
On stories, models and notations:

Storyboard creation as an entry point for model-based
interface development with UsiXML

Kris Luyten, Mieke Haesen,

Dawid Ostrowski, Karin Coninx

Hasselt University - tUL -IBBT

Expertise Centre for Digital Media

{kris.luyten,mieke.haesen,dawid.ostrowski,

karin.coninx}@uhasselt.be

Sylvain Degrandsart
1,2

, Serge Demeyer
1

1
Dept. Mathematics and Computer Science,

Universiteit Antwerpen
2

University of Mons - UMONS

{Sylvain.Degrandsart,

Serge.Demeyer}@ua.ac.be

ABSTRACT

Storyboards are excellent tools to create a high level

specification of an interactive system. Because of the

emphasis on graphical depiction they are both an accessible

means for communicating the requirements and properties

of an interactive system and allow the specification of

complex context-aware systems while avoiding the need

for technical details. We present a storyboard meta-model

that captures the high level information from a storyboard

and allows relating this information with other models that

are common for engineering interactive systems. We show

that a storyboard can be used as an entry point for using

UsiXML models. Finally, this approach is accompanied by

a tool set to make the connection between the storyboard

model, UsiXML models and the program code required for

maintaining these connections throughout the engineering

process.

Keywords

UsiXML, Storyboards, Model Transformations

INTRODUCTION

For over a decade, model-based interface development has

been subject of ongoing research to improve the methods

and tools on the one hand, and to bridge the gap with

traditional software engineering on the other hand. Model-

driven engineering seems to be one of the central methods

that can connect model-based interface development with

software engineering because of the concepts they share:

models that describe different aspects of an interactive

system. Despite the availability of various tools [8,9,11,14],

most models require domain expertise or technical

knowledge. As such, they fail to serve as a means of

communication for the whole team including all

stakeholders and their usage is limited to particular stages

in the engineering process. Specifically for engineering

complex systems such as context-sensitive or distributed

multi-user systems, maintaining involvement of the whole

team and providing consistency checks with initial

requirements is hard.

We believe a simple and graphical tool can resolve many

issues, given it can be easily connected with the typical

models that are used throughout the engineering process.

Figure 1: The meta-model for the UsiXML Task Models.

ABOUT THE MODELS AND NOTATIONS

Model-based interface design is hard to get started with:

most models use an abstract notation and require at least

some domain expertise. The task model is the one model

that is often used as a starting point for model-based

interface development processes. A task modeling notation

such as the ConcurTaskTrees (CTT) notation [9] uses a

graphical notation for identifying the different task types

and has a specialized notation for specifying how tasks

behave in time with relation to each other in time. UsiXML

does not provide a separate graphical notation such as CTT,

but does include the semantics for similar elements in its

specification. This leaves the choice for a graphical

notation up to the tool developer. Figure 1 shows the meta-

model for UsiXML compliant task models.

Just as is the case with CTT, there are tools that allow

specifying the task model by using the UsiXML notation,

e.g. IdealXML [8] or KnowUI [11]. We see that the CTT

notation serves as an important inspiration for most of these

tools and similar graphical notations are being used.

UsiXML does provide well-defined relationships with other

typical models such as the dialog, context and presentation

model. For this purpose, it is based on the well-known

Model-Driven Engineering (MDE, [10]) approach and uses

(semi-automatic) transformations between models to

progress from abstract toward concrete models.

UsiXML supports an MDE approach by defining a set of

meta-models that contain all elements and relations

included in the different models. It tries to cover all models

that are required for user interface analysis and design, and

encompasses models that are commonly used in model-

based interface development. We propose the addition of

another model that can serve as an entry point for the whole

process to engineer an interactive system: the storyboard

model. In the next section of this paper we define a

storyboard model and we show how it can be connected to

other models contained in the UsiXML specification.

