
Pervasive Maps: Explore and Interact with Pervasive Environments

Geert Vanderhulst Kris Luyten Karin Coninx
Hasselt University – transnationale Universiteit Limburg

Expertise Centre for Digital Media
Wetenschapspark 2, 3590 Diepenbeek, Belgium

Email: {geert.vanderhulst,kris.luyten,karin.coninx}@uhasselt.be

Abstract—Efficient discovery of nearby devices and services
is one of the preconditions to obtain a usable pervasive
environment. Typical user interfaces in these environments hide
the heterogeneity of the environment for end-users which often
makes it hard to perceive the provided functionality. We present
Pervasive Maps, an approach and tool that allows to create
an intuitive user interface for exploring and controlling the
environment. Pervasive Maps offers user-oriented views on the
user’s environment based on pictures of this environment. We
show how users can model, explore and finally interact with
complex pervasive environments using Pervasive Maps.

Keywords-Pervasive services; ubiquitous computing; spatial
user interface; mobile interaction

I. INTRODUCTION

In a pervasive computing environment, the available com-
puting resources and services determine the tasks that are
supported. Recognizing supported tasks is fairly difficult
because computing resources are distributed and sometimes
invisibly integrated in the environment’s physical infrastruc-
ture. Besides, the heterogeneity of computing resources in a
pervasive environment not only imposes technical challenges
to make resources communicate, but also demands for
intuitive interaction strategies: end-users need a means to
address both invisible resources and the physical resources
surrounding them. This is particularly difficult in unfamiliar
environments where users first need to become aware of the
embedded resources and the tasks they support. With more
and more computing resources and software services being
embedded in our surroundings, as envisioned by Weiser [16],
the digital part of our world will become even more complex
and as a result harder to perceive. In this paper we present
an approach to improve the visibility of the functionality of-
fered by a pervasive computing environment and to support
physical as well as remote interactions with the environment.
We use the term ‘pervasive application’ to refer to end-user
interfaces that help to orchestrate resources and their services
to accomplish tasks in a pervasive environment. We argue
that in analogy with desktop systems, uniform tools (e.g. a
‘start menu’) are required to integrate and locate resources
and applications in a pervasive computing environment.
Although several frameworks provide tool-support to some
extent, tools are often designed for developers and not for
end-users or focus on specific application domains.

Figure 1. In Pervasive Maps, a pervasive computing environment is
represented by annotated photos that reveal the environment’s resources
and applications that provide access to related functionalities.

We propose Pervasive Maps (PM) as a scalable ‘desktop’
solution with integrated tools for modeling and interact-
ing with pervasive environments. Pervasive Maps tries to
simplify end-user control over a pervasive environment not
by abstracting it, but by adopting the most concrete repre-
sentations one can find of such an environment: pictures.
Studies have for instance shown that pictures assist people
in finding their way in previously unexplored environments
[12], [14]. End-users with no technical expertise can use the
PM editor to create interactive user interfaces for navigating
their environment by taking pictures of the environment and
annotating them with spatial and resource-specific informa-
tions. Developers can also query the environment to discover
available resources. A cornerstone of our approach is the
decoupling of the complex technical side of a pervasive
computing system and its end-user facade. The novel as-
pects are twofold. On the one hand, we include a step-by-
step process, supported by a tool, that walks the end-user
through the construction of a digital representation of the
environment (section III). On the other hand, we present a
Web interface for exploring a pervasive environment using
variants of a classical file explorer and a ‘start menu’
(section IV). Furthermore, we discuss the architecture of PM
(section V) and outline two case studies which illustrate how
our approach can be used in practice (section VI).

227978-1-4244-5328-3/09/$25.00 ©2009 IEEE

II. BACKGROUND AND RELATED WORK

Many architectures have been presented to cope with the
dynamic nature of a pervasive computing environment: new
computing resources give rise to new services. This brought
up the need to perceive and control the current state of the
environment, for instance by visualizing hidden artefacts and
providing control interfaces. We discuss existing solutions in
this field and compare them with our approach.

