decide in which order to satisfy the constraints

DeltaBlue’s data consists of a set of constraints C, a set of variables V
and the current solution or plan P . The initial configuration is C = ∅ and
V = ∅. These sets will be modified when the client program adds or removes
variables and constraints to the system. Every time a constraint is added
or removed, the current solution P is incrementally updated.

DeltaBlue’s key technique is the annotation of variables with their walk-
about strength. The walkabout strength of a variable is the strength of the
weakest constraint that could be revoked to allow another, stronger con-
straint to be satisfied. It covers the global information the algorithm needs
in order to incrementally update the solution whenever a constraint is added
to or removed from the system. Using this information, the algorithm can
predict the effect of the addition or removal of the constraints by examining
only the immediate variables of that constraint [FBMB90].

Let’s examine a concrete example from [FBMB90]: Figure 9.1 shows a
constraint graph consisting of four variables and two constraints. Variables

Figure 9.1: Example of DeltaBlue’s walkabout strength assignments to vari-
ables (extracted from [Bad00])

are represented by circles, while constraints are depicted as arcs. Variable
D’s walkabout strength is weak because the only constraint with D as output
variable, namely constraint C2 is weak. This means that to allow another
constraint to change D’s value, only a weak constraint (namely C2) has to be
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revoked. Variable C’s walkabout strength on the other hand is strong, be-
cause its input variable A is strong. Note that although B is required, C’s
walkabout strength is only strong: the walkabout strength is the strength
of the weakest constraint that could be revoked! In the case of C, that’s A’s
strength. Weak walkabout strengths propagate through stronger constraints
in the constraint graph [Bad00].

DeltaBlue always finds a locally-predicate-better solution to the con-
straint hierarchy, given that there are no cycles or conflicting constraints.
If these do occur, DeltaBlue aborts. The paper by Freeman and Ben-
son [FBMB90] gives a proof of DeltaBlue’s correctness, which we will not
cover in detail here. We will just give an intuitive explanation of the inner
workings of DeltaBlue.

It comes down to the fact that no solution ever generated by DeltaBlue
has blocked constraints. A blocked constraint is an unsatisfied constraint
whose strength is stronger than the walkabout strength of one of its potential
output variables. The blocked constraint lemma states:

If there are no blocked constraints, the set of satisfied constraints
represents a locally-predicate-better solution to the constraint
hierarchy.

Intuitively this means that if the current solution contains blocked con-
straints, we can do some more work to find a better solution. After all, there
is still a weaker constraint which can be revoked in order for the blocked
constraint to be satisfied (remember the blocked constraint is stronger than
the walkabout strength of one of its potential output variables). The ab-
sence of blocked constraints thus means we have found an optimal solution
(by to the locally-predicate better comparator).

Application

DeltaBlue has been used extensively in user interface applications, including
but not limited to ThingLab II [Bor79], Voyeur and Multi-Garnet.

Evaluation

The algorithm’s complexity is O(C + V ), just like simple local propaga-
tion [Bad00]. Assigning new values given the same configuration (e.g. recal-
culating the layout when resizing a window) is very fast: O(C) as only one
method per constraint gets executed. This makes DeltaBlue suitable for our
purpose on terms of efficiency.

There are some limitations of the DeltaBlue solver though [Bad00]:

• it can handle only functional constraints which compute a single value
for a variable
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• it cannot solve cyclic constraint graphs

• all methods must have exactly one output variable

The first restriction comes down to not being able to manage inequalities.
It is for instance not possible to specify that one widget is to the left of
another widget: widget1.rightside ≤ widget2.leftside. This is a feature we
would like to support in our implementation though.

As we said in the beginning of this chapter, it would be beneficial if
the solver could deal with cycles. Unfortunately Blue, and consequently
DeltaBlue too, cannot handle cycles.

Finally, multi-output constraints are not supported. These are useful
in many situations, but mainly just improve the expressiveness. The classic
example is to keep the representation of Cartesian coordinates of a point and
the representation of polar coordinates of the same point consistent [San93].
Let x and y be the Cartesian coordinates, while θ and ρ are the polar
coordinates. We could do this by defining a constraint with a method to
calculate (x, y) from (ρ, θ) and another method to calculate (ρ, θ) from (x, y).

The Constraints Research Group at the University of Washington de-
veloped a number of improved versions of the DeltaBlue algorithm. For
example, SkyBlue [San93] is a multi-way multi-output local propagation
solver, featuring walkbounds which is a generalisation of DeltaBlue’s walk-
about strengths. It thus improves on DeltaBlue by allowing multiple out-
puts. Other researchers also introduced more capable solvers. We will dis-
cuss and evaluate the ones relevant to our problem in the remainder of this
section.

9.1.2 Ultraviolet

Ultraviolet is a hybrid constraint solver, consisting of a number of different
components.

Algorithm

It partitions the constraint graph into different regions, and uses a subsolver
appropriate for the kind of constraints in that particular region [BAFB96].
The subsolvers consist of two local propagation solvers (Blue and Indigo)
and two cycle solvers (Purple and Deep Purple). They communicate using
shared variables.

