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Person fit for test speededness:

normal curvatures, likelihood ratio tests and empirical Bayes

estimates
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Abstract

The local influence diagnostics, proposed by Cook (1986), provide a flexible way to assess

the impact of minor model perturbations on key model parameters’ estimates. In this paper,

we apply the local influence idea to the detection of test speededness in a model describing

non-response in test data, and compare this local influence approach to the optimal person

fit index proposed by Drasgow and Levine (1986), and the empirical Bayes estimate of

the test speededness random effect. The performance of the methods is illustrated on the

Chilean SIMCE mathematics test data. The data example indicates that the three statistics

are promising when it comes to the detection of special profiles, and besides overlap to a

considerable extent. Given that the statistics were developed for different purposes, they
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react of course differentially to the various characteristics of the response profiles, and hence

also exhibit some specificity.

Keywords: missing data, sensitivity analysis, local influence, empirical Bayes, likelihood

ratio test.
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Introduction

Person fit or appropriateness measurement refers to a collection of statistical techniques for

evaluating the misfit of individual test performances to an item response theory (IRT) model or

to other item-score patterns in a sample of persons. Generally, these methods do not allow for

the recovery of the mechanism that created the deviant item-score patterns, that is, they do not

give the user information on why a profile is deviant, and hence can be seen as the IRT analogues

of the global influence diagnostics in the field of statistics, see, for instance, Cook and Weisberg

(1982), and Chatterjee and Hadi (1988). However, some recent contributions explicitly test

against specific violations of a test model assumption or particular types of deviant item-score

patterns. For an up to date overview of the available person fit methodology we refer to Meijer

and Sijtsma (2001).

In the present paper we introduce and evaluate three indices for identifying response profiles

affected by test speededness effects. Test speededness refers to testing situations in which some

examinees do not have ample time to answer all questions. Speededness effects are often detri-

mental to the intended functioning of the test in the sense that the speed with which one

responds is usually not an important part of the construct of interest, yet examinees affected

by test speededness hurry through, randomly guess on or even fail to complete items, usually

at the end of the test, and hence receive ability estimates that underestimate their capacities.

In this respect it may be interesting to supplement test scores or response profiles with an in-

dex that reflects the examinee’s sensitivity to test speededness. Besides this underestimation of

the ability parameters due to speededness, the item difficulty parameters of items administered

late in the test tend to be overestimated (Douglas, Kim, Habing, & Gao, 1998 and Oshima,

1994). Item response models accommodating test speededness were proposed by Bolt, Cohen,

and Wollack (2002); Goegebeur, De Boeck, Wollack, and Cohen (2008); Wollack and Cohen

(2005) and Yamamoto and Everson (1997). Although these models provide improved parame-

ter estimates, they do not explicitly allow for omissions. However, omissions occur in testing

situations, especially when tests are administered under rather stringent time constraints, and

provide information about unobservable quantities such as the examinee ability, propensity to

1



omit and test speededness, which implies that they cannot be ignored. The analysis described

in this paper is based on the model Goegebeur, De Boeck, Molenberghs, and del Pino (2006)

developed for explaining non-response in test data. Under this model, non-response emerges

from a general tendency to omit in case one does not know the answer and a test speededness

effect, both taken to be examinee specific. The present paper extends the analysis described

in Goegebeur et al. (2006) in that the normal curvatures for test speededness described in the

latter are supplemented with and compared to two new indices that can be used to identify

test speededness: a likelihood ratio test statistic and the empirical Bayes estimate of the test

speededness parameter.

Given that the model under consideration builds upon classical IRT models, and furthermore

fits in the missing data framework established by Rubin (1976) and Little and Rubin (2002),

it is instructive to review some of these concepts. Let Ypi denote the binary response (cor-

rect/incorrect, coded Ypi = 1 and Ypi = 0, respectively) of examinee p, p = 1, . . . , P , to item i,

i = 1, . . . , I. In the classical one-parameter Rasch model (1PL) (Rasch, 1960), Ypi depends on

the examinee’s ability θp and item difficulty βi in the following way

Ypi|θp ∼ Bern(Pi(θp)),

with

Pi(θp) =
exp(θp − βi)

1 + exp(θp − βi)
, βi, θp ∈ R (1)

and θp ∼ N(0, σ2
θ). Moreover, conditional on θp, all responses of subject p are assumed indepen-

dent, the so-called local item independence condition. The Rasch model has been extended in

several ways. In the two-parameter logistic model (2PL) (Birnbaum, 1968) the ability parameter

θp is weighted by an item parameter αi:

Pi(θp) =
exp[αi(θp − βi)]

1 + exp[αi(θp − βi)]
, αi > 0, βi, θp ∈ R (2)

so that the influence of the examinee’s ability on outcome depends on the item. The three-

parameter logistic model (3PL) (Birnbaum, 1968) extends the 2PL with an item-specific guessing

parameter ci:

Pi(θp) = ci + (1− ci)
exp[αi(θp − βi)]

1 + exp[αi(θp − βi)]
, αi > 0, βi, θp ∈ R, ci ∈ [0, 1).

2



The parameter ci is the horizontal asymptote of the item characteristic curve (the graph of

Pi(θp) as a function of θp) for θp → −∞, and reflects that even individuals with a very low

ability have a positive probability of producing a correct answer to the item as they may simply

guess the correct answer. We refer to San Mart́ın, del Pino, and De Boeck (2006) for a deeper

discussion and some extensions of the 3PL model.