A. Middleware infrastructures and interaction tools

Well-adopted protocols such as UPnP [1] have become
a default means to make services embedded in appliances
accessible by the outside world. These frameworks provide
methods to discover computing devices and their services,
but only return limited information about discovered entities.
As a result, it remains difficult for end-users to differentiate
between similar resources based on a description, especially
in complex environments with many embedded computing
resources. Various other middleware systems have been pro-
posed for building context-aware pervasive services [5], [15],
[9]. This landscape of diverse technologies for creating and
deploying pervasive services demands for a generic solution
to discover and leverage them in useful ways. Current out of
the box products such as the Philips Pronto series1 deliver
an integrated user interface for multi-room control, but
merely deal with IR/RF codes, rely on proprietary protocols
and lack support for context-aware third-party applications.
Research infrastructures that support interaction with perva-
sive computing environments using mobile devices include
ICrafter [10] and the Personal Universal Controller (PUC)
[8]. In ICrafter, services register their user interfaces with the
ICrafter Interface Manager (IM). The IM is a service on its
own with a user interface that migrates to the user’s personal
device. This interface provides an overview of the available
services in the environment and a custom user interface is
aggregated to control selected services. The PUC further
extends this approach by delivering automatically generated
user interfaces to control appliances within an environment.
The main focus in these frameworks is on the generation of
user interfaces to control appliances rather than on a user
interface to explore an environment as in our research.

B. Visualizing a pervasive environment

Interaction with a pervasive environment based on video
stills and photographs has been researched before [11],
[4], [13]. The NaviCam [11] and the Digiscope [4] focus
on real-time use and hence can not be used outside the
target environment. For instance, the Digiscope uses a semi-
transparent tablet that provides users with an augmented
reality view of invisible information in the environment.
In [13], a ‘u-Photo’ is annotated with eyemarks: physi-
cal entities that appear on a photo, representing pervasive

1http://www.pronto.philips.com/

services. By clicking on an eyemark, a user interface for
interacting with the service is overlay on the photo. u-Photos
are generated on the fly by taking pictures of an environment
in which visual markers are embedded. Whereas u-Photo
dynamically delivers annotated photos for interaction with
the user’s current environment, Pervasive Maps provides
a full desktop interface in which photos are integrated in
advance. In our solution, photos are primarily used to build
up a model of the environment and in second stage as a
means for discovering and interacting with remote resources
from mobile devices. We consider ‘services’ to be part of
the underlying architecture, and rather focus on ‘resources’
embedded in ‘places’ in the environment’s user interface to
closely match the real world situation.

The Personal Environment Controller (PECo) [6] incor-
porates a 3D visualization of a physical environment in
conjunction with access to personal media. Devices are
represented in the virtual environment as interactive 3D
objects and provide access to control user interfaces. The
PECo system is similar to our approach in the sense that
it relies on a digital representation of the environment to
interact with the real world. However, designing 3D models
is a complex task which is unlikely to be performed by end-
users. In Pervasive Maps end-users design their own virtual
environment by taking pictures and annotating them. More-
over, our system is different from PECo in the way resources
and applications are treated: a resource is ‘opened with’ a
suitable application and is not limited to a UPnP device
with an embedded user interface. Instead, we allow passive
objects with no computing power to become interactive parts
of the virtual environment as well.

III. MODELING THE ENVIRONMENT

We use a dynamic environment model as internal data
structure to represent the environment context. This model
is built up from place, sight, resource and application
concepts and relationships that apply between these con-
cepts. Resources are organized into places that make up the
environment and sights provide views on the various places
and their embedded resources. Since resources are diverse in
terms of embedded technology, visibility and mobility, we
subdivide them in four categories:
• A resources are (mobile) interaction devices with an

embedded computing platform such as mobile phones
and UMPCs. This class of resources is typically used to
interact with the environment, but can also host and share
services that give rise to new pervasive applications.

• B resources are everyday, often stationary computer-
augmented resources such as a smart fridge or a net-
worked light. These resources are part of the physical
environment, but also have a digital dimension that can
be accessed through A resources.

• C resources are invisibly embedded in the environment,
but can be discovered by applications. An example is a

228

light sensor whose output is processed by an application.
• D resources correspond to physical objects without com-

puting platform that refer to other resources or applica-
tions. For example, a pile of DVDs could point to a media
player, whilst a television panel can act as an abstraction
for the set-top box it is attached to.