STORYBOARDS: GRAPHICAL NARRATIVE MODELS

Scenarios [2] are suitable to be used by all team members

in user interface design to define the first concepts of a

future system. Unfortunately, technical people encounter

difficulties when translating these scenarios into technical

specifications and models [3, 4]. Furthermore, when using

scenarios, it is necessary that all team members have read

the narrative. Nevertheless, the scenario can be interpreted

ambiguously [7]. To bridge the gap between scenarios and

models, and to increase involvement of the entire team,

storyboards can be created. We define a storyboard as: a

sequence of pictures of real life situations, depicting users

carrying out several activities by using devices in a certain

context, presented in a narrative format. Each scene in the

storyboard can depict a fragment of the scenario, and hence

provides the connection between the scenario and the

storyboard. This specific definition immediately provides

us with a clear overview of the four primary pieces of

information that can be found in a storyboard: users,

activities, devices and context. COMuICSer is our approach

for storyboarding that embraces these four elements. The

COMuICSer tool supports a graphical representation of a

scenario and allows a smooth integration with structured

engineering models such as the UsiXML models. The

COMuICSer tool is shown in Figure 2. In this figure, the

tool is being used to visualize a scenario of how a

multimedia search interface can be used on several

platforms by an editorial board of a TV channel.

In contrast to a scenario, this graphical representation

contains more structural information, while the entire team

can still easily understand the information conveyed by the

storyboard. By annotating the COMuICSer storyboard, it is

possible to provide a connection to structured engineering

models and UI designs. In the COMuICSer tool, rectangles

Figure 2: Screenshot of the COMuICSer tool. The centre panel shows the storyboard, while the left and right

panels are reserved for the scenario and annotations.

can be drawn on top of scenes, to specify particular

annotations. These rectangles can refer to personas [6],

device specifications and free annotations. Furthermore, the

connections between scenes of a storyboard can be labeled,

while each scene can contain timing information (e.g. about

the duration of a situation in a scene). One can tag each

storyboard scene with keywords like a picture can be

tagged in most photo management software today. Among

the tags, the verbs provide us with a list of activities and

tasks that are being executed in a scene. The nouns specify

objects of importance in such a scene. We want to show

that ”low-fidelity” models such as storyboards can be easily

connected with UsiXML models and eventually generate

parts of these models based on the storyboards. This would

avoid a completely manual transformation of high-level

requirements that are contained in a storyboard but at the

same time does not exclude the creative input that is often

part of the storyboarding process.

A STORYBOARD META-MODEL

To enable integration of COMuICSer storyboards with

other models, we need a meta-model for these storyboards.

Given the freedom to use arbitrary drawings and pictures as

scenes of the storyboard, the meta-model will provide a

scheme for the metadata that can be found in the respective

scenes of the storyboard. Our initial storyboard meta-model

is shown in Figure 3. It is by no means our intention to

formalize or restrict storyboarding activities with this meta-

model. We merely want to connect this model with other

artifacts that are used to design an interactive system. Our

approach still provides all degrees of freedom typical for

storyboard creation and mainly comes into play when the

transformation of a storyboard into other models is

required. In this section we provide an overview of the

different elements that make up the storyboard meta-model.

There is one central element in the meta-model: the Scene.

A set of scenes that are related using TemporalRelationShip

elements is a Storyboard. The TemporalRelationShip

element is based on Allen´s interval algebra [1]. Though,

similar to comics [5], the most common relationships used

in storyboarding are the "before" and "meets" relationships,

we think parallel activities should be supported since they

are common in collaborative and multi-user activities.

"Before" indicates one scene happened before another, and

there is undefined time progress in between scenes.

Figure 3: Our initial COMuICSer storyboard meta-model. It contains the graphical depiction with the objects

of interest (context), personas, devices and activities. Scenes are related using the Allen interval algebra

operators.

"Meets" indicates one scene is immediately followed by

another scene, and the time progress between two scenes is

virtually none. It also allows us to define more precise

temporal relationships between scenes that can be exploited

later on, e.g. by mapping them on the temporal

relationships that are used in the task model.

Figure 4: Scene from a storyboard that can be juxtaposed

with labels that show the associated meta-data. The

storyboard meta-model provides a framework to capture and

serialize this meta-data for further usage.

