
On a Journey from Message to Observable
Pervasive Application
Geert Vanderhulst Kris Luyten Karin Coninx

Hasselt-University – transnationale Universiteit Limburg
Expertise Centre for Digital Media

Wetenschapspark 2, 3590 Diepenbeek, Belgium
Email: {geert.vanderhulst,kris.luyten,karin.coninx}@uhasselt.be

Abstract—Bringing together heterogeneous computing devices
and appliances gives rise to a spontaneous environment where
resources exchange messages, such as a mobile phone telling
the car’s stereo to mute. We also witness computer-augmented
resources become physically simpler to use (e.g. less buttons) but
become more complex to handle in their digital dimension (e.g.
overloaded user interfaces). As a consequence, the behavior of the
pervasive applications leveraging these resources gets even more
complex to understand and configure. This demands for tools that
help developers and end-users inspect and manipulate the current
state of the pervasive computing environment during execution
time. We present models and tools that support the development
and deployment of applications that can be observed at runtime,
by means of the messages they exchange, the properties they
manipulate and the rules they define.

I. INTRODUCTION

In the vision of pervasive computing users are assisted
by applications that automatically adapt to the environment
they are interacting with [15]. The development of context-
aware applications is supported by many systems [6], [7], [12],
but still remains a challenge due to the dynamic nature of
a pervasive computing environment: the configuration of the
environment is often not known in advance and can evolve at
runtime, for instance when new resources become available.
This advocates the need for scalable tools that provide real-
time support for debugging context-aware applications and
their execution environments at runtime.

Ko et al have shown that interactive debugging tools such
as the Whyline help programmers better understand the state
of an application [9]. However, integrating such tools in
a pervasive environment is not evident because pervasive
applications are no longer predeveloped software packages, but
are composed dynamically by connecting a set of distributed
services and interaction devices. The events that occur in one
resource can have an impact on other resources and since
events are hard to trace it is even more difficult to link them
to certain behaviors in the environment, also for developers.
Besides, system-driven behavior in a context-aware computing
environment can cause unwanted side-effects, for example
when gestures are recognized by accident. To recover from
mistakes, an undo mechanism is required to enable users to
correct unwanted behavior.

In this paper we present models and tools to support the
development and use of dynamically observable and config-

Fig. 1. Tools add live inspection capabilities to pervasive applications such
as monitoring the messages that are exchanged between resources, querying
the current state of the environment and observing the behavior of running
applications.

urable pervasive applications. Our contribution lays in the
combination of models that describe the context of use and
the behavior of applications, and tools leveraging these models
such as those in figure 1 to add live debugging capabilities to
a pervasive computing environment. By adopting the proposed
models in a pervasive software architecture, we show that
pervasive applications can be inspected at different layers
while they are executing. Tools leveraging these models allow
developers to monitor the message flow (section III), inspect
the environment configuration (section IV) and observe and
configure the behavior of applications (section V). We discuss
the architecture of our system and show a meta-user interface
that integrates live debug tools (section VI) which we have
applied in a case study (section VII).

II. RELATED WORK

Several frameworks have been developped that support the
creation of applications in a pervasive computing environment
[6], [7], [12]. In these frameworks, models are widely used
to capture the context of use of the environment. Gu et
al propose an ontology-based context model and an OSGi-
based middleware infrastructure to share knowledge and to

2010 International Conference on Complex, Intelligent and Software Intensive Systems

978-0-7695-3967-6/10 $26.00 © 2010 IEEE

DOI 10.1109/CISIS.2010.52

223

dynamically discover the state of the environment [7]. Another
approach, sTuples, uses Tuple Spaces and ontologies to pro-
vide a logically shared memory along with data persistence
[8]. The ReWiRe framework which is applied as testbed in
this paper incorporates a dynamic ontology-based runtime
environment model [12] that allows both the semantics of the
environment and its context data to change over time.

