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SUMMARY

For longitudinal binary data with non-monotone non-ignorably missing outcomes over time, a full
likelihood approach is complicated algebraically, and with many follow-up times, maximum likelihood
estimation can be computationally prohibitive. As alternatives, two pseudo-likelihood approaches have
been proposed that use minimal parametric assumptions. One formulation requires specification of the
marginal distributions of the outcome and missing data mechanism at each time point, but uses an
“independence working assumption,” i.e., an assumption that observations are independent over time.
Another method avoids having to estimate the missing data mechanism by formulating a “protective
estimator.” In simulations, these two estimators can be very inefficient, both for estimating time
trends in the first case and for estimating both time-varying and time-stationary effects in the second.
In this paper, we propose use of the optimal weighted combination of these two estimators, and in
simulations we show that the optimal weighted combination can be much more efficient than either
estimator alone. Finally, the proposed method is used to analyze data from two longitudinal clinical
trials of HIV-infected patients. Copyright c© 2009 John Wiley & Sons, Ltd.

1. INTRODUCTION

Longitudinal studies in which each subject is to be observed at a fixed number of time points

have become very popular in social science and medical applications. For example, longitudinal

data are often collected in AIDS, cardiovascular, and cancer clinical trials and observational

studies. We focus on the case where the response variable over time is binary (e.g., success
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or failure) and are interested in modeling the marginal means or success probabilities; this

setting has been well-described [1, 2, 3, 4, 5]. Such modeling is often complicated by the fact

that in longitudinal studies, the outcome is not always observed at all assessment times. In

addition, this missing data is often non-ignorable [6], since the probability that an outcome is

missing at a given time can depend on the potentially missing value of the outcome at that

time. The missing outcome data must be properly accounted for in the analysis, and numerous

approaches have been proposed [7, 8, 9, 10, 11]. In clinical trials, an individual’s response is

often missing at one follow-up time but observed at the next follow-up time, resulting in a

large class of distinct missingness patterns, often called “non-monotone” missingness. We will,

however, assume that all subjects have the outcome measured at the first time point; e.g., to

be part of the study, the subject must be seen at baseline.

An example of a data set with this structure comes from two longitudinal clinical trials of

HIV-infected patients sponsored by the AIDS Clinical Trials Group (ACTG): ACTG 116A [12]

and 116B/117 [13]. The two studies were randomized phase III double-blind trials, designed to

compare two treatments, zidovudine (AZT) and didanosine (ddI); they differed with respect to

the length of prior treatment with AZT and have been used in several combined analyses [14].

The response of interest is normal CD4 cell count (> 200 cells per cubic millimeter) versus

abnormal CD4 cell count (≤ 200) measured at baseline (week 0) and every week for up to 5

weeks from baseline. The cutoff of 200 was initially chosen because of its strong predictive value

for development of opportunistic infections and has been adopted as a standard threshold of

clinical importance [15]. Previously, we analyzed these data for HIV patients with and without

AIDS [16]; here we consider only the 431 patients with AIDS at baseline. The main question of

scientific interest is the effect of treatment on changes in CD4 cell count sufficiency over time.

Copyright c© 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 0:0–0
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2 TROXEL, A.B., ET AL.

As with most longitudinal studies, missing outcome data over time complicate the analysis.

For example, fewer than 50% of the patients (202/431= 46.9%) have outcomes measured at

all 6 occasions.

Table I shows the number of subjects seen at each of the six possible occasions. In Table

I, we see that 383 of the 431 patients (88.9%) had a measurement at week 1; the percentage

of patients seen slowly drops until 285 (66.1%) of the 431 patients are seen at week 5. A

majority of the missing data is due to patients who drop out, i.e., once the patient misses

a scheduled visit, no further measurements of the response variable are obtained. However,

there are 109 (25.3%) patients who missed at least one measurement, but returned for a later

measurement. In this setting, it is quite plausible that patients with high or normal CD4 counts

are more likely to miss the scheduled study visits. If this is true, then missingness depends

on the unobserved outcome of interest and is nonignorable. Indeed, some have argued that

the only plausible non-monotone missing at random mechanisms are those that derive from

randomized monotone missingness processes [17, 18]. In the longitudinal data setting, these

processes require that missingness at an assessment depends on the prior assessment if and

only if the prior assessment is observed; such processes are thus highly implausible here.

To formulate a full likelihood for non-ignorable non-monotone missing outcomes over time,

one must specify a joint distribution for the T repeated binary outcomes of interest, of

dimension 2T , and a model for the missingness mechanism. To estimate the parameters,

a full likelihood approach has many nuisance parameters and is complicated algebraically;

furthermore, estimation can be computationally prohibitive, especially when the number of

times is large. As alternatives to a full likelihood procedure, two pseudo-likelihood [19, 20]

procedures have been proposed by Troxel et al. [21] and Fitzmaurice et al. [22] under minimal

Copyright c© 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 0:0–0
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parametric assumptions.

First, Troxel et al. [21] proposed a pseudo-likelihood that is formed by an “independence

working assumption,” i.e., assuming for the purpose of estimation that the longitudinal binary

measurements are independent over time and ultimately applying a robust “sandwich” variance

estimate [23] to achieve proper inference. Specifically, their pseudo-likelihood first assumes a

marginal logistic regression model for the outcome at each time point; it also assumes that the

missingness probability at a given time depends only on the possibly missing response at that

time and the covariates (the covariates are assumed to be fully observed). The chief attraction

of this pseudo-likelihood approach is that it substantially eases the numerical complexities of

the full likelihood approach by reducing high-dimensional sums to sums of a single dimension.

