
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Seventy-five years of estimating the force of infection from current status data

Peer-reviewed author version

HENS, Niel; AERTS, Marc; FAES, Christel; SHKEDY, Ziv; Lejeune, O.; van Damme,

P. & Beutels, P. (2010) Seventy-five years of estimating the force of infection from

current status data. In: EPIDEMIOLOGY AND INFECTION, 138 (6). p. 802-812.

DOI: 10.1017/S0950268809990781

Handle: http://hdl.handle.net/1942/10975



1 
 

(a) 75 years of estimating the force of infection  

(b) N. Hens
1,2

, M. Aerts
1
, C. Faes

1
, Z. Shkedy

1
, O. Lejeune

2
, P. Van Damme

2
, P. Beutels

2 

(c)  

1 
Interuniversity Institute of Biostatistics and Statistical Bioinformatics. Hasselt University, 

Diepenbeek, Belgium 

2
 Centre for Health Economics Research & Modeling Infectious Diseases; Centre for the 

Evaluation of Vaccination, Vaccine and Infectious Disease Institute University of Antwerp, 

Antwerp, Belgium
 

(d) None 

(e) Corresponding author: 

Niel Hens 

Interuniversity Institute of Biostatistics and Statistical Bioinformatics 

Hasselt University  

Agoralaan 1, Building D 

B-3590 Diepenbeek, Belgium 

Email: niel.hens@uhasselt.be 

(f)  

Niel Hens 

Interuniversity Institute of Biostatistics and Statistical Bioinformatics 

Hasselt University  

Agoralaan 1, Building D 

B-3590 Diepenbeek, Belgium 

Email: niel.hens@uhasselt.be 

(g) 75 years of estimating the force of infection

mailto:niel.hens@uhasselt.be
mailto:niel.hens@uhasselt.be


2 
 

Summary 

 

The force of infection, describing the rate at which a susceptible person acquires an infection, is 

a key parameter in models estimating the infectious disease burden, and the effectiveness and 

cost-effectiveness of infectious disease prevention. Since Muench formulated the first catalytic 

model to estimate the force of infection in 1934, exactly 75 years ago, several authors addressed 

the estimation of this parameter by more advanced statistical methods, while applying these to 

seroprevalence and reported incidence/case notification data. In this paper we present an 

historical overview, discussing the relevance of Muench‟s work, and we explain the wide array 

of newer methods with illustrations on pre-vaccination serological survey data of two airborne 

infections: rubella and parvovirus B19. We also provide guidance on deciding which method(s) 

to apply to estimate the force of infection, given a particular set of data. 
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Introduction 

 

Although epidemics were already documented by Hippocrates (458-377 BC), it was not until 

1760 that mathematical modeling of infectious diseases was first documented in a publication by 

Daniel Bernoulli [1], who used a mathematical method to study smallpox infections. These and 

subsequent models at the very start of the 20
th

 Century [2]-[5] focused on determining the 

infectious disease spread and the associated basic and effective reproduction number. Hugo 

Muench first proposed the concept of estimating the force of infection (at that time called the 

„effective contact rate‟) as a key parameter in such mathematical models, in a publication entitled 

„Derivation of rates from summation data by the catalytic curve‟ in the March 1934 issue of the 

Journal of the American Statistical Association [6]. His work became widely known only 25 

years later with the publication of his book on „Catalytic models in epidemiology‟ [7]. 

 

Before Muench‟s seminal work, series of physicians‟ case reports, i.e. incidence data, which are 

often affected by underreporting and misdiagnosis, were used to study the „effective contact rate‟ 

of a given disease in a given population [8]. Muench suggested using a catalytic model on 

summation data to obtain a measure of the rate at which a susceptible acquires infection (and not 

necessarily disease). The name „catalytic‟ was inspired by the similarity to the equations used to 

study the processes that drive chemical reactions. In his 1959 monograph [7], Muench referred to 

this effective contact rate as the force of infection (FOI). The importance of Muench‟s catalytic 

model is the capacity to use test results on, for example, serological or saliva samples, in addition 

to reported incidence data, in order to estimate the FOI, especially for infections that leave 

permanent markers of immunity in their surviving hosts.  
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More explicitly, Muench stated that the simplest approach is to assume a constant effective 

exposure rate  per unit of time  and that this rate applies to the entire population at all times. 

