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Samenvatting 

In deze paper worden Bayesiaanse hiërarchische modellen gebruikt om in Leuven, een 
kleine universiteitsstad in België, gevaarlijke kruispunten voor fietsers te identificeren en 
te rangschikken.  De doelstelling van deze paper is de studie van het proces dat gevolgd 
wordt om lijsten op te stellen van gevaarlijke kruispunten, gebaseerd op de beschikbare 
ongevallendata.  Een hiërarchisch model met random effecten laat toe verschillende 
bronnen van variatie te specificeren, namelijk de variatie tussen de kruispunten en de 
variatie binnen elk kruispunt afzonderlijk.  De Gibbs sampler wordt gebruikt om de 
verdeling van de fietsongevallenproporties te onderzoeken.  Een belangrijk voordeel van 
de Gibbs sampler is de mogelijkheid om steekproeven te nemen uit complexe functies 
van de fietsongevallenproporties, zoals de rangorde van een kruispunt.  In de tekst wordt 
aangetoond dat de rangorde zelf als een dichtheid kan worden beschouwd.  Omdat de 
fietsongevallenproportie een stochastisch karakter heeft, kan de rangorde, gebaseerd op 
de gemiddelde a posteriori proportie, niet deterministisch zijn.  Het ordenen van 
gevaarlijke locaties is een interessante manier om inzicht te verwerven in het concept 
van gevaarlijke punten, maar er bestaat niet zoiets als “de” juiste rangorde.  Deze tekst 
onderzoekt de vraag of een rangorde alleen genoeg motivatie kan geven voor de selectie 
van een gevaarlijk punt. 
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Summary 

In this paper, Bayesian hierarchical modeling techniques are used to identify and rank 
hazardous intersections for bicycles in Leuven, a small university town in Belgium.  The 
objective of this paper is to infer the process of listing the most dangerous intersections, 
based on the available accident data.  The hierarchical random effects model allows the 
specification of different sources of variation, namely the variation between intersections 
and the variation within each intersection.  The Gibbs sampler is used to explore the 
distribution of the bicycle accident proportions.  An important advantage of the Gibbs 
sampler is the possibility to sample complex functions of the bicycle accident proportions, 
like the rank of an intersection.  It is shown that the ranking itself could be seen as a 
density.  Since the bicycle accident proportions have a stochastic character, the ranking 
of intersections based on the mean posterior proportion cannot be deterministic.  
Ranking hazardous sites is an interesting means to get insight in dangerous locations, 
but there is no such thing as “the” correct ranking.  This paper investigates the question 
whether a ranking alone can give enough evidence for the selection of dangerous sites. 
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1.    IN T R O D U C T I O N 

 

In the year 2000, almost 10% of all seriously and fatally injured road accident victims in 
Belgium were bicyclists.  Moreover, 34% of all seriously and fatally injured victims are to 
be found in urban areas (1).  One may conclude that the accident risk for vulnerable road 
users is too high.  It is important to improve their situation, and to rank order the sites 
that are particularly dangerous for this subgroup. 

In this paper, Bayesian binomial hierarchical modeling techniques are used to identify 
and rank hazardous intersections for bicycles in Leuven, a small university town in 
Belgium.  The objective of this paper is to obtain a ranking of the most dangerous 
intersections, based on the available accident data.  The Gibbs sampler is used to explore 
the distribution of the bicycle accident proportions.  An important advantage of the Gibbs 
sampler is the possibility to infer not only an estimated proportion or count, but also 
complex functions of the bicycle accident proportions, like the rank of an intersection (2).  
Since the bicycle accident proportions have a stochastic character, the ranking of 
intersections based on the posterior mean proportion cannot be deterministic.  When 
decision makers base their investment choices on a ranking of dangerous sites, they 
should recognize that the ranking is probabilistic in nature.  The strength of a particular 
ranking scheme may be questioned when taking into account the accompanying 
uncertainty. 

The choice for a small university city to investigate bicycle accidents at intersections can 
be easily explained.  First, since most of the students at university stay in Leuven on 
weekdays, it is to be expected that they move around by bike.  Because of the higher 
concentration of bicycles, it would be interesting to know the most dangerous sites.  
Second, the local government is working on a mobility plan.  Authorities want to 
stimulate the use of bicycles in the inner city.  In order to provide a save infrastructure, a 
selection of dangerous road sections is made, and investments are done according to a 
priority list (3).  Because intersections have always been dangerous locations, it makes 
sense to look for an intersection prioritization. 

