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Abstract

This paper shows how to model seroprevalence data using change-

point fractional polynomials. The inclusion of a change-point in the

fractional polynomial framework allows to detect distortions arising

from common (often untestable) assumptions made in the estimation

of the age-specific prevalence and force of infection from cross sec-

tional data. The method is motivated using seroprevalence data on

the parvovirus B19 and the varicella zoster virus in Belgium.
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1 Introduction

Modelling infectious diseases is mostly done using compartmental model that

describe the flow of individuals through different disease stages. One of the

most important parameters in such a compartmental model describes the

per capita rate at which a susceptible person acquires the infection and thus
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moves from the compartment of susceptible to the compartment of infected

individuals (Anderson and May, 1991; Diekmann et al., 1990; Capasso, 1993;

Thieme, 2003, see e.g.). This per capita rate is the so-called force of infection,

i.e. the infection hazard and has been shown to be often age-dependent.

Under the steady state assumption and assuming life long immunity once

infected, one can estimate the force of infection from seroprevalence data

(see e.g. Keiding, 1991).

There exists a vast literature on estimating the force of infection from

seroprevalence data, of which most of the methods can be embedded in the

generalized linear model framework. Essential in the estimation of the force

of infection is expressing the dependency on age using the appropriate func-

tional form. On the one hand, flexible modelling techniques are often a

necessity to achieve the appropriate predictive accuracy. On the other hand,

they could lead to an overinterpretation of random fluctuations in the data.

It is therefore that, while easy-to-apply smoothing methods exist, flexible

parametric models are often used in the generalized linear model framework

and the like. Among those flexible parametric models, fractional polynomials

have gained popularity as evidenced by the high number of citations for the

original Royston and Altman (1994) paper.

Shkedy et al. (2006) were the first to use fractional polynomials to model

the seroprevalence in infectious disease epidemiology. They showed how, un-

der the steady state assumption and assuming lifelong immunity, the force of

infection can be estimated from seroprevalence data using monotone second

degree fractional polynomials. The problem of estimating the force of infec-

tion from cross-sectional prevalence data has drawn considerable attention

(see also Farrington, 1990; Keiding, 1991; Diamond and McDonald, 1992;

Capasso, 1993; Farrington et al., 2001). The plausibility of the steady state

assumption is however untestable in case of one cross-sectionally collected

sample. We refer to Nagelkerke et al. (1999) for a discussion on stationarity

(time homogeneity), that is, the assumption that the age-specific force of

infection remains constant over time. When observed prevalences increase
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monotonically with age, the problem of estimating the force of infection is

straightforward. However, unless samples at each age are very large and the

steady state assumption is fulfilled, a monotone increase with age of observed

prevalences will only rarely occur. As the survival function, one minus the

prevalence, is a monotonically decreasing function, one has to estimate the

prevalence function under order restrictions. Several solutions, including an

isotonic (regression) estimator, the pool adjacent violator algorithm or using

a set of monotone candidate models have been proposed to this purpose (see

e.g. Shkedy et al., 2006; Hens et al., 2008).

This paper presents an elaboration on the use of fractional polynomi-

als, by including a change-point to detect distortions in age-dependent sero-

prevalence data. Change-points have been used before in the analysis of

epidemiological studies (see e.g. Ulm, 1991; Stasinopoulos and Rigby, 1992;

Pastor-Barriuso and Guallar, 1998; Ulm and Küchenhoff, 2000), where the

estimation is often used to model threshold effects in biological systems such

as for dose-response curves. In a more recent paper, Pastor-Barriuso et al.

(2003) elaborate on the use of change-point estimation in logistic regres-

sion using transition models. Although their method provides a rigorous

modelling approach, we will focus on a somewhat different setting which

naturally falls into the fractional polynomial framework. We start with an

introduction to the data in Section 2 and present the methodology in Section

3. The proposed method is then applied to the data in Section 4 and inferen-

tial measures enabling a more in depth study on the nature of the distortions

are introduced in Section 5. We end with a discussion in Section 6.