To assist developers with the design of a pervasive applica-
tion, special-purpose tools have been proposed that range from
programming languages and IDEs for prototyping pervasive
applications [14] to runtime monitoring tools [13]. Most of
these tools focus on a specific stage in the development process
or are tailored to specific application domains. However, since
the behavior of a pervasive application heavily depends on the
context of use, pervasive applications must be inspectable and
controllable at runtime as well.

Coutaz showed the importance of providing runtime control
over end-user interfaces in [3]. She introduced the concept of
a meta-user interface as the set of functions (along with their
user interfaces) that are necessary and sufficient to control and
evaluate the state of interactive ambient spaces. We mainly
target a meta-user interface for developers that integrates tools
to support truly observable applications whose state can be
queried at runtime. To a certain extent, the Speakeasy frame-
work [10] helps users to understand the computing system
through low-level context properties that can be examined at
runtime. The Whyline [9] goes one step further by allowing
programmers to ask why did and why didn’t questions about
runtime failures in applications, and provides direct access to
the runtime that they need to debug. It keeps track of a history
of property values and expressions that modified these values.
Pervasive applications, however, are driven by context changes
and events that occur as a result of these changes. To trace the
source and cause of an event at runtime, extra information is
required that relates changes in the environment configuration
with the resources that caused them to happen.

Weis et al introduce a specialized graphical programming
language that provides constructs to master common pro-
gramming tasks of pervasive computing applications and a
tool to debug the application logic [14]. We seek to support
the debugging of applications after they are released as well
by feeding a runtime behavior model with Event-Condition-
Action (ECA) rules. ECA rules have been proposed to build
reactive pervasive software systems before [4], [11]. When
an ECA rule is triggered because of an event that occurs,
its condition is verified and its action is executed. However,
current ECA-based systems are still difficult to understand
and manage by end-users. This is largely due to the fact that
users can get easily confused by things happening beyond
their control [2]. The large number of rules typically required
to achieve a useful behavior also increases the complexity
to obtain a clear view on the overall system. We aim to
reduce this complexity by linking the context of use with the
behavior of an application and hence provide more accurate
explanations about why things happen or do not happen.
Moreover, by extending ECA rules with an inverse action

(i.e. ECAA−1 rules) users can rollback the state of the
environment when needed.

III. MESSAGES: A VEHICLE FOR DATA EXCHANGE

The data flow between entities in a pervasive computing
environment is an important measure to verify whether an
application behaves as expected. Nevertheless, most perva-
sive frameworks treat the networking aspect as part of the
underlying middleware and hence the applications designed
using the framework are often difficult to debug at the network
layer once deployed. In a message-oriented network, messages
contain information about events that have occurred, requests
that are made and responses that are sent back.

We use W2P1 as a light-weight scalabale communication
framework for pervasive environments. It supports live net-
work inspection through a web interface along with different
addressing and message orchestration schemes which are
missing in popular communication protocols such as XMPP2

or UPnP3. A W2P message gateway, designed as a web
application with open REST architecture, routes messages to
their destination, just like an IP router forwards IP packets.
Through this gateway, W2P peers (i.e. communicating entities)
can discover each-other and exchange messages in peer to
peer style over the HTTP protocol. Since peers do not run a
server and use default HTTP traffic to communicate, there is
no need to reconfigure firewalls. Peers are addressed by a name
they statically request or dynamically acquire upon registration
with a W2P gateway. This allows entities to talk with each
other using meaningful names instead of IP addresses. For
example, a service that is referred to by a URI (e.g. http:
//edm.org#aservice) can use this URI as its network address,
making communication as transparent as possible. Further-
more, peers can use group names to subscribe to a range
of events (e.g. [http://edm.org#aservice][events]), an individual
event (e.g. [http://edm.org\#aservice][events][OnlineEvent]) or
to address a number of similar resources at once ((e.g. [http:
//edm.org][services]) even without knowing who is actually
addressed, similar to sending a message to a mailing list.
These are common needs for a pervasive application, just like
asynchronous and synchronous message exchange patterns:
although most of the communication in a pervasive computing
environment will be asynchronous, there are also situations
where an application must explicitly wait for a reply message
before it can continue its execution, for example when it needs
to execute a remote query and depends on its results. Therefore
W2P offers asynchronous and synchronous message exchange
by default together with a mechanism to dispatch incoming
messages to dedicated message handlers. In promiscues mode,
a W2P gateway captures all the messages exchanged over
the network in a certain time span which are presented in
a web interface along with the registered peers and the groups
they are subscribed to. Figure 1 shows a W2P message with
attachment in the web interface.