Nonetheless, the immune proportion  increases only to the extent that previously uninfected 

individuals can incur new infections. In addition, the model allowed that some fraction of the 

population cannot be infected at all. Muench‟s catalytic curve can be written as 

  (i) 

where  is the proportion of the population that can be infected,  is the proportion of all 

previously infected (and immune) individuals prior to age  and  is the proportion of the 

population which may show evidence of exposure. Figure 1 illustrates the behavior of Muench‟s 

model for different choices for  and . Note that the model gives negative estimates of the 

proportion immune for  and thus interpretation is not straightforward in this case.    

.   

FIGURE 1 ABOUT HERE 

 

Using the method of moments to estimate these parameters, Muench illustrated his approach on 

several datasets.  These included intraperitoneal mouse protection test results for yellow fever in 

South America, a test which remains positive once an individual has been infected by yellow 

fever. He considered two regions; one in which the population was originally assumed entirely 

susceptible with frequent epidemics so that  actually corresponded to a steady effective 

exposure rate. He compared these results with those of a second region where an outbreak of 

yellow fever occurred. He illustrated that these test results cannot show when individuals had 

been infected, only that it must have occurred at some time before taking the test. Indeed, by 
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analyzing summation data one estimates the probability of past infection at a certain time point 

and derives the FOI using the analytical expression in (i). The latter is based on the untestable 

assumption of time homogeneity. 

Testifying its importance, numerous later publications echoed this inherent limitation of not 

being able to use direct data on person-time incidence but rather summation data to derive the 

FOI under the assumption of time homogeneity. Muench already discussed other complications 

such as test reversion rates, differential mortality, and passive immunity through transfer of 

maternal antibodies. 

 

TABLE 1 ABOUT HERE 

 

Although applicable to cumulative incidence data too, we illustrate Muench‟s method on cross-

sectionally collected seroprevalence data because of the above limitations of reported incidence 

data. We use two serological surveys, a first one on rubella in the UK, collected in 1986-1987 for 

males only [9]; and a second one on parvovirus B19 in Belgium, collected in 2001-2003 [10]. 

We make a number of typical common assumptions, i.e. that no portion of the population is free 

from exposure, a perfect test is used, the time homogeneity assumption holds, disease-related 

mortality is negligible compared to all cause mortality, infection confers lifelong immunity (in 

equation (i): ) and, specifically for rubella in the UK, that the school-girl programme 

that was implemented had negligible effect on the seroprevalence of rubella antibodies in males. 

Whereas Muench originally used the method of moments to estimate the FOI, we cast his model 

in the maximum likelihood framework. More specifically, we use a binomial likelihood to relate 
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the age-specific prevalence (or cumulative incidence) to the age-specific observed proportion 

immune: 

  (ii) 

where  denotes the age-vector of length ;  and 

 denote the corresponding vectors of positive and total counts per age value. 

Assuming Muench‟s model,  in (ii) is given by (i). Maximizing the likelihood in (ii) with 

respect to  yields the maximum likelihood estimate . 

The black curves in Figure 2 show the fitted seroprevalence and FOI curves together with the 

observed seroprevalence for both infections. The constant FOI was estimated 0.104 and 0.053 for 

rubella and parvovirus B19, respectively. The assumption of a constant FOI seems visually 

appropriate for the rubella data but inappropriate for the parvovirus B19 data (cf. Figure 2). Such 

observations led other researchers to develop new methods allowing for an age-dependent FOI. 