2 Data

In this section, data on the parvovirus B19 (PVB19) and the varicella zoster

virus (VZV) from a serological survey in Belgium are described. These sero-

logical data comprise current status data on whether pathogen-specific anti-

body levels exceed a pre-specified cut-off value in the tested blood samples.
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Since after natural infection, antibody presence is assumed to be lifelong,

these current status data indicate whether past infection occurred or not.

Such data are often analyzed while discarding possible distortions in the ob-

served age-specific profile. The data described here were collected in a period

from November 2001 until March 2003 in Belgium. 3374 samples were partly

tested for PVB19 (3076 samples) and VZV (2655 samples).

2.1 Varicella Zoster Virus

The Varicella-Zoster Virus is one of eight herpes viruses known to affect hu-

mans (and other vertebrates). Primary VZV infection results in chickenpox

(varicella), has a two-week incubation period and is highly contagious by air

droplets starting two days before symptoms appear. Infectiousness is known

to last up to ten days. Therefore, chickenpox spreads quickly through close

social contacts. In about 10 − 20% of cases, VZV reactivates later in life

producing a disease known as herpes zoster or shingles.

Out of the original 3374 samples, 2655 samples from persons with age

ranging from 19 days to 40 years have been tested for VZV. The observed

age-specific seroprevalence is shown in the upper panel of Figure 1. Previous

similar studies on VZV were reported by Thiry et al. (2002) and Nardone

et al. (2007).

2.2 Parvovirus B19

PVB19 was the first human parvovirus to be discovered in 1975. PVB19

is best known for causing a childhood exanthem called fifth disease. The

virus is primarily spread by infected respiratory droplets. PVB19 symp-

toms begin some six days after exposure and last about a week. Individuals

with PVB19 IgG antibodies are generally considered immune to recurrent

infection. About half of adults are PVB19-immune due to a past infection.

While the disease is generally mild, most studies have focused on risk factors

in pregnant women because of the risk to the fetus (Valeur-Jensen et al.,
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Figure 1: Seroprevalence plot for VZV (upper panel) and PVB19 (lower

panel) with lowess curves using a smoother span based on visual inspection.

Dots are proportional to the number of samples tested.
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1999).

3076 samples from persons with age ranging from 19 days to 71 years,

205 days have been tested for PVB19. A plot of the change in seroprevalence

with age is shown in the lower panel of Figure 1. This sample, together

with other samples from England & Wales, Finland, Italy and Poland were

analyzed before by Mossong et al. (2008) using monotone local polynomials

(Shkedy et al., 2003).

Since 2 381 samples were tested for both VZV and PVB19, Hens et al.

(2008) studied the association among the two infections by introducing a

conditional and joint force of infection. They monotonized their nonpara-

metrically estimated seroprevalence curve using the pool adjacent violator

algorithm. However, some distortions with respect to monotonicity are ob-

servable in the data. While the data on PVB19 show a distortion around

25 to 35 years of age, the data on VZV show a distortion possibly originat-

ing from maternal antibodies for infants aged 19 days to 2 years (Figure 1).

Without specific knowledge on the decay of infection-related antibody levels

and maternally inherited antibody level decay it is of importance to detect

these distortions in the data. These distortions were not explicitly taken into

account in the aforementioned studies.

3 Methodology

In this section, change-point FPs are introduced in the generalized linear

model framework (GLM, McCullagh and Nelder, 1989). We will first define

FPs as proposed by Royston and Altman (1994) in the GLM framework and

then extend the model to incorporate one or more change-points.

3.1 Fractional Polynomial Models

A GLM, relating the binary infection status Y = 0 (no past infection), Y = 1

(past infection) to a predictor variable of interest a (typically age), can be
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expressed as

g(π(a)) = η(a), (3.1)

where π(a) = P (Y = 1|a) denotes the seroprevalence; g is the link-function

(‘logit’, ‘cloglog’,. . . ) and η(a) is the linear predictor expressing the depen-

dency of the seroprevalence on a and which is linear in the coefficients for

GLMs. Several choices for η can be made including e.g. polynomial functions

of the form {1, a, . . . , ap} for a certain integer p.