1http://research.edm.uhasselt.be/w2p
2http://xmpp.org/
3http://www.upnp.org/

224

IV. INSPECTING THE ENVIRONMENT

Pervasive applications rely on the ability to query and
manipulate the current context of use and thus must have easy
access to context information and its semantics. In particular,
pervasive applications must be able to (1) discover available
resources, (2) query the properties of a resource, (3) manip-
ulate the properties of a resource and (4) get notified when
properties undergo changes. Besides, we argue developers
must be able to inspect and manipulate the context of use
to understand why applications behave in a certain way and
to verify whether this behavior is correct. For this purpose,
we designed a context model that can be encapsulated in a
pervasive computing framework and queried by developers at
runtime using debug tools.

A. Environment model

We present a decentralized model for storing and querying
context information in a pervasive environment. In this model,
context data is distributed amongst a set of heterogeneous com-
puting nodes and the ‘context store’ (CS). The CS stores in-
formation about the semantics of resources such as properties
of resources and relations between resources. The semantics
are defined by OWL DL ontologies. An upper environment
ontology shown in figure 2 defines common concepts such
as users, devices, services, tasks and user interfaces and the
relations that apply between these concepts. For example, the
ontology defines a Task concept which is presented by a UI
concept and hence acts as an abstraction for activities that
are made available to end-users through e.g. a graphical or
a speech-based user interface. The Device concept denotes a
double role: a device can be used to interact with the envi-
ronment by a user (User concept) as well as to host software
services (Service concept). Finally, the Sensor concept acts
as an endpoint through which context events that occur in a
resource are published in the environment. In other words, a
sensor publishes remote context events to interested entities
in the environment. The structure of the sensor data is also
described in the ontology so that services that are subscribed
to the sensor can become aware of its semantics and hence
consume its data.

Fig. 2. The environment topology and current context of use are described
by ontologies and instances of these ontologies.

The concepts defined in the upper ontology provide a base
structure upon which ontologies for specific domains can be

constructed. These domain ontologies are aggregated with the
upper ontology at runtime and shared amongst applications
that depend on their knowledge base. Besides the semantics
of the environment and its applications, the CS also includes
a registry of references to instances of resources whose ex-
ecution context resides on distributed computing nodes. For
example, a service running on device X is advertised in
the CS as a service of type Y residing at location X . The
CS facilitates the discovery of resources through references:
software entities can interrogate the meta-information stored
in references (e.g. type and location of a resource) and use
this information to acquire the full context of the resource
as RDF triples by sending a request message to the device
the resource is published on. Hence, context is produced and
updated locally and is transferred over the network on demand.
The separation of semantic information and local context data
demands for distributed query processing which is handled
by the query engine integrated in the CS. The query engine
processes a query in two steps:
1) Data aggregation: a temporary model is prepared prior to

query evaluation. This model shares domain knowledge
from the CS and includes context data fetched from
distributed nodes. A subquery that is derived from a query
first selects references to resources whose context should
be resolved and included in the model.

2) Query evaluation: with all relevant context data aggregated
in a temporary model the query can now be evaluated
against this model.