 

FIGURE 2 ABOUT HERE 

Standing on the shoulders of Muench 

Muench‟s work has led to the development of many models to estimate the FOI. These models 

can broadly be divided into parametric and nonparametric methods. Whereas parametric 

methods rely on specific functional relationships (eg, Muench‟s model is parametric since it 

assumes a constant FOI), nonparametric models relax such assumptions. In this section we 

present an overview of these different approaches.  Starting with Muench‟s work, Table 2, 

summarizes the key contributions with respect to the shape of the FOI, the focus of the analysis 

and the data used. 
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Parametric methods 

Griffiths [11] was the first author to propose the use of a linear rather than a constant FOI to 

model measles incidence data from England and Wales for the period 1956-1969. With the 

above notation, his model could be formulated as  

  (iii) 

 

where , with  parameters to be estimated and  the threshold for 

inherited immunity.  denotes the indicator function taking value 1 if  and 0 otherwise. 

In general, equation (iii) is the solution of the differential equation  

  (iv) 

 (with initial condition  meaning that everyone is assumed susceptible at birth) that 

describes the changes in the proportion of susceptibles  with respect to time.  

Note that  denotes the cumulative FOI up to age  acting on susceptibles. Whereas 

Griffiths [11] described the estimation procedure outlined above as simple and straightforward to 

apply, he actually used an alternative method to model the measles incidence (rather than 

cumulative incidence) using a multinomial model and thereof estimated the attack rate. 

Note that the catalytic model as presented in (iii) is actually a survival model and that the 

probability of past infection is the cumulative distribution function of the time to infection or 

alternatively one minus the survival function. The (cumulative) FOI is the (cumulative) infection 

hazard. 

In general the change in the susceptible portion could be both age- and time-dependent. It is 

under the assumption of time homogeneity, age can be used to determine the time of infection 
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and thus age and time are identified and (iii) is typically denoted in terms of age rather than time.  

Time homogeneity implies that neither the pathogen‟s transmissibility, nor susceptible people‟s 

receptiveness to infection (irrespective of their age), nor the frequency and intensity of 

interactions necessary for transmission to occur (eg, social contact patterns for air and saliva 

borne infections, sexual intercourse for Sexually Transmitted Infections) have changed 

substantially with time. In particular feco-orally transmitted infections (eg, hepatitis A virus, 

cholera) are documented to be time heterogenous, due to the drastic improvements in sanitary 

conditions in many settings over the last century[12][13]. Note that Schenzle et al. [13] argued 

that, for the case of hepatitis A, it is more appropriate to assume age-homogeneity and time-

heterogeneity, and thus modeled time effects. The limitation of having to choose for either time 

or age may be overcome by use of data which is both age and time structured (see below). 

Griffiths used maximum likelihood theory to estimate the parameters in the catalytic linear 

model and for the first time addressed the goodness-of-fit to the data using Pearson‟s chi-square 

test. Interestingly, Griffiths justified his choice of a linear FOI by using a nonparameteric 

estimate for the FOI which was plotted against age and showed a linear trend. Note that Griffiths 

applied his model only up to age ten years as by then most children had been infected with 

measles. Griffiths‟ work was later used by several other authors to model measles and other 

common childhood infections [14]. Griffiths‟ 1974 contribution should be seen as the completion 

of the basic building block for the estimation of the FOI.  

 

Grenfell and Anderson [15] extended Griffiths‟ approach to encompass a general polynomial 

description of changes in the FOI with age and derived a stepwise maximum likelihood method 

for parameter estimation from data sets consisting of either case notifications or serological 
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information. This encompasses both Muench‟s and Griffith‟s catalytic model. The appropriate 

polynomial degree can be found by minimizing the relative deviance. Grenfell and Anderson 

discussed the advantages and disadvantages of using case notification data and serological data 

and stress that availability is the key criterion for which type of data to use [15]. For case 

notification data, the quality highly depends on the biases and inaccuracies of the case 

notification system. Serological databases too can suffer from the representativeness of the 

collected samples, as well as implicit assumptions for analysis, such as time homogeneity, 

lifelong immunity and the other complications listed above, duely noted by Muench [6]. Several 

of these issues gave rise to further research. 