Royston and Altman (1994) proposed to adapt η(a) to include FPs, i.e.

a set of nonlinear functions using a heuristic procedure as outlined hereafter.

Using this procedure their approach falls into the conventional GLM frame-

work with all related advantages. The form of the linear predictor consisting

of a FP of degree m is

ηm(a, β, p1, . . . , pm) =
m

∑

i=0

βiHi(a), (3.2)

with m being an integer, p1 ≤ p2 ≤ . . . ≤ pm the powers, and Hi(a) defined

as

Hi(a) =

{

api if pi 6= pi−1,

log(a) × Hi−1(a) if pi = pi−1,

where p0 = 0 and H0 = 1. Following the suggestions of Royston and Altman

(1994), we restrict our attention to models of degree 1 and 2, and choose the

powers from the set {−2,−1,−0.5, 0, 0.5, 1, 2, 3}.

3.2 Change-point Model

Discovering distortions in the age-dependent seroprevalence involves search-

ing for an unexpected change in its profile. This change can be governed

using a change-point. To achieve the necessary flexibility while retaining the

advantage of a parametric model, FPs can be used to model the profile before

and after the change-point. Consider a change-point model linking two FPs

ηm1,m2
(a, β, γ, p, q, c) = ηm1

(a, β, p)I{a < c} + ηm2
(a, γ, q)I{a ≥ c}, (3.3)
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where I{·} is the indicator function taking value 1 if the specified condition

is true and 0 elsewhere; m1 and m2 are the degrees; β and γ the coefficient

vectors; and p and q the vectors of powers for the first and second FP.

There is large variety of potentially interesting submodels of Model (3.3).

To define a specific set of models of interest, we rewrite ηm1
(a, β, p) (and

similarly ηm2
(a, γ, q)) in (3.3) as

ηm1
(a, β, p) = β0 +

m
∑

i=1

βiHi(a). (3.4)

The set of models (C1,C2,C3) of interest can then be defined as

(C1): {(3.3),(3.4)} with change in the non-age-dependent term only:

ηm1
(a, β, p) − ηm2

(a, γ, q) = β0 − γ0

(C2): {(3.3),(3.4)} with change in the age-dependent term only:

β0 = γ0

(C3): {(3.3),(3.4)} with continuity constraint in c:

ηm1
(c, β, p) = ηm2

(c, γ, p)

Note that the latter constraint is readily achieved by expressing γ0 as the

analytical solution of ηm1
(c, β, p) − ηm2

(c, γ, p) = 0. In addition, Model

(3.3) encompasses the conventional FPs by choosing c > max(a) and e.g.

monotonicity constraints can be imposed on both parts either by constrained

optimization or using a restrictive set of powers and coefficients. While (C1)

and (C2) allow for a discontinuity ((C1) allows for a sudden jump in the

seroprofile), (C3) enforces continuity to hold. Other submodels of Model

(3.3) could be of interest too but are not considered in the application as

presented in this paper.

Selecting the appropriate change-point is done using the same procedure

as selecting the appropriate powers for both FPs of the change-point FP by

looking over a grid of age-values. While this extends the number of models
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considerably, it also shows the high capacity of detecting any distortions

in the data. Note that we have 2 061 and 1 973 unique age-values for the

PVB19 and VZV sample, respectively. We therefore limited change-points

to be selected over the integer grid: 1-41 for VZV and 1-72 for PVB19 (i.e.

infection on age was reduced to ‘year’ instead of ‘dd/mm/yyyy’).

For a fixed degree m1 and m2 in Model (3.3), the optimal set of powers

and the change-point are selected using the AIC-criterion (Akaike, 1973;

Burnham and Anderson, 2002) given by −2ℓ(β̂, γ̂, p, q, c|a, y) + 2K, where

ℓ is the loglikelihood corresponding to Model (3.3) and K is the number of

parameters in the model. With respect to the selection of powers, this is

equivalent with the deviance criterion as proposed by Royston and Altman

(1994). Selecting the appropriate degrees and number of change-points (none,

one or more; see Section 4.2) is then done using the AIC-and BIC-criterion,

respectively. Note that K, i.e. the number of parameters in the model,

includes the number of powers and the number of change-points.

