
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Induction of Relational Algebra Expressions

Non Peer-reviewed author version

GILLIS, Joris & VAN DEN BUSSCHE, Jan (2010) Induction of Relational Algebra

Expressions. In: De Raedt, Luc (Ed.) Inductive Logic Programming: vol. 1. p. 25-33..

DOI: 10.1007/978-3-642-13840-9_4

Handle: http://hdl.handle.net/1942/11077

Induction of relational algebra expressions

Joris Gillis and Jan Van den Bussche

Universiteit Hasselt and transnationale Universiteit Limburg

1 Introduction

In the theory of database systems [1], a database query is defined as a function
that maps relational databases to relations. This definition models the situation
in practice where one applies an SQL query to a database instance and receives
a set of output tuples as the answer to the query on that database. The problem
of relational database query induction is then naturally stated as follows: we are
presented with a finite number of examples, where each example consists of a
relational database and an output relation, and we are asked to come up with
an expression for a query that agrees with the given examples (and that satisfies
the usual requirements placed on induction tasks, most notably generalization).

Of course, we should also specify here which language we are using to express
database queries. Whereas SQL is the universal query language used in practice,
it is also very complex. A more tractable language to work with is the relational
algebra, which can be found, together with SQL, in every database textbook, as
the relational algebra is the basic underlying query language used for database
query processing.

Another common language in which relational database queries can be ex-
pressed is Datalog (function-free Prolog). Datalog is also used in Inductive Logic
Programming (ILP), and when we restrict attention to nonrecursive programs,
Datalog can be translated into the relational algebra [2, 3]. As a consequence,
relational database query induction could be (and has been [4, 5]) considered to
be a mere special case of ILP, where the background knowledge consists only of
facts (the example databases).

That approach, however, does not cover relational database query induction
in its entirety, because not every relational algebra query can be expressed in
Datalog. Nonrecursive Datalog without negation can only express the positive
fragment of the relational algebra, i.e., the fragment without the set-theoretic
difference operator. Consider, for example, the following rules over a binary
relation r(A, B):

q(A, B)← r(A, C), r(C, B)
q(A, B)← r(A, C), r(C, D), r(D, B)

The query q corresponds to the following positive relational algebra expression:

πA,B(ρB/C(r) �� ρA/C(r)) ∪ πA,B(ρB/C(r) �� ρA/C
B/D

(r) �� ρA/C(r))

Of course, one might use Datalog with negation, and then the difference
between two relations r and s can be expressed as follows:

Presented at the 19th International Conference on Inductive Logic Programming (ILP’09).

2 Joris Gillis and Jan Van den Bussche

diff (A, B)← r(A, B), ¬s(A, B)

If negation can only be placed before input relations, however, this does not suf-
fice to express all relational algebra queries. Notably queries involving universal
quantification can still not be expressed. A classical example of such a query is
Codd’s relational division [6] of two relations r(A, B) and s(B), which returns
the following unary relation as answer:1

r ÷ s = {A | ∃B : r(A, B) ∧ ∀B : (s(B)→ r(A, B)}

In relational algebra, division is expressible as πA(r)\πA((πA(r)×s)\r). Note the
nested application of the difference operator \. If we want to express such queries
in Datalog with negation, we need to introduce auxiliary predicates. In general
it is known that with deeper and deeper nested applications of the difference
operator (corresponding to alternations of existential and universal quantifiers),
more and more queries can be expressed [7], so there is no bound on the number
of required auxiliary predicates.

We conclude that Datalog-based approaches to induction of relational algebra
queries require a combination of predicate invention and negation. Predicate
invention received quite a bit of attention in ILP until the mid 1990s (e.g., [8,
9]), and is recently receiving renewed attention [10]. Relatively few ILP systems
support negation (e.g., FOIL [11] and TILDE [12]). It is quite conceivable that by
combining various of these earlier ILP techniques, relational algebra queries can
be induced successfully. In the present paper, however, we explore an approach
that directly searches for relational algebra expressions. Nevertheless, we hope
that some of our ideas can also be of use in a more classical ILP-based approach.
For example, because relational algebra expressions can be translated back into
nonrecursive Datalog programs with stratified negation [1], our approach could
also be viewed as a form of predicate invention.