At first sight, the selection of hazardous intersections seems to be a straightforward task.  
Hauer and Persaud (4) describe a two-stage procedure to identify hazardous locations, 
which can be applied to intersections as well.  In a first step, accident history of different 
intersections is reviewed to select a number of apparently dangerous sites.  In the 
second step, the selected intersections are studied in more detail in order to optimally 
assign investments.  However, the intersections with the highest observed bicycle 
accident rate are not always the most dangerous ones.  It is known that the number of 
accidents at a specific location is fluctuating from year to year.  By chance, one year an 
intersection may have an extremely high count of accidents, without being really 
hazardous.  If investments are to be spread over different locations, decision makers are 
more interested in sites where accidents are caused by permanent problems.  Using 
empirical accident rates as estimates, without taking into account this uncertainty, one 
cannot guarantee that the most dangerous sites will be dealt with first.   

Recently, Bayesian techniques have been used to solve these problems in accident 
ranking.  Although the problem of hazardous intersection identification has been widely 
discussed in literature (5), the interest in Bayesian methods to improve the process only 
originated in the eighties.  Ever since, many applications used in some way an Empirical 
Bayes approach.  Hauer (6) presented the Empirical Bayes approach as a better estimate 
of the expected number of accidents, because of the enhanced accuracy of the estimates.  
Hauer and Persaud (4) examined the performance of some identification procedures.  
Empirical Bayes methods were used to estimate proportions of correctly and falsely 
identified deviant road sections.  Belanger (7) applied Empirical Bayes methods to 
estimate the safety of four-legged unsignalized intersections.  The results were used to 
identify black spot locations.  Hauer (5) reviewed the development of procedures to 
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identify hazardous locations in general.  Vogelesang (8) gives a very comprehensive 
overview of Empirical Bayes methods in road safety research. 

The use of hierarchical Bayesian models in traffic safety is less widespread.  Schlüter et 
al. (9) deal with the problem of selecting a subset of accident sites based on a probability 
assertion that the worst sites are selected first.  They propose three criteria for site 
selection: (a) the posterior probability that the underlying accident rate for a site is 
larger than the underlying accident rates of the other sites by a given amount, (b) the 
probability that the number of accidents at a site during the next period will exceed some 
specified threshold and (c) the expected number of future accidents.  To estimate 
accident frequencies, a hierarchical Bayesian Poisson model has been used.  Christiansen 
et al. (10) developed a hierarchical Bayesian Poisson regression model to estimate and 
rank accident sites, using a modified posterior accident rate estimate as a selection 
criterion.  Davis and Yang (11) combined hierarchical Bayes methods with an induced 
exposure model to identify intersections where the crash risk for a subgroup is relatively 
high.  Point and interval estimates of the relative crash risk for older drivers were 
obtained using the Gibbs sampler. 

The paper is organized as follows.  First, some concepts of hierarchical Bayes, Markov 
Chain Monte Carlo simulation and Gibbs sampling are briefly described.  It is also shown 
how the rank distribution for each intersection can be sampled.  This section is followed 
by a description of the data set. Next, the results of an empirical study on 168 
intersections are presented and discussed.  The paper is completed with some 
conclusions and directions for future research. 

Steunpunt Verkeersveiligheid  8 RA-2002-03 



 

2.    BA Y E S I A N  HI E R A R C H I C A L  MO D E L S  AN D  MC M C  

(GI B B S)  SA M P L I N G 

 

The problem of bicycle accident proportions can be expressed in a binomial hierarchical 
model.  A group of 168 intersections in the inner city of Leuven is examined and the 
number of accidents in the period 1991 to 1998 is counted.  In some of the accidents at 
an intersection, bicyclists might have been involved.  The objective is to find, for each 
intersection, an estimate of the proportion of bicycle accidents.   

2.1   Hierarchical Models 

Suppose that the true proportion of bicycle accidents at intersections is θ.  In this case, it 
is implicitly assumed that accidents at all intersections happened in similar 
circumstances.  This is not a very realistic setting, and it makes sense to assume that 
accidents at different intersections occur in slightly different conditions.  Indeed, it is 
natural to suppose that the intersections and their accidents are not completely similar.  
Accidents may occur at different times, with different drivers.  Intersections are to be 
found at different locations, with a specific infrastructure.  It is to be expected that the 
proportions for the intersections will differ, but it might be acceptable to assume that 
they are drawn from the same distribution.  Instead of using θ as the proportion of 
bicycle accidents, a proportion θi is used for intersection i.  All θi values are sampled from 
one population, called a hyper population.   