4 Results

Since there is no a priori knowledge on the number of change-points, we grad-

ually build up by first considering a one-change-point fractional polynomial

in Section 4.1. An extension with a second, different, change-point is then

considered in Section 4.2.

4.1 One-change-point Fractional Polynomial

The set of one-change-point FP models used to detect distortions in the

seroprevalence profiles of VZV and PVB19 consisted of the change-point
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Figure 2: Seroprevalence plot for VZV with the three best change-point frac-

tional polynomials (best: solid line; second best: dashed line; third: dotted

line) according to AIC (left panel) and BIC (right panel).

FPs as defined in (4.1).

η1(a) = β0 + β1ã
p1,

η2(a) = β0 + β1ã
p1 + β2ã

p2,

η1,1(a) = [β0 + β1ã
p1]I{a < c} + [γ0 + γ1ã

q1 ]I{a ≥ c}, (4.1)

η1,2(a) = [β0 + β1ã
p1]I{a < c} + [γ0 + γ1ã

q1 + γ2ã
q2]I{a ≥ c},

η2,1(a) = [β0 + β1ã
p1 + β2ã

p2]I{a < c} + [γ0 + γ1ã
q1 ]I{a ≥ c},

η2,2(a) = [β0 + β1ã
p1 + β2ã

p2]I{a < c} + [γ0 + γ1ã
q1 + γ2ã

q2]I{a ≥ c}.

Here p1 ≤ p2 and q1 ≤ q2, while ã = a + 1 rather than a is used so that

log(ã) → 0 when a → 0. Note that this is similar to what is often done

when modelling growth curves. The full range of models, extending the set

of models given in (4.1) by the constrained models (C1,C2,C3) together with

their AIC-and BIC-value for VZV are shown in Table 1. For each combination

the optimal set of powers and the change-point is chosen using AIC.

Both AIC and BIC prefer one-change-point models over the ‘original’ FPs.

While both ‘original’ FPs have ranks 15 and 16 using AIC, BIC results in

ranks 5 and 6. Since it is known that BIC tends to select less complex models

(models with fewer parameters) because of the penalization with (log(n)) per

extra parameter (n is the sample size), this is no surprise. AIC is known to

10



Model Constraint AIC Rank BIC Rank ĉ Powers

η1(ã) 1 389.2 (16) 1 406.9 (6) − 0

η2(ã) 1 376.9 (15) 1 406.3 (5) − −1, −1

η1,1(ã) 1 363.6 (3) 1 404.8 (4) 3 3 ; −1

η1,1(ã) C1 1 373.9 (14) 1 403.3 (3) 4 0

η1,1(ã) C2 1 366.8 (8) 1 402.1 (2) 3 0.5 ; −1

η1,1(ã) C3 1 364.7 (4) 1 400.4 (1) 3 −2 ; −1

η1,2(ã) 1 364.7 (5) 1 417.7 (12) 1 3; −2, −2

η1,2(ã) C2 1 363.5 (2) 1 410.5 (7) 1 2; −2, −2

η1,2(ã) C3 1 367.3 (9) 1 414.4 (10) 3 −0.5; −2, 0.5

η2,1(ã) 1 367.4 (10) 1 420.3 (13) 3 −2, −2; −1

η2,1(ã) C2 1 365.6 (7) 1 412.7 (9) 3 −0.5, 0.5; −1

η2,1(ã) C3 1 367.6 (11) 1 414.6 (11) 3 3, 3 ; −1

η2,2(ã) 1 364.7 (6) 1 429.4 (16) 1 −2, 3 ; −2, −2

η2,2(ã) C1 1 369.6 (12) 1 410.8 (8) 4 −1, −1

η2,2(ã) C2 1 362.8 (1) 1 421.6 (14) 1 0, 3 ;−2, −2

η2,2(ã) C3 1 370.3 (13) 1 429.1 (15) 10 −0.5, 0 ; −2, −2

Table 1: VZV-models with corresponding AIC-and BIC-values, correspond-

ing ranks, selected change-point and power(s).
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select more complex models tending to overfit the data. This is reflected