Rubin (1976) and Little and Rubin (2002, chap. 6) established a framework to distinguish be-

tween different missing values processes. A missing value process is said to be missing completely

at random (MCAR) if missingness is independent of both observed and unobserved data and

missing at random (MAR) if, conditional on the observed data, missingness does not depend on

the unobserved data; otherwise the missingness process is termed non-random (MNAR). If the

missingness process is random and the parameters of the observation process are functionally

independent of the parameters describing the missingness process, then a valid statistical anal-

ysis can be obtained through a likelihood based analysis (or a Bayesian analysis) that ignores

the missigness mechanism. This situation is termed ignorable by Rubin (1976) and Little and

Rubin (2002).

While historically most methods were framed within the MCAR category, for computational and

other simplicity reasons, more work has been done in the MAR and more recently in the MNAR

category (see for instance Hogan & Laird, 1997; Little, 1995; Little & Rubin, 2002; Molenberghs

& Kenward, 2007; Molenberghs & Verbeke, 2005; Schafer, 1997; Verbeke & Molenberghs, 2000,

and the references therein). In many testing situations, including our context, missingness

often depends on latent data such as examinee ability and sensitivity to test speededness. This

would point to MNAR, which is nonignorable, regardless the inferential mode chosen. Many

authors have warned for too firm a belief in a single (MNAR) model since, due to the very

nature of incompleteness, such a model cannot be verified from observed data only. This implies

great sensitivity to model assumptions (Molenberghs, Beunckens, Sotto, & Kenward, 2008;

Molenberghs & Kenward, 2007; Molenberghs & Verbeke, 2005; Verbeke & Molenberghs, 2000).

These issues are compounded when, in addition to incomplete data, the models feature latent

structure, (unobserved) random effects, etc. We are in need of a model that combines all of these.
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Apart from random guessing, random subject effects, and test speededness, incompleteness

occurs and there are likely interrelationships between these entities.

The remainder of this paper is organized as follows. First, we introduce a model for omitted

responses and test speededness. This model is derived from a decision tree that describes the

student’s possible states and actions when he/she encounters an item. Second, we discuss how

the optimal person fit test of Levine and Drasgow (1988), the empirical Bayes estimate for

the test speededness effect and the local influence diagnostics of Cook (1986) can be used to

highlight examinees affected by test speededness. Finally, we illustrate the three methods with

the Chilean SIMCE mathematics placement test data.

A Model for Test Speededness and Omitted Items

In this section we describe a model that provides a possible explanation for non-response in test

data. Under the postulated model, non-response arises from a tendency to omit in case one does

not know the answer and a test speededness effect, both taken to be examinee specific. The

model is discussed in full detail in Goegebeur et al. (2006), where it proved useful for modeling

test speededness and non-response.

The model can be motivated as follows. Let ξ0p denote an examinee specific initial propensity to

omit items and ξ1p an examinee specific effect of test speededness. When examinee p encounters

item i he/she is either knowledgeable or ignorant. If knowledgeable, the probability of a correct

answer, denoted Pi(θp), is given by Equation 1 or 2. If ignorant, the examinee omits the item

with probability Pi(ξ0p, ξ1p) and guesses at random with probability 1 − Pi(ξ0p, ξ1p), where we

assume

Pi(ξ0p, ξ1p) =
exp(ξ0p + ξ1p i/I)

1 + exp(ξ0p + ξ1p i/I)
; ξ0p ∈ R, ξ1p > 0. (3)

Note that speededness is assumed to be a function of the item number, which explains the

covariate i/I. Moreover speededness increases the probability of an omitted response. In case

the examinee guesses at random, the answer is correct with probability c. In Figure 1 the process

described above is visually represented by a decision tree.
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Figure 1: Decision tree representation of the test speededness model.

Clearly, this decision tree involves a categorical response variable with 3 possible levels: no

answer, wrong answer and correct answer, coded Y ′
pi := (Ypi0, Ypi1) = (1, 0), Y ′

pi = (0, 1), and

Y ′
pi = (0, 0), respectively. The corresponding conditional probabilities will be denoted by πpi0,

πpi1, and πpi2, and have expressions that follow immediately from Figure 1:

πpi0 = [1− Pi(θp)]Pi(ξ0p, ξ1p), (4)

πpi1 = [1− Pi(θp)][1− Pi(ξ0p, ξ1p)](1− c), (5)

πpi2 = [1− Pi(ξ0p, ξ1p)]c + {1− [1− Pi(ξ0p, ξ1p)]c}Pi(θp)

= Pi(θp) + [1− Pi(ξ0p, ξ1p)]c[1− Pi(θp)] (6)

The random effects θp, ξ0p, and log ξ1p are assumed to follow a multivariate normal distribution:



θp

ξ0p

log ξ1p


 ∼ N3(µ,Ω), (7)

with µ′ = (0, µξ0 , µξ1) and Ω a positive definite covariance matrix. Given that ξ1p > 0, we

assumed that normality holds for log ξ1p. Otherwise stated, ξ1p is log-normally distributed.

Conditional on the random effects θp, ξ0p and ξ1p, the responses of examinee p to the I items are
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assumed to be independent. Under the model proposed, the probability of an omission, given

by Equation 4, increases with the difficulty of the item, the initial propensity to omit answers

and the sensitivity to test speededness effects, but it decreases with the examinee’s ability.