After partitioning the constraint graph, we have to call on the subsolv-
ers. Invoking each subsolver one at a time and letting each subsolver finish
its algorithm before invoking the next would not be consistent with the con-
straint hierarchy theory. A weak constraint in region A might attempt to set
a shared variable before a stronger constraint the same variable had been
considered [BFB98].
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Blue is used for functional constraints over an arbitrary domain, In-
digo for inequality and other numeric constraints, Purple for cycles of linear
equality constraints and Deep Purple for cycles of linear inequality con-
straints. In the following paragraphs, we will discuss Blue and Indigo, which
are most relevant to the thesis.

Blue Blue is a batch version of the DeltaBlue algorithm we discussed
earlier in Section 9.1.1. The main difference is that Blue doesn’t use walk-
about strengths. Instead Blue keeps a list of active constraints. If enough
information is available to deduce the value of one of the constraint’s vari-
ables, this is done and we also check if there are other constraints whose
value can be deduced after this change. Otherwise the constraint is put
into the list of active constraints, and we continue with the following con-
straint [BFB98].

Indigo Indigo is an efficient local propagation algorithm for satisfying
acyclic constraint hierarchies, including inequality constraints [BAFB96].
As we discussed earlier in section 9.1.1, inequality constraints are very use-
ful for specifying a graphical layout. One could for example declare that one
widget is to the left of another. DeltaBlue cannot handle linear inequalities.

Traditional local propagation algorithms require constraints to be func-
tional : they must map to a unique value. Each constraint has several meth-
ods which can be used to satisfy the constraint. A method fills in the value
of the constraint’s variables, so that the constraint is satisfied. Each con-
straint for this kind of algorithm must be functional because otherwise it
would not be possible to supply the methods for it [BAFB96].

Indigo’s algorithm uses lower and upper bounds instead of a unique value.
Indigo propgates bounds instead of values. These bounds get tightened as
Indigo moves along the constraints (of course considering their individual
strengths). In the end, a variable’s upper bound will be equal to its lower
bound: the variable will have a unique value.

Indigo uses the locally-error-better comparator which we covered in Sec-
tion 5.2.5. When dealing with inequality constraints, the locally-predicate-
better comparator is not good enough. It is necessary to take the error in
satisfying a constraint into account: we need to know how nearly satisfied a
certain constraint is.

When the algorithm starts, each variable has a stay constraint with the
weakest strength. This ensures that in the end each variable will have a
specific value. Each variable is annotated with a certain interval. This
interval gets tightened as the algorithm executes and will eventually provide
us with a locally-error-better solution. A big difference with Blue is that
Indigo can use more than one method to satisfy a constraint. It can tighten
bounds on any of the variables, if deemed necessary. More details on Indigo’s
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inner workings (and an intuitive description of its correctness) can be found
in [BAFB96].

Application

Ultraviolet has used in the Constraint Drawing Framework: a commercial
graphics library written in Smalltalk [BFB98]

Evaluation

The solver is definitely very capable. Composite solvers increase their cap-
ability by allowing for different sorts of constraints. Unfortunately their
implementation is rather tedious. From a software engineering point of
view, Ultraviolet is not a good option. First of all, there must be a working
implementation of each subsolver. Additionaly, the communication between
the solver must be thoroughly tested.

Moreover, Ultraviolet is not an incremental solver, which makes it less
suited for our purpose.

9.1.3 Cassowary

Cassowary is an incremental constraint solving toolkit which was created
with the problems of earlier solvers and the requirements of user inter-
face applications in mind. It has a few distinctive features. First of all
it simultaneously supports linear equality and inequality constraints, which
arise naturally in specifying many aspect of user interfaces (as we discussed
earlier). Secondly, It can gracefully handle cycles. And finally, Cassowary
finds a locally-error-better or weighted-sum-better solution [BB98].

Algorithm

Cassowary is based on the simplex algorithm from the domain of linear
programming, which solves optimization problems. Consider a collection of
n real-valued variables x1, ..., xn, each of which is constrained to be non-
negative: xi0 for 1 ≤ i ≤ n. There are m linear equality or inequality
constraints over the x, each of the form:

a1x1 + ... + anxn = b,
a1x1 + ... + anxn ≤ b, or
a1x1 + ... + anxn ≥ b.

Given these constraints, we wish to find values for the xi that minimizes (or
maximizes) the value of the objective function

c + d1x1 + ... + dnxn.
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Unfortunately the simplex algorithm is not really suitable for interactive
applications. We need to solve similar problems repeatedly rather than
solving a single problem once [BB98]. In other words, the simplex algorithm
is not incremental. On the hand we must be able to quickly resolve thesystem
when there for example is a one-way constraint relating the mouse position
to the desired x and y coordinates of a figure. On the other hand, when
adding or removing constraints and other parts, we would like to reuse as
much of the previous solution as possible.