A Scene is annotated with different types of information:

SceneImage is a graphical representation of the scene,

Personas specify archetypical users involved in the scene,

Devices present what type of computing devices and

systems are used within the scene. Because of the graphical

depiction used in the SceneImage, it describes the context

(situation) of the activities of the users in a comprehensive

way. In contrast to traditional approaches in which there is

some predefined structure for defining the context of use,

images can be used to infer the context of use. When

constructing a storyboard, the drawings or photographs

used, will often contain a lot of contextual information.

Dow et al. show storyboarding, especially contextual

storytelling, is useful for context-aware application design

(in their case ubicomp applications) but lacks a good way

of formalizing the context data [3].

By providing tagging of scenes, we support a rudimentary

way of translating the context inferred from the

SceneImage into a readable format. Objects are physical

objects in a scene that are also sufficiently important to

label. Take the scene depicted in Figure 4 for example: two

objects that might be of interest are the light bulb (needed

for watching the book) and the table in the room (needed to

hold the books to read). This implies these objects could be

taken into account later in the engineering cycle and thus

need a representation in the storyboard meta-model.

Personas on its turn have a set of related activities (or tasks

as you might wish) and are both related to the whole

Storyboard as well as the separate Scenes they participate

in.

Though tagging is used to allow for a more comprehensible

description of the context-of-use in a scene, several other

elements of the storyboard meta-model already provide

additional contextual information. Consider the UsiXML

context meta-model depicted in Figure 5. This graphical

depiction is created based on the UsiXML context meta-

model scheme and was clearly inspired by browser profiles

that were popular at the time this model was created. One

can identify other one-to-one relationships between the

UsiXML context meta-model and the storyboard meta-

model. The Persona and Device classes can be used to

generate userStereoType and hardwarePlatform classes

respectively. One valuable extension is to integrate the

custom tags with Wordnet
1
 to extract richer semantics of

these tags. This could lead to a more complete

transformation than is currently supported.

We showed a graphical depiction (SceneImage) could have

high value to obtain a usable model of the context of use in

previous work [12]. Figure 4 shows a scene from a

storyboard that was tagged with labels about the

information included by the storyboard meta-model.

Several information items contribute to the context model

as defined by USiXML in Figure 5.

We do not consider our current meta-model to be complete.

It does include a set of minimal elements for the storyboard

to be connected with other models in a MDE process. The

COMuICSer tool can generate model instances for this

meta-model, which in turn can undergo transformations to

enable integration with other models. We currently use this

approach for two goals: first, to define mappings and

consequently generate partial models (e.g. generate a set of

tasks and initial temporal relationships based on the scene

orderings and included activities); second, to check for

consistency (e.g. the sequence of an activity diagram might

contradict the temporal relationships from a storyboard).

MAPPING BETWEEN STORYBOARDS AND USIXML

Now that we have the meta-model for the storyboard in

place, we can connect it with other (UsiXML) models.

Since the storyboard is often used as the initial model at the

start of the engineering cycle, it can be used to generate

parts of other models or to check for consistency when later

models are created. The usage of a MOF-compliant meta-

model ensures later integration with other MOF-compliant

models is also possible. In this paper we mainly focus on

integration with UsiXML models, but we envision

integration more closely with traditional software

engineering models in the future (e.g. activity diagrams or

state charts). To show the possibilities of a storyboard

meta-model, two example transformations are presented.

First, by defining a mapping rule between the storyboard

model and the UsiXML task model (depicted in Figure 1),

we can partially generate a UsiXML task model or check

its consistency. Second, by exploiting the metadata from

the storyboard we can add detail to the UsiXML context

model (depicted in Figure 5).

1
 http://wordnet.princeton.edu/

Partial Task Model Generation and Consistency Check

Each scene in a COMuICSer storyboard depicts one or

more activities. With the mapping editor (see next section),

a developer can specify a mapping rule stating each activity

from the scene should become a leaf task in a task tree. To

enforce these tasks to be leaf tasks, we need to define a

constraint that imposes this task cannot be decomposed any

further.