Based on Gelman et al. (12), this setting can be schematically represented as in Figure 1.  
Here, the value ri (i = 1, 2, …, p) is the observed number of bicycle accidents at 
intersection i.  The estimated proportion of bicycle accidents at intersection i is equal to 
ri / ni.  This is an estimate for the “true” (but unobserved) proportion θi at intersection i.   

 

Hyper Population

θ 2 θ p-1θ 1 ... θ p

r 2 r p-1r 1 ... r p

 
FIGURE 1 A Diagram of the Hierarchical Bayesian Model 

 

Once the hierarchical structure is determined, a prior distribution should be chosen for 
the hyper population and its parameters.  When there is no information available for the 
hyper parameters, a non-informative prior is preferred.  One frequently used approach is 
to obtain point estimates for the parameters of the hyper prior from the data.  This is the 
Empirical Bayes approach.  Since the hyper parameters are replaced by their point 
estimates, this model cannot fully take into account their uncertainty.  In a full Bayesian 
approach, a prior distribution is specified for the hyper parameters, to express the 
uncertainty about their true value.   

If no further prior information is available, a non-informative prior should be assigned to 
the hyper parameters (12).  Although the use of informative priors might be useful, there 
is always some reason to use non-informative priors (13).  First, in many cases it is 
simply not possible to obtain an informative prior distribution, not only because of 
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organizational constraints such as time limits or financial restrictions, but also because of 
the lack of expert knowledge.  Second, even if it is possible to elicit prior expert 
knowledge, there is the danger of ending up with a poor definition of the prior 
information.  Once the knowledge is available, it should still be presented in a suitable 
functional form, which is not always straightforward.  Moreover, elicitation of prior 
knowledge typically ends up with only some features of the prior information.  It should 
be possible then to obtain the rest of the prior definition in a convenient way.  Third, in 
statistical analysis one is often attracted by the possibility of presenting objective results.  
The use of informative prior information may be considered as a reduction in objectivity.  
The use of non-informative priors enables the researcher to maintain a high level of 
objectivity in the analysis.  At the same time, he can benefit from the advantages of a 
Bayesian approach. 

2.2   MCMC Techniques and Gibbs Sampling 

The main interest in this study is in the posterior probability for bicycle accidents at each 
intersection.  The joint posterior distribution of these probabilities is given by (14): 

 

( ) ( ) ( )
( ) ( )∫

=
θθθ

θθ
θ

dprp

prp
rp

|

|
| . 

 

Here θ is the vector of unobserved bicycle accident proportions, and r is the vector of the 
observed number of bicycle accidents (data).  Since a ranking of intersections would be a 
useful outcome of this analysis, inference is required on single proportions, say θk for 
intersection k. This is achieved by integrating the joint posterior distribution over all 
other parameters θi (i = 1, 2, …, k-1, k+1, …, p). 

 

( ) ( )∫ +−= pkkk dddddrprp θθθθθθθ ......|| 1121  

 

One way to solve these marginal posterior probabilities is to work out the integrals 
analytically, for which the calculations may become very cumbersome.  Another approach 
is to sample from the posterior distribution.  This is the basic principle of Monte Carlo 
simulation.  Numerical calculations are carried out using simulation.  Instead of 
analytically calculating exact or approximate estimates, the Markov Chain Monte Carlo 
(MCMC) technique generates a stream of simulated values for the quantities of interest 
(2).  Marginal posterior inference then involves the classical data summaries like the 
mean and the standard deviation. 

In general, samples should be drawn from the joint posterior distribution.  Whereas 
independent sampling from the posterior may be difficult, it is possible to sample from a 
Markov Chain with the joint posterior as its stationary distribution.  A sequence of 
random variables θ(0), θ(1), θ(2),... is a Markov Chain if θ(i+1) ~ p(θ | θ(i)).  This implies 
that, conditional on the value of θ(i), θ(i+1) is independent of θ(i-1), ..., θ(0).  Monte Carlo 
simulation may be applied for Bayesian posterior inference, using simulated values of all 
the unknown posterior bicycle accident proportions, generated from a Markov Chain with 
the joint posterior as its stationary distribution.  To design a Markov Chain with this 
property, Gibbs sampling may be used.   