in Table 1 where the one-change-point FP models with lower AIC-ranks are

found for different degrees (m1, m2) while the one-change-point FP models

with lower BIC-values are all among the models with degree (m1, m2) =

(1, 1). Figure 2 shows the best 3 models based on the AIC-criterion (left

panel) and BIC-criterion (right panel), respectively. The resulting model fits

differ considerably in the segment before 3 years of age, indicating a distortion

in the age-dependent VZV seroprofile in that region, presumably due to the

presence of maternal antibodies. The most optimal change-points are located

at around 3(1) years of age according to the BIC(AIC)-criterion. While

AIC-based selection clearly leads to overfitting, BIC-based selection tends to

provide more rigorous fits to the data. Note that the model with minimal

BIC-value is the continuous one-change-point FP with degrees (m1, m2) =

(1, 1). With rank 4, this model belongs to the best ones in terms of AIC as

well.
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Figure 3: Seroprevalence plot for PVB19 with the three best change-point

fractional polynomials (best: solid line; second best: dashed line; third: dot-

ted line) according to AIC (left panel) and BIC (right panel).

Applying the same methodology to the PVB19 data results in the models

as listed in Table 2. Again the ‘original’ FP models have worse ranks than

the one-change-point FP models based on AIC, and more clearly still on BIC

too. The difference in selecting more complex models using AIC rather than

12



Model Constraint AIC Rank BIC Rank ĉ Powers

η1(ã) 3 485.2 (16) 3 503.3 (13) − −1

η2(ã) 3 475.8 (15) 3 505.9 (15) − −2, −1

η1,1(ã) 3 438.6 (6) 3 480.9 (4) 26 0; −1

η1,1(ã) C1 3 437.3 (4) 3 467.4 (1) 26 0

η1,1(ã) C2 3 437.5 (5) 3 473.6 (2) 26 0; 0

η1,1(ã) C3 3 459.8 (14) 3 496.0 (10) 15 0; 3

η1,2(ã) 3 442.5 (11) 3 496.7 (11) 26 0; −2, 3

η1,2(ã) C2 3 440.7 (8) 3 489.0 (6) 26 0; −0.5, −0.5

η1,2(ã) C3 3 445.7 (13) 3 493.9 (9) 21 0; −2, −2

η2,1(ã) 3 437.0 (3) 3 491.3 (8) 27 −1, −1; −2

η2,1(ã) C2 3 436.0 (1) 3 484.2 (5) 26 −2, −0.5; −0.5

η2,1(ã) C3 3 441.6 (10) 3 489.8 (7) 28 0.5, 3; −2

η2,2(ã) 3 440.9 (9) 3 507.2 (16) 26 −1, −1; −2, 3

η2,2(ã) C1 3 436.1 (2) 3 478.3 (3) 26 −1, −0.5

η2,2(ã) C2 3 439.0 (7) 3 499.3 (12) 26 −1, −1; −1, 1

η2,2(ã) C3 3 445.4 (12) 3 505.7 (14) 29 0.5, 3; −2, −2

Table 2: PVB19-models with corresponding AIC-and BIC-values, corre-

sponding ranks, selected change-point and power(s).

BIC is not so apparent as it is for VZV. Looking at the ranks of the different

types of constraints (C1,C2,C3), it is clear that continuity (C3) has an overall

worse ranking, which suggests a sudden change in the seroprevalence profile.

Figure 3 shows the three best models according to AIC (left panel) and BIC

(right panel). While there is an apparent difference in how AIC-and BIC-

selected models estimate the seroprevalence at the younger age ranges, there

is only a moderate difference among the profiles for higher age-values. The

optimal change-point is located at 26-27 years of age.
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4.2 Two-change-point Fractional Polynomial

While applying a one-change-point fractional polynomial revealed some ap-

parent distortions in the VZV-and PVB19-seroprofile, it is of interest, if

present, to consider more distortions using a second, different, change-point

as described by Model (4.2). Note that one-change-point and conventional

FPs are special cases of Model (4.2) for c2 > max(a) and c1 > max(a),

respectively. The presence of a second change-point can be assessed by com-

paring these two-change-point models with the best one-change-point models

in terms of AIC and BIC, respectively.