Listing 1 shows a SPARQL query that asks for the names of
the services running on a device. We extended the SPARQL
syntax with a ‘RESOLVE’ keyword that denotes a subquery
used for context aggregation. Since the CS only contains
references to resources, we first need to acquire the context
data of resources included in the query in order to evaluate it.
The resource references returned by the RESOLVE subquery
are selected based on their type. For each reference, the
RESOLVE query looks up its location in the CS, fetches its
context and merges it in a temporary model. Finally, the names
of the services are selected from the aggregated context data.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
PREFIX : <http://edm.org/environment#>
SELECT ?n
WHERE{?s :name ?n . ?s :runsOn <:adevice>}
RESOLVE {

SELECT ?r WHERE{?r :refType ?t . ?t rfds:subClassOf :Service}
}

Listing 1. SPARQL query with subquery for aggregating context data.

B. Developing context-aware applications

We integrated the environment model discussed previously
in an OSGi-based middleware platform for pervasive comput-
ing environments, called ReWiRe [12]. Application logic and
user interfaces are embedded in OSGi components which are
distributed amongst heterogeneous computing devices running
the ReWiRe client software and are dynamically deployed into

225

the ReWiRe runtime. The runtime leverages the environment
model in several ways to support the development and deploy-
ment of context-aware applications:

1) Import and query ontologies: When an application is
deployed, it imports the domain ontologies it depends on
in the CS. Instances of these (aggregated) ontologies define
the current context of use of the application. Hence both
the semantics of the environment topology and the context
of use can change over time.

2) Integrate and share resources: Sharing resources is con-
sidered a default strategy in a pervasive computing system
[6]. The properties of a shared resource adhere to an OWL
concept and are stored in an object on the local computing
device. Only a reference to the resource is published in the
CS through which the resource’s properties can be resolved
on an as-needed basis.

3) Subscribe to sensors and trigger sensors: Sensors include
information about context changes and are described in
domain ontologies. They are transported over the network
in a special type of message to which applications can
subscribe. Since sensors are related to resources, perva-
sive applications actually subscribe to {resource, sensor}
pairs, denoted as sensor events, such as for example
{∗, OnlineSensor} or {MediaService1, ∗} where ‘∗’
matches any resource or sensor respectively.

V. OBSERVABLE PERVASIVE APPLICATIONS

We call a pervasive application ‘observable’ if its cur-
rent state and behavior can be monitored and optionally
(re)configured while the application is in use. Application-
specific user interfaces can help to make an application ob-
servable, but this will not be sufficient as a developer can not
take into account all kinds of resources present in a pervasive
environment that might interact with an application in useful
ways. Besides, the behavior of an application is influenced
both by end-users and the computing system:

• User-driven behavior: interacting with an application’s user
interface (e.g. pressing a button) triggers several actions that
can result in context changes which on their turn give rise
to new actions and so on.

• System-driven behavior: when the pervasive computing sys-
tem is programmed to react on events, it will automatically
invoke actions which also might trigger new events. Since
events can occur without the user even interacting with
the computing environment (e.g. when a sensor value is
updated), it can be very confusing to understand why the
system behaves in a certain way [2].

A typical pervasive environment is characterized by a com-
bintation of user-driven and system-driven behavior: users
interact with the environment while they are assisted by the
computing system. By modeling an application’s behavior, we
can reuse tools for analyzing and configuring behavior and
hence observe any pervasive application.

A. Behavior Model

As an extension to the environment model discussed in
section IV-A, we use a separate model that captures the
programmed behavior of an application. The behavior model is
built up from behavior rules which are described in a behavior
ontology that is linked with the upper environment ontology,
as depicted in figure 3. A behavior event corresponds to a
{resource, sensor} pair, and conditions and actions refer to
functions defined in a script on a remote device. In order to
guarantee that the system can recover from mistakes, we have
extended the concept of Event-Condition-Action (ECA) rules
with inverse actions, denoted as ECAA−1 rules. An inverse
action allows users to return to a former state by undoing
the rule’s action that caused the unwanted state. This requires
rules to cache information about the current context of use.
For example, an action that dims a light resource to 30% of its
default intensity should store the previous state of the light in
order to allow the intensity to be reversed to its previous state.
Therefore ECAA−1 rules store context information about an
executed action which is interpreted by an inverse action when
a user chooses to undo the action.