Some remarks apply. First, the probability of a missing value depends on unobserved information

(the random effects that underlie the data) and hence missingness is allowed to be missing not

at random (MNAR). Second, the dropout and measurement processes are allowed to have some

parameters in common, turning it into a shared-parameter model (Molenberghs & Verbeke,

2005). As is clear from the model statement, the probabilities related to the measurement process

(πpi1 and πpi2), and the probability related to the missingness process (πpi0) share the random

effects θp, ξ0p and ξ1p. This implies that apart from the correct/wrong answers, also missingness

contains information about item difficulty and person ability. Third, if Pi(ξ0p, ξ1p) = 0 then

the proposed model reduces to the 3PL in case Pi(θp) is given by Equation 2 and to the 1PL

extended with guessing (1PLc) if Pi(θp) is given by Equation 1. Fourth, if Pi(ξ0p, ξ1p) > 0, πpi2

is smaller than the probability of a correct answer under the 3PL or the 1PLc. This becomes

immediately clear from a comparison of the success probability under the proposed model, as

given in Equation 6, with the 3PL success probability, given by

Pi(θp) + c[1− Pi(θp)].

As a direct consequence, the lower asymptote (for θp → −∞) of the proposed model, given by

[1− Pi(ξ0p, ξ1p)]c, is smaller than the lower asymptote of the 3PL or the 1PLc (which is c).

Since the purpose of the paper is to identify examinees with response profiles affected by test

speededness effects, we will need to compare two models: a model without test speededness (the

reduced model, also referred to as the null model) and a test speededness model. To facilitate

the comparison and to introduce a generic formulation, we extend the model by including weight

parameters ωp, p = 1, . . . , P , in the probability of an omitted item in the following way

Pi(ξ0p, ξ1p|ωp) =
exp(ξ0p + ωpξ1p i/I)

1 + exp(ξ0p + ωpξ1p i/I)
. (8)

Under this parametrization, the reduced model is obtained for ωp = 0, p = 1, . . . , P , whereas

the test speededness model results from setting ωp = 1, p = 1, . . . , P .
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Person Fit for Test Speededness

Optimal Person Fit Test

Drasgow and Levine (1986) and Levine and Drasgow (1988) used the Neyman-Pearson lemma

(see e.g., Lehmann & Romano, 2005, p 59) to construct optimal person fit indices. In this,

‘optimal’ means that for a given level of significance no other procedure can attain a higher

probability of detecting aberrant response patterns. The basic idea is to compute the probability

of a response vector Y p under two competing models, describing normal and aberrant test taking

behavior, respectively, followed by a decision on the basis of their ratio. In their work, Drasgow

and Levine (1986), and Levine and Drasgow (1988), concentrated mainly on the detection of

spuriously low (e.g., due to alignment errors, atypical education) and high (copying answers,

cheating) response patterns, but of course the procedure can be equally well applied to detect

other forms of aberrant behavior. In the current paper, normal test taking behavior refers to

non-speeded examinees whereas aberrant test taking behavior refers to examinees affected by

test speededness effects. In this respect, for the model proposed above and denoting Y p =

(Y p1, . . . ,Y pI)′, the decision about the nature of the test taking behavior of examinee p will be

based on the ratio

Λp =
P (Y p = yp | aberrant )
P (Y p = yp | normal )

(9)

with

P (Y p = yp | aberrant ) =
∫

R2

∫ ∞

0
Ap(1)f(θp, ξ0p, ξ1p)dξ1pdξ0pdθp,

P (Y p = yp | normal ) =
∫

R2

∫ ∞

0
Ap(0)f(θp, ξ0p, ξ1p)dξ1pdξ0pdθp,

=
∫

R2

Ap(0)f(θp, ξ0p)dξ0pdθp,
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and

Ap(ωp) = P (Y p = yp|θp, ξ0p, ξ1p, ωp)

=
I∏

i=1

P (Y pi = ypi|θp, ξ0p, ξ1p, ωp)

=
I∏

i=1

[πpi0(ωp)]ypi0 [πpi1(ωp)]ypi1 [πpi2(ωp)]1−ypi0−ypi1 , (10)

where f denotes the joint density function of the random effects. In Equation 10, πpi0(ωp),

πpi1(ωp) and πpi2(ωp) are given by Equation 4, 5 and 6, respectively, with Pi(ξ0p, ξ1p) replaced

by Pi(ξ0p, ξ1p|ωp). The hypothesis of normal test behavior of examinee p is rejected at level α

in favor of aberrant test behavior, in casu speeded test behavior, if Λp is too large, or formally,

if log Λp > cα, where cα is quantile 1− α of the null distribution of log Λp.

It is important to keep in mind that the likelihood ratio test statistic in Equation 9 will only

be optimal if the two probabilities are correct. In a study involving real data, the likelihood

ratio test will be accurate to the extent that (i) there is little misspecification of the two models

and (ii) the item parameters have been precisely estimated. From a computational point of

view, application of Equation 9 requires that both the reduced and the test speededness model

are fitted to the available data. This can be done by marginal maximum likelihood estimation,

for instance, using the SAS NLMIXED procedure (example SAS code can be obtained upon

request). For the actual computation of Λp the authors developed a Fortran program. In this

program the numerical integrations are performed by the NAG library subroutines D01BBF

and D01FBF (NAG, 1993). For the numerical integration related to the speededness effect ξ1p,

the quadrature points were taken from the standard normal distribution and transformed to the

log-normal scale by exp(µξ1 +σξ1z), where z denotes a quadrature point for the standard normal

distribution.