ηm1,m2,m3
(ã, β, γ, δ, p, q, r, c1, c2) = ηm1

(ã, β, p)I{a < c1}

+ ηm2
(ã, γ, q)I{c1 ≤ a ≤ c2},

+ ηm3
(ã, δ, r)I{c2 < a}, (4.2)

Since there exist numerous combinations of first and second degree FPs

and change-points, we will limit ourselves to first degree FPs and more specif-

ically to a limited set of submodels of η1,1,1(ã, β, γ, δ, p, q, r, c1, c2).

η1,1,1(ã, β, γ, δ, p, q, r, c1, c2) = [β0 + β1ã
p1]I{a < c1}

+ [γ0 + γ1ã
q1]I{c1 ≤ a ≤ c2}

+ [δ0 + δ1ã
r1 ]I{c2 < a} (4.3)

Table 3 presents an overview of the resulting fits of the two-change-point

FP as defined by Model (4.3) and constraints (C1,C2,C3). In addition, an

interesting alternative is (C4) where the middle part changes but the first and

last part come from the same model: (4.2) with ηm1
(ã, β, p) = ηm3

(ã, δ, r).

This potentially describes a situation where the prevalence profile changes

for a certain age group only. Note that (C1) and (C2) should be interpreted

over all FP components now and condition (C3) can be extended into (C31)

denoting continuity in c1 and (C32) denoting continuity in c2, respectively.
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VZV Model Constraint AIC Rank BIC Rank ĉ Powers

η1,1,1(ã) C2 1 363.7 (2) 1 416.7 (4) 3, 12 −0.5; 1; 0

η1,1,1(ã) C1 & C4 1 369.6 (4) 1 404.9 (1) 4, 38 0.5

η1,1,1(ã) C2 & C4 1 365.1 (3) 1 406.3 (2) 4, 38 0.5; 0

η1,1,1(ã) C31 & C4 1 363.6 (1) 1 416.6 (3) 3, 30 3; −1; −2

PVB19 Model Constraint AIC Rank BIC Rank ĉ Powers

η1,1,1(ã) C2 3 435.9 (1) 3 490.2 (3) 3, 26 0.5; −0.5; −0.5

η1,1,1(ã) C1 & C4 3 436.0 (3) 3 472.2 (1) 6, 26 0

η1,1,1(ã) C2 & C4 3 436.7 (4) 3 478.9 (2) 6, 26 0; 0

η1,1,1(ã) C31 & C4 3 436.0 (2) 3 490.3 (4) 2, 26 0.5; −0.5; −2

Table 3: Selected VZV-and PVB19-models with corresponding AIC-and BIC-

value and ranks, selected change-points and power(s).

Figure 4 shows the resulting two best two-change-point FP fits on VZV

(upper row) and PVB19 (lower row) using AIC (left column) and BIC (right

column), respectively. The seroprofiles for VZV suggest that one change-

point is sufficient to capture the distortions in the data. Note indeed that

none of the two-change-point FP models for VZV result in lower AIC-nor

lower BIC-value as compared with the best three one-change-point FP. The

PVB19-models differ from the previous results in how they estimate sero-

prevalence for infants and young children (up to 8 years of age). The models,

better in terms of BIC, fit an increased prevalence for the age group 6 to 26

years of age, whereas those better in terms of AIC extend the one-change-

point models by a decrease in the prevalence for infants, resembling the

maternal antibodies influence observed for VZV. The two-change-point FP

models for PVB19 are comparable to the best one-change-point models in

terms of AIC. They are worse when turning to BIC, which is expected due

to their complexity. Let us now synthesize these finding for both the VZV

and B19 sample.

Both AIC and BIC have been used to select the most optimal model from

the candidate set of models. There was a clear indication that using AIC,
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Figure 4: Seroprevalence plot for VZV (upper row) and PVB19 (lower row)

with the two best two-change-point fractional polynomials (best: solid line;

and second best: dashed line) according to AIC (left column) and BIC (right

column).

models tend to overfit the data while using BIC less complex models are

chosen. It is therefore that we limit ourselves to the BIC-based best models

to synthesize our findings.