Further, it alleviates the need to specify and estimate many nuisance parameters that are

needed in a full likelihood approach. In addition, asymptotically unbiased estimators of the

regression parameters and missingness parameters can be obtained. However, by assuming

independence of repeated measures across measurement occasions, the method can be highly

inefficient for estimating the regression parameters. For example, results from Table 1 of Troxel

et al. [21] indicate that their pseudo-likelihood method can be very inefficient compared to the

MLE, and in particular in estimating time trends.

Alternatively, Fitzmaurice et al. [22] proposed a pseudo-likelihood based on the idea

of formulating a “protective estimator” [24] without having to estimate the missing data

mechanism. Specifically, they assume that the baseline response is fully observed and that

the probability that a response is missing at any future occasion is conditionally independent

of the baseline response given the response at that occasion. This assumption ensures that

the conditional distributions of the outcome at time 1 given the outcome at any future time

Copyright c© 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 0:0–0
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4 TROXEL, A.B., ET AL.

are fully identifiable. These conditional distributions are functions only of the parameters of

primary scientific interest (the regression parameters), and not the parameters of the missing

data mechanism. Their pseudo-likelihood is based on the conditional distributions of the

baseline response, given the response at each future occasion, for estimation of the regression

parameters. The pseudo-likelihood requires only specification of the bivariate distribution of

the outcome at time 1 and any future time, and is thus computationally much more feasible

than maximum likelihood. The resulting parameter estimates are asymptotically unbiased

when the identifying assumption holds. However, the results of their simulation study showed

that, with high correlation, the “protective estimator” can be highly efficient for estimating

time trends, but inefficient for estimating the effects of time-stationary covariates.

Since the estimate from Troxel et al.’s [21] approach is very inefficient for estimating time

trends, and the estimate from Fitzmaurice et al.’s [22] approach is very inefficient for estimating

time-stationary effects, this suggests formulating a new estimator of the marginal regression

parameters that is a combination of these two estimators. In this paper, we propose forming

a new estimator that is the asymptotic minimum variance linear combination of the two

estimators [25, 26]. The new estimator is basically a weighted least squares estimate, where

the weight matrix is the inverse of the estimated asymptotic covariance matrix of the vector

formed from concatenating the Troxel et al. and Fitzmaurice et al. estimates. This estimated

asymptotic covariance matrix is obtained using the “sandwich” variance estimator of White

[23].

The remainder of the paper is organized as follows. In Section 2, we describe the underlying

data models and introduce the necessary notation. In Section 3, we review the pseudo-

likelihoods of Troxel et al. and Fitzmaurice et al., and our proposed weighted combination

Copyright c© 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 0:0–0
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of the two. Section 4 illustrates the methods with the AIDS example. In Section 5, we present

results from our simulation study, showing that our proposed estimator produces much more

efficient estimates of the time trends than the Troxel et al. estimator, and much more efficient

estimates of the time-stationary effects than the Fitzmaurice et al. estimator.

2. UNDERLYING DATA MODEL

We assume that n independent subjects are to be observed at a fixed set of T occasions,

t = 1, . . . , T. For the ith individual (i = 1, ... . . . , n), we can form a T × 1 vector, Yi =

[Yi1, . . . , YiT ]′, where the binary random variable Yit equals 1 if the ith individual has response

1 (e.g., “success”) at time t, and 0 otherwise. Each individual also has a J × 1 covariate vector

xit; we assume that all covariates are fully observed. The main interest here is in the marginal

model for each binary outcome Yit, which we assume follows a logistic regression. The marginal

distribution of Yit is Bernoulli with success probability

pit = pit(β) = E(Yit|xit, β) = pr(Yit = 1|xit, β) =
exp(x′itβ)

1 + exp(x′itβ)
. (1)

In a marginal model, the goal is to make inferences about the marginal regression parameters β,

whereas the within-subject association among the repeated responses is regarded as a nuisance

characteristic of the data. Although the association model is not even specified in the pseudo-

likelihood of Troxel et al., the pairwise associations between the outcome at time 1 and the

follow-up times must be correctly specified in the protective pseudo-likelihood of Fitzmaurice

et al. to obtain consistent estimates. Thus, we briefly discuss the association model here.

The association between a pair of binary outcomes is typically measured in terms of marginal

odds ratios [28] or marginal correlations [29]. For ease of exposition, as well as to be compatible

with the original protective pseudo-likelihood of Fitzmaurice et al., here we discuss marginal

Copyright c© 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 0:0–0
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correlations. In general, we propose a generalized autoregressive(1)-type correlation structure.

For two different points in time s 6= t, the generalized autoregressive(1) model states that

ρist = Corr(Yis, Yit|xi) = ρ|t−s|
θ

,

where −1 < ρ < 1 and −∞ < θ < ∞. Note that if θ = 0, this correlation reduces to

an exhangeable correlation, ρist = ρ, and if θ = 1, this correlation reduces to the usual

autoregressive(1). Depending on the context, sometimes θ will be estimated, and sometimes it

will be specified as 0 or 1. Notation-wise, we generally let α represent the parameter vector of

the correlation model.