Empirical Bayes Estimates

Although the model estimation implies an estimate of the parameters of the marginal distribution

of Y , it is common practice in psychometrics to also calculate the estimations of the person
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parameters. These are in the case of the test speededness model given by Equations 4, 5 and 6,

the ability parameter θp, the initial propensity to omit ξ0p, and the test speededness parameter

ξ1p. These random effects estimates give an idea about the between-subject variability, and

hence provide information that is helpful for detecting special profiles, say outlying individuals,

or groups of individuals evolving differently in time, in our context individuals affected by

test speededness effects. To obtain estmates for the random effects, we need their conditional

posterior distribution. Let ψ1 denote the parameter vector of the test-speededness model, with

Pi(θp) modeled by a 1PL, that is, ψ′
1 = (β1, . . . , βI , c, µξ0 , µξ1 , σ

2
θ , σ

2
ξ0

, σ2
ξ1

, σ12, σ13, σ23), where

σ2
θ , σ2

ξ0
and σ2

ξ1
denote the variance of the examinee ability, the initial propensity to omit,

and the log-transformed test speededness random effect, respectively, and σ12 = Cov(θ, ξ0),

σ13 = Cov(θ, log ξ1) and σ23 = Cov(ξ0, log ξ1) (these variances and covariances are the elements

of the covariance matrix Ω in Equation 7). For notational convenience we split ψ1 into sub-

vectors ψ11 and ψ12, with ψ′
11 = (β1, . . . , βI , c) and ψ′

12 = (µξ0 , µξ1 , σ
2
θ , σ

2
ξ0

, σ2
ξ1

, σ12, σ13, σ23).

Using Bayes’ rule we have

p(θp, ξ0p, ξ1p |yp,ψ1) = δpp(yp |θp, ξ0p, ξ1p,ψ11)p(θp, ξ0p, ξ1p |ψ12), (11)

where δp is the normalizing constant, that is, δp = 1/p(yp |ψ1), p(yp |θp, ξ0p, ξ1p,ψ11) is given

by Ap(1), see Equation 10, and

p(θp, ξ0p, ξ1p |ψ12) =
1

(2π)3/2|Ω|1/2ξ1p
e−γ′Ω−1γ/2, (12)

with γ ′ = (θp, ξ0p − µξ0 , ln ξ1p − µξ1) . The mode of the conditional posterior density given

in Equation 11 is used as point estimate for θp, ξ0p and ξ1p. More specifically, the empirical

Bayes estimate (θ̂p, ξ̂0p, ξ̂1p) is the value for (θp, ξ0p, ξ1p) that maximizes p(θp, ξ0p, ξ1p |yp, ψ1),

in which the unknown parameters in ψ1 have been replaced by their estimates obtained from

the marginal maximum likelihood estimation. Computation of the empirical Bayes estimates

requires the estimation of the model for omissions with test speededness, followed by an opti-

mization of Equation 11 for each of the examinees. The computation of the empirical Bayes

estimates for the random effects is clearly the most direct approach to the identification of ex-

aminees, whose performance is vulnerable to test speededness, but this approach does not take
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the fit of a particular model to a response profile into account.

Local Influence Diagnostics

Global influence diagnostics are based on a case-deletion approach (Chatterjee & Hadi, 1988).

Broadly, all or part of a subject’s measurements are deleted and key aspects of the model refitted,

such as the likelihood value, parameter estimates, etc. When the distance between the overall

and the refitted measure is large in a precisely defined sense, a case is considered influential.

Global influence or case-deletion diagnostics have been well developed, for example, for linear

regression and explicit forms derived. The main problems with the method applied to more

general settings are that (1) the application of the method can be computer-intensive since no

closed form expressions exist and (2) it may be difficult to gain further insight as to why a

certain subject, observation, or set of observations is influential.

To overcome these limitations, local influence methods have been suggested, see Cook (1986).

The principle of these is to investigate how the results of an analysis change under infinitesimal

perturbations of the model. In the present context, we use local influence diagnostics to assess the

impact of introducing a random test speededness effect on the key model parameter estimates.

This can be done by considering Equation 8 as the mechanism describing non-response in case

one does not know the answer to a particular item. Indeed, the case ωp = 0, p = 1, . . . , P ,

corresponds to a model without a test speededness effect. If a small perturbation of a particular

ωp leads to large differences in the parameter estimates, then examinee p exerts an unusually

large impact on the model. We will now sketch the basic principles of local influence analysis

and apply these to our test speededness problem. In this we assume Pi(θp) is modeled by a 1PL.