Another issue is to define a suitable objective function. This must be a
linear expression, but the objective functions for the comparators used by
Cassowary are non-linear. They are technique to handle this though.

Finally, variables may take on both negative and positive values, while
the standard simplex algorithm requires all variables to be non-negative [BB98].

Augmented Simplex Form For dealing with negative variables, Cas-
sowary uses the augmented simplex form. An optimization problem is in aug-
mented simplex form if constraint C has the form CU∧CS∧CI where CU and
CS are conjunctions of linear arithmetic equations and CI is

∧
{x ≥ 0 | x ∈ vars(CS)},

and the objective function f is a linear expression over variables in CS . There
are two tableaux instead of one. All unrestricted variables (variables that
may take on negative values) are placed in CU , the unrestricted tableau. CS ,
the simplex tableau contains only variables constrained to be non-negative.
The simplex algorithm ignores the unrestricted tableau, and determines an
optimal solution for the equations in the simplex tableau. The equations
in the unrestricted variable tableau are then used to determine values for
its variables. An augmented simplex form optimization problem is in basic
feasible solved form if the equations are of the form

x0 = c + a1x1 + ... + anxn

where the variable x0 does not occur in any other equation or in the objective
function. If in CS , c must be non-negative. The variable x0 is said to be
basic. Other variables in the equation are called parameters. A problem
in basic feasible solved form defines a basic feasible solution, which can be
obtained by setting each parametric variable to 0 and each basic variable to
the value of the constant in the right-hand side. [BB98].

Simplex Optimization The method used to find an optimum solution
to a constraint in basic feasible solved form, is in fact just phase II of the
standard two-phase simplex algorithm. We repeatedly look for an “adja-
cent” basic feasible solved form whose basic feasible solution decreases the
value of the objective function. When no such form can be found, the op-
timum has been found. We call this pivoting. It involves exchanging a
basic and a parametric variable using matrix operations. An adjacent form
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is a new basic feasible form that can be reached by performing a single
pivot [BB98].

Other adjustments to support incremental solving We will discuss
the other adjustments briefly, because they are rather technical. For more
details we refer to [BB98]. In order to incrementally add a new constraint,
it is first converted to augmented simplex form. Next the current tableau
is used to substitute out all basic variables. An artificial variable is cre-
ated that represents the constraint. Finally, the system is solved again (or
an error is given when the system is unsatisfiable). Removing a constraint
is handled by using marker variables to keep track of its influence in the
tableaux. Non-required constraints are handled by adding the errors of each
constraint to form an objective function. A special technique called quasi-
linear optimization is used to handle the non-linear objective functions rep-
resented by the comparators. One-way input constraints are handled by the
dual simplex algorithm, which starts from an infeasible optimal tableau, and
finds a feasible optimal solution. Summarizing, it comes down to updating
the constants in the tableaux to reflect the updated stay constraints, then
updating the constants to reflect the updated edit constraints, and finally
re-optimizing if necessary.

9.1.4 Evaluation

Cassowary is known to be very efficient [BB98]. It also fulfills the require-
ments we stated in the beginning of this section, so it is definitely a good
choice.

9.1.5 Conclusion

We can conclude Cassowary is best-suited for our purpose. It is tailored
towards interactive user interfaces. Its very efficient incremental solving
will be useful if we want to automatically re-evaluate the layout when the
presentation changes (e.g. when a window is resized). The solver can sim-
ultaneously handle linear equations and inequalities. Cycles are gracefully
handled, which enables the interface designer to fully concentrate on his
work. Cassowary has proven to be efficient and expressive enough to be
used in many applications such as CCCS/CSVG 1 and Scwm [Bad00].

9.2 Porting Cassowary to the .NET platform

Cassowary 2 is available on many platforms and in many programming lan-
guages, such as Smalltalk, C++ and Java.

1Constraint Cascading Style Sheets/Constraints Scalable Vector Graphics
2http://www.cs.washington.edu/research/constraints/cassowary/

http://www.cs.washington.edu/research/constraints/cassowary/
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Uiml.net is available on the Microsoft .NET platform, the free Mono
implementation of .NET and the .NET Compact platform (a specialized
version of .NET for mobile devices) [LC04]. In order to use automated
layout management on all platforms Uiml.net supported (especially on the
.NET Compact platform), a native .NET version of Cassowary was needed.
In early development, as a temporary solution we used a tool (IKVM.NET
3) to generate .NET code from the Java sources. After the port was finished,
we could switch to the native .NET version.

Cassowary.net 4 is a full port of the Cassowary toolkit to the .NET
platform. It is free software and is available under the same license terms
(the GNU LGPL 5) as the Java version by Greg J. Badros.