A first complication is that under the assumptions stated above, the model for the prevalence 

should be monotonically increasing with age. The monotonicity issue was not relevant for 

Muench and Griffiths since a model with constant or linear FOI always estimates a monotone 

prevalence. However, this is not necessarily the case with high order polynomials. In 1990, 

Farrington [16] placed the issue of monotonicity in the heart of the estimation problem. He noted 

that for measles, mumps and rubella, the FOI typically rises linearly from birth up to about 10 

years of age, after which it drops off again for older ages. This qualitative form was also 

observed by Griffiths. Farrington considered a nonlinear model, i.e. an exponentially damped 

linear model, in age 

  (v) 

where  and  are positive parameters that can be estimated using maximum likelihood and 

constrained optimization. The FOI in equation (v) is 0 for age 0, then shows a linear increase and 

ends in an exponential decay. Following Griffiths, Farrington [16] assessed the goodness of fit of 

his model using a nonparametric estimate of the FOI, i.e. a moving average, indicating again that 
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a more formal nonparametric approach for the estimation of the FOI is needed, at least in the 

exploratory stage.  

 

Note that for specific choices of , such as those proposed by Muench and by Grenfell and 

Anderson, equation (iii) corresponds to a generalized linear model (GLM, [18]) with binomial 

response and log-link. Other parametric models fitted within the framework of GLMs have been 

proposed since then using different link-functions such as the logit and cloglog link [19]-[31]. 

Among those, the most popular parametric model employed is the piecewise constant FOI where 

for predetermined intervals a constant FOI is assumed. The choice of these intervals is usually 

inspired by the intuitive relevance of the ages of mixing groups in the population (eg, pre-school, 

school, high school, etc). A drawback for the model of Grenfell and Anderson and many other 

parametric models is the probable occurrence of a negative FOI for some age-values or an 

unrealistic steep increase for higher age-values because of the chosen functional relationship. 

Farrington‟s model is not a member of the GLM family, and deals with these issues by 

constraining the model based on prior knowledge. However, if that knowledge is unavailable or 

questionable, nonparametric options could be explored.  

 

Nonparametric methods 

 

Although nonparametric techniques were used before to assess the fit of a parametric, possibly 

nonlinear, function [11], Niels Keiding [32] was the first to explicitly use a nonparametric 

technique to estimate the FOI from serological data, based on the isotonic Kaplan-Meier 
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estimator of  which finds its origin in survival analysis. Keiding also addressed the 

issues of time homogeneity, monotonicity, and censoring.  

 

Most of the various nonparametric methods in the GLM framework developed since Keiding, 

involved estimating the (sero)prevalence by a nonparametric technique and subsequently 

deriving the FOI by . Note that this latter expression for the FOI is a 

discretized version of (iv) with .  

Among these nonparametric applications, spline-based methods have become very popular 

[10][33]-[36]. A spline can be seen as a concatenation of a rich number of local polynomials 

which are glued together in a „smooth‟/continuous way. In 1996, Keiding proposed to replace the 

kernel smoother in his earlier work with a smoothing spline [19]. Subsequent work involved 

semi-parametric models [36]-[38], in which the age-specific prevalence is modeled 

nonparameterically and possible covariate effects such as gender are included in the parametric 

component of the model. The green (blue) curves in Figure 2 represent the (monotonized) 

estimated prevalence and FOI based on the spline methodology [10];[39][40].  

Table 2 ABOUT HERE 

Looking further at the different methods as applied to the rubella and parvovirus B19 data in 

Figure 2, several observations can be made. First, Muench‟s model seems to fit the serological 

profile of rubella well, whereas it does not follow the pattern of the parvovirus B19 seroprofile. 

Farrington‟s exponentially damped linear model shows an improved performance for rubella 

whereas the fit to the parvovirus B19 data seems reasonable except that it is not able to capture 

the decay in seroprevalence at about 25 years of age. The spline model shows a similar fit to the 
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seroprevalence data as the exponentially damped linear model for the rubella data, but some 

quantitative differences appear on the scale of the FOI.  