Related work. We end this introduction with a brief review of some related work,
apart from the large body of work in ILP [13]. Acar and Motro [14] focus on the
induction of selection queries only (queries without joins) and thus their work
essentially boils down to attribute–value learning. In the Clio system [15], map-
pings between database schemas are inferred in the form of database queries, but
the examples given to the induction algorithm are much more fine-grained and
consist of explicit value paths between data elements from the source database
and the target database. Closest in spirit to our own work is Tupelo [16], a sys-
tem for inducing data mappings. Tupelo focuses on data restructurings, which
are lossless and therefore easier to induce, and is based on a special-purpose al-
gebra with specific restructuring operators (the algebra also lacks the difference
operator). Nevertheless, we were influenced by the overall design of Tupelo’s
search algorithm, which we have copied in the present work.

1 If r would contain patients with observed symptoms, and s would contain the set of
required symptoms to qualify for some specific disease, then r ÷ s would return all
patients that can be diagnosed with the disease.

Induction of relational algebra expressions 3

2 Relational and cylindric set algebra

We assume some familiarity with relational databases and relational algebra,
but we fix some terminology and notations.

A relational database schema is a finite set of relation names, each with a
relation scheme, which is a finite set of attribute names. If relation name R has
scheme {A, B, C}, this is often denoted as R(A, B, C). The relational algebra
consists of the six operators set union ∪; set difference \; natural join ��; selec-
tion σA=B ; projection πZ ; and renaming ρA/B. Here, A and B stand for attribute
names, and Z for a finite set of those. Expressions, of the kind illustrated in the
Introduction, are built from relation names using these operators. Each expres-
sion has a result relation scheme that can be syntactically determined from the
input relation schemes. Semantically, a relational algebra expression over some
database schema is evaluated on a database of that schema; the result relation
of expression e evaluated on database D is denoted by e(D).

The relational algebra is a typed language: an operator can be applied to
expressions only if their result schemes are compatible with the operator. For
example, union e1 ∪ e2 can be formed only if e1 and e2 have the same result
scheme, and renaming ρA/B(e) can be formed only if the result scheme of e
contains attribute A but not attribute B. All these typing restrictions can be
something of a nuisance in an induction setting, where we want to systematically
combine and generate expressions. Moreover, the subexpressions of an expres-
sion can have different result schemes, that can be also different from the final
result scheme. In a bottom-up approach where we build up more and more com-
plex expressions, this implies that when testing a hypothesis, we must compare
relations of different schemes. Indeed, the given examples are of the final result
scheme, whereas intermediate expressions to be tested produce relations of a
different scheme.

To avoid these problems, we propose the use of the cylindric set algebra
(CSA) [17–19] as a more suitable alternative to the relational algebra in the
context of induction. Fix some finite set U of attribute names. The operators
of CSA over U deal only with relations of scheme U . There are only four op-
erators: union; complementation; selection σA=B; and cylindrification γA, with
A, B ∈ U . Union and selection are as in the standard relational algebra. Com-
plementation is the classical set-theoretic operator, but, in order to guarantee
finiteness, relativized to the active domain adom(D) of the database D on which
we are evaluating the expression. The active domain is the set of all values ap-
pearing in the relations of D. Then the complement of a relation over U , relative
to D, is the set of all tuples over U that take values in adom(D) and that do not
belong to r. Finally, the cylindrification γA(r) of a relation r over U is the set
of all tuples over U that agree with some tuple in r on U \ {A}. This intuitively
corresponds to existential quantification on the A-column.