Most B, C and D resources are known in advance and
have a fixed location in the physical environment, while A
resources are often mobile and not known in advance. Hence
we can distinguish between resources that can be integrated
in advance in an environment model and resources that
announce their presence at runtime to seamlessly integrate
with the pervasive computing environment. We present a
tool that enables end-users to create a personalized model
of their environment. This model is created beforehand, but
continuously adapts to changes that occur when resources
enter or leave the environment on the fly.

A. Integrate places, sights and resources

Pervasive Maps uses a graph structure that correlates
resources and their associated places as a model for a
pervasive environment. An environment is subdivided in
different locations (called ‘places’) and sights on a location
reveal the resources contained in a particular place. End-
users can create digital representations of the environment
with the PM editor, as shown in figure 2. The modeling
process consists of four steps, discussed below.

(a) (b)

Figure 2. End-users can create a model of their environment using the PM
editor (a). The tool produces a graph of the environment relating places,
sights, resources and applications (b).

Define places. First, we build up a spatial model of the en-
vironment. The end-user identifies different places of interest
in the environment which are hierarchically organized based
on their relative locations. For example, a place ‘house’
contains a place ‘first floor’ with places ‘kitchen’, ‘living
room’, etc. By subdividing an environment in different
places, we can better deal with the environment’s complexity
and navigate to resources based on their relative location,
i.e. the place they are in. For each place in the environment,
an optional floorplan diagram is provided which is created
with tools such as Google SketchUp. Floorplan sketches

are then imported in the PM editor and annotated with
spatial information such as the dimensions of a place and
its orientation (e.g. north-east).

Define sights. The second step consists of picturing the
different places in one’s environment using a digital camera.
In particular, images that clearly depict B or D resources
embedded in a place are of interest here. Currently, we
assume camera shots are taken frontally and wider images
are preferred over close ups as they generally contain more
reference points that help to map the contents of a digital
image onto the real world and vice-versa.

Define resources. Next, the third step involves integrating
available resources into the digital environment. Hereby
the end-user is assisted by the computing system which
automatically proposes to integrate B and C resources it
discovers on the network. D resources, i.e. resources that are
not networked, should be defined manually with a name and
icon. Additional attributes describe a resource’s capabilities
and technical bindings.

Connect places, sights and resources. Finally, places,
sights and resources need to be connected. Places and
resources can be marked on imported images. This relates
a selected area on the image with a particular place or
resource, similar to tagging people on photos that appear on
social network sites such as Facebook2. Since photos provide
a 2D view on a 3D environment, objects might overlap, e.g.
when resources occlude each-other. By means of a context
menu with ‘bring to front’ and ‘bring to back’ actions, z-
orderings are added to tagged objects. Hence we partially
reconstruct relevant 3D information that has been lost in the
photo. Furthermore, sights are marked as a spot on a place’s
floorplan which corresponds to the location where the sight
image was taken.

Note that we can derive extra information from the
environment model that was not explicitly provided by end-
users. For example, since a sight provides a view on a place,
all resources that were marked on the sight are also located
in the place. We can retreive the relative distances for the
resources that are marked on a place’s floorplan. When the
user’s position is known, the relative distance between the
user and the resources can also be calculated. It is also
possible to derive facts from sights such as ‘the microwave
is situated left from the fridge’. Moreover, when sights
and places are further annotated with spatial information
(e.g. compass headings, see section IV-C) we can acquire
information about the direction in which a resource is
located, e.g. in the north-east of the room.

B. Integrate applications

We define a pervasive application as a front-end for one
or more distributed services. In this context, a service is a
functional component published on the network, while an

2http://www.facebook.com/

229

application corresponds to an end-user interface that inter-
acts with services in its back-end. The ensemble of a service
and its embedded user interface such as a UPnP service
with a HTML presentation page can be considered as an
application as well. We focus on applications because users
are already accustomed to add, remove and use applications
on desktop computers. An application in Pervasive Maps
is identified by a URL from where its presentation can
be downloaded and has extra properties that specify the
type of user interface (e.g. HTML or VoiceXML), version
information, etc. The PM editor can discover applications
on the network (i.e. service and user interface ensembles)
and includes an installer for third-party applications. We
use AJAX-based applications since they run on almost every
device with a Web browser. A distinction is made between
private and public applications.