We denote by ω the P dimensional vector of perturbation parameters, that is, ω′ = (ω1, . . . , ωP ),

and by ψ the (I + 5) dimensional vector of parameters associated with the postulated model,

that is, ψ′ = (β1, . . . , βI , c, µξ0 , σ
2
θ , σ

2
ξ0

, σ12). Note that the perturbation scheme as defined in

Equation 8, with infinitesimal small changes in the direction of test speededness, also involves

the parameters µξ1 , σ2
ξ1

, σ13 and σ23. These additional parameters must be fixed by the user,
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since the local influence approach only considers the impact of perturbations on the parameters

of the null model. However, this more general parameterization allows us to assess the effect

of perturbing the postulated model with an extra random effect, in particular a random test

speededness effect, that may be correlated with the random effects in the model postulated. In

case one is interested only in the effect of perturbing the model with a fixed, that is, non-random,

test speededness effect, one simply fixes σ13 and σ23 at 0. Doing so the mean of ξ1 appears as

a common scale factor in the expressions for the normal curvatures, and hence can be safely

ignored. For the technical details of this we refer to Goegebeur et al. (2006).

The log-likelihood function of the perturbed model is given by

`(ψ|ω) =
P∑

p=1

`p(ψ|ωp)

in which `p(ψ|ωp) denotes the log-likelihood contribution of examinee p, that is,

`p(ψ|ωp) = lnP (Y p = yp|ωp,ψ),

with

P (Y p = yp|ωp,ψ) =
∫

R2

∫ ∞

0
Ap(ωp)f(θp, ξ0p, ξ1p)dξ1pdξ0pdθp,

Ap(ωp) is given by Equation 10. It is assumed that ω belongs to an open subset Ω̃ of RP . For ω

equal to ω0 = (0, . . . , 0)′, with ω0 ∈ Ω̃, `(ψ|ω0) corresponds to a model without test speededness

effects, and this for all values of ψ.

Let ψ̂ be the maximum likelihood estimator for ψ, obtained by maximizing `(ψ|ω0), and let

ψ̂ω denote the maximum likelihood estimator for ψ under `(ψ|ω). The local influence approach

compares ψ̂ and ψ̂ω. Similar estimates indicate that the parameter estimates are stable with

respect to the proposed perturbations of the postulated model. Strongly different estimates indi-

cate that the estimation procedure is highly sensitive with respect to perturbations. Cook (1986)

proposed to measure the distance between ψ̂ and ψ̂ω by the so-called likelihood displacement,

defined by

LD(ω) = 2[`(ψ̂|ω0)− `(ψ̂ω|ω0)]. (13)
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Note that the log-likelihood function of the postulated model is evaluated in both ψ̂ and ψ̂ω

and hence LD(ω) ≥ 0. Note also that the likelihood displacement takes the variability of ψ̂ into

account. Indeed, LD(ω) will be large if `(ψ|ω0) is strongly curved at ψ̂, which means that ψ

is estimated with high precision. From this perspective, a graph of LD(ω) versus ω contains

essential information on the influence of the perturbation scheme of interest. It is useful to view

this graph as the geometric surface formed by the P + 1 dimensional vector

α(ω) =


 ω

LD(ω)




as ω varies throughout Ω̃, see Figure 2 for in illustration in case P = 2.

Figure 2: Illustration of the likelihood displacement.

Since this surface, the so-called influence graph, can only be depicted when P ≤ 2, Cook (1986)

proposed to look at normal curvatures of α(ω) in ω0 in a direction h, with h a P dimensional

vector of unit length. These normal curvatures can be easily calculated as

Ch = 2|h′∆′L̈−1∆h|, (14)
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with

L̈ =
∂2`(ψ|ω0)

∂ψ∂ψ′

∣∣∣∣
ψ=bψ

and ∆ a (I + 5)× P matrix of which the p−th column ∆p is given by

∆p =
∂2`p(ψ|ωp)

∂ψ∂ωp

∣∣∣∣
ψ=bψ,ωp=0

.

Figure 2 illustrates graphically the basic idea behind the normal curvature computed in ω0 in

the direction h. The normal curvature, Equation 14, can be used in several ways to study the

influence graph α(ω), each one corresponding to a particular direction h in Ω̃. One evident

choice is the vector hp which has a one on position p and zeros elsewhere, corresponding to a

perturbation of the postulated model by weight ωp only. In this case Equation 14 reduces to

Cp = 2|∆′
pL̈

−1∆p|. (15)

Other important directions are the directions of minimal and maximal curvature, denoted hmin

and hmax, respectively, obtained as solutions to the minimization and maximization, respectively,

of Ch over the space of all vectors of unit length. It can be shown that Chmin
and Chmax

correspond to the smallest and largest eigenvalues of −2∆′L̈−1∆ and hmin and hmax are the

corresponding eigenvectors. Note that, compared to Λp, the computation of Cp requires only a

null model fit, yielding significant gains in computation time, especially on large data sets.

The calculation of the local influence measures can be carried out as soon as expressions for L̈

and ∆ have been obtained. The elements of L̈ are not computed analytically as these can be

easily obtained from the maximization of `(ψ|ω0), for instance by using the SAS NLMIXED

procedure. The elements of the columns ∆p of ∆ and some theoretical properties thereof are

given in Goegebeur et al. (2006) and will not be repeated here. The authors developed a Fortran

program to compute the elements of ∆, the normal curvatures Ch, and the direction of maximal

curvature hmax. In this program, the numerical integrations are performed by the NAG library

subroutines D01BBF and D01FBF, and the direction of maximal curvature is computed using

subroutine F02FCF (NAG, 1993).
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So far, the discussion of local influence diagnostics was focused on the complete ψ vector. Similar

principles can be applied to obtain the local influence of perturbations on subsets of ψ, see Cook

(1986); Verbeke, Molenberghs, Thijs, Lesaffre, and Kenward (2001) and Goegebeur et al. (2006).