If the vector of parameters θ consists of p sub-components, then starting values 

 should be defined.  The following sampling scheme is then repeated )0()0(
2

)0(
1 ,...,, pθθθ
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thousands of times, to eventually obtain a sample from p(θ | r), the stationary 
distribution of the Markov Chain: 

 

Sample  from )1(
1θ ( )rp p ,,...,,| )0()0(

3
)0(

21 θθθθ ; 

Sample  from )1(
2θ ( )rp p ,,...,,| )0()0(

3
)1(

12 θθθθ ; 

... 

Sample  from )1(
pθ ( )rp pp ,,...,,| )1(

1
)1(

2
)1(

1 −θθθθ . 

 

After a large number of iterations, the distribution of the bicycle accident proportion at 
each intersection will have been sampled.  Posterior summary statistics may be 
calculated to infer the newly obtained distributions. 

One particular application of the Gibbs sampler is the ability to make inferences on 
arbitrary functions of unknown model parameters (2).  An example of this feature is the 
computation of the rank probability of bicycle accidents for each intersection.  The result 
is a sample from the posterior distribution of the ranks.  This sample may then be 
summarized by the mean or median rank for each intersection.  Moreover, a 95% 
credibility interval may be added to express the uncertainty associated with the rank 
position of each intersection.   

At every other iteration, the Gibbs sampler provides an estimate of the rank for a given 
intersection.  For an intersection i, all other intersections are scanned to find those with 
an equal or lower estimated bicycle accident probability.  The number of these 
intersections corresponds to the rank of intersection i, because they all have a lower 
posterior bicycle accident probability.   
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3.    DA T A  

 

This study is based on the data set of traffic accidents obtained from the National 
Institute of Statistics (NIS) for the region of Flanders (Belgium) over the years 1991 to 
1998.  Out of this data set, all accidents on intersections in the inner city of Leuven were 
selected.  For each accident, a flag indicated whether bicyclists were involved.  Since 
Leuven is a small university city, it is expected that accidents with bicyclists frequently 
occur.  In total, 642 accidents at 168 intersections were identified, with accident counts 
ranging from 1 to 30.  In 369 accidents, at least one bicyclist was involved.  This overall 
percentage of more than 50% bicycle accidents indicates the importance of the study of 
vulnerable road users. 

Some remarks about the data set should be added.  First, data is available only for 
intersections where accidents happened.  All results should therefore be interpreted 
conditional on the occurrence of accidents.   

Second, the data set used in this study contains the accidents with slightly, seriously and 
fatally injured road users.  Since the data set reports on intersections in the inner city of 
Leuven, it is reasonable to assume that the reported numbers are an underestimation of 
the real accident counts.  Moreover, no distinction is made according to accident gravity. 

Third, it is assumed that the state (infrastructure, traffic direction…) of the intersections 
did not change during the period of analysis.  Therefore, abstraction is made of the order 
of the accidents over the years.  Only counts and proportions are considered at the 
intersection level.   

Fourth, the model does not consider spatial correlations among intersections.  One could 
argue that neighboring sites might have an influence on the safety of each other.  
Distances and geographical neighborhood should be measured in order to take 
correlations into account.  This complex extension, however, is not worked out in the 
paper. 

Fifth, no explanatory variables are used.  Although the framework of Bayesian 
hierarchical models offers all necessary tools to include covariates, and the use of 
explanatory variables may indeed be useful in the context of traffic safety for bicyclists, 
there are some major problems with the use of covariates in the current setting.  Since 
the data are obtained from intersections in the inner city of a university town, the 
characteristics are almost equal for all intersections.  As a result, the study objects are 
quite homogeneous, and the explanatory power of the covariates will probably be limited.  
Also, because all results are conditional on the occurrence of accidents, explanatory 
variables in this model would not be generally significant.   
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4.    RE S U L T S  

 

4.1   Binomial Hierarchical Model 

A full Bayesian approach to the problem is followed in this paper.  A Binomial hierarchical 
model is presented, using non-informative priors for the hyper parameters (12).  The 
number of bicycle accidents, out of the total number of accidents, is modeled as a 
binomial distributed random variable.  The proportion of bicycle accidents is used as a 
vague measure of “bicycle risk”.  The choice for this measure is partly dictated by the 
available data.  Since data are on hand only for intersections with accidents, zero-
accident intersections are not taken into account.   