A private application runs in the resource’s firmware and
is exclusively used to control the resource it resides on. For
example, an application embedded in a kitchen appliance is
private, as it can only be used to steer that appliance and
e.g. not a similar one which will run its own copy of the
application. A shared application runs on any computing
device from where it can operate other resources, similar
to a word processor that can open and save documents on a
network. An example is a light application that takes as input
a light resource whose state it can observe and change. Pub-
licly available (Web) applications such as a weather forecast
service or an online recipe book can be considered shared
applications as well. Private applications are associated with
a single resource, while shared applications can operate a
range of similar resources or are resource-independent.

We relate resources with applications through meta-data:
tags attached to resources and applications are matched at
runtime. A positive match indicates that an application can
receive a resource as input parameter (see section III-C).

C. Tag and search

The environment model is further enriched with semantics
describing the integrated resources and applications. End-
users can attach isa tags to resources that describe the type of
the resource, e.g. a fridge, a movie collection, etc. Likewise,
applications can be annotated with domain and resource
tags. Domain tags describe the domain of an application
(e.g. ‘cooking’, lights’, etc) and are used to categorize
applications. Resource tags, on the other hand, help to
link resources and applications on the fly. For example, an
application with resource tag ‘kitchen appliance’ will be
associated with all resources tagged as ‘kitchen appliciance’.

We use the WordNet lexicon3 to disambiguate between
the different meanings a word might have. When tagging a
resource or application, the user enters a keyword which is
looked up in the WordNet lexicon. The user then selects the

3http://wordnet.princeton.edu/

intended meaning of the word from a list of word senses
which is attached as a tag to the resource. The linguistic
relations that apply between words can then be exploited to
search for resources and applications. For example, an appli-
cation tagged with the keyword ‘light’ semantically matches
a search term ‘lamp’, provided that both keywords are used
in the same sense (i.e. a source of illumination). Similar, a
keyword ‘piano’ will match a tag ‘musical instrument’ as
the former is a hypernym of the latter.

IV. EXPLORING THE ENVIRONMENT

An environment model created using the PM editor is
rendered as a Web interface optimized for mobile devices.
This interface provides access to the available applications,
either by selecting them from a menu or by browsing through
the graph of places, sights and resources.

A. Application-based navigation

Pervasive applications can be accessed in a traditional way
from a list of application names and icons. However, since
applications dynamically become (un)available, the list of
applications can grow long, making navigation difficult. To
overcome this, we render a tag cloud from the different
domain tags an application has assigned, as depicted in
figure 3. Domain tags automatically categorize applications
and allow end-users to locate applications even without
knowing their names. This is particularly useful to find
applications related to a certain domain such as cooking or
to find an application suitable for a certain task such as
adjusting the temperature.

Figure 3. Applications are organized by their tags. An online recipe book
that was integrated in the environment as a shared application is found
using a ‘cooking’ domain tag and can be linked with e.g. an oven via a
resource tag.

B. Resource-based navigation

Resources are either listed or shown on top of a map.
In the list view, places act as folders that hold resources;
navigation is menu-based. Opposed to this, the map view is
photo-based: users navigate places and sights by selecting
interactive parts on floorplan and sight images. For example,
a door marked on a photo showing part of the kitchen might
point to the living place. Images reveal available, possibly
invisibly embedded resources in the environment that can
be accessed from anywhere. To highlight resources, we
render photos semi-transparent and overlay them with solid

230

Figure 4. A combination of list- and photo-based views provide access to the resources embedded in the environment. From left to right, these views
show a list of places and resources; an interactive floorplan of a place with a sight reference on it; an interactive sight on which resources are marked; a
list of applications associated with a selected resource.

pictures of resources. In dense places with many resources,
z-orderings help to differentiate between nearby resources
and resources further away. However, we acknowledge that
we currently do not take into account resources which are
completely occluded by other resources; this situation should
be avoided when taking a picture, if possible.

Figure 4 illustrates the concept of resource-based navi-
gation: different views of the environment help to locate
resources and find relevant applications. Note that users can
switch between list and map views on the fly; the navigation
context is preserved. One can zoom and pan floorplan and
sight images, making them usable on devices with a limited
screen size as well. In the environment depicted in the
figure, we attached a resource tag labeled ‘kitchen appliance’
to applications related to the domain of cooking. These
applications thus become associated with real-world kitchen
appliances such as an oven – tagged as ‘oven’, a hyponym
of ‘kitchen appliance’. When navigating to a resource and
selecting one of its related applications, the application is
loaded with the resource as input so that the application can
adapt to the context of use. For example, when opened with
an oven resource, the recipes application shown in figure 3
could only suggest oven dishes.