This will not be pursued in the current paper.

SIMCE Mathematics Test Data

The SIMCE (Sistema de Medición de la Calidad de la Educación) project in Chile has developed

mandatory language and mathematics tests to assess on a regular basis the educational progress

in three levels: 4th, 8th and 10th graders. All students in the grade level in the country (public,

private and mixed support schools) are expected to take the tests when they are scheduled (every

3 or 4 years). In this paper we will consider the data from the 2001 administration of the SIMCE

mathematics test to the 10th graders in public schools. The mathematics test contains 48 items,

each having 4 response alternatives, and covers topics such as problem formulation, functions,

simple algebra, geometry and probability. For instance, simplifying 4
x2 / 2

x , or computing 30%

of USD 2,000 in the context of an applied problem. The test is administered under a fixed

time limit of 90 minutes. The database under consideration contains response profiles of 36,118

examinees. To illustrate the use of the likelihood ratio statistic, the empirical Bayes estimates

and the normal curvatures we will use a sample of 3,000 examinees randomly drawn from this

database. In Figure 3, the sample is summarized by plotting the proportions of omitted answers

(solid line), wrong answers (dashed line) and correct answers (dashed-dotted line) as a function

of the item number. The proportions of omitted answers vary between 0.0020 and 0.0537 with

mean 0.0176 and standard deviation 0.0117. Out of the 3,000 examinees, 626 (20.87%) have a

response profile with at least one omitted answer, so a complete case analysis would, besides

being inappropriate given the type of missingness, also entail a substantial loss of information.

Note also that the proportion of omitted items slightly increases with the item number, an effect

that may be due to the fixed time limit administration of the test.

In Table 1 the reduced model and the test speededness model are compared on the basis of −2`,

the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). All the
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Figure 3: Proportion of missing data (solid line), wrong answers (dashed line) and correct

answers (dashed-dotted line) together with the estimated theoretical proportion under the test

speededness model (dotted line).

analyses are performed under the assumption of independent random effects. This does however

not imply that the missingness mechanism is ignorable, given that we are dealing with a shared

parameter model. Note that the reduced model is nested in the test speededness model and

hence will always have a larger −2` value. The difference of the −2` values can be used to

construct a likelihood ratio test for the null hypothesis of the reduced model. Given a difference

of 530 for only two model parameters, there is strong evidence in favor of the test speededness

model. Also the AIC and BIC indicate the test speededness model as the most appropriate one

to describe the SIMCE mathematics test data.

To obtain an indication about the fit of the test speededness model to the SIMCE mathematics

data, we show in Figure 3 also the estimated theoretical proportions of omissions, wrong answers

15



Table 1: Goodness-of-fit statistics for the reduced and the test speededness model.

Reduced model Speeded model

−2` 184,526 183,996

AIC 184,630 184,104

BIC 184,943 184,428

and correct answers (dotted lines), given by

P (Ypi0 = 1, Ypi1 = 0) =
∫

R2

∫ ∞

0

[1− Pi(θp)]Pi(ξ0p, ξ1p)dF3(ξ1p)dF2(ξ0p)dF1(θp),

P (Ypi0 = 0, Ypi1 = 1) = (1− c)
∫

R2

∫ ∞

0

[1− Pi(θp)][1− Pi(ξ0p, ξ1p)]dF3(ξ1p)dF2(ξ0p)dF1(θp),

P (Ypi0 = 0, Ypi1 = 0) = c

∫

R

∫ ∞

0

[1− Pi(ξ0p, ξ1p)]dF3(ξ1p)dF2(ξ0p) +
∫

R2

∫ ∞

0

{1− [1− Pi(ξ0p, ξ1p)]c}Pi(θp)dF3(ξ1p)dF2(ξ0p)dF1(θp),

respectively, with F1, F2 and F3 denoting the distribution functions of examinee ability, initial

propensity to omit and examinee-specific effect of test speededness, respectively, and with the

unknown parameters replaced by their respective maximum likelihood estimate, as a function

of item number. As is clear from Figure 3, the empirical and estimated theoretical proportions

agree quite well, indicating a good fit of the test speededness model. Note that this comparison

involves only marginal probabilities and hence gives only a partial picture of the model fit. For

a more elaborate goodness-of-fit evaluation, involving also the fit of the model to the conditional

response distributions, we refer to Goegebeur et al. (2006). The results presented there indicate

that the assumption of a common guessing parameter c is not too restrictive.

Table 2 shows the estimates of the parameters related to the random effects and the random

guessing parameter c, under both the reduced model and the test speededness model. Focusing

on the test speededness model, the magnitudes of the estimates for the variances of the random

effects indicate that the examinees clearly differ from each other with respect to their ability,

their initial propensity to omit answers, and their speededness parameter. In this respect it is

worthwhile to mention that the model without the test speededness random effect (the reduced

16



model in Table 2) gives a fit to the univariate marginal distributions that is nearly indistin-

guishable from the test speededness model (cf Figure 3). However, according to Table 2, the

test speededness effect is important, and as a consequence the simpler model without a test

speededness effect will give a worse description of the joint marginal distribution - and hence

the dependence structure - of the item responses.