All activities within the same scene are also valid during

the same period of time. Thus, we can define that all

activities of a scene are mapped on leaf tasks from the same

enabled task set. An enabled task set is a definition from

the ConcurTaskTrees language that specifies a set of tasks

is valid during the same period of time. Since scenes can be

related using the Allen interval Algebra [1], for some leaf

tasks it can be derived whether they need to be executed in

parallel with other tasks or should use an enabling operator

with its siblings. The transformation into enabled task sets

could be defined using a constraint. There are clearly

extensive possibilities exploiting the temporal relations and

activities that occur in the storyboard to feed the task model

or check the task model for consistency. It is mainly a

matter of defining the rules one wants to apply and write

these down as transformations that take the storyboard

model as an input. Unfortunately, the Allen interval

operators do not offer one to one mapping relationships

with the typical CTT temporal operators. For example, two

scenes s1 and s2 containing each two activities,

activities(s1)={a,b} and activities(s2)={c,d}, can be

translated into either (a[]b) >> (c[]d) or ((a>>c)[]d)[]b.

The personas, containing a description of a hypothetical

archetype of an actual user, can add the distinction of

different roles to a model. The different personas contained

by the scene of a COMuICSer storyboard, can be connected

to one or more tasks of a task model. When several

personas are available in a storyboard, the personas can be

the foundation for a cooperative task model.

Figure 5: The meta-model for the UsiXML context models

The following code listing shows an ATL transformation

for generating tasks from activities within scenes:

module activity2task;

create OUT : MUsiXmlTask from IN :

Mstoryboard2;

rule activity2task{

 from

 a : Mstoryboard2!Activity

 to

 t : MUsiXmlTask!Task (name <- a.title)

 }

Partial Context Model Generation

Another UsiXML model that has a clear relationship with

the storyboard model is the UsiXML context model. We

depicted the context model in Figure 5 for the reader´s

convenience. From literature it is clear that context is a

vague term that encompasses many elements. The UsiXML

context model makes a trade-off of what is useful in the

UsiXML model-driven engineering process, but we think

the context model will be subject to change in the future. In

the storyboard, we think the combination of the graphical

depiction, showing the situation of the users, the pre-

defined elements in the meta-model and the arbitrary tags

that are allowed, provide a powerful means to describe the

context-of-use as specific as possible. For “hidden” context

properties, such as the platform specification of a device,

the COMuICSer tool provides dialogs to fill in this data.

There are separate dialogs for adding the device profile, the

persona descriptions and describe activities. Notice the

UsiXML mapping model does not provide explicit support

for a changing context over time, so we need to generate

multiple UsiXML context model instances. The UsiXML

event definition links to a context in which the event is

executed, so this could be used to describe changes in

context too.

Using the storyboard meta-model we can now construct a

mapping to generate parts of the context model:

For each scene instance in the storyboard model:

 Each Persona element will be mapped on a new

userStereoType element, as it is the closest to a

persona UsiXML currently offers.

 Each Device element will be mapped on new

hardwarePlatform and softwarePlatform elements

(including properties such as screenSizeAspect,

osName,…).

 Each tag that describes the surroundings of the

user and matches:

o Noise generates the isNoisy property and

set it to true.

o Light generates the lightningLevel

property.

 If the scene description indicates the user is in a

stressful environment generate the isStressing

property and set it to true.

Now that we have a set of context models, each of them

can be related by a set of tasks that are grouped per scene,

of which the generation was explained in the previous

subsection. To make this set of models useful and usable,

there still needs to be tool support that allows a designer to

specify user interfaces according to the context of use. One

example of such a tool is Gummy, presented in [14], but

has only rudimentary support for UsiXML. Another

candidate tool could be [15].

This approach makes it more convenient to specify the

context, since most information is already contained in the

storyboard. We believe this approach could also lead to a

more complete definition of context, created from

experience rather than using a pre-defined description. The

combination of images and tags makes there are little to no

limitations in defining context of use.