C. Location and orientation tracking

Context-awareness and in particular location-awareness is
considered key for interaction with pervasive environments.
Indoor tracking systems are still being investigated exten-
sively in order to improve their accuracy and to reduce costs
and setup time. Due to the diversity of real-time positioning
techniques (e.g. RFID-based such as LANDMARC [7] or
Wifi-based as discussed in [2]) we have not considered a
default solution, but rather outline how different solutions
could be used in conjunction with resource-based navigation
in Pervasive Maps. The places and sights that are part of
an environment include spatial markers as a special type of
meta-information. These markers can be assigned arbitrary
data and are added to a place’s floorplan using the PM editor.
For example, when used in combination with an RFID-based

tracking system, the RFID-tag in the real-world would be
matched with a spatial marker in the digital world having
the same identifier. Location data is then obtained from the
digital marker such as the place it is part of and its relative
position w.r.t. this place. Tracking solutions that rely on
signal strength (e.g. wifi-based solutions) can use spatial
markers as reference points to store sample data. In this
case, a place is overlay with (a grid of) location markers,
depending on the tracking system at hand. Algorithms trans-
lating real-time positioning data into user-centric location
information run as services on a user’s handheld device. By
walking through the real-world environment with a spatial
tag that can be tracked by a positioning system and marking
the current location on a floorplan using a mobile computing
device, end-users can learn the pervasive computing system
to become location-aware.

Apart from location, the direction someone is pointed
to gives insight into the resource(s) one is facing. This
information can be exploited to list just those resources one
is looking at, or to present a sight matching the user’s view
in the real-world that reveals the available resources on a
digital photo.

D. Augmented reality
An environment modeled using PM can be considered a

virtual environment in which resources, sights and places
refer to the real-world. By embedding tags in the physical
environment that refer to the virtual environment, digital and
real worlds get intertwined. These tags can then be used for
several purposes:
• Locate oneself in an unfamiliar environment, similar to

‘I am here’ information panels. Scanning a tag shows
information about the current place the user is in.

• Access the digital dimension of a resource. Scanning the
tag pops up a list of applications related to the resource.

• Create a dedicated ‘start menu’ in the real world com-
posed of tags. Scanning a tag loads an application.

Augmenting one’s surroundings with digital references con-
tributes to an enhanced interaction experience [11], [4]. Al-

231

though PM does not require an environment to be augmented
with digital artifacts, users can benefit from augmented
places, e.g. to avoid navigation in the virtual world.

V. PERVASIVE MAPS ARCHITECTURE

Many pervasive software architectures are service-
oriented and not application-oriented, meaning they offer
programmatic access to distributed functionalities, but lack
a proper integration of user interfaces that make features
available to end-users. Although service frameworks such
and UPnP offer support for attaching UIs to services (e.g.
through a presentation URL), their main focus is on discov-
ery and control interfaces. In Pervasive Maps, however, the
main focus is on end-user applications (i.e. user interfaces)
which rely on one or more services in their back-end. The
architecture of PM consists of three major parts:
• PM host: The PM host platform is installed on a computer

connected to the environment’s internal network, denoted
as the PM gateway. It serves a Web interface that provides
access to the environment’s resources and applications.

• PM client: A PM client platform is optionally installed
on personal devices. It assists end-users in seamlessly
accessing a PM environment by taking away the need to
start a Web browser and manually browse to a PM host.

• PM editor: The PM editor is a design and configuration
tool for the PM host (see section III). It generates an en-
vironment model from user input, includes an application
installer and supports basic user administration.

A. Pervasive Maps host

The PM host is a modular platform written in Java with
a built-in Web server. The core task of the PM host is
to serve a dynamic Web interface for interacting with the
environment. This interface is rendered from an environment
model provided by the PM editor. It communicates through
Javascript and JSON with its Java-based back-end imple-
mentation, just like any other deployed Web application.
When a resource is opened with an application, the resource
object is serialized into a compact JSON variant (known as
‘RISON’) and attached as a parameter to the application’s
URL so that an application can quickly validate its input
and execute. An authentication component is used to identify
the users connected to an environment. Apart from security
reasons, the notion of users and the devices they are using
is useful information for context-aware applications [3].