In many longitudinal studies, individuals are not observed at all T occasions on account of

some stochastic missing data mechanism. Here, we assume that all subjects are observed at

baseline (t = 1). However, subjects can be missing at any follow-up time. It is convenient then

to introduce (T −1) random variables, Rit, (t = 2, . . . , T ), that equal 1 if Yit is observed and 0

if Yit is missing. As we discuss briefly in the following section, under the protective assumption

used in the pseudo-likelihood of Fitzmaurice et al., a model for Rit does not even need to be

specified. However, when using the pseudo-likelihood of Troxel, et al., the marginal model for

Rit given Yit and xit does need to be correctly specified. Since Rit is binary, the marginal

model for Rit involves specifiying the probability of being observed (Rit = 1). This probability

is assumed to follow a logistic regression,

πit = πit(Yit,xit, γ) = pr(Rit = 1|yit,xit, γ) =
exp(γ0 + γ1yit + γ′2xit)

1 + exp(γ0 + γ1yit + γ′2xit)
. (2)

In this marginal model, if γ1 6= 0, then the missing data mechanism is non-ignorable, since the

probability of being missing depends on possibly unobserved data Yit. In the next section, we

briefly discuss the pseudo-likelihoods of Troxel et al. and Fitzmaurice et al., and we describe

our proposed estimator.

Copyright c© 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 0:0–0
Prepared using simauth.cls



PSEUDO-LIKELIHOOD ESTIMATORS FOR NONIGNORABLY MISSING BINARY DATA 7

3. ESTIMATORS3.1. Troxel et al. Pseudo-Likelihood under Working Assumption of Independence

In this section we review the pseudo-likelihood approach proposed by Troxel et al. [21] that uses

an “independence working assumption,” i.e., assumes that observations are independent over

time. The resulting pseudo-likelihood is a product of simple marginal terms and can be used to

estimate the marginal regression parameters β and the marginal missingness parameters γ, but

not the association parameters α. To describe this pseudo-likelihood, we let f(yit, rit|xit, β, γ)

denote the marginal distribution of (Yit, Rit) at time t. We can write this distribution as

f(yit, rit|xit, β, γ) = f(yit|xit, β)f(rit|yit,xit, γ),

where f(yit|xit, β) is Bernoulli with success probability given in (1), and f(rit|yit,xit, γ) is

Bernoulli with probability of being observed as given in (2). If we consider only the data at

time t, then our observed data likelihood would be

f(yit, rit|xit, β, γ)

if Yit were observed, and would be

1∑
yit=0

f(yit, rit|xit, β, γ)

if Yit were missing.

The pseudo-likelihood [21], then, which treats the observations at different times as

Copyright c© 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 0:0–0
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independent, is

Lind(β, γ) =
N∏
i=1

T∏
t=1

[f(yit, rit|xit, β, γ)]rit
[

1∑
yit=0

f(yit, rit|xit, β, γ)

](1−rit)

=
N∏
i=1

T∏
t=1

[f(yit|xit, β)f(rit|yit,xit, γ)]rit
[

1∑
yit=0

f(yit|xit, β)f(rit|yit,xit, γ)

](1−rit)

=
N∏
i=1

T∏
t=1

[f(yit|xit, β)πit]
rit

[
1∑

yit=0

f(yit|xit, β)(1− πit)

](1−rit)

.

This pseudo-likelihood is simply a product of terms at each measurement occasion: when

an observation is present, the Bernoulli probability function f(yit|xit, β) is multiplied by

the probability of being observed (πit), and when the observation is missing, the product of

f(yit|xit, β) and the missingness probability (1−πit) is summed over the range of the possible

values of Yit. Note that these marginal distributions are not a function of the association

parameter α.

The maximum pseudo-likelihood estimate of Troxel et al. [21] under independence maximizes

the log pseudo-likelihood, which can be obtained by setting the first derivative of the log

pseudo-likelihood, i.e., the pseudo-score vector,

Sind(β, γ) =
∂

∂(β, γ)
logLind(β, γ) =

n∑
i=1

Si,ind(β, γ),

equal to 0 and solving for (β̂ind, γ̂ind). Using method of moments ideas, the pseudo-likelihood

estimator (β̂ind, γ̂ind) can be shown to be consistent and asymptotically normal if the marginal

bivariate distribution f(yit, rit|xit, β, γ) is correctly specified. The maximum pseudo-likelihood

estimate can be obtained using a Newton-Raphson algorithm, or the same EM-algorithm [30]

that would be used if the (Yit, Rit) pairs were truly independent. Finally, we note that the

negative second derivative of the log pseudo-likelihood will not provide a consistent estimator

of the asymptotic variance; instead, the so-called “robust” or “sandwich” variance estimator

Copyright c© 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 0:0–0
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can be used [23].

3.2. Fitzmaurice et al. Protective Estimator

The pseudo-likelihood of Fitzmaurice et al. [22] under the protective assumption is a product of

(T −1) simple conditional distributions and the marginal distribution of the outcomes at time

1. Recall that we assume Yi1 is observed for all subjects in the dataset, as in the AIDS study.

The marginal distribution at time 1 for all subjects is the product of Bernoulli distributions

over the n subjects, denoted by

n∏
i=1

f(yi1|xi1, β) =
n∏
i=1

pyi1i1 (1− pi1)(1−yi1) . (3)

Note that since no data are missing at time 1, one could obtain a consistent, albeit inefficient,

estimate of β (excluding time effects or interactions with time) from (3).