Figure 5 shows the best FP, one-change-point FP and two-change-point

FP for VZV (left panel) and PVB19 (right panel) based on the BIC-criterion.

For both VZV and PVB19, in terms of BIC, the one-change-point FP models

provide the best fit (Tables 1, 2, 3) with change-point respectively at 3 and

26 years of age.
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Figure 5: Seroprevalence plot for VZV (left panel) and PVB19 (right panel)

with best no-changepoint, one-changepoint and two-changepoint models ac-

cording to BIC.

5 Inferential Measures

Once a change-point has been detected and estimated, it is of importance to

estimate the associated uncertainty. In a Bayesian setting this is often done

by using an (un)informative prior distribution for the change-point and by

looking at the 95% credibility interval of the corresponding posterior distri-

bution. In a likelihood setting, one can use the BIC-criterion to calculate

approximate posterior probabilities for each of the models (see e.g. Burnham

and Anderson, 2002).

Therefore, given the BIC-based best model for either infection, i.e.

η1,1(ã) : (C3) and η1,1(ã) : (C1) for VZV and PVB19, respectively, con-

sider a series of models defined by a grid of change-points cj , j = 1, . . . , J .

The prior distribution on this set of models is taken as uninformative (uni-

form distribution). For each model (for each cj), BICj is calculated and the

posterior probability is approximated by

exp{−1

2
BICj}

exp{−1

2

∑J

j=1
BICj}

.

Thus, we can estimate the posterior density of c for both η1,1(ã) : (C3)

(VZV) and η1,1(ã) : (C1) (PVB19). Figure 6 depicts a smoothed density
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Figure 6: Posterior density plots for the change-points of models η1,1(ã) :

(C3) (VZV, left panel) and η1,1(ã) : (C1) (PVB19, right panel).

estimate of this posterior density for both VZV (left panel) and B19 (right

panel). The resulting posterior densities show a rather high uncertainty asso-

ciated with the corresponding change-point. For VZV, the location situates

itself at ‘pre-primary school’-ages, i.e. the approximate 95% credibility inter-

val equals (0.22,8.88), strengthening the idea that maternal antibodies could

be causing this change in profile. For B19, the approximate 95% credibility

interval equals (21.61,25.89). Although there is no clear cause for this dis-

tortion, we will formulate some hypotheses worthwhile to further investigate

in Section 6.

The BIC-based best models for VZV and B19 allow to derive quantities

that can be used to gain more insight in the nature of these distortions.

While the resulting model VZV is continuous in the change-point, there is

an abrupt change on the derivative scale. The fraction of the left- and right-

derivative in c has a natural interpretation as the relative change of the force

of infection in the change-point. Indeed, denote η1,1(c)
L and η1,1(c)

R, the

left and right limit of the linear predictor in the change-point c and π1,1(c)
L

and π1,1(c)
R the corresponding prevalences. Using a ‘logit’-link function the

force of infection λL,R
1,1 (c) can be expressed as η′L,R

1,1 (c)×πL,R
1,1 (c) (Shkedy et al.,
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2006). Since πL
1,1(c) = πR

1,1(c), it follows that λL
1,1(c)/λ

R
1,1(c) = η′L

1,1(c)/η
′R
1,1(c).

The estimated ratio equals −0.005 while the confidence interval for this ratio

was calculated using the delta method: (−0.039, 0.029), reflecting a non-

significant change in sign and a significant change in magnitude.

When looking at the model for B19, the change in intercept at the change-

point results in a ‘jump’ at the level of the prevalence. The estimated jump

equals 0.259 with confidence interval (0.210, 0.309) (delta method). Alter-

natively, the OR in the change-point can be calculated as 4.062 (95% CI:

(2.937, 5.186)), reflecting a fourfold increase in odds at the change-point.