Strictly speaking, the bicycle accident proportion used in the analysis is a measure of 
bicycle risk, conditional on the occurrence of accidents, and it is only a vague indicator of 
the degree of deficiency of the intersection.  If an accident happens, the proportion can 
be interpreted as the probability of a bicycle accident.  Although it is known that this 
proportion is not the best measure of bicycle risk, it is well suited to illustrate the 
possibilities of the Bayesian framework in the context of ranking hazardous intersections. 

Formally, the problem may be described as follows.  The observed data are, for each 
intersection i, the total number of accidents, ni, and the number of accidents with 
bicyclists involved, ri.  For each intersection, this number is modeled as a binary response 
variable with a true bicycle accident proportion θi.   

 

),(~ iii nBinomialr θ  168,...,1=i  

 

In the model, the parameters of interest are θi, the probability of the outcome “accident 
with a bicycle involved” at intersection i.  In the binomial setting, there are two mutually 
exclusive and exhaustive outcomes, namely “accident with a bicycle involved” and 
“accident without bicycle involved”.  Each intersection has its own bicycle accident 
proportion.  It is assumed, however, that the parameters of interest, θi, are 
independently sampled from a beta hyper-distribution, with hyper parameters α and β.   

 

( )βαθ ,~ Betai  

 

Because of the lack of extra information about the distribution of the bicycle accident 
proportions, a non-informative hyper prior density is used.  Gelman et al. (12) propose 
the use of a uniform prior on the transformations α/(α+β) and (α+β)-1/2, which are the 
mean and the approximate standard deviation of the beta density for the bicycle accident 
proportions. 

Instead of plugging in values for α and β, estimated from the data, α and β are defined in 
terms of prior distributions.  That is, the beta distribution in α and β is not known and 
has to be estimated.  The hierarchical Bayes scheme can be presented as in Figure 2. 
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α, β

θ 2 θ 167θ 1 ... θ 168

r 2 r 167r 1 ... r 168

 
FIGURE 2 A Diagram for the Bicycle Accident Study 

 

Sampling the posterior distribution is done using the Gibbs sampler in WINBUGS©.  
Uniform priors were assigned to the transformed variables in terms of α and β.  The 
results of the sampling are shown below. After 5000 burn-in iterations, results were 
monitored and reported for another 5000 iterations for five chains of the Gibbs sampler 
(25000 iterations after burn-in).  Burn-in iterations are necessary to obtain converging 
chains.  A Markov Chain should be approaching convergence to yield acceptable 
estimates.  For the model built in this paper, convergence for the parameters was 
achieved with the given burn-in period and number of iterations, as confirmed by the 
Gelman and Rubin’s convergence diagnostic (15).  The given number of iterations also 
provided adequate precision, as was indicated by the Monte Carlo standard error of the 
mean (MC error).  All MC errors are much smaller than 1% of the corresponding 
estimated value, confirming an acceptable level of precision.  Using the posterior mean 
estimated values for α and β, one could get an idea of the shape of the Beta distribution 
of the bicycle accident proportions.  For α and β, the posterior distributions shown in 
Figure 3 were obtained.   

 

beta chains 1:5 sample: 25000

    0.2     0.3     0.4     0.5

    0.0
    5.0
   10.0
   15.0

alpha chains 1:5 sample: 25000

    0.3     0.4     0.5     0.6

    0.0
    5.0
   10.0
   15.0

 
FIGURE 3 Posterior Densities for the Hyper Parameters α and β 

 

Detailed results are presented for three intersections (sequence numbers 25, 26 and 27), 
each with a different posterior density for the bicycle accident proportions. The first 
intersection has an observed zero bicycle accident proportion (0 bicycle accidents out of 2 
accidents).  The second has an observed proportion equal to 1 (3 accidents, all of them 
with bicycles).  The third intersection has 9 bicycle accidents observed out of 15.  The 
sampled posterior densities for the bicycle accident proportions at these three 
intersections are given in the left column of Figure 4.  For the other intersections, similar 
graphs can be made. 
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FIGURE 4 Posterior Densities for Bicycle Accident Proportions and Ranks at Three Intersections 

 

Observe that, even with a very low empirical bicycle accident rate, the probability for the 
proportions being much higher is different from zero.  Also note that the posterior 
distribution of the proportions is highly influenced by the data, because of the use of 
non-informative prior distributions.  Changing the prior distribution is a way to perform 
sensitivity analyses, or to include prior expert knowledge into the model. 