As in the relational algebra, given some database schema where all relation
names now have scheme U ; we call such a schema U we can build up CSA ex-
pressions from relation names using the four CSA operators. Unlike the standard
relational algebra, there are no restrictions on the formation of expressions, be-

4 Joris Gillis and Jan Van den Bussche

cause everything is of the same type U . Formally, let a database schema be given
that is U -uniform in the sense that every relation name has scheme U . Then
each relation name is an expression, and if e1 and e2 are expressions, then so are
(e1∪e2), (e1)

c, σA=B(e), and γA(e) without any restrictions. The result relation
of any expression is a relation of scheme U . This makes the CSA very flexible to
work with in an induction context.

It can be proven [18] that we we do not lose any expressive power by working
with CSA instead of the standard relational algebra, as long as we work only
with the attributes from U . Difference is expressed using complementation and
intersection (a non-primitive operator that we add for convenience); join becomes
plain intersection; projection becomes cylindrification; and renaming is simulated
using cylindrification and selection.

The choice of U is of course an important parameter. Clearly, we will put in
U all attributes from the input database schema and from the output relation
scheme. But additional attributes may be needed to be able to express the query.
For example, over a binary relation R(A, B) interpreted as the set of edges of a
directed graph, the query “output all nodes where a path of length at least two
originates” is expressible over U = {A, B, C} but not over U = {A, B}.

3 Heuristic values taking into account complement

Before the induction of an unknown relational database query Q, we are pre-
sented with one or more examples of the form (D, r), where D is a database and
r is a relation, and the assumption is that r = Q(D). During induction we are
searching for an expression e for Q. Thereto we will test hypothesis expressions
against the examples to see how well they agree. Thanks to uniformization and
the use of CSA, as explained above, both the relation e(D) and the relation
r = Q(D) have the same scheme U , which makes comparison quite standard.
Indeed, a commonly used metric d(X, Y) on subsets X and Y of some finite
universe T uses the symmetric difference: d(X, Y) = (|X \ Y |+ |Y \X |)/|V |. In
our case, X and Y are relations of scheme U taking values in the active domain
of D, so |V | = |adom(D)||U|.

This simple approach is insufficient, however, for queries whose expression
requires set difference (or in CSA, complementation). Indeed, such expressions
typically compute a relation that equals the complement of the desired output
relation, then perform a final complementation. Consider, for example, the basic
universal quantification query about two database relations R(A, B) and S(B)
that outputs the relation {A | ∃B : R(A, B) ∧ ∀B : (R(A, B) → S(B))} (this
query is similar to relational division but the implication is in the other direc-
tion). In CSA it is expressible as γB(R ∩ (R ∩ Sc)c. The subexpression R ∩ Sc

is crucial, but a discovery algorithm based only on direct comparison with the
example outputs would discourage further elaboration of this subexpression, as
it results in a relation that is extremely different from the final desired result.

We settled on a very direct and simple solution: in order to encourage the
exploration of expressions involving complementation, as the heuristic value for

Induction of relational algebra expressions 5

an expression e on an example (D, r), we do not use d(e(D), r) but rather
min{d(e(D), r), d(e(D)c, r)}. In this way, hypotheses that come close to the ex-
ample, as well as hypotheses that come close the complement, are favored.

4 Searching for expressions

As in Tupelo [16], our search space consists of straight-line programs: finite se-
quences of statements. Here a statement has the form R := op(R1) or R :=
R1 op R2, where op is a CSA operator, R is a relation variable, and R1 and R2

are either relation names from the database schema or relation variables intro-
duced earlier in the program. Within a program, each relation variable represents
an expression, obtained by tracing out its definition. For example, in the program
R1 := Sc; R2 := γA(R); R3 := R1 ∪ R2, variable R3 stands for the expression
Sc ∪ γA(R). Important for us are the top-level variables in a program, that are
those variables that do not occur on the right-hand side of a statement in the
program. There can be several top-level variables in a program, and we view
a program as representing a set of expressions, one for each top-level variable.
Accordingly, as the heuristic value of a program, we use the average heuristic
values of its top-level expressions.