Next, consider the conditional probability of the outcome at time 1 given the outcome at

time t (t > 1) (and that Yit is observed),

f(yi1|yit,xit, Rit = 1, β, α, γ) =
pr(Rit = 1|yi1, yit, xit, γ)f(yi1, yit|xit, β, α)∑
yi1

pr(Rit = 1|yi1, yit, xit, γ)f(yi1, yit|xit, β, α)
.

Now suppose the conditional probability pr(Rit = 1|yi1, yit, xit, γ) does not depend on yi1, i.e.,

pr(Rit = 1|yi1, yit,xit, γ) = pr(Rit = 1|yit,xit, γ). (4)

This implies that the probability of being missing at a time-point can be predicted by all (or

some combination) of the data at that time. Under (4),

f(yi1|yit,xit, rit = 1, β, α, γ) =
pr(rit = 1|yit, xit, γ)f(yi1, yit|xit, β, α)

pr(rit = 1|yit, xit, γ)
∑
yi1
f(yi1, yit|xit, β, α)

=
f(yi1, yit|xit, β, α)∑
yi1
f(yi1, yit|xit, β, α)

(5)

= f(yi1|yit, xit, β, α).

Copyright c© 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 0:0–0
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This implies that the conditional distribution of Yi1 given (yit,xit) for those observed at

time t (Rit = 1), equals the population conditional distribution, f(yi1|yit,xit, β, α), which is

a function of the parameters of interest β (as well as α). Since yit will be observed for all

subjects with Rit = 1, one can get a consistent estimate of (β, α) by maximizing the following

pseudo-likelihood [22],

Lprot(β, α|Y) =
n∏
i=1

(
f(yi1|xit, β, α)

T∏
t=2

[f(yi1|yit,xit, β, α)]rit
)
,

which includes all subjects at time 1 and f(yi1|yit,xit, β, α) when yit is observed. The

marginal parameters are identified using arguments analogous to those presented by Brown

for the normal case [24]; the means at the baseline assessment are clearly identified by the

complete data at time 1, and subsequent means and correlation parameters are identified

using combinations of the marginal distribution at time 1 and the conditional distributions

involving the later assessments.

The maximum pseudo-likelihood can again be obtained by setting the pseudo-score vector,

Sprot(β, α) =
∂

∂(β, α)
logLprot(β, α) =

n∑
i=1

Si,prot(β, α),

equal to 0 and solving for (β̂prot, α̂prot). Using method of moments ideas, the pseudo-

likelihood estimator (β̂prot, α̂prot) can be shown to be consistent and asymptotically normal

if f(yi1|yit,xit, β, α) is correctly specified and (5) holds. The maximum pseudo-likelihood

estimate can again be obtained using a Newton-Raphson algorithm. Again, the so-called

“sandwich” variance estimator [23] must be used to obtain a consistent estimate of the variance.

3.3. Comparison of Pseudo-likelihood Approaches

The two approaches described above require different but in each case non-trivial assumptions

related to the missing data mechanism. The independence approach of Troxel et al. requires

Copyright c© 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 0:0–0
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correct specification of a missingness model in which the missingness probabilities at a given

time may depend only on outcomes at that time. The protective approach of Fitzmaurice et

al. requires that the missingness probabilities at a given time may depend on outcomes at that

time but must not depend on outcomes observed at baseline, an assumption that obviates

the need to specify the missing data model directly. While the protective assumption in (4)

is not the most general non-ignorable missing data mechanism, it is still non-ignorable due

to dependence of Rit on the outcomes at time t. This assumption is often quite reasonable,

since for many nonignorable missing data mechanisms, missingness depends primarily on the

unobserved data at time t, Yit, and possibly the covariates xit, but, conditional on Yit (and

xit), missingness is independent of Yi1. However, even though the missing data mechanism

does not have to be estimated, this protective assumption is, in a sense, stronger than the

missingness assumptions made in the pseudo-likelihood proposed by Troxel et al. The Troxel

et al. approach does not make any assumptions about the missingness probabilities at one time

given data at that time and another time, but only makes assumptions about the missingness

probability at one time given data at that time. On the other hand, the pseudo-likelihood

proposed by Troxel et al. does require correct specification of the model for the missingness

probability given in (2), which is not required by the Fitzmaurice et al. approach.

There are numerous scenarios in which both models would appear to be reasonable, for

example, repeated assessments of highly correlated indicators of symptom occurrence such as

tingling of the hands and feet in cancer patients receiving chemotherapy. One can plausibly

hypothesize that the current occurrence of the symptom almost entirely determines the

patient’s ability to attend the clinic and thus have the symptom measured; one can equally

plausibly be confident of modeling correctly (or nearly correctly) the predictors of missingness,

Copyright c© 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 0:0–0
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including the symptom value itself but also numerous other known complicating factors such

as patient age, presence of family members to assist, treatment with anthracycline-based

chemotherapy, etc.

Of greater interest are scenarios in which one set of assumptions holds but not the other.

Consider, for example, a setting in which the likelihood of missingness depends on both the

current assessment and the baseline value. This is plausible in the setting of quality of life where

difficulty coping at baseline is often indicative of later missingness, but difficulty coping at later

assessments also increases the likelihood of being missing; in addition, repeated assessments of

quality of life tend to be highly variable and poorly correlated. In this setting, the protective

assumption is violated, and the low correlation means that the protective estimator will not

be robust to the violation; while the missingness model using the independence approach will

also be misspecified by not including the baseline values, it will still correctly capture the

nonignorability and thus suffer minimal bias. On the other hand, there are many scenarios in

which the protective assumption is satisfied, but the missingness model in the independence

approach is so badly misspecified that the subsequent estimates will be biased. In the coping

example above, we might specify a model in which those with difficulty coping are more likely

to be missing. In reality, however, it may be that both those with very poor coping and very

high levels of coping may be equally likely to be missing, the former because they can’t manage

their disease and the latter because they see no need for follow-up care. Subjects with missing

values will be a mixture of these two populations; the monotone model for missingness that

links difficulty coping with higher rates of missingness will fail to capture the higher rates of

missingness among a subset of those who are coping well, resulting in biased estimates.