Table 1 contains the posterior summary information for the three selected intersections.  
The table shows the posterior mean of the bicycle accident proportion (column 2), 
together with a 95% credibility interval (column 3).  A 95% credibility interval for the 
bicycle accident proportion indicates the part of the posterior distribution that contains 
95% of all sampled values.  Due to the uncertainty brought into the model, the credibility 
intervals are quite large.  All MC errors, shown in column 4, are small enough to assume 
adequate precision. 

 

TABLE 1 Posterior Information for Three Intersections 

1 2 3 4 5 6 7 

Site Posterior 
Mean 

Credibility 
Interval (95%) 

MC Error Posterior 
Mean Rank 

Credibility 
Interval (95%) 

MC Error 

25 0.1936 [0.0006; 0.7060] 0.001313 24.59 [1; 93] 0.1601 

26 0.9019 [0.5145; 1.0000] 0.000856 134.0 [63; 167] 0.1783 

27 0.5985 [0.3556; 0.8183] 0.000750 75.92 [40; 112] 0.1186 

 

The credibility interval should be kept in mind when ranking hazardous intersections 
according to the posterior mean.  Figure 5 demonstrates this ranking for all intersections.  
Intersections on the horizontal axis are ordered by increasing posterior mean.  The 
dashed lines indicate the upper (UCL) and lower (LCL) credibility limit.  The posterior 
mean is a summary statistic for an underlying distribution, and ranking intersections 
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according to this value is only one out of many possible options.  Other examples are 
presented in Schlüter et al. (9).   
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FIGURE 5 Posterior Mean Bicycle Accident Rate and 95% Credibility Intervals for All Intersections 

 

As mentioned in Schlüter et al. (9), the ranking of intersections based on the posterior 
mean will differ from the ranking based on observed rates.  The reason for these 
differences may be found in the different sample sizes for each intersection and the well-
known “regression to the mean” effect.  In the selection of accident sites, some 
intersections have a lower number of accidents than others.  It is to be expected that 
more variability is present at intersections with smaller sample sizes, resulting in a 
stronger shrinkage to the overall posterior mean proportion.  As a consequence, 
intersections with the same observed accident rates will not get the same ranking, 
because of the specific variation at each location.   

The random effects hierarchical model (each intersection having its own random effect) 
allows taking into account both the variation within each intersection (each having its 
own sampled density of bicycle accident proportions) and the variation of all intersections 
(all being sampled from the same hyper prior distribution).  The first variation indicates 
the uncertainty degree with which the danger for a bicyclist can be estimated at each 
intersection (how accurate is the estimate at each intersection?).  The second indicates 
how much the intersections differ.  Figure 6 shows both sources of variation.   
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FIGURE 6 Between and Within Variation for All Intersections 
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The within variation at one intersection is typically different from the within variation at 
another.  They are at very distinguished levels, indicating that it is useful to model each 
intersection with its own distribution for the bicycle accident proportion.  The between 
variation is calculated based on the sampled posterior mean values for α and β.  A 
considerable number of within variations is below the between variation, and some of 
them are at a reasonably low level.  Therefore, the random effect for most intersections 
could be estimated with an acceptable precision.  If this were not the case, it would be 
difficult to assess whether intersections are indeed different, and thus whether a random 
effects model is useful.  The assumption of different intersections seems to be valid, and 
it might be interesting to investigate the differences among the intersections. 

4.2   Ranking of intersections 

One advantage of the Gibbs sampler is the ability to make inferences on the rank 
probability of bicycle accidents for each intersection.  Table 1 contains the posterior mean 
of the ranking for the three intersections discussed earlier (column 5).  The MC errors are 
shown in column 7, and the 95% credibility intervals in column 6 express the uncertainty 
associated with the rank positions.  For the selected intersections, the order is the same 
as obtained by the ranking of the posterior mean proportion.  Observe, however, the 
high uncertainty associated with the rank distribution.  Figure 7 shows the posterior 
mean rank and the 95% credibility interval for the estimated bicycle accident proportion 
at each intersection.   
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FIGURE 7 Posterior Mean Rank and 95% Credibility Intervals for All Intersections 

 