Fig. 3. The behavior of an application is described using ECAA−1 rules.

The advantage of storing behavior rules in a semantic model
particularly lays in its querying facilities: semantic queries
are a powerful instrument to observe the runtime behavior of
applications. A query allows to:

• predict what will happen: a query can ask which rules will
be executed when a sensor is triggered. By evaluating the
conditions of these rules, the pervasive software system can
estimate which actions will be executed. Although the state
of the environment can change and the rule’s condition can
evaluate differently when the event is actually triggered, the
estimation will give the user more insight in what might
happen. To make more accurate assumptions, we annotate
behavior rules with extra information about the events they
might trigger.

• understand why something happened and undo it: if a rule
is executed, this is because an event was triggered. The
sensor and the resource that caused the event can be traced;
a description of the rule’s condition and action helps to
understand why the rule was executed and what it did
exactly. If an event happens directly after an action is
executed that is marked to trigger this type event, the event

226

is probably related with the action. Moreover, the rule’s
action can be reversed by executing its inverse action.

B. Configuring the behavior of applications

Configuring a pervasive application is a complex task,
especially because the execution of an application depends
on the context of use. Configuration goes beyond editing the
properties of an application: developers also need to specify
how an application must react on changes in the environment
configuration, such as a new service coming online or an in-
teraction device going offline. To keep end-users in control of
their environment, it is important they can adapt the behavior
of applications to their own preferences, also denoted as end-
user programming [5]. We classify approaches towards end-
user programming of pervasive environments in three major
categories, ranging from a low-level approach to higher-level
approaches:

• Behavior scripts: Scripts can be edited and executed at
runtime which makes them very suitable for programming
the runtime behavior of applications and thus to add rules
to the behavior model. Although scripts are targeted at
(amateur) developers, end-users can still enable or disable
them at runtime, giving them limited control over what will
(not) happen when the state of the environment changes.

• Visual programming languages (VPLs): VPLs mask pro-
gramming code with visual constructs and help non- or
less technical users to program an application. Although
VPLs have a broader target public than scripts, experience
learns that it is sometimes more complex to visually model
a rule using a generic VPL than to write a few lines of
code in a script. Yet, VPLs targeted at a specific user group
and domain can enhance the experience of configuring the
behavior of applications. Consider for example the Kodu
project, where children can create a game using an icon-
based programming interface [1].

• Application-specific configuration interfaces: Dedicated
user interfaces for configuring an application can add or
remove behavior rules in the background while the user
interacts with the interface. Consider for example a con-
figuration interface for a thermostat that allows its users to
specify temperature offsets and timings to (de)activate the
central heating. An advantage of modeling the thermostat’s
configuration by means of behavior rules is the ability
to debug the thermostat’s behavior using generic tools.
Moreover, rules provide the option to undo actions or can be
disabled. However, high-level user interfaces for configuring
an application are limited to pre-defined behavior scenario’s
that were considered at design time and thus are less
powerful than scripts or VPLs.

To support end-user programming and debugging of the
environment’s behavior at runtime, we have integrated the
suggested behavior model in ReWiRe. This model is also
dispersed over heterogeneous computing nodes, just like the
environment model. In a Rule Store (RS) that shares informa-
tion with the Context Store (CS), rule instances are stored that

rely on conditions and actions defined in scripts on computing
devices. ReWiRe clients – computing devices that run the
ReWiRe client software – support behavior scripts through the
Rhino JavaScript engine4. VPLs and application-specific user
interfaces that add rules to the RS could be integrated through
additional OSGi components. The integrated behavior model
supports user-driven and system-driven behavior as follows:

• Log user actions: When application user interfaces are
programmed to log the actions behind widgets that have
an impact on the environment context, user-driven behavior
becomes traceable and even reversible. To accomplish this,
user actions are advertised as behavior rule instances with a
special type of event (i.e. a {Userx, UserActionSensor}
pair) and optionally include an inverse action.