Copyright c© 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 0:0–0
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3.4. Proposed Weighted Least Squares Estimator

As shown in the previous subsections, under the protective assumption given in (4), and

assuming the missingness probability given in (2) is correctly modeled, both the estimate β̂ind

from Troxel et al.’s pseudo-likelihood, and the estimate β̂prot from Fitzmaurice et al.’s pseudo-

likelihood will be consistent. Compared to the assumptions required for consistency of the

full likelihood, namely correct specification of the full joint distribution of the outcome Yit

and the missingness indicators Rit, these are still weak assumptions. Both pseudo-likelihood

approaches are particularly attractive in this setting since the full likelihood can be far more

complicated algebraically. In addition, ML estimation is computationally very demanding for

T > 4, due to the additional nuisance parameters induced by the specification of the full joint

distribution mentioned above. Note, however, because the association among the repeated

measures is not used at all in the pseudo-likelihood of Troxel et al., their estimate can be

very inefficient for estimating time trends. Further, when using Fitzmaurice et al.’s pseudo-

likelihood, if the repeated measures were truly independent, then their pseudo-likelihood would

simply reduce to the likelihood at time 1 (since the estimated correlations would be close to

0, and the pseudo-likelihood would mainly be a function of data at time 1). In this case, β̂prot

would be inefficient for estimating both time-stationary effects, since it only uses data at time

1, and time trends; in fact, there may be very little information in the pseudo-likelihood for

estimating time trends in this case. In the simulations given in Section 5, with high correlations,

we have found β̂ind to be inefficient for estimating time trends and β̂prot to be inefficient for

estimating time-stationary effects. This suggests formulating a new estimator of the marginal

regression parameters that is the optimal combination of β̂ind and β̂prot.

First, note that under the protective assumption, the joint asymptotic distribution of

Copyright c© 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 0:0–0
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(β̂ind, γ̂ind, β̂prot, α̂prot) is multivariate normal with mean vector (β, γ, β, α) and variance-

covariance matrix

[
Iind 0

0 Iprot

]−1 n∑
i=1

E

([
Si,ind(β, γ)
Si,prot(β, α)

] [
Si,ind(β, γ)
Si,prot(β, α)

]′)[ Iind 0
0 Iprot

]−1

,

where

Iind = E

[
∂

∂(β, γ)
Sind(β, γ)

]
,

and

Iprot = E

[
∂

∂(β, α)
Sprot(β, α)

]
.

The variance estimate is obtained by replacing (β, γ) in Si,ind(β, γ) and Iind with (β̂ind, γ̂ind)

and (β, α) in Si,prot(β, α) and Iprot with (β̂prot, α̂prot). We denote the submatrix of this

estimated variance-covariance matrix corresponding to Vβ = V ar(β̂ind, β̂prot) by V̂β .

Under the protective assumption,

E

[
β̂ind
β̂prot

]
=
[

IJ
IJ

]
β = Zβ ,

where IJ is a (J × J) identity matrix, and J is the dimension of xi.

We propose forming a new estimator that is the asymptotic minimum variance linear

combination of β̂ind and β̂prot [25, 26]. The new estimator is basically a weighted least squares

estimate, where the weight matrix is the inverse of V̂β , the estimate of Vβ = V ar(β̂ind, β̂prot).

In particular, our proposed estimate is

β̂wls = [Z′V̂ −1
β Z]−1[Z′V̂ −1

β (β̂′ind, β̂
′
prot)

′] ,

which has asymptotic variance estimated by

V̂ ar(β̂wls) = [Z′V̂ −1
β Z]−1 .
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The estimate β̂wls has the minimum asymptotic variance of any linear combination of β̂ind

and β̂prot, including both β̂ind and β̂prot. Thus, with large n, β̂wls will have smaller variance

than both β̂ind and β̂prot. The decrease in variance of β̂wls with respect to β̂ind and β̂prot will

depend on the configuration of the data, which we explore in simulations in Section 5.

4. APPLICATION: Response of CD4 Lymphocytes to Treatment with AZT or ddI

We present an analysis of the CD4 count data from the AIDS clinical trials described in the

Introduction. The parameters are estimated using the protective pseudo-likelihood, the non-

ignorable pseudo-likelihood under independence, WLS, and generalized estimating equations

(GEE) [2] under ignorable assumptions, described below. The two AIDS clinical trials are

randomised phase III double-blind trials, designed to compare two therapeutic treatments:

zidovudine (AZT) and didanosine (ddI); the dataset contains records on n = 431 patients

diagnosed with AIDS or AIDS-related complex. The response of interest at time (week)

t = 0, 1, . . . , 5 is the patient’s CD4 count sufficiency, with Yit = 1 if the CD4 count exceeds

200 and 0 otherwise. As discussed in the Introduction and given in Table I, CD4 count data

are missing for 11% to 44% of patients at the five follow-up occasions; moreover, the missing

data patterns are non-monotone.