Table 2: Parameter estimates under the reduced model and the test speededness model.

Reduced model Speeded model

Parameter estimate standard error estimate standard error

σ2
θ 0.9928 0.0324 1.0155 0.0330

µξ0 -5.3783 0.0750 -5.7481 0.0965

σ2
ξ0

3.4854 0.1083 3.4794 0.1372

µξ1 - - -1.7657 0.2845

σ2
ξ1

- - 1.7933 0.2558

c 0.1472 0.0050 0.1524 0.0049

We now try to identify the examinees with response profiles affected by test speededness effects.

This is performed by computing the likelihood ratio test statistic, Equation 9, with unknown

parameters replaced by their maximum likelihood estimates, the empirical Bayes estimate ξ̂1p,

and the normal curvature, Equation 15, for p = 1, . . . , 3000. Since interest is in the extreme

cases, that is, the most significant likelihood ratio test, and the largest empirical Bayes estimates

and normal curvatures, we examine the 20 largest values of each statistic. In Figures 4-6 we

show the response profiles of the 20 examinees having the largest value for Λp, ξ̂1p and Cp,

respectively, sorted in ascending order. The response profiles show the item responses, where

the correct answers are coded as 2, the wrong answers as 1, and the omissions as 0, as a function

of the item number. Clearly, all highlighted profiles contain a lot of omissions, especially near

the end of the test. Further, the likelihood ratio test and the empirical Bayes estimates identify

almost exclusively response profiles with a quite abrupt transition from responses (correct or

wrong), to omissions. The Cp criterion on the other hand also identifies cases with lots of
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omissions, but where the transition from responses to omissions is less clear cut.

To assess the correspondence between the sets of extreme cases, identified by the three proce-

dures, we computed the proportion of overlap in the highlighted examinees for the largest k

values of Λp, ξ̂1p and Cp, with k = 5, . . . , 500. The results of this are presented in Figure 7. As

is clear from this figure, for k values up to 100, Λp and ξ̂1p show an overlap of about 90% in the

highlighted cases (dashed line), whereas Λp and Cp (dotted line), and ξ̂1p and Cp (solid line),

show an overlap between 50 and 60%. The methods agree quite well in their identification of ex-

aminees with special response profiles although Λp and ξ̂1p seem to show a closer correspondence

to each other compared to Cp. An alternative way to evaluate the overlap and specificity of the

three measures under consideration consists in examining their pairwise correlations. Given the

extreme skewness of the distributions of Λp and ξ̂1p, the correlations involving the latter were

computed after having taken the log-transform of these. As is clear from Table 3, and ignoring

the row labeled zξ̃1p
for the time being, ln Λp and ln ξ̂1p show a stronger linear dependency with

each other than with Cp, a result that is in line with the earlier findings based on the overlap in

the identified extreme cases.
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Figure 7: Proportion of overlap in the largest k values of (a) ξ̂1p and Cp (solid line), (b) Λp and

ξ̂1p (dashed line), and (c) Λp and Cp (dotted line).

Table 3: Sample correlation between lnΛp, ln ξ̂1p, Cp, and zξ̃1p
.

lnΛp ln ξ̂1p Cp

ln ξ̂1p 0.803

Cp 0.512 0.626

zξ̃1p
0.893 0.925 0.669

To gain insight in the determinants of the statistics under consideration we computed their

sample correlations with the following characteristics of the response profiles: the proportions

of answers omitted, the proportions of answers omitted in the first and the second half of the

test, the ‘empirical slope’, being the difference between the proportions of answers omitted in

the second and the first half of the test, and the variance of the response variable (taking the

22



values 0,1 and 2, cf Figures 4-6). The results of this analysis are presented in Table 4. The

statistics ln Λp and ln ξ̂1p show a quite similar behavior in the sense that they correlate rather

weakly with the proportions of answers omitted in the first half of the test, and rather strongly

with the proportions of answers omitted in the second half of the test, as well as with the

empirical slope. The latter is an important observation, as this ‘empirical slope’ can be seen

as a possible proxy for the way test speededness was defined according to our model, namely

the degradation in response quality – in casu more frequent omissions – as the test progresses.

The normal curvatures show a somewhat deviant behavior in the sense that they correlate

high with the total proportion of omissions, both the proportions of omissions in the first and

the second half of the test, and with the variance of the response profile, a behavior that is

consistent with the earlier visual impressions obtained from Figure 6. A possible explanation

for this phenomenon could be that, given the relatively high variability of the item difficulties,

examinees with quite variable response profiles contain more information about ψ, that is, have

a log-likelihood contribution that is more strongly curved at ψ̂, than those with less variable

profiles.

Table 4: Sample correlation between the person fit indices and the proportion of omissions (p),

the proportion of omissions in the first half of the test (p1), the proportion of omissions in the

second half of the test (p2), the difference between the proportions of omissions in the second

and first half of the test, and the variance of the response.