The interval estimates illustrate the high uncertainty associated with rankings.  Having 
168 intersections in the data set, the median rank should be at 84.5.  Almost all 
intersections have the median rank included in their credibility interval.  This finding 
stresses the importance of a thorough analysis before the selection of hazardous sites.  
The uncertainty can also be found when looking at the distribution of the sampled rank 
values for some intersections.  The graphs in the right column of Figure 4 show that for 
each intersection, many ranks are possible with a certain probability.  These graphs look 
like those in the left column.  The posterior densities for the ranks are constructed as a 
function of the posterior densities for the bicycle accident proportions.  Intersection 25 
will probably not be very dangerous for bicyclists, although the exact ranking is not 
known.  The mean rank of 24.59 (see column 5 in Table 1) is a way of summarizing the 
posterior density.  Taking into account the credibility interval, one can say that the 
intersection is ranked between position 1 and 93 in 95% of all sampled cases.  A similar 
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way of reasoning is valid for the other intersections.  The credibility intervals in column 6 
of Table 1 almost cover 100 ranks for each intersection.  The third intersection has the 
smallest credibility interval.  It is also the intersection with the largest observed number 
of accidents.  Clearly, if uncertainty is added to the model for bicycle accident 
proportions, this is reflected in the rank.   
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5.    CO N C L U S I O N S  A N D  FU T U R E  RE S E A R C H 

 

In this paper, a Bayesian binomial hierarchical model is estimated using the Gibbs 
sampler.  The objective was to infer the process of identifying and ranking dangerous 
intersections, based on the available accident counts.  The use of the bicycle accident 
proportion as a measure of risk leaves room for improvement, but is well suited to 
illustrate the usefulness of Bayesian models in the context of ranking hazardous 
intersections. 

The random effects hierarchical model allows the specification of different sources of 
variation.  It was shown that the intersections in the study might be treated as if they all 
have their own distribution of bicycle accident proportions, with the parameters being 
sampled from the same hyper prior distribution.  As a consequence, differences between 
intersections are captured by the (between) variation, while each intersection has its own 
(within) variation.  The comparison of the within and between variation allows the 
assessment of the random effects model.  If the effects at the intersections are different, 
and the estimates of the effects are accurate enough, then it makes sense to use 
intersection-specific risk parameters.   

The Gibbs sampler implemented in WINBUGS© was used to get insight in the distribution 
of the bicycle accident proportions, which are the main parameters of interest.  In the 
approach followed in the paper, a joint distribution over the parameters and the data is 
assumed.  Conditioning on the data yields a posterior distribution over the parameters of 
interest.  To obtain a density of a bicycle accident proportion at a given intersection, a 
marginal distribution for the intersection should be derived.  This marginalization of the 
posterior is done using the Gibbs sampler, which is a Markov Chain - Monte Carlo 
simulation technique.   

The Gibbs sampler also offers the possibility to sample complex functions of the bicycle 
accident proportions, like the rank of an intersection.  Although the posterior mean is a 
well-known criterion to rank order hazardous intersections, it was shown in the paper 
that the ranking itself could be seen as a density.  Since the bicycle accident proportions 
have a stochastic character, the ranking of intersections based on the posterior 
proportion cannot be deterministic.  This conclusion may put the existing ranking 
schemes in another light.  As long as the ranking is uncertain, it is not possible to have 
one ranking being definitely better than the others.  The possibility to take into account 
all natural sources of uncertainty is one of the main advantages of the Bayesian 
framework over the more classical approaches.   

It should be clear that ranking hazardous sites is an interesting tool to get insight in 
dangerous locations, but it is by no means an exact enumeration, in ascending order of 
danger.  When investment resources are limited, decision makers are interested in the 
most hazardous intersections.  Making a rank order of dangerous sites will undoubtedly 
be helpful to this end.  However, since the ranking is in itself a stochastic term, the 
obtained rank order may be, to a certain extend, a lucky coincidence.  Therefore, other 
criteria like investment capacity or specific mobility and safety objectives should 
influence the final ranking.   

Because of the need for useful intersection ranking, together with the limited informative 
value of ranking schemes, further research should be done in this area.  If more and 
better data are available, other measures of bicycle risk could be developed and 
explanatory variables could help in identifying and selecting an acceptable ranking.  The 
incorporation of spatial correlation effects among intersections is another interesting 
extension of this research.  Also the use of other summary statistics for the posterior 
density should be explored.  These extensions should help the decision maker in finding a 
well-considered choice of intersections to be treated.  This choice should be statistically 
sound and practically feasible, and should result in a considerable increase of the overall 
safety level.   
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