To describe the treatment effect, we form the following indicator variable

AZTi =

{
1 if the ith subject is randomized to AZT

0 if the ith subject is randomized to ddI
.

Because of the stratified randomization, to control for baseline age we define the indicator

variable

agei =

{
1 if the ith subject has baseline age ≥ 35

0 otherwise
.

We model the logit of pit = pr(Yit = 1|xit), the probability that CD4 count > 200 at a given
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time, as a function of treatment, time and baseline age,

logit(pit) = β0 + β1agei + β3t+ β4t ∗AZTi,

for t = 0, 1, ..., 5. Note the exclusion of a main effect of treatment (AZTi). The main effect

of AZT corresponds to the baseline (t = 0) treatment effect, and, because of randomization,

there is no treatment effect at baseline, i.e., the main effect of AZT equals 0. For the ignorable

GEE approach, we used the glimmix macro in SAS, which uses a linearization approach and

allows incorporation of a random effect to accommodate the assumption of MAR data [27].

We assume a compound symmetry correlation structure for simplicity; results were robust to

various other choices.

Recall that the protective pseudo-likelihood requires specification of the correlations, ρ1t.

We estimated the parameters under both AR(1) and exchangeable correlations; the results

were so similar that for simplicity, we present results under an exchangeable assumption.

Further, recall that for the non-ignorable pseudo-likelihood under independence, we must

model the probability of being observed at each time point. It was conjectured that CD4

count is nonignorably missing since sicker patients may not come in for a further GP visit,

e.g., sicker patients may have been hospitalized. We considered the following missing data

mechanism:

logit(πit) = logit[pr(Rit = 1|yit, xit, γ)]

= γ0 + γ1yit + γ2AZTi

+γ3agei + γ4t+ γ12yitAZTi + γ14yitt , (6)

for t > 0. Using the pseudo-likelihood approach in (6), both the yitAZTi and yitt interactions

are significant at the 0.1% level. In general, the non-ignorable models suggest that subjects
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with normal CD4 counts and on AZT are less likely to be seen over time.

Table II displays estimates and standard errors for the parameters β for all models and

methods. Note that the WLS estimator of the kth element of β is not just a weighted

combination of the kth elements of the independence and protective estimators, β̂ind,k and

β̂prot,k, but rather a weighted combination of the full vectors β̂ind and β̂prot, since the

weight matrix V̂ −1
β is not diagonal; thus the WLS estimates do not always fall between

the protective and pseudo-likelihood under independence estimates. From Table II, we see

that the estimates from the WLS, protective approach, and pseudo-likelihood approach under

independence are all similar, but the WLS has the smaller standard errors than these other

two non-ignorable approaches. For example, for the time-stationary age effect, the estimated

relative efficiency (ratio of estimated variances) is 44% for protective versus WLS and 87% for

the pseudo-likelihood under independence versus WLS. For the AZT*TIME interaction, the

estimated relative efficiency (ratio of estimated variances) is 46% for protective versus WLS and

15% for the pseudo-likelihood under independence versus WLS. The estimated exchangeable

correlation is 0.54, indicating high correlation among the repeated responses, and we show in

the simulation section that very substantial efficiency gains over the protective and pseudo-

likelihood under independence approaches can be made using the WLS estimator when the

correlation is high. This highlights the efficiency that can be gained using the WLS approach.

However, this is just one example. To examine the finite sample properties of these approaches,

we conducted a simulation study in the next section.

From Table II, we see that, among the non-ignorable approaches, the estimates are similar,

except for the AGE effect using the protective estimate, which is over 50% smaller (and,

as discussed above, also over 50% more variable). Comparing GEE to the non-ignorable
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approaches, we see that the GEE estimate of the time by treatment interaction is much smaller

than the estimate using the non-ignorable approaches. This also highlights how different

assumptions about the missing data mechanism can produce discernibly different, and possibly

conflicting, estimates of effects.

5. SIMULATION STUDY

We compared the WLS estimator, the protective estimator, the pseudo-likelihood estimator

under independence, the ML estimator using the correct non-ignorable missingness mechanism,

and GEE under an ignorable missing data mechanism. To ensure feasibility of the simulation

study, we restricted the number of occasions to T = 3 and considered a simple two-group study

design configuration (e.g., evenly randomized between active treatment and placebo).

Let xi = 0, 1 indicate treatment group membership. The binary outcomes, denoted by

(Yi1, Yi2, Yi3), are assumed to follow a Bahadur model [29], with joint probabilities

pr(Yi1 = yi1, Yi2 = yi2, Yi3 = yi3|xit, β, α) ={∏3
t=1 p

yit
it (1− pit)(1−yit)

}
{1 + ρ12zi1zi2 + ρ13zi1zi3 + ρ23zi2zi3 + ρ123zi1zi2zi3} ,

where

Zit =
Yit − pit√
pit(1− pit)

,

ρst = Corr(Yis, Yit) =
E[(Yis − pis)(Yit − pit)|xi]√

pis(1− pis)pit(1− pit)
,

ρ123 =
E[(Yi1 − pi1)(Yi2 − pi2)(Yi3 − pi3)|xi]√
pi1(1− pi1)pi2(1− pi2)pi3(1− pi3)

,

logit(pit) = β0 + βxxi + βτ (t− 1) ,

for t = 1, 2, 3. We group α = [ρ12, ρ13, ρ23, ρ123]′. For the simulation study, we choose

β0 = −0.25, βx = 0.5, and βt = 0.20. A variety of different correlation structures were
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examined and the same overall pattern of results was obtained. For reasons of parsimony, we

present the results from an exchangeable correlation with ρist = ρ.