9.3 Integration in Uiml.net

9.3.1 Changes to the rendering process

Of course, eventually we had to integrate the constraint solver into Uiml.net’s
rendering process. Before, Uiml.net would in order:

• parse the UIML document

• create a renderer, with the appropriate backend dynamically loaded
according to the document’s vocabulary

• render the document

• show the resulting interface

It is beneficial to use the original position and size of each widget as initial
values. In order to obtain these, we need to render the interface before
actually solving the layout constraints. We would like this because when no
specific size is specified, most widget sets render their widgets in the correct
dimensions. For instance, a button containing a fairly long caption, would be
given a size such that the caption would fit into the button’s area. Moreover,
the designer could specify absolute positions and sizes, which would be used
as initial values. We place stay constraints on the initial values, allowing
the designer to provide hints to the constraint solver. Using this technique,
manual layouts that adhere to the constraints will not be altered by the
constraint solver!

Afterwards we can set the position and size of each widget according to
the solution found by the solver, and render the interface to again to reflect
these changes. Then the interface would be ready to be shown on the screen.
The rendering process changed as follows:

3http://www.ikvm.net/
4http://lumumba.uhasselt.be/jo/projects/cassowary.net/
5http://www.gnu.org/copyleft/lesser.html

http://www.ikvm.net/
http://lumumba.uhasselt.be/jo/projects/cassowary.net/
http://www.gnu.org/copyleft/lesser.html


9.3 Integration in Uiml.net 69

• parse the UIML document

• create a renderer, with the appropriate backend dynamically loaded
according to the document’s vocabulary

• render the document

• solve the layout constraints and set the resulting position and size of
each widget

• render the document again to reflect these changes

• show the resulting interface

9.3.2 Specifying the layout in UIML

Since UIML has no direct support for layout management, we added a lay-
out element to the specification. This element is associated with a certain
container part in the structure section, and describes the constraints for that
specific building block. A building block corresponds to a presentation unit,
which we discussed in Section 3.2.1.

Let us look at an example. Listing 9.1 describes a simple interface with
two buttons and two entries.

Listing 9.1: A simple layout
<?xml version="1.0">
<uiml>

<interface >
<structure >

<part class="Frame" id="frame">
<part class="Entry" id="leftentry"/>

<part class="Button" id="copyleft"/>
<part class="Button" id="copyright"/>
<part class="Entry" id="rightentry"/>

</part>
</structure >

<style >
...

</style >
<layout part -name="frame">

<!-- Left entry left of buttons -->
<constraint type="leq">

<property part -name="leftentry" name="right"/>
<property part -name="copyleft" name="left"/>

</constraint
<constraint type="leq">

<property part -name="leftentry" name="right"/>
<property part -name="copyright" name="left"/>
</constraint >
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<!-- Buttons left of right entry -->
<constraint type="leq">

<property part -name="copyleft" name="right"/>
<property part -name="rightentry" name="left"/>

</constraint >
<constraint type="leq">

<property part -name="copyright" name="right"/>
<property part -name="rightentry" name="left"/>

</constraint >
<!-- Left copy button above right copy button -->
<constraint type="leq">

<property part -name="copyleft" name="bottom"/>
<property part -name="copyright" name="top"/>
</constraint >

</layout >
</interface >

</uiml>

There is a <layout> element which is associated with the the surround-
ing container (frame). The layout consists of a list of <constraint> ele-
ments. Constraints have a type, and contain <property> elements. In
this case, each constraint is of the type leq, meaning that it is a linear in-
equality constraint, specifying that the first property is less or equal than
the second property. These properties can be any of width, height left,
right, top or bottom. Figure 9.2 describes the geometrical interpretation
of these properties. The first constraint represents leftentry.right ≤

Figure 9.2: The six layout properties

copyleft.left. Intuitively this means that leftentry should be left of
copyleft. The next constraint analogously describes that leftentry should
be left of copyright. Summarizing, the two first constraints enforce that
leftentry is left of the buttons. The following two constraints relate the
buttons and rightentry, specifying that the buttons should be to the left of
rightentry. Finally, we want copyleft to be above copyright. Remember
the upper left corner of the interface has coordinates (0, 0), while the lower
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right corner’s coordinates are (width, height): the Y axis increases from top
to bottom. Since copyleft is to be placed above copyright, the correct
constraint is copyleft.bottom ≤ copyright.top. The resulting interface,
rendered with System.Windows.Forms backend is shown in Figure 9.3.

Figure 9.3: The resulting interface, rendered with the Sys-
tem.Windows.Forms backend

We can compare this with the UIML documents in Section 2.4, which
describe the same interface. These use widget set specific layout manage-
ment, which increases the inter-vocabulary distance. The UIML document
specified in Listing 9.1 on the other hand would be the same for all backends!
The layout properties (see Figure 9.2) have to be mapped on each widget
set’s specific properties in the vocabulary. At the moment only the Sys-
tem.Windows.Forms backend is fully supported though. The Gtk# backend
still needs more work, as well as the Compact System.Windows.Forms (SWF
for the Compact .NET platform) backend.

9.3.3 Software architecture

A couple of changes have been made to Uiml.net’s architecture. There is a
new namespace Uiml.Layout, grouping most of the layout code. First of all,
we had to parse <layout> elements in a UIML document. This is reflected
in the Layout, Constraint and LayoutProperty classes, mapping on the
<layout>, <constraint> and <property> tags respectively.