• Evaluate conditions and execute actions: Conditions and
actions are implemented as functions in JavaScript code. Via
the Rhino framework, scripts can access the environment
model and application logic. While a condition returns true
or false, an action returns a context record, i.e. a number
of properties which reflect the state of the resource before
it is altered by the action.

• Execute rules: A rule engine integrated in the RS subscribes
to {resource, sensor} pairs (events) just like any other
application. Rules that match the event are executed and
give rise to system-driven behaviors. If the rule engine
receives an undo request for an action, it looks up the related
rule, fetches the context of the action and passes it to the
rule’s inverse action (if any). Note that when an action is
reversed, the computing environment will return to an old
state and changes that have been performed after the action
was executed, will be lost.

VI. ARCHITECTURE AND META-USER INTERFACE

The architecture of our system consists of a single host
platform and several client platforms, both developped in Java
using the Felix OSGi framework5 and Jena6 for processing
context data. The host platform ‘serves’ the pervasive com-
puting environment and is discovered by the client platforms.
It acts as an access point for advertising new resources,
querying the environment context and storing behavior rules.
The client platform runs on heterogeneous computing devices
and provides a runtime for pervasive applications. Applications
are integrated as OSGi components and are composed of
services, user interfaces and other resources. They exchange
messages with remote applications through a message gateway
integrated in the host platform. The environment and behavior
models discussed in sections IV-A and V-A are distributed
amongst host and client platforms. Ontologies describing the
semantics of the environment and references to resources are
stored in the context store at the host platform while the actual
state of a resource is stored in data objects maintained by an
application at the client platform. Likewise, behavior rules are

4http://www.mozilla.org/rhino/
5http://felix.apache.org/
6http://jena.sourceforge.net/

227

stacked in the rule store at the host platform and refer to scripts
that are executed at a client platform, from where they can
access an application’s data objects.

To interact with a pervasive computing environment, users
first need to sign in to the environment. This advertises the
presence of the user in the environment and relates one with an
interaction device. Once signed in, users are presented with a
meta-user interface that provides an overview of the resources
available in the environment and the tasks these resources
support as defined by the available applications. Besides, the
meta-user interface features several tools for debugging and
configuring the behavior of applications (see figure 4). We
call this interface ‘meta’ because it serves as a generic user
interface from where end-users can both interact with the
environment and configure its behavior.

Fig. 4. Environment and behavior models span a host platform and client
platforms installed on heterogenous devices. A meta-user interface integrates
debug tools for pervasive applications such as those listed in figure 1.

VII. CASE STUDY

In order to evaluate the presented models and tools, we
developed two ‘SPOT applications’, shown in figure 5, that
connect pervasive services with SunSPOT devices7 on the fly.
A SunSPOT is an embedded computing device with a number
of built-in sensors such as temperature and light sensors and
3D accelerometers. SunSPOTs communicate wirelessly with
a base station that is connected over USB with a desktop
computer. We attached the base station to a notebook on which
we installed the ReWiRe client platform. A Java MIDLet
running on a SunSPOT collects sensor readings on this device
and sends them to a SunSPOT service encapsulated in an OSGi
component on the client platform. The SunSPOT service then
transforms the received information into ontology-compliant
sensor events such as {SunSPOT1, TiltSensor}. From this
point, we can leverage the environment and behavior models
to connect the events produced by a SunSPOT with actions
that control a pervasive application. We designed a prototype
application for automating the lights in an environment and
used a SunSPOT as input device to play a game. Both
applications import ontologies describing their application do-
main, integrate the necessary resources in the environment and

7http://www.sunspotworld.com/

subscribe to SunSPOT-specific sensors. We show that these
applications are observable at runtime, through the messages
they exchange and the models they adopt.

(a) SunSPOT. (b) SPOT Lights and SPOT Racer applications.