We performed simulations with the following true non-ignorable missingness mechanism,

logit(πit) = logit[pr(Rit = 1|yit, xit, γ)] = γ0 + γ1xi + γ2(t− 1) + γ3yit, (7)

for t > 1, and we let the missingness indicators be independent at the three occasions. For

the simulation study, the true model parameters in (7) are γ0 = −0.5, γ1 = 1.0, γ2 = 0.2, and

γ3 = 1.0. Here, missingness at a given occasion depends upon group membership, time, and

the possibly missing outcome at that occasion. In this mechanism, non-monotone missingness

can occur in that an outcome can be missing at time s (Ris = 0), but observed at a future time

t (Rit = 1 for t > s). Given the true γ parameters, the percentage missing is approximately

34% at time 2 and and 30% at time 3. The full distribution fr(ri|yi,xit, γ) is

pr[Ri1 = ri1, Ri2 = ri2, Ri3 = ri3|yi1, yi2, yi3, xit, γ] =
3∏
t=2

πritit (1− πit)(1−rit).

In the simulations reported in Table III, all of the non-ignorable methods are approximately

unbiased, whereas GEE is clearly biased. The main interest of this simulation is to explore

the efficiency gains of WLS over the protective and pseudo-likelihood estimator under

independence. We provide both the average of the estimated variance and the empirical

simulation variance; in general they match closely, except for the protective estimator when

the correlation is low and the variance is poorly estimated. We see that the WLS estimator

displays considerable gains in efficiency over the protective estimator for both βτ and βx for all

correlations and sample sizes. In fact, the protective estimator is never more than 65% efficient

compared to the WLS estimator; it is usually considerably less efficient. When the correlation is

weak (e.g., ρ = 0.1), the pseudo-likelihood under independence is nearly as efficient as the MLE
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(and thus also the WLS), since in this case, this estimator is close to the MLE. The variance of

the WLS estimator is always smaller than the pseudo-likelihood under independence, although

it performs less well when the correlation is low. In general, for the group effect, the pseudo-

likelihood under independence is at least 90% as efficient as WLS. However, for the time

effect, the pseudo-likelihood under independence can be substantially less efficient when the

correlation is moderate to high. For example, when n = 450 and ρ = .25, for the time effect,

the pseudo-likelihood under independence is only 64% as efficient as WLS. Further, when

n = 450 and ρ = .4, for the time effect, the pseudo-likelihood under independence is only 48%

as efficient as WLS. Comparing WLS to maximum likelihood, we see that WLS has at least

90% efficiency for any configuration, except for the group effect when n = 300 and ρ = .4, in

which case it is 85% efficient.

6. DISCUSSION

We have proposed a weighted least squares estimator (WLS) which is an optimal combination

of β̂ind and β̂prot. The WLS estimator is appropriate for the estimation of marginal models

for longitudinal binary data with non-monotone, nonignorably missing outcomes. Unlike the

full likelihood, WLS requires specification of the bivariate distribution of the data at time 1

given all future times on the same subject (for the protective estimator) and the marginal

missing model at each time point. Further, compared to maximum likelihood, which requires

the full likelihood to be correctly specified in order to obtain consistent estimates, the pseudo-

likelihood estimates are consistent as long as the protective assumption holds and the marginal

missingness model is correctly specified. We have discussed above some of the scenarios in which

both the protective assumption should hold and the missingness model can be specified with
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a fair degree of confidence. In such cases, the use of the WLS estimator has the benefit of

added efficiency compared to both of its components. In some scenarios, however, the analyst

may be unwilling to require additional assumptions in order to achieve this efficiency. As many

other authors have noted, sensitivity analyses are a crucial component of any analysis involving

potentially nonignorable missing data [6, 31, 32, 33]. Comparisons of results obtained using

models such as those described here, that allow for nonignorable missing data, with models

making assumptions of MAR data are extremely instructive; in addition, comparisons of results

from models making different assumptions about the mechanisms of nonignorability, as in the

various approaches discussed here, can help elucidate the missing data mechanism.

Because of the broad range of possible missing data configurations and underlying

probability distributions generating the data, it is difficult to draw definitive conclusions from

simulation studies, and we can make only general suggestions. Based on our simulation studies,

however, we have shown that one can take two relatively inefficient estimators (the protective

and pseudo-likelihood under independence), and create a highly efficient estimator in the WLS

estimator.
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Table I. Number of subjects seen at each occasion in AIDS data

Weeks Number of Percent
from baseline Subjects (out of n = 431)

0 431 100.00
1 383 88.86
2 345 80.05
3 324 75.17
4 306 71.00
5 285 66.13

Table II. Parameter Estimates for β for the AIDS Data

Effect Approach β̂ SE Z-statistic P-value

INTERCEPT Protect -2.410 0.307 -7.86 0.000
Pseudo -2.771 0.242 -11.43 0.000
WLS -2.643 0.234 -11.28 0.000
GEE -2.579 0.232 -11.12 0.000

AGE Protect 0.338 0.408 0.83 0.407
Pseudo 1.112 0.289 3.85 0.000
WLS 1.011 0.270 3.74 0.000
GEE 0.902 0.280 3.22 0.001