Furthermore, each UIML document has an instance of the ConstraintSystem
class. This class keeps a list of all constraints and properties for a certain
UIML interface. The properties are in fact the variables that will be given a
specific value by solving the system. Each ConstraintSystem instance has
a ClSimplexSolver, which represents the Cassowary solver and is eventu-
ally passed an appropriate representation of the constraints and variables
described in the UIML document.

The LayoutProperty class is derived from the general Property class,
and is treated the same way by the renderer. The difference lies in the fact
that LayoutProperty has a ClVariable member, which is a specific repres-
entation of the variable to be passed on to the constraint solver. The beha-
vior of the Value property getter was also altered: it now directly returns
the variable’s value. Intuitively, one could see LayoutProperty instances
are smart versions of absolute positioning setter properties. They both set
a property to an absolute, fixed value. A LayoutProperty is however linked
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to a variable of the constraint solver which determines its value, while a
general Property setter’s value is directly specified in the UIML document.

Constraint instances keep a list of the properties they refer to, and
a specific constraint representation, ready to be fed to the solver. The
constraint representation is an instance of one of ClConstraint’s derived
classes.

9.4 Conclusion

We enlightened our choice of the Cassowary constraint solver. Furthermore
we discussed the development of Cassowary.net, a port of Cassowary to the
.NET platform. And finally, we had a look at an example UIML interface,
using spatial constraints to specify the layout.

Our approach relies only on the least common denominator of layout
management, namely absolute positioning. Therefore Uiml.net in combin-
ation with our constraint-based layout management can prove useful for wid-
get sets that only support fixed widget positions, such as System.Windows.Forms.

It is clear from Section 9.3.2 that a generic layout management spe-
cification can significantly reduce the inter-vocabulary distance, and thus
facilitate switching from one widget set to another.

There is still room for improvements however. For one, it would be
interesting to support a number of different widget sets, more specifically
Gtk# and Compact SWF (which Uiml.net supports best along with SWF).
Compact SWF should not pose too many problems, since it is very related to
SWF. Cassowary.net only requires a few changes to be ported to the .NET
Compact platform. Gtk# will be a bigger challenge though. The toolkit
makes it rather difficult to use absolute positioning. The WxWidgets widget
set supports Gtk as a backend, and also relies on absolute positioning in
combination with spatial constraints, meaning it is certainly possible to use
absolute positioning with Gtk#.

Additionally, specifying a layout should be made as easy as possible for
the interface designer. A possible solution is to use layout managers similar
to the ones used in traditional widget sets. Layout managers are widely
known for their ease-of-use when creating simple layouts (see Section 4.1).
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This thesis introduced a widget set independent layout mechanism for
UIML documents, which can be used for 2D graphical user interfaces. A
specific syntax for automated layout management had to be introduced. We
believe our technique is useful for 2D GUI’s, but it is by no means a general
layout solution. Different modalities require a completely new notion of
layout.

Another contribution of this thesis is the development of the Cassowary.net
contraint solver, a port of the original Cassowary toolkit to the .NET plat-
form.

Our approach relies only on the least common denominator of layout
management, namely absolute positioning. Therefore Uiml.net in combin-
ation with our constraint-based layout management can prove useful for wid-
get sets that only support fixed widget positions, such as System.Windows.Forms.

It is clear from Section 9.3.2 that a generic layout management spe-
cification can significantly reduce the inter-vocabulary distance, and thus
facilitate switching from one widget set to another.

There is still room for improvements however. For one, it would be inter-
esting to support a number of different widget sets, more specifically Gtk#
and Compact SWF. Additionally, specifying a layout should be made as easy
as possible for the interface designer. A possible solution is to use layout
managers similar to the ones used in traditional widget sets. Another useful
improvement would be to increase the degree of plasticity by remapping and
rearranging widgets dynamically (see Section 6.1). Section 6.1.3 explained
how remappings could be realized in UIML. However, a difficult problem is
how to decide when remappings or rearrangements should occur.
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Dutch summary

Deze bijlage geeft een Nederlandstalige samenvatting van de thesis. De
indeling komt overeen met de verschillende hoofdstukken.

A.1 Inleiding

De groeiende diversiteit aan computeromgevingen vereist een nieuwe, meer
efficiënte methodologie om gebruikersinterfaces te ontwikkelen. Traditioneel
ontwikkelt men één gebruikersinterface per computerplatform. De opgang
van mobiele en ingebedde systemen vergroot het probleem alleen maar. Men
moet een gebruikersinterface dus in een abstracte, apparaatonafhankelijke
manier gaan ontwikkelen, om zo de kost om een nieuw platform te onder-
steunen te beperken.

Bestaand onderzoek heeft al uitgewezen dat het redelijk duidelijk is hoe
we een uit de specifieke interface elementen voor elk platform, een verzame-
ling generieke widgets (of generieke interface elementen) kunnen abstrahe-
ren. Het is echter moeilijk de verschillende layout mechanismen die widget
sets gebruiken te generaliseren.