Moreover, the spline model is able to capture the decaying seroprevalence at around the age of 

25 years whereas its monotone version is a regularization to ensure a positive FOI. Indeed, when 

looking at parvovirus B19 in Figure 2 (right panel), the spline fit reveals a non-monotone pattern 

(green curve) whereas its monotonized version, applying a smooth-then-constrain approach, 

shows a monotone trend (green-blue-green curve) for the prevalence and a positive FOI. 

Based on the nonparametric fits, one might question which of the underlying assumptions is 

violated for parvovirus B19 in Belgium. This could for instance be due to antibody titers 

declining with time post infection, and eventually falling below the cut-off for positivity ; or a 

time-dependence in the FOI resulting in a cohort effect, or the use of a manifestly imperfect test. 

It is only by contrasting different methods and the graphical exploration of the goodness of fit 

that such distortions appear [20]. 

When estimating the FOI from summation data, phenomena like these are often not taken into 

account because of the lack of information in the data and thus result in what is often referred to 

as an average profile. The methods that have been used to investigate the potential mechanisms 

behind such features mostly rely on contrasting mathematical models with incidence data. It 

seems hardly possible and beyond the scope of the current paper to list all papers that may have 

used Muench‟s catalytic model as a starting point (without necessarily referencing it) to make 

extensions for such mathematical modeling studies. Nonetheless we further illustrate the vast 

influence of Muench‟s pioneering work by listing some of the main examples of such extensions: 

(1) models assuming infection confers no or no lasting immunity.  Examples of such analyses 

include Bordetella pertussis [41] and Haemophilus influenzae type b [42], transmission models 
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in which waning immunity was taken into account; (2) analyses describing the possible 

occurrence of seasonality [43] [44] or regular epidemics [45]; (3) analyses on chronic infections 

(see e.g. [47] - [51]); (4) analyses taking into account vaccination programs (see e.g. 

[52][53][52]) ; (5) Further extensions of the more basic catalytic models have been used (see 

e.g.[54]) . 

A practical guide to estimate the FOI 

The diversity of methods to estimate the FOI raises the question, given a particular data set, 

which method should be used? Figure 3, presents a guiding flow-chart, which starts from an 

exploratory stage in which a nonparametric model is fitted to the data. A graphical representation 

of such a fit is given in Figure 2. Given the epidemiology of the infectious disease under 

consideration and specific complications, such as diagnostic uncertainty, the shape of the 

nonparametric estimate and the goodness of fit to the data could show distortions with respect to 

monotonicity, maternal immunity and time-homogeneity. For each of these distortions, different 

remedial techniques are available, which are listed in the flow-chart (Figure 3). These techniques 

enable obtaining a “regularized” estimate of the FOI, which can be studied in detail, 

parametrized [55][56][57][58][59] and in turn can be used for the estimation of related 

parameters, such as the basic reproduction number [9][16].  

 

Figure 3 ABOUT HERE 
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Muench Today: a road map to another 75 years? 

Although, Muench‟s model was overly simplistic in assuming a constant FOI, his 1934 paper 

already raised concerns with respect to model assumptions and data constraints, which are still 

today important research topics.  There are a number of areas where recent research has 

produced interesting results, and in this section we highlight four of these. 

1) Time homogeneity is often assumed, as a necessary condition, if one can only use a single 

cross-sectional serological survey for estimating the FOI.  In some cases (eg, parvovirus B19 in 

Figure 2), this seems questionable and might be untenable. If so, one needs longitudinal type of 

data (see e.g. [60]) or alternatively several prevalence surveys at different points in time 

[61][33]. Since similar distortions were observed for parvovirus B19 in four other countries [62], 

other hypotheses such as waning of naturally acquired antibody levels with time post infection 

need further investigation.  

2) Antibody levels are commonly used to classify an individual‟s sample as positive, negative or 

inconclusive based on a given test-specific threshold. This allows to estimate the proportion of 

susceptible people at each age, and to derive from these proportions the FOI by age. Mixture 

models are a natural alternative for this type of data. Gay [63] was the first to model age-

stratified serological data using 2-component mixture models with age-dependent mixing 

probabilities and age-dependent mixture components.  Using this mixture approach, Bollaerts et 

al. [64] proposed a direct estimator for an age-dependent FOI (i.e. without using a predefined 

threshold to distinguish susceptible from immune people). 