Fig. 5. A SunSPOT device and a number of services are assembled at runtime
into pervasive applications whose behavior can be observed and configured.

A. SPOT Lights

The SPOT Lights application integrates a light service that
embeds application logic to turn on/off lights in the pervasive
computing environment, a number of virtual light resources
and a user interface for operating lights. In the application’s
user interface, a light can be selected and turned on/off. The
user interface logs user actions that alter the state of a light and
links them with events that might be triggered. Furthermore,
a small piece of JavaScript code injects two ECAA−1 rules
in the behavior model that connect a SunSPOT device with
a light resource. These rules automatically turn on/off the
light if the light sensor readings of the SunSPOT drop below
or rise above a predefined value. The script also defines the
conditions and actions that are executed by the rule engine
when a {SunSPOT1, LightSensor} event is triggered as
illustrated in figure 6. Since the SPOT light application is
dynamically composed of various resources (a service, a user
interface, a behavior script) traditional debug tools based
on code inspection are unable to explain the application’s
behavior. However, using the tools integrated in the meta-user
interface discussed before, the application can be debugged in
several ways at different layers:
• Query the environment model for light resources and ser-

vices to verify that the application initiated correctly.
• Query the behavior model to check which rules can have an

impact on light resources and which events can cause these
rule to execute.

• Monitor the events that are triggered by the SunSPOT device
when the light sensor value changes and inspect the network
messages that caused these events. The network message
provides additional information about the properties (e.g.
sensor values) of an event.

• Request explanations about why an event occurred, e.g. did
the user manually switch on the light or was it turned on
automatically because a SunSPOT device sensed darkness?

• Request a user interface to reconfigure a light that was set
to a faulty state or to undo an action that caused this effect.

• Step into the rule engine’s flow of execution and pause it
at runtime. This allows one to play with the SunSPOT and
learn which actions will be executed when SunSPOT events
are fired.

228

Fig. 6. A script connects a SunSPOT device with a light resource through
behavior rules. The events that are fired and the actions that are executed by
the rule engine as a reaction to these events can be monitored and undone.

Even though SPOT Lights is not a complex application, it
illustrates that runtime debug tools are useful instruments
to deal with the complexities introduced by the pervasive
computing environment it operates in.

B. SPOT Racer

The SPOT Racer application illustrates that legacy applica-
tions can be integrated in a pervasive setting as well using
our framework and that they can be controlled by input
devices they were not designed for at first. We created a
Tux Racer service that passes input events it receives over
the network to a game process. Tilting the SunSPOT steers
and (de)accelerates Tux while he slides down a ramp full of
snow and herring. The tilt events generated by the SunSPOT
are connected to behavior rules that map tilt information, via a
script, to navigation commands defined in a Tux Racer service.
Similar to the SPOT Lights application, the execution of the
game can be monitored at runtime. Although it is not the
most efficient approach to encode real-time interaction using
behavior scripts/rules, it can be used to prototype the game.
As expected, some lag was noticeable on a dual core 1.8GHz
notebook with 2GB of memory, but it did not prevent us from
playing Tux Racer smoothly using a SunSPOT device.

VIII. CONCLUSIONS

We have presented a framework for developing and deploy-
ing observable pervasive applications. The major contribution
of this framework is a combination of decentralized models
that capture the context of use and describe the behavior
of applications. Using this framework we have successfully
designed two prototype applications that can be observed
at runtime by means of the messages they exchange, the
properties they manipulate and the rules they define. Moreover,
we have illustrated that the pervasive computing environment
can recover from mistakes caused by system-driven behavior.
For example, if a light was turned off without the user wanting
this to happen, the user can still intervene and manually
correct unwanted behavior through a meta-user interface for
the pervasive environment.