TRANSFORMATIONAL DEVELOPMENT TOOLS

We created tool support for progressing from the

storyboard models toward UsiXML models. In spirit of

openness of our approach, the Eclipse setup in which the

tools are embedded is provided as free software and can be

downloaded from the project website that can be found at

the following URL:

http://research.edm.uhasselt.be/kris/research/projects/Story

BoardML .

Our tool allows defining Model-to-Model transformation

rules by creating mappings between entities contained in

the source and target meta-models. Rule definitions are

essentially data-driven. Each definition specifies a set of

element types from the source model as input and an

element type from the target model as output. The rule can

be applied to instances of the source model and create the

target elements according to this input. A screenshot of the

tool is shown in Figure 6. It shows a mapping editor that

allows defining a mapping rule. We consider this a proof of

concept for showing the capabilities of our approach.

According to [13] our solution can be classified as an

approach that uses a target-oriented organizational structure

of unidirectional rules, and follows a strategy of

deterministic rule application. Our solution also supports

reuse of rules by means of inheritance or composition. The

tool is able to generate method stubs in Java, which can be

used later on to program all the details of data passing

between entities. I.e. the transformation mechanism can be

further refined in the method stub and techniques such as

property value transfer, type lookup, type casting, data

trimming and decoration of elements are all available. The

mapping tool is mainly a starting point for further

refinement and definition of complex transformations. Our

aim is not to provide a full set of transformations, rather to

enable a developer to define transformations on a concrete

level when facing a set of high-level transformation rules

that need to be enforced.

http://research.edm.uhasselt.be/kris/research/projects/StoryBoardML
http://research.edm.uhasselt.be/kris/research/projects/StoryBoardML

Figure 6: Mapping editor to define a target-oriented

unidirectional mapping rule for generation partial UsiXML

models from a storyboard model.

Our tool support is built on top of the Eclipse environment

and makes extensive use of the Eclipse Modeling

Framework Core (EMF core or ecore) [16]. Thanks to

EMF, developers who create new rules can also use

automatically generated code that supports manipulation

and persistence of the instances of any meta-model. To

provide smooth integration of COMuICSer and parts of

UsiXML, we created an ecore version of storyboard meta-

model. The UsiXML schemes were also converted in pure

ecore models (model descriptions in XMI) so they can be

easily used within the Eclipse environment. This has two

major advantages: first, one all the MDE tools that are

available in Eclipse can be used (querying, transformation,

validation) and second, editing tools can be automatically

generated for ecore compliant models. The Eclipse

Modeling Framework can be used through a powerful API,

which has allowed us to rapidly generate code templates

based on our ecore conversions of the UsiXML models.

CONCLUSION

This paper presented a transformational approach to

integrate storyboarding with various UsiXML models. For

this purpose we created a storyboarding meta-model that

serves as the starting point for applying the

transformations. In contrast to the storyboard meta-model

definition, the transformations themselves are not hard-

wired in our approach. By using the features of the Eclipse

Modeling Framework a developer can edit custom mapping

rules using a simple interface. A custom set of UsiXML

models using pure XMI was generated to enable smooth

integration in the Eclipse environment. These mappings can

be applied to the storyboard model to generate partial

UsiXML models or check consistency with the storyboard

when editing the UsiXML models. The work presented

here is still work in progress. The tools and models

described in this paper are fully functional, though they are

not integrated to the point they allow full consistency

checks between UsiXML and other models.

ACKNOWLEDGMENTS

This work is supported by the FWO project Transforming

human interface designs via model driven engineering (G.

0296.08) and IWT project AMASS++ (SBO-060051).

REFERENCES

[1] J. F. Allen. Maintaining knowledge about

temporal intervals. Commun. ACM, 26(11):832–843, 1983.

[2] J. M. Carroll. Making use : scenario-based design

of human-computerinteractions. MIT Press, Cambridge,

2000.

[3] S. Dow, T. S. Saponas, Y. Li, and J. A. Landay.

External representations in ubiquitous computing design

and the implications for design tools. In DIS '06:

Proceedings of the 6th conference on Designing Interactive

systems, pages 241–250, New York, NY, USA, 2006.