3) As sera are often tested for more than one antigen, joint analysis for diseases with similar 

transmission routes can lead to new insights. Hens et al. [10] introduced the age-dependent joint 

and conditional FOI, a framework allowing formal statistical tests such as testing the assumption 
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of separable mixing.  Earlier work on bivariate models [9][65] focused on the estimation of the 

basic reproduction number from serological survey data incorporating the effect of individual 

heterogeneity (see also [66]) and testing for separable mixing [9].  

4) A fundamental concept for the estimation of the basic reproduction number is the mass action 

principle, relating the FOI with the transmission rate, i.e. the per capita rate at which an 

individual of a particular age makes an effective contact with a person of a specific age, per year.  

The transmission rates populate the so-called WAIFW-matrix [67], which is traditionally 

imposed to be of a particular structure (rather ad hoc, albeit inspired by e.g. social and schooling 

systems). Wallinga et al. [68] were the first to conceptually link seroprevalence data with data on 

conversational contacts per person, whilst assuming that transmission rates are proportional to 

rates of conversational contact.  Using data from a social contact survey, Ogunjimi et al.[69] and 

Goeyvaerts et al. [70] proposed to disentangle the WAIFW-matrix into two components: the 

surface of conversational contacts and an age-dependent proportionality factor. 

Discussion 

Although the basic reproduction number is a very powerful and elegant summarising parameter 

at the heart of infectious disease transmission dynamics, the paucity of opportunities, and 

difficulties to obtain direct estimates of R0, make the force of infection extremely relevant. 

Indeed, it may often be the parameter, which through its estimation allows all other parameters to 

be estimated. 

In disease burden estimates, it determines estimates of the occurrence of infections, of clinical 

cases and all consequences arising from these cases (eg, hospitalisations, deaths, life-years lost, 

Disability Adjusted Life Years). Also in studies estimating the impact of infectious disease 
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interventions, such as vaccination, in terms of effectiveness and cost-effectiveness, the force of 

infection will time and again rank high if not first among the most influential parameters 

determining the outcomes, and hence the public health policy measures based on these outcomes. 

Therefore estimating the force of infection as accurately as possible, is essential.  

Muench‟s seminal works published 75 and 50 years ago, are still inspirational today for the 

conceptual basis he provided for the force of infection, and the pitfalls and problems he 

identified. We have described not only the various extensions those standing on the shoulders of 

Muench have proposed, but also noted that we are still trying to deal with the same pitfalls and 

problems already identified by Muench.  

There appears to have been an increased interest in developing approaches for the estimation of 

the force of infection since the mid-1980s[71]. We hope the guidance we provided will be useful 

for researchers to decide, after exploration with a nonparametric method, which of the parametric 

methods is best suited for the dataset under consideration.  
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Figures 

 

Figure 1: Muench’s catalytic model for  and various choices for  and  (see equation 

(i)).  
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Figure 2: UK Rubella (left panel) and Belgium Parvovirus B19 (right panel) infection by 

age (years): the observed seroprevalence per integer age-value with size proportional to the 

sample taken (•), the fitted seroprevalence curve (―, upper curve) and the FOI curve (--, 

lower curve). Four different models were used: Muench’s constant FOI model (black 

curves); Farrington’s exponentially damped model (red curve), a spline model (green 

curve) and its monotonized version (green-blue-green curve) as applied by Hens et al 

(2008). Note that, by definition, the latter curve (partly) overlaps with the green curve for 

Rubella (parvovirus B19). 
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Figure 3: A practical guide to estimate the FOI from seroprevalence data with references to 

the literature on what to do and how to do it. 