There is still room for various improvements. For example,
we currently do not provide an approriate solution to avoid
cycles that can exist between behavior rules: when a rule’s
action triggers an event that causes the rule to execute again,
rules are executed in an infinite loop. Though we partially

address this issue by annotating actions with information about
the events they might trigger, we can only predict cycles
without certainty. Shankar et al illustrate how pre- and post-
conditions can help to resolve this problem [11]. Furthermore,
we have focussed on tools for developers for now, but non-
programmers can benefit from runtime tools as well to get
insight in the state of the system and to alter it. We plan to
conduct a user-study to point out the strengths and weaknesses
of our approach for a less technical audience. We believe an
improvement for end-users would be an interface that allows
to ask more natural questions about the environment such as
‘Why are the lights on?’.

REFERENCES

[1] Kodu. http://research.microsoft.com/en-us/projects/kodu/.
[2] Victoria Bellotti and Keith Edwards. Intelligibility and Accountability:

Human Considerations in Context-Aware Systems. Human-Computer
Interaction, 16(2):193–212, 2001.

[3] Joëlle Coutaz. Meta-User Interfaces for Ambient Spaces. In Task Models
and Diagrams for Users Interface Design (TAMODIA’07), pages 1–15,
2007.

[4] Anind K. Dey. Understanding and Using Context. Personal and
Ubiquitous Computing, 5(1):4–7, 2001.

[5] Krzysztof Gajos, Harold Fox, and Howard Shrobe. End User Empow-
erment in Human Centered Pervasive Computing. In Proceedings of the
1st International Conference on Pervasive Computing (Pervasive’02),
pages 1–7, 2002.

[6] Robert Grimm, Janet Davis, Eric Lemar, Adam Macbeth, Steven
Swanson, Thomas Anderson, Brian Bershad, Gaetano Borriello, Steven
Gribble, and David Wetherall. System support for pervasive applications.
ACM Trans. Comput. Syst., 22(4):421–486, 2004.

[7] Tao Gu, Hung Keng Pung, and Da Qing Zhang. Toward an OSGi-
Based Infrastructure for Context-Aware Applications. IEEE Pervasive
Computing, 3(4):66–74, 2004.

[8] Deepali Khushraj, Ora Lassila, and Tim Finin. sTuples: Semantic Tuple
Spaces. In Proceedings of the 1st International Conference on Mobile
and Ubiquitous Systems (MobiQuitous’04), pages 267–277, 2004.

[9] Brad A. Myers, David A. Weitzman, Andrew J. Ko, and Duen H.
Chau. Answering Why and Why Not Questions in User Interfaces.
In Proceedings of the International Conference on Human Factors in
Computing Systems (CHI’06), pages 397–406. ACM, 2006.

[10] Mark W. Newman, Shahram Izadi, W. Keith Edwards, Jana Z. Sedivy,
and Trevor F. Smith. User interfaces when and where they are needed: an
infrastructure for recombinant computing. In Proceedings of the 15th
annual ACM Symposium on User Interface Software and Technology
(UIST’02), pages 171–180. ACM, 2002.

[11] Chetan Shankar and Roy Campbell. A Policy-based Management
Framework for Pervasive Systems using Axiomatized Rule-Actions.
In Proceedings of the 4th IEEE International Symposium on Network
Computing and Applications (NCA’05), pages 255–258. IEEE Computer
Society, 2005.

[12] Geert Vanderhulst, Kris Luyten, and Karin Coninx. ReWiRe: Creating
Interactive Pervasive Systems that cope with Changing Environments by
Rewiring. In Proceedings of the 4th IET International Conference on
Intelligent Environments (IE’08), pages 1–8, 2008.

[13] Upkar Varshney. Pervasive Healthcare and Wireless Health Monitoring.
Mob. Netw. Appl., 12(2-3):113–127, 2007.

[14] Torben Weis, Mirko Knoll, Andreas Ulbrich, Gero Muhl, and Alexander
Brandle. Rapid Prototyping for Pervasive Applications. IEEE Pervasive
Computing, 6(2):76–84, 2007.

[15] Mark Weiser. The computer for the 21st century. Scientific American,
265(3):66–75, 1991.

229