Een layout manager is een software component die de positionering en
schalering van individuele interface elementen in een gebruikersinterface af-
handelt. De eenvoudigste layout manager gebruikt absolute positionering,
waarbij elk widget een absolute positie en grootte toegewezen krijgt. Traditi-
onele toolkits zoals Gtk, Qt en Java Swing gebruiken flexibelere technieken.
Jammer genoeg kunnen deze technieken niet zowel mobiele systemen als
desktop systemen aan. Het zou interessant zijn als de gebruikersinterface
zich automatisch zou kunnen aanpassen, om beter aan de beperkingen van
de nieuwe omgeving te voldoen. Er zijn immers meerdere concrete imple-
mentaties van generieke widgets beschikbaar, elk met hun eigen specifieke
eigenschappen. Onderdelen van de interface zouden ook gehergroepeerd
kunnen worden wanneer er te weinig schermruimte beschikbaar is.

Ideaal gezien zouden we het layout proces volledig willen automatiseren.
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Dit is echter nog niet mogelijk. Meestal is er nog inbreng van de gebruikers-
interface ontwerper nodig.

Een widget set onafhankelijke methode zou elke layout die mogelijk is
met de specifieke methoden moeten ondersteunen. De meeste technieken
bekijken het probleem op een abstracte manier. Als we enkel de gemeen-
schappelijke kenmerken behouden, eindigen we immers met een banaal lay-
out mechanisme.

Onze methode is gebaseerd op de UIML taal. We gaan op zoek naar een
layout specificatie voor een grafische, 2D interface. Het praktische gedeelte
van de thesis bestaat er in de specificatie te integreren in Uiml.net.

A.2 UIML

UIML is een taal waarmee een gebruikersinterface gespecifieerd kan worden
in een declaratieve, abstracte manier. UIML is een meta-taal, net als XML.
Een UIML gebruikersinterface is een verzameling interface elementen, of
parts. Elk element bevat inhoud of content. Er is een behavior onderdeel
dat de interactie van de interface bepaalt. Hier wordt gewerkt met regels,
die een conditie en een reeks van acties bevatten. Een conditie komt overeen
met een gebeurtenis of event in de gebruikersinterface.

UIML biedt ondersteuning voor herbruikbare interface componenten.
Dit wordt gerealiseerd door het UIML template element. Een template kan
gezien worden als een aparte tak op de UIML boom. Die tak kan samen-
gevoegd worden met de hoofdboom waar er een gelijkaardige vertakking is,
namelijk: het enige kind van het template element moet hetzelfde zijn als het
kind dat het template element aanroept. Er zijn drie mogelijke methoden
om een template aan te roepen: vervangen (replace), toevoegen (append) en
trapsgewijs vervangen (cascade).

De vocabulary van een UIML document bevat de associaties tussen ab-
stracte interactoren en specifieke interactoren. Het is de bedoeling zoveel
mogelijk van de UIML beschrijving te kunnen hergebruiken wanneer er ge-
wisseld wordt van backend. De backend is de concrete widget set die gebruikt
wordt om de gebruikersinterface op het scherm weer te geven. Specifieke lay-
out technieken in het UIML document zorgen ervoor dat dit moeilijk wordt.
Deze specifieke technieken moeten immers voor iedere backend veranderen.
Een generieke layout specificatie zou ervoor zorgen dat dezelfde UIML be-
schrijving voor verschillende backends bruikbaar zou zijn.

A.3 Model-gebaseerde gebruikersinterface ontwik-
keling

Gebruikersinterface modellering wordt gezien als een oplossing voor het pro-
bleem van multi-apparaat gebruikersinterface ontwikkeling. Hierbij wordt er
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gewerkt met verschillende modellen, die elk een andere component van de
gebruikersinterface beschrijven. Zo zijn er o.a. het taakmodel en het presen-
tatiemodel. Gebruik makend van die modellen kunnen we automatisch een
gepaste gebruikersinterface genereren. Het gebruikersinterfacemodel bestaat
uit het platformmodel, het presentatiemodel en het taakmodel.

Model-gebaseerde technieken construeren associaties tussen de verschil-
lende modelcomponenten. Deze associaties kunnen gëınterpreteerd worden
om zo een aangepaste gebruikersinterface voor het relevante apparaat en
context te genereren.

Het presentatiemodel associeert abstracte interface elementen, ook ab-
stracte interactieobjecten (AIO’s) genoemd, met concrete interface elemen-
ten, ook concrete interactieobjecten (CIO’s) genoemd.