Fit a nonparametric curve and plot 

together with observed seroprevalence 

Distortions in the seroprofile & conflicts with prior knowledge 

Monotonicity Maternal 

Antibodies 

Time-

homogeneity 

Solutions 

1) Exclude data 0-6 
months; constrain 

 

2) Model maternal 
antibody decay 
explicitly  

3) Use a 
changepoint model 

 

 
See e.g. references:  

[6][7][11][16] 

Solutions 

1) Maternal antibodies 

2) Time-homogeneity  

3) Waning antibodies   

-limit the age-range     

-model antibody decay 

4) Coincidence? 

Constraint the fit to be 

montone 

 

 

Assessment 

1) Interventions (eg, 
vaccination)? model 
interventions 
explicitly 

2) Epidemics? 
incidence data over 
time available? 

3) Serial prevalence 
data available? 

 

See e.g. references:   

[10] [21][32][32][34] 

See e.g. references:  

[14][15][43][44][52] 

[60][61] 

Regularized FOI-curve 
Parametric alternative  

(lack of fit tests) 
Mathematical model 

Possible discretization 

Related parameters 

, WAIFW structure… 
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Tables 

Terminology Description Common synonyms 

basic reproduction number  the number of secondary cases 

one typical infectious 

individual produces during 

his/her entire infectious period 

in a completely susceptible 

population 

- basic reproductive number, 

basic reproductive rate 

censoring when the event time is not 

exactly known, it is either left-

, right- or interval-censored, 

according to whether the event 

has occurred, has not occurred 

or occurred in a specific time 

interval 

 

effective reproduction number 

 

the number of secondary cases 

one typical infectious 

individual infects during 

his/her entire infectious period 

in a given population 

- effective reproductive 

number,  effective 

reproductive rate 

force of infection per capita rate at which a 

susceptible individual acquires 

infection 

- effective contact rate (as 

Muench initially called it) 

- person time incidence rate 

- acquisition rate 

- infection hazard 

- attack rate in susceptibles 

generalized linear model a flexible generalization of 

ordinary regression models 

where the distribution of the 

outcome variable is linked to 

the  linear predictor through a 

function called the link 

function. 

- the Binomial regression 

model is a specific type of 

generalized linear model 

monotonicity assumption the property of preserving an 

increasing order, i.e. being a 

non-decreasing function  

- monotonically increasing 

relative deviance goodness of fit measure 

defined as the deviance 

divided by the degrees of 

freedom, i.e. the difference of 

the number of observations 
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and the number of parameters 

used in the model. 

time homogeneity not depending on time; time-

invariant  (not to be confused 

with age independency) 

- steady state 

- endemic equilibrium 

WAIFW matrix „who acquires infection from 

whom matrix‟: a matrix of 

transmission rates by 

categories of infectious and 

susceptible individuals 

(usually age-stuctured) 

- transmission matrix 

- beta-matrix 

Table 1: Glossary of words in alphabetical order. 
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Reference FOI Focus Data 

Muench 

(1934) 

Constant Estimating a constant FOI 

from summation data 

Yellow fever protection test 

results; tuberculin test 

results; incidence data on 

whooping cough and 

chicken-pox  

Wilson and 

Worcester 

(1941) 

Constant Comparison of the model 

of Muench to the work of 

Collins on incidence data 

Incidence data on measles 

Griffiths 

(1974) 

Linear Linear FOI Incidence data on measles 

Grenfell and 

Anderson 

(1985) 

Polynomial Estimating an age-

dependent FOI from 

incidence or serological 

data 

Incidence data on measles 

Serological data on measles 

Farrington 

(1990) 

Nonlinear: 

exponentially 

damped linear 

model 

Estimating an age-

dependent FOI 

Serological data on 

measles, mumps and 

rubella 

Keiding 

(1991) 

Nonparametric 

estimation using 

kernel methods 

A statistical perspective on 

estimating incidence and 

prevalence from serological 

and case notification data 

Incidence data on hepatitis 

A, and incidence and 

prevalence of other non-

infectious disease data 

Table 2: Historical overview of key-contributions to the estimation of the FOI from 

summation data in the 20
th

 century.  
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