B. Pervasive Maps clients

Personal devices, denoted as A resources according to
the classification in section III-A, fulfill a double role in the
environment: they primarily act as a means for interacting
with the environment but also offer a computing platform
on which services can be installed. To access the PM
Web interface from a device, no other software but the
device’s native Web browser is required. However, since

the IP address of the PM host gateway might be unknown,
we install a minimal PM client application on personal
computing devices that discovers a PM host and forwards
its presentation URL to a Web browser. In addition, PM
clients can be extended with plugins to access the device’s
hardware/sensors. For example, we extended an iPhone PM
client with a plugin to support scanning QR tags with the
phone’s built-in camera. Other plugins can be developed to
further exploit the interaction capabilities of a device.

VI. CASE STUDIES

As a first evaluation of our system we have implemented
two case studies, depicted in figure 5. The first case study
addresses the scenario of a user visiting an interactive
museum. In this scenario, the user explores and interacts
with artifacts in the museum, both from within the physical
museum as from a remote location. The second case study
discusses a pervasive application to enhance the experience
of playing a musical instrument with projected music scores.

Figure 5. An iPhone running the PM Web interface is used to interact
with a museum environment and to select and navigate digital scores.

A. Museum environment

We augmented a lab environment with ancient historical
objects such as old vases to simulate a single room mu-
seum. The Pervasive Maps framework was deployed on a
computer in our museum with two applications installed:
one application provides a user interface to control the
background music playing in the museum and the other
one uses Wikipedia to provide background information about
the museum’s artifacts. Using the PM editor, we designed a
place ‘museum’ and different resources tagged as ‘artifact’
that correspond to the objects in the museum. As a first
experiment within this case study, we asked 8 participants
with different backgrounds to take pictures of the museum
using a digital camera and to integrate and annotate these
as sights in the virtual environment. This included marking
the various artifacts on the image and linking them with
resources we previously integrated. Next, we asked them
to remotely visit the museum over the internet, using their

232

own laptop and preferred Web browser. To guide the visit,
we posed a few questions about the artifacts in the museum.
The answer to these questions could be found by opening
an artifact with the Wikipedia application. Furthermore we
asked test users about the background music that was playing
in the museum, which they could find out by navigating to
an application tagged ‘music’.

In a second experiment, we attached printed QR-codes to
the artifacts in the museum to identify them in the digital
world. These codes were generated from the artefact’s URIs
using the BeeTagg online code generator4 which automat-
ically optimizes the size of a URI to fit on a QR-code.
We also added QR-tags on the four walls of the museum
room which correspond to spatial markers. Using the PM
editor, we integrated spatial markers on the room’s floorplan
and added a compass heading to each of them. In ‘map
mode’, the spatial information obtained by scanning a spatial
marker is used to pan and rotate the place’s floorplan. In
‘sightseeing mode’, the spatial context of the user is used
to select the nearest sights the user’s device is pointed to.
We asked the same participants of the previous experiment
to physically visit the museum using an iPhone with the
BeeTagg reader application installed. When a QR-code is
scanned, the BeegTagg reader translates the code into a URI.
This URI is then passed as a parameter to the PM Web
interface which is loaded in a browser.

After these experiments we presented the participants
with a survey in which they had to indicate their degree
of agreement with a number of statements on a five-point
Likert scale. The statements and results of the survey are
presented in table I. We only included average results since
the distributions of responses were all consistent with a
standard deviation of less than one. Results acknowledge
that the PM editor is still a prototype application and needs
usability upgrades. Nevertheless, users were able to create
a digital museum environment and interact with it through
a Web browser. They particularly stressed their interest in a
PM user interface for their own places.