A.4 Geautomatiseerd layoutbeheer

Eenvoudige technieken in het domein van geautomatiseerd layoutbeheer zijn
o.a. de layout managers die gebruikt worden in moderne gebruikersinterface
toolkits. Ze steunen op een hiërarchie van containers en interface elementen.
Deze containers bevatten andere containers of interface elementen, en zorgen
voor de layout van hun kindelementen. De layout kan zich niet aanpassen
aan extreme omstandigheden, maar het is wel erg gemakkelijk in gebruik
voor eenvoudige layouts. Andere eenvoudige technieken zijn de layoutalgo-
ritmen van tekstverwerkers. Verder is er nog het TEX typesetting systeem
dat op vergelijkbare principes als de layout managers in gebruikersinterface
toolkits steunt.

Een veelgebruikte methode is het gebruik van constraints en een con-
straint solver. Er zijn abstracte en spatiale constraints. Meestal worden
abstracte constraints in een later stadium omgezet naar spatiale constraints.

Het is mogelijk een layout automatisch te evalueren gebruikmakende
van heuristieken of metrieken. Zo kan men bijvoorbeeld meten hoeveel de
gebruiker met de muis beweegt, om te bepalen of de layout al dan niet ge-
bruiksvriendelijk is. SUPPLE is een systeem dat layout management als
een optimalisatieprobleem beschouwt. Het probeert de inspanning die de
gebruiker moet doen te minimaliseren, en tegelijkertijd ook aan de beper-
kingen van het apparaat te voldoen. De layout kan dynamisch veranderen.
Als de gebruiker bepaalde interface elementen vaak na elkaar gebruikt bij-
voorbeeld, kunnen ze dichter bij elkaar gezet worden. Het is echter onzeker
welke veranderingen er precies zullen gebeuren, en of die altijd het gebruiks-
gemak ten goede zullen komen. Het is ook onduidelijk hoe het gedrag van
SUPPLE bëınvloed kan worden.
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A.5 Constraint solvers

Een constraint beperkt mogelijkheden. Het is een relatie die we willen on-
derhouden. Een lijst van constraints noemen we een constraint systeem.
Constraints zijn erg natuurlijk om iets te beschrijven, daarom zijn ze ook
erg geschikt om een grafische layout te beschrijven.

Er is een constante afweging tussen expressiviteit en performantie. We
moeten interessante, niet-triviale relaties kunnen beschrijven, terwijl we toch
interactieve applicaties willen ondersteunen.

Een constraint hiërarchie bestaat uit verplichte en voorkeursconstraints.
De verplichte constraints moeten bevredigd worden. Het systeem zou de
voorkeursconstraints moeten bevredigen in zoverre dat mogelijk is. Voor-
keursconstraints kunnen verschillende niveau’s van sterkte hebben. Om een
constraint hiërarchie op te lossen, moeten we kunnen beslissen wat de beste
oplossing is. Hiervoor wordt er een comparator gebruikt.

Het kan voorkomen dat er een cycle in de constraintgraaf zit. Sommige
constraint solvers kunnen met cycles omweg, terwijl anderen daarvoor een
gespecialiseerde cycle solver nodig hebben. Cycles duiden op redundante
informatie in het constraintsysteem. Verder kunnen er ook conflicterende
constraints in het constraint systeem zitten. Als ze een verschillende sterkte
hebben, kan de zwakste genegeerd worden, maar wanneer het constraintsys-
teem niet oplosbaar is, dient er een foutmelding gegeven te worden.

A.6 Flexibele interfaces

Een intelligente layout management methode zou remappings kunnen ge-
bruiken om dynamisch te switchen tussen verschillende CIOs, beginnend
van een bepaald AIO.

Graceful degradation is een methode om zoveel mogelijk continüıteit te
garanderen tussen de verschillende platformspecifieke versies. Men vertrekt
van een platformspecifieke gebruikersinterface voor het minst beperkte plat-
form. Deze broninterface wordt dan omgezet voor de andere platformen.
Graceful degradation voorziet verscheidene regels doorheen de hele cyclus
van modelgebaseerde ontwikkeling.

Comets zijn een nieuwe generatie van interface elementen, die zich kun-
nen aanpassen aan de specifieke context. Met context bedoelen we het
platform, de gebruiker en de omgeving. Plasticiteit is de mate waarin een
interactief systeem variaties in de context kan weerstaan, zodat tegelijkertijd
toch de gebruikskwaliteit behouden blijft.

We kunnen remappings in UIML realiseren door het template element.
Het is echter moeilijk te beslissen wanneer een remapping plaats moet vin-
den, en welk specifiek CIO we kiezen. Hiervoor is metadata over elk CIO
nodig.
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Een HCI patroon is een algemeen aanvaarde oplossing voor een steeds
terugkerend probleem in de ontwikkeling van gebruikersinterfaces. Zo zijn
er ook layout patronen, die een visueel aantrekkelijke en efficiënte layout be-
schrijven voor een bepaalde, steeds terugkerende taak in een gebruikersin-
terface. Via layout patronen kunnen we de expertise van visuele ontwerpers
hergebruiken. Layout patronen in combinatie met het taakmodel bieden erg
veel flexibiliteit. Het is dus zeker nuttig ondersteuning voor layout patronen
in onze implementatie te voorzien.