TIME Protect -0.203 0.049 -4.18 0.000
Pseudo -0.116 0.041 -2.85 0.004
WLS -0.145 0.034 -4.24 0.000
GEE -0.101 0.042 -2.38 0.016

AZT*TIME Protect 0.282 0.111 2.55 0.011
Pseudo 0.272 0.192 1.42 0.157
WLS 0.196 0.075 2.62 0.009
GEE 0.070 0.073 0.95 0.338
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Table III. Simulation Results. The marginal logistic model has parameters (βτ , βx) = (0.2, 0.5), and
ρist = ρ (exchangeable)

ρ = 0.10 ρ = 0.25 ρ = 0.40
n APPROACH βτ = 0.2 βx = 0.5 βτ = 0.2 βx = 0.5 βτ = 0.2 βx = 0.5

150 Simulation Protect 0.220 0.511 0.224 0.507 0.209 0.515
Average Pseudo-Ind 0.206 0.499 0.206 0.497 0.204 0.507
Estimate WLS 0.204 0.490 0.191 0.488 0.191 0.496

ML 0.202 0.496 0.203 0.499 0.204 0.511
GEE 0.364 0.389 0.353 0.408 0.336 0.424

Simulation Protect 73.915 0.131 6.136 0.145 0.164 0.154
Average Pseudo-Ind 0.046 0.067 0.044 0.075 0.039 0.084
Variance WLS 0.043 0.096 0.026 0.069 0.016 0.072

ML 0.039 0.064 0.024 0.068 0.015 0.069
GEE 0.017 0.055 0.014 0.065 0.012 0.075

Empirical Protect 1.872 0.136 0.357 0.153 0.034 0.158
Simulation Pseudo-Ind 0.042 0.066 0.037 0.072 0.033 0.082
Variance WLS 0.038 0.063 0.026 0.068 0.019 0.076

ML 0.039 0.066 0.024 0.065 0.017 0.070
GEE 0.016 0.055 0.014 0.066 0.011 0.077

Coverage Protect 99.6 94.6 98.9 95.5 96.9 94.6
Probability Pseudo-Ind 90.4 94.6 90.8 95.1 91.6 94.6

WLS 90.3 94.7 91.6 94.4 93.1 93.2
ML 90.6 93.6 93.9 95.1 93.4 94.7
GEE 75.7 91.5 75.8 93.7 76.8 93.6

300 Simulation Protect 0.253 0.501 0.216 0.494 0.203 0.501
Average Pseudo-Ind 0.203 0.495 0.206 0.496 0.203 0.498
Estimate WLS 0.202 0.488 0.198 0.491 0.195 0.490

ML 0.202 0.499 0.200 0.501 0.204 0.502
GEE 0.362 0.397 0.353 0.403 0.334 0.421

Simulation Protect 76.292 0.065 0.159 0.072 0.014 0.077
Average Pseudo-Ind 0.023 0.033 0.022 0.038 0.018 0.042
Variance WLS 0.023 0.053 0.013 0.034 0.008 0.037

ML 0.020 0.032 0.012 0.034 0.007 0.034
GEE 0.008 0.028 0.007 0.033 0.006 0.037

Empirical Protect 1.404 0.064 0.086 0.073 0.014 0.074
Simulation Pseudo-Ind 0.022 0.032 0.020 0.038 0.018 0.041
Variance WLS 0.020 0.031 0.013 0.035 0.009 0.038

ML 0.019 0.031 0.012 0.033 0.008 0.036
GEE 0.008 0.027 0.007 0.032 0.006 0.038

Coverage Protect 99.6 94.5 96.2 94.4 97.4 97.7
Probability Pseudo-Ind 92.9 94.6 93.4 94.0 96.5 97.3

WLS 92.9 94.2 94.2 94.1 96.8 97.7
ML 93.0 94.6 94.0 95.4 95.2 94.8
GEE 56.8 90.8 55.0 91.2 56.7 92.4

450 Simulation Protect 0.250 0.504 0.204 0.504 0.203 0.504
Average Pseudo-Ind 0.199 0.502 0.204 0.500 0.206 0.499
Estimate WLS 0.198 0.497 0.198 0.495 0.198 0.494

ML 0.200 0.502 0.201 0.502 0.202 0.502
GEE 0.361 0.398 0.350 0.404 0.332 0.424

Simulation Protect 12.435 0.043 0.043 0.048 0.009 0.051
Average Pseudo-Ind 0.016 0.022 0.014 0.025 0.012 0.028
Variance WLS 0.016 0.032 0.009 0.023 0.006 0.025

ML 0.013 0.021 0.008 0.022 0.005 0.023
GEE 0.005 0.018 0.005 0.022 0.004 0.025

Empirical Protect 1.008 0.041 0.027 0.048 0.009 0.049
Simulation Pseudo-Ind 0.015 0.021 0.014 0.024 0.012 0.026
Variance WLS 0.014 0.020 0.009 0.022 0.006 0.024

ML 0.013 0.022 0.008 0.023 0.005 0.023
GEE 0.006 0.019 0.005 0.022 0.004 0.025

Coverage Protect 99.4 95.6 97.2 95.6 95.9 95.1
Probability Pseudo-Ind 93.2 95.7 93.4 95.3 93.1 94.2

WLS 93.4 95.0 94.2 95.0 94.0 94.1
ML 94.2 94.0 94.8 94.2 94.0 94.4
GEE 40.7 88.0 38.9 89.6 42.1 92.6
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