B. Digital scores

In this case study we focused on the integration of
a dedicated prototype application in Pervasive Maps. We
designed a scalable pervasive application for musicians that
displays digital scores in the physical environment which
assist them with playing their instruments. The setup of the
environment is as follows. The PM software is installed
on a gateway computer and its Web interface is accessed
through an iPhone. A small PC running a linux-based OS
is connected to a projector aimed at the wall above a piano.
The computer runs a UPnP service implemented in less than
50 lines of Perl code that exports a control interface for
navigating PDF documents. The service leverages XPDF as

4http://www.beetagg.com/

Statement Result
S1 It was easy to learn how to use the PM editor. 3.0

S2 Taking pictures of the museum and annotating them
in the PM editor was a positive experience. 3.2

S3 Interacting with the museum from a Web browser felt
intuitive. 3.8

S4 I had no difficulties in finding more information about
artifacts in the museum. 4.0

S5 I found it easy to find out what kind of music was
playing in the museum. 4.1

S6 A PM interface to observe and control resources in my
own house or apartment would be useful. 4.5

S7 I believe it is simple to map photos on the real world
and locate resources that can be interacted with. 3.0

S8 A combination of digital photos and physically tagged
resources improves interaction with the environment. 4.0

Table I
SURVEY STATEMENTS AND AVERAGE RESULTS.

document renderer and is published on the network using
a Perl UPnP DeviceManager implementation5. Incoming
control requests such as ‘SetDocument’ or ‘NextPage’ are
dispatched to Perl functions that pass data to an XPDF
process. Furhermore, we created ‘DigiScores’, an AJAX-
based Web application that provides access to an archive of
score documents indexed on title and composer. DigiScores
expects as input a PDF service for rendering scores and a
musical instrument to determine the type of scores needed,
as piano scores differ from guitar scores for instance. Service
and instrument type can be selected from the application’s
user interface along with preferred scores as shown in
figure 5. The set of available PDF services is discovered
using an integrated UPnP proxy which is also used to invoke
their functions. Listing 1 shows part of the JavaScript code
that initiates the DigiScores application.

Next, we modeled a PM environment that consists of a
single place, a living room, with a single sight showing a
piano which we marked and annotated with a WordNet tag.
The tag stipulates the marked area on the sight corresponds
to a piano in the sense of keyboard instrument, and not
to low loudness which is an alternative meaning of the
noun ‘piano’. Next, we installed the DigiScores application
via the PM editor and attached it a WordNet tag labeled
‘musical instrument’. Using the iPhone, we can now directly
access the DigiScores application via the PM application
menu. Alternatively, one can navigate to the piano resource
and ‘open it’ with the DigiScores applications whose tag
semantically corresponds with the one from the piano. While
the DigiScore application does not know about the piano
resource, the resource is linked with the current application
state, i.e. the selected PDF service, instrument type, last
scores, etc, which is automatically cached. By bookmarking
the piano as a QR tag and attaching it to the piano in
the real world, the DigiScores application becomes directly

5http://perlupnp.sourceforge.net/

233

accessible on the iPhone and will remember the correct
settings from a previous session.

var r = rison.decode object(params[’r’]); // input resource
for (var i=0; i<r.tags.length; ++i) // set instrument type

if (isSupportedInstrument(r.tags[i].lemma)
{ setInstrument(r.tags[i]. lemma); break; }

var e = pm.getEnvironment(); // reference to environment model
var xpdfs = pm.findServices(’upnp:xpdf’); // find services
for (var i=0; i<xpdfs.length; ++i) {

var d = e.getResourceById(xpdfs[i].runsOn);
var s = new XPDFService(xpdfs[i].URL);
addScoreDevice(d.name,s);

}

Listing 1. The DigiScores application initiates by analyzing its input and
discovering suitable services.

VII. CONCLUSIONS

We have presented Pervasive Maps as an approach to
explore and interact with a pervasive environment using
mobile devices. Our approach is inspired by desktop op-
erating systems in which a file explorer and a start menu
are indispensable tools. We introduce similar tools for inter-
action with a pervasive computing environment based on a
classification of the different types of resources that inhabit
a typical environment and the observation that pervasive
services are often invisible background processes instead of
applications with an end-user interface. We developed a tool
that enables end-users to model their own environment by
taking pictures and annotating these with extra information.
The places and resources identified in the modeling phase
can then be explored and interacted with through a Web
interface, also from remote locations. Furthermore, we can
improve co-located interaction by embedding tags such
as QR codes in the physical environment which refer to
resources or applications in the digital environment.

A first user study pointed out that the appreciation factor
of Pervasive Maps is high, although the PM editor still lacks
a satisfactory stage of usabilty. To improve the modeling
tool, users suggested to inlude a step-by-step wizard for
creating a digital version of their environment.