6 Discussion

Estimating the force of infection from seroprevalence data involves making

untestable assumptions about time homogeneity. An assumption often vi-

olated due to changes in the mixing behavior of humans, in the virulence

of the pathogen, in cross-reactions with other related emerging diseases, epi-

demics or any other unknown causes. Current practice shows that distortions

with respect to monotonicity in seroprevalence are often discarded; maternal

antibodies are not explicitly taken into account and monotonicity is often

imposed. In this paper, we propose to use a change-point fractional polyno-

mial model to explicitly search for these distortions. The use of fractional

polynomials retains the features of a parametric model while incorporating

considerable flexibility. The proposed methodology was applied to data on

VZV and B19 in Belgium and change-points at the age of 3 and 26 years of

age, respectively, were identified for both data sets using the BIC-criterion.

A posterior density of the change-point was obtained using that same BIC-

criterion and its link to Bayesian methodology (Burnham and Anderson,

2002).

While the distortion in the seroprofile of VZV is presumably caused by

the presence of maternal antibodies (although it is believed that maternal

antibodies have disappeared around 6 months of age), different hypotheses for
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the distortion in the seroprofile of B19 can be formulated. A first hypothesis

is a new type of the virus which emerged in the period of 1985-1988 mainly

affecting children aged 10-14 years (known to be the ages with highest force

of infection). Although this hypothesis is untestable and no empirical data

provide evidence for this, its plausibility can be based on the findings of new

emerging types of PVB19 by Ekman et al. (2007). A second hypothesis is

given by waning antibodies, i.e. once infected, a boost in the amount of

antibodies is observed after which this amount gradually decreases possibly

below the cut-off value which is used to classify individuals as seronegative

or seropositive. Since the force of infection is highest among 10-14 years of

age and infection afterwards is less likely until parenthood, it is potentially

possible that the individuals around the age of 26 years are wrongly classified

as negatives. The rise in the seroprofile after 26 years of age is associated

with the likely occurrence of child-parent transmission, which could boost

the parents’ antibody level. Note that the average age of an adult becoming

a parent was 26-28 years of age in Belgium (source: EUROSTAT). Some

simulations omitted from the text, support the plausibility of this hypothesis,

however empirical data, such as incidence data, is lacking. A third hypothesis

is given by the occurrence of an epidemic. More specifically, it is known

that an epidemic occurred in the Netherlands and the UK in 1998 (source:

eurosurveillance 1998). However it is unclear whether this or any epidemic

like this could fully explain the elevated seroprevalence for the younger age

groups. Specific simulation models could show whether this is a reasonable

hypothesis, but are beyond the scope of the paper.

This paper does not aim to present an all encompassing methodology

to model seroprevalence data and derive infectious disease parameters such

as the force of infection and the basic reproduction number. The proposed

methodology, possibly of interest in other research domains, has been devel-

oped with the sole purpose of providing a rigorous way of detecting distor-

tions in seroprofiles, which due to the ability of capturing abrupt changes in

the seroprofile surpasses the use of ordinary scatterplot smoothers for this
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purpose. Once these distortions are detected and whenever antibody level

data is available, one can use mixture models and the like to take into ac-

count the presence of maternal antibodies and/or waning antibodies and/or

other plausible effects. The application of these techniques is however not

entirely straightforward (Gay, 1996; Bollaerts et al., 2008), as is using these

results in mathematical models of infectious diseases. Clearly, care is re-

quired when observing distortions. Different scenarios can be implemented

and contrasted to the observed seroprofile to validate the appropriateness of

the mathematical model.

While the proposed approach searches for a change-point over a suitable

grid on the age range using the AIC-criterion in resemblance with the selec-

tion of the appropriate fractional polynomial, another option is to embed the

change-point methodology in a Bayesian framework where an uninformative

prior distribution on the change-point reflects the uncertainty around the

threshold (see e.g. Carlin et al., 1992).

Elaborating on the use of a transition model for change-point estima-

tion in logistic regression as proposed by Pastor-Barriuso et al. (2003) is

not straightforward in combination with the use of fractional polynomials.

Several adjustments need to be made since the predictor in a FP needs to

be positive, which is not necessarily the case for the models considered by

Pastor-Barriuso et al. (2003). This however is a topic of further research.
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