A.7 Uiml.net

Onze implementatie werd gëıntegreerd in Uiml.net, een open source UIML
renderer voor het Microsoft .NET platform. Een renderer is complexer dan
een compiler maar biedt ook meer flexibiliteit (o.a. rapid prototyping),
omdat het de interface rendert. Deze aanpak is vergelijkbaar met de aanpak
van web browsers, die webpagina’s renderen.

Uiml.net bestaat voornamelijk uit een interface reader, de rendering bac-
kends en de connectie tussen de gebruikersinterface en de applicatielogica.
Het ontwerp is erg dynamisch, het grootste deel van de code is onafhanke-
lijk van de gebruikte backend. Veranderingen aan een widget set, moeten
meestal enkel aangepast worden in de vocabulary, aangezien Uiml.net ner-
gens expliciet specifieke widgets aanmaakt. Er wordt veel gebruik gemaakt
van reflectie.

A.8 Het UIML template element

We hebben het UIML template element gëımplementeerd in Uiml.net, o.a.
om layout patronen te ondersteunen. Er is een abstracte Sourceable klasse,
waarvan UIML elementen die een template element kunnen aanroepen aflei-
den. Deze klasse delegeert het effectief aanroepen van het template element
door naar een template resolver. Voor elke aanroepmethode is er een klasse
afgeleid van TemplateResolver.

A.9 De constraint solver

We hebben een aantal kandidaat constraint solvers onderzocht. Onze ver-
eisten waren dat de solver geschikt was voor interactieve applicaties, dat hij
zowel verplichte als voorkeursconstraints ondersteunde, dat cycles moeite-
loos afgehandeld werden en dat lineaire gelijkheden en ongelijkheden onder-
steund werden.

DeltaBlue leek op het eerste zicht een goede kandidaat. Het kan echter
enkel functionele constraints aan die een enkele waarde voor elke variabele
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berekenen, cycles worden niet toegelaten, en elke oplossingsmethode voor
een constraints heeft precies één enkele output variabele.

UltraViolet is een hybride constraint solver, die o.a. Blue, Indigo, Purple
en Deep Purple gebruikt. Het is echter geen incrementeel algoritme (het kan
eventueel wel gecompileerd worden). De implementatie ervan is ook zeker
niet vanzelfsprekend.

Cassowary is een incrementele constraint solving toolkit die tegelijker-
tijd lineaire gelijkheden en ongelijkheden ondersteunt. Cassowary is erg
efficiënt en volledig toegespitst op gebruikersinterface applicaties. Het kan
ook moeiteloos omgaan met cycles. Uiteindelijk was Cassowary de beste
keuze

We hebben Cassowary geport naar het .NET platform, om het zo beter
te kunnen integreren met Uiml.net, en het ook mogelijk te maken de solver
te gebruiken op het .NET Compact platform. Cassowary.net is een volledige
port van Cassowary en is vrij beschikbaar.

We hebben enkele veranderingen aangebracht aan het renderproces van
Uiml.net. We renderen het document nu twee keer. Een keer om de initiële
waarden van de posities en groottes van de widgets te bepalen, en de tweede
keer om de oplossing van de constraint solver te gebruiken. We hebben
een <layout> element toegevoegd aan de UIMl specificatie. Een layout is
geassocieerd met een bepaald containerelement. Binnen een layout worden
de constraints gespecifieerd. We maken gebruik van zes layouteigenschappen,
die de absolute positie en grootte van een widget bepalen.

De architectuur van Uiml.net is uitgebreid met de Uiml.LayoutManagement
namespace.

A.10 Slotbeschouwing

Deze thesis introduceerde een widget set onafhankelijk layoutmechanisme
voor UIML. Dit mechanisme kan gebruikt worden voor 2D grafische gebrui-
kersinterfaces. We hebben een specifieke syntax voor layout management
moeten introduceren. Onze oplossing is zeker geen generieke, multi-modale
layout oplossing.

Verder hebben we de Cassowary.net constraint solver ontwikkeld, een
port van de originele Cassowary toolkit naar het .NET platform.

Onze aanpak vereist enkel absolute positionering, waar elke widget set
ondersteuning voor biedt. Uiml.net in combinatie met ons layout mechanis-
me kan op zichzelf al nuttig zijn voor widget sets die enkel absolute positi-
onering aanbieden. Een generieke methode voor layout management biedt
een significante verbetering voor het hergebruik van UIML documenten.

Er zijn echter nog verbeteringen mogelijk. Zo zou het onder andere inte-
ressant zijn meerdere widget sets te ondersteunen, zoals Gtk# en Compact
SWF. Verder zouden we het zo makkelijk mogelijk moeten maken om een
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layout te specifiëren. Zo zouden we bijvoorbeeld traditionele layout mana-
gers kunnen inbouwen. Een andere verbetering zou zijn het verhogen van
de plasticiteit door dynamisch widgets te remappen en te herschikken. Het
is echter niet eenvoudig te beslissen wanneer en hoe we die remappings gaan
realiseren.
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