The search space can be kept finite because, for each example database D (of
which there are a finite number), there are only a finite number of relations of
scheme U taking values in adom(D). When exploring the search space by adding
a statement to some already encountered program, if that statement defines
the same relation on all example databases as some previous statement in the
program, the statement will not be added and the program will no longer be
expanded. Using a similar technique (details omitted), we can avoid generating
equivalent programs (on the given set of example databases) more than once.2

We note that, even if U consists of just three attributes, full equivalence of CSA
expressions (on all possible databases rather than just the given examples) is
undecidable [20].

Everything is now in place to find, if it exists, an expression for the unknown
query Q given by example. If an U -bounded expression exists that agrees with
all examples, it will be found. We perform a best-first search [21] using the
heuristic on programs explained above. The initial state is the empty program,
which is understood to have as top-level expressions the relation names from the
database schema. We generate successor states by appending an extra statement
to a program. In this way, the shortest program will be found.

2 In practice, such equivalence checks can be implemented efficiently using hashing,
at the price of, at least in principle, possible false positives.

6 Joris Gillis and Jan Van den Bussche

5 Experimental results

We have tested our ideas on a number of typical relational database queries
involving universal quantification. We have also tried to induce the queries using
the ILP systems FOIL [11] and TILDE [12].3

The two obvious testcases were Codd’s relational division (discussed in the In-
troduction) and the universal quantification query (discussed in Section 3), both
about relations R(A, B) and S(B). Both are expressible in CSA over U = {A, B},
i.e., no additional attribute names are needed, using expressions we have seen
earlier. Expressions for these queries were inferred by our search algorithm in a
mere 17 (for division) respectively 5 (for universal quantification) steps (where
a step means the expansion of a state to all its successor states). Interestingly,
whereas for division the obvious expression was found, for universal quantifi-
cation an equivalent, rather ingenious expression was found that involves more
complementation steps but that is shorter overall, namely, (γB(R ∪ Sc)c)c.

It must be said, however, that representative examples are important. For
division, we presented the algorithm with a small number of databases generated
from a small number of constants ai and bj which will serve as the nodes of the
directed graph R. The b’s go in relation S. We generate edges randomly but
make make sure to have some nodes with edges to all b’s (and also some a’s);
these nodes will form the output part of the example. We make sure the graph
looks sufficiently random otherwise, with edges from a’s to a’s, from a’s to b’s,
from b’s to a’s, and from b’s to b’s. For universal quantification, we did something
similar.

Although both FOIL and TILDE can produce Datalog rules with negation,
neither system was able to infer a correct expression for these queries (using
the same examples). Easier queries involving negation, such as inducing the
plain difference between two relations, are no problem, but queries involving
alternation between existential quantification and negation cannot be expressed.

Obviously, as always, there is no free lunch, and there are queries that take
a long time to find using our simple search-based approach. Especially queries
that require the renaming operator for their expression seem difficult to find.
Renaming is an example of a lossless data transformation of the kind targeted
by Tupelo [16]. It might be worthwhile to try to use Tupelo search inside the
determination of the heuristic value of a candidate expression (search within
search), so that pure data transformations are evaluated separately from query
operators. This deserves further investigation.

6 Conclusion

Our purpose in this paper was to draw attention to the induction of first-order
database queries involving universal quantification, and to the potential of an
algebraic approach to ILP. Clearly one can go back and forth between the rela-
tional algebra and Datalog, and hopefully some of the ideas we have offered can
3 For TILDE we used the KULeuven ACE data mining system [22].

Induction of relational algebra expressions 7

also be relevant in a more standard ILP setting. Note also that our restriction
to relations over a fixed scheme U could be explained as a rudimentary language
bias mechanism.