Index p p1 p2 p2 − p1 Var(Y )

lnΛp 0.428 0.018 0.606 0.766 0.351

ln ξ̂1p 0.570 0.195 0.709 0.766 0.492

Cp 0.894 0.668 0.899 0.654 0.807

zξ̃1p
0.611 0.193 0.768 0.843 0.545

The computation of the empirical Bayes estimate is clearly the most direct approach to the

identification of examinees affected by test speededness. The likelihood ratio statistic, originating

from statistical test theory, takes a different point of view in the sense that the likelihood of
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a response profile is evaluated under two competing models, and the examinee is assigned to

the speeded class if the likelihood for the latter is considerably larger than the likelihood for

the nonspeeded class. The likelihood ratio statistic evaluates two models with respect to each

other, making it a relative criterion, and hence it gives no guarantee that the model for the

group to which the examinee is assigned provides absolutely a good fit, that is, an examinee

may be assigned to the speeded class without actually being speeded. Finally, the normal

curvature is an influence diagnostic, measuring the impact of small model perturbations - here

small perturbations in the direction of test speededness - on the estimates for the key model

parameters. As such, the local influence diagnostics allow one to identify the set of observations

that drive the conclusion of a statistical analysis in the direction of a particular model, when

two models are under consideration. The latter consideration formed the motivation for the

analyses performed in Goegebeur et al. (2006), see also Molenberghs et al. (2001) and Thijs et

al. (2000). This may imply that examinees which do not fit the postulated model (the model

without speededness) get highlighted as being locally influential because they do not fit the null

model, but for another reason than being speeded, that is, the extra flexibility offered by the

perturbation will be used by the respective observations as a way out of the pinching model,

without test speededness being the cause of the misfit to the postulated model. A possible

explanation for why the empirical Bayes estimate and the likelihood ratio test statistic show

a closer correspondence to each other than to the normal curvature is that both statistics are

based on the full model, compared to the normal curvature which only considers a perturbation

of the reduced model. The above considerations seem to be confirmed by the scatter plots of the

statistics versus the proportion of omissions in the second half of the test, given in Figure 8. The

empirical Bayes estimates identify an clearly outlying, that is, speeded, group op observations,

plotted by diamonds. The normal curvatures do not perform well in separating this speeded

group from the non-speeded group, whereas the likelihood ratio statistic assumes a somewhat

intermediate position.

Following a suggestion made by one of the referees, we also considered a standardized empirical

Bayes estimate for ξ1p, and hence took the variability of the estimate for ξ1p into account. Given

the skewness of the conditional posterior density of the random effects, we worked with the log-
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Figure 8: Scatter plots of (a) ln Λp, (b) ln ξ̂1p and (c) Cp versus the proportion of omissions in

the second half of the test. The observations plotted by a diamond represent the outlying group

identified by ξ̂1p.

transformed test speededness parameter, denoted ξ̃1p, and used the variance of the multivariate

normal approximation to the joint density of (θp, ξ0p, ξ̃1p) as an indicator of precision. The

correlations of this standardized empirical Bayes estimate, denoted zξ̃1p
, with the other statistics

and the properties of the response profiles are also given in Table 3 and Table 4, respectively.

Compared to the ‘raw’ empirical Bayes estimate, this statistic correlates - as expected - better

with Cp although the gain is rather small. Also the percentages of overlap in the extreme cases

differed only in a minor way from the previously obtained ones.
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Discussion and Conclusion

In this paper we compared the performance of the optimal appropriateness statistic proposed

by Drasgow and Levine (1986), the empirical Bayes estimate for the test speededness random

effect and the local influence approach of Cook (1986) with respect to the detection of test

scores affected by test speededness effects. The framework for this person fit analysis was the

model for omitted responses in test data recently proposed by Goegebeur et al. (2006). Under

this model, non-response emerges from a general tendency to omit answers in case one does not

know the answer, and a test speededness effect, both taken to be examinee specific. Under the

optimal appropriateness approach, two models are compared, a model with and one without test

speededness, and the decision about the nature of an examinee’s test taking behavior is based

on the ratio of the response profile probabilities under both models. This approach is optimal

in the sense that no other procedure with the same size can yield a higher detection rate. The

local influence approach starts from a postulated model, here a model without a test speededness

effect, and looks at the impact minor model perturbations in the direction of test speededness

have on the parameter estimates. Finally, according to the empirical Bayes approach one obtains

for each examinee an estimate for the test speededness random effect, and hence this approach

can be considered as the most direct one when interest is in detecting examinees affected by

test speededness. Although the statistics considered are developed for quite different purposes,

hypothesis testing in case of the optimal person fit test versus assessment of local influence in

case of the normal curvatures and estimation in case of empirical Bayes, and hence will exhibit

specificity, the results obtained on the SIMCE test data indicated that there is also overlap, and

that all offer promising perspectives with respect to detecting test speededness. To get a better

understanding of the true virtues of these methods in this respect, a more thorough examination

is needed, for instance on the basis of an extensive simulation study. Work on this is in progress.

Persons identified as being speeded can be removed from the data set for purposes of estimation

quality of the other parameters, such as the item parameters, and in order to avoid the conse-

quences of a misspecified model when speededness is not incorporated in the model for reasons

of simplicity. The local influence diagnostic is a direct indication of how large the impact is of
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a given person on the key model parameters, and it is therefore a highly interesting indicator of

cases to be removed. Interestingly, the proportions of persons identified as being speeded tells

us for which proportion the model complexity is required in order to obtain a good fit. Perhaps

these persons should be tested in a different way in order to obtain a more valid ability estimate.

When keeping the ability estimates of such persons based on the test with speededness effects,

these estimates should be treated with more caution. Identifying persons with a speededness

profile is like identifying persons with a poor person fit.
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