ACM.

[4] M. Johansson and M. Arvola. A case study of how

user interface sketches, scenarios and computer prototypes

structure stakeholder meetings. In BCS-HCI '07:

Proceedings of the 21st British CHI Group Annual

Conference on HCI 2007, pages 177–184, Swinton, UK,

UK, 2007. British Computer Society.

[5] S. McCloud. Understanding Comics: The Invisible

Art. 1994.

[6] J. Pruitt and T. Adlin. The Persona Lifecycle :

Keeping People in Mind Throughout Product Design.

Morgan Kaufmann, 2006.

[7] K. N. Truong, G. R. Hayes, and G. D. Abowd.

Storyboarding: an empirical determination of best practices

and effective guidelines. In DIS '06: Proceedings of the 6th

conference on Designing Interactive systems, pages 12–21,

New York, NY, USA, 2006. ACM.

[8] Montero, F., López-Jaquero, V., IdealXML: An

Interaction Design Tool-A Task-Based Approach to User

Interfaces Design, Proc. of 6th Int. Conf. on Computer-

Aided Design of User Interfaces, CADUI'2006 (Bucharest,

6-8 June 2006), Chapter 20, Springer-Verlag, Berlin, 2006,

pp. 245-252.

[9] Mori G., Paternò F., Santoro C.. CTTE: Support

for Developing and Analyzing Task Models for Interactive

System Design. IEEE Trans. Software Eng. 28(8): 797-813,

2002.

[10] Schmidt, D. C.. Model-Driven Engineering. IEEE

Computer 39, 2006.

[11] Furtado E., Furtado V., Soares Sousa K.,

Vanderdonckt J., Limbourg Q.: KnowiXML: a knowledge-

based system generating multiple abstract user interfaces in

USIXML. TAMODIA 2004.

[12] Vanderhulst G., Luyten K., Coninx K., Photo-

based User Interfaces: Picture it, Tag it, Use it, The 4th

International Workshop on Ontology Content

(OnToContent'09), Vilamoura, Portugal, November 1-6,

2009.

[13] K. Czarnecki, S. Helsen. Classification of Model

Transformation Approaches, OOPSLA’03 Workshop on

http://www.dsi.uclm.es/personal/FranciscoMonteroSimarro/
http://www.isys.ucl.ac.be/bchi/cadui/06/index.php
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Mori:Giulio.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Santoro:Carmen.html
http://www.informatik.uni-trier.de/~ley/db/journals/tse/tse28.html#MoriPS02
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Furtado:Elizabeth.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Furtado:Vasco.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/v/Vanderdonckt:Jean.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/v/Vanderdonckt:Jean.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Limbourg:Quentin.html
http://www.informatik.uni-trier.de/~ley/db/conf/tamodia/tamodia2004.html#FurtadoFSVL04

Generative Techniques in the Context of Model-Driven

Architecture, Anaheim, CA, USA 2003.

[14] J. Meskens, J. Vermeulen, K. Luyten, K. Coninx.

Gummy for multi-platform user interface designs: shape

me, multiply me, fix me, use me. Working conference on

Advanced Visual Interfaces, AVI 2008: 233-240.

[15] A. Coyette, S. Kieffer, J. Vanderdonckt. Multi-

fidelity Prototyping of User Interfaces, in Proc. of 11th

IFIP TC 13 International Conference on Human-Computer

Interaction, INTERACT’2007.

 [16] D. Steinberg, F. Budinsky, M. Paternostro, E.

Merks, EMF: Eclipse Modeling Framework, 2
nd

 Edition,

Addison-Wesley Professional, Eclipse Series, 2008.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/v/Vermeulen:Jo.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Luyten:Kris.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Coninx:Karin.html
http://www.informatik.uni-trier.de/~ley/db/conf/avi/avi2008.html#MeskensVLC08
http://www.isys.ucl.ac.be/staff/Adrien/
http://www.isys.ucl.ac.be/staff/ski/
http://www.isys.ucl.ac.be/bchi/members/jva/index.htm
http://www.interact2007.org/