REFERENCES

[1] Universal Plug and Play (UPnP). http://www.upnp.org/.

[2] Yiqiang Chen, Zhuo Sun, Juan Qi, Derek Hao Hu, and
Qiang Yang. LoSeCo: Location-based Search Computing for
Pervasive Device Augmentation. In Proc. of the 7th IEEE
Int. Conf. on Pervasive Computing and Communications
(PERCOM’09), pages 1–6. IEEE Computer Society, 2009.

[3] Anind K. Dey. Understanding and Using Context. Personal
and Ubiquitous Computing, 5(1):4–7, 2001.

[4] Alois Ferscha and Markus Keller. Real Time Inspection of
Hidden Worlds. In Proc. of the 7th IEEE Int. Symposium
on Distributed Simulation and Real-Time Applications (DS-
RT’03), pages 51–59. IEEE Computer Society, 2003.

[5] Robert Grimm. One.world: Experiences with a Perva-
sive Computing Architecture. IEEE Pervasive Computing,
03(3):22–30, 2004.

[6] Ali A. Nazari Shirehjini. A novel interaction metaphor for
personal environment control: direct manipulation of phys-
ical environment based on 3D visualization. Computers &
Graphics, 28(5):667–675, 2004.

[7] Lionel M. Ni, Yunhao Liu, Yiu Cho Lau, and Abhishek P.
Patil. LANDMARC: Indoor Location Sensing Using Active
RFID. In Proc. of the 1st IEEE Int. Conf. on Pervasive
Computing and Communications (PERCOM’03), pages 407–
415. IEEE Computer Society, 2003.

[8] Jeffrey Nichols and Brad A. Myers. Controlling Home
and Office Appliances with Smart Phones. IEEE Pervasive
Computing, 5(3):60–67, 2006.

[9] Hubert Pham, Justin Mazzola Paluska, Umar Saif, Chris
Stawarz, Chris Terman, and Steve Ward. A Dynamic Platform
for Runtime Adaptation. In Proc. of the 7th IEEE Int. Conf. on
Pervasive Computing and Communications (PERCOM’09),
pages 1–10. IEEE Computer Society, 2009.

[10] Shankar Ponnekanti, Brian Lee, Armando Fox, Pat Hanrahan,
and Terry Winograd. ICrafter: A Service Framework for
Ubiquitous Computing Environments. In Proc. of the 3rd Int.
Conf. on Ubiquitous Computing (UbiComp’01), pages 56–75.
Springer-Verlag, 2001.

[11] Jun Rekimoto and Katashi Nagao. The World through the
Computer: Computer Augmented Interaction with Real World
Environments. In ”Proc. of the 8th ACM Symposium on User
Interface Software and Technology (UIST’95)”, pages 29–36,
1995.

[12] Tracy Ross, Andrew J. May, and Simon Thompson. The
Use of Landmarks in Pedestrian Navigation Instructions and
the Effects of Context. In Proc. of the 6th Int. Conf.
on Human-Computer Interaction with Mobile Devices and
Services (MobileHCI’04), pages 300–304, 2004.

[13] Genta Suzuki, Shun Aoki, Takeshi Iwamoto, Daisuke
Maruyama, Takuya Koda, Naohiko Kohtake, Kazunori
Takashio, and Hideyuki Tokuda. u-Photo: Interacting with
Pervasive Services Using Digital Still Images. In Proc. of
the 3rd Int. Conf. on Pervasive Computing (PERVASIVE’05),
pages 190–207, 2005.

[14] Johannes Schning; Keith Cheverst; Markus Lchtefeld; Anto-
nio Krger; Michael Rohs; Faisal Taher. Photomap: Using
Spontaneously taken Images of Public Maps for Pedestrian
Navigation Tasks on Mobile Devices. In Proc. of the 11th Int.
Conf. on Human-Computer Interaction with Mobile Devices
and Services (MobileHCI’09). ACM, 2009.

[15] Geert Vanderhulst, Kris Luyten, and Karin Coninx. ReWiRe:
Creating Interactive Pervasive Systems that cope with Chang-
ing Environments by Rewiring. In Proc. of the 4th IET Int.
Conf. on Intelligent Environments (IE’08), pages 1–8, 2008.

[16] Mark Weiser. The computer for the 21st century. Scientific
American, 265(3):66–75, 1991.

234