An algebraic approach can sometimes be more convenient. Think, for exam-
ple, about a genetic programming approach [23] to learning relational algebra
expressions. The CSA is convenient in this respect as genetic programming op-
erations on expressions such as mutation and crossover can be freely performed,
always resulting in well-formed expressions that can be effectively evaluated.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Ullman, J.: Principles of Database and Knowledge-Base Systems. Volume I. Com-
puter Science Press (1988)

3. Ullman, J.: Principles of Database and Knowledge-Base Systems. Volume II. Com-
puter Science Press (1989)

4. Blockeel, H., De Raedt, L.: Relational knowledge discovery in databases. In Mug-
gleton, S., ed.: Inductive Logic Programming, Selected Papers 6th International
Workshop. Volume 1314 of Lecture Notes in Computer Science., Springer (1997)
199–211

5. Blockeel, H., De Raedt, L.: Inductive database design. In Ras, Z., Michalewicz,
M., eds.: Foundations of Intelligent Systems, Proceedings 9th ISMIS. Volume 1079
of Lecture Notes in Computer Science., Springer (1996) 376–385

6. Codd, E.: Relational completeness of data base sublanguages. In Rustin, R., ed.:
Data Base Systems. Prentice-Hall (1972) 65–98

7. Chandra, A., Harel, D.: Structure and complexity of relational queries. Journal of
Computer and System Sciences 25 (1982) 99–128

8. Silverstein, G., Pazzani, M.: Relational clichés: Constraining induction during re-
lational learning. In Birnbaum, L., Collins, G., eds.: Proceedings 8th International
Workshop on Machine Learning, Morgan Kaufmann (1991) 203–207

9. Kijsirikul, B., Numao, M., Shimura, M.: Discrimination-based constructive induc-
tion of logic programs. In: Proceedings 10th NCAI, AAAI Press (1992) 44–49

10. Kok, S., Domingos, P.: Statistical predicate invention. In Ghahramani, Z., ed.: Pro-
ceedings 24th International Conference on Machine Learning, ACM Press (2007)
433–440

11. Quinlan, J., Cameron-Jones, R.: Induction of logic programs: FOIL and related
systems. New Generation Computing 13(3–4) (1995) 287–312

12. Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees.
Artificial Intelligence 101(1–2) (1998) 285–297

13. De Raedt, L.: Logical and Relational Learning. Springer (2008)

14. Acar, A., Motro, A.: Intensional encapsulations of database subsets via genetic
programming. In Andersen, K., Debenham, J., Wagner, R., eds.: Database and
Expert Systems Applications, Proceedings 16th DEXA. Volume 3588 of Lecture
Notes in Computer Science., Springer (2005) 365–374

15. Miller, R., Haas, L., Hernández, M.: Schema mapping as query discovery. In:
Proceedings 26th VLDB. (2000) 77–88

8 Joris Gillis and Jan Van den Bussche

16. Fletcher, G., Wyss, C.: Data mapping as search. In Ioannidis, Y., et al., eds.:
Advances in Database Technology—EDBT 2006. Volume 3896 of Lecture Notes in
Computer Science., Springer (2006) 95–111

17. Henkin, L., Monk, J., Tarski, A.: Cylindric Algebras. Part I. North-Holland (1971)
18. Van den Bussche, J.: Applications of Alfred Tarski’s ideas in database theory.

In Fribourg, L., ed.: Computer Science Logic. Volume 2142 of Lecture Notes in
Computer Science., Springer (2001)

19. Imielinski, T., Lipski, W.: The relational model of data and cylindric algebras.
Journal of Computer and System Sciences 28 (1984) 80–102

20. Kahr, A., Moore, E., Wang, H.: Entscheidungsproblem reduced to the ∀∃∀ case.
Proceedings of the National Academy of Sciences of the USA 48 (1962) 365–377

21. Russell, S., Norvig, P.: Artificial Intelligence, A Modern Approach. Second edn.
Prentice Hall (2003)

22. Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Raons, J., Vandecasteele, H.:
Improving the efficiency of inductive logic programming through the use of query
packs. Journal of Artificial Intelligence Researche 16 (2002) 135–166

23. Koza, J.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press (1992)

