
Jelly: A Multi-Device Design Environment for Managing
Consistency Across Devices

Jan Meskens Kris Luyten Karin Coninx

Hasselt University – tUL – IBBT
Expertise Centre for Digital Media

Wetenschapspark 2, B-3590 Diepenbeek, Belgium
{jan.meskens,kris.luyten,karin.coninx}@uhasselt.be

ABSTRACT
When creating applications that should be available on mul-
tiple computing platforms, designers have to cope with dif-
ferent design tools and user interface toolkits. Incompati-
bilities between these design tools and toolkits make it hard
to keep multi-device user interfaces consistent. This paper
presents Jelly, a flexible design environment that can target
a broad set of computing devices and toolkits. Jelly enables
designers to copy parts of a user interface from one device to
another and to maintain the different user interfaces in con-
cert using linked editing. Our approach lowers the burden
of designing multi-device user interfaces by eliminating the
need to switch between different design tools and by provid-
ing tool support for keeping the user interfaces consistent
across different platforms and toolkits.

Categories and Subject Descriptors
H.5.2 [Information interfaces and presentation]: User
Interfaces – Graphical user interfaces, Prototyping

General Terms
Design

Keywords
Design tools, multi-platform GUI design, GUI builder

1. INTRODUCTION
The diversity of consumer computing platforms has be-

come a common fact these days. Porting applications across
different platforms implies the creation of a suitable User
Interface (UI) for each targeted computing device. Using
commercial design tools, this is a time consuming and cum-
bersome task since designers have to build every UI from
scratch for each computing device or toolkit. Instead of de-
signing every UI manually, researchers have proposed trans-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AVI ’10, May 25-29, 2010, Rome, Italy
Copyright 2010 ACM 978-1-4503-0076-6/10/05 ...$10.00.

Figure 1: The Jelly multi-device design environment
enables designers to copy UI elements across devices
and to maintain the content of these copies in con-
cert.

formation approaches that automatically generate a suitable
UI for every platform [21, 8, 16]. However, besides a few spe-
cific application domains [19, 8], these approaches are mostly
hard to control and often generate undesired results [17].

Due to the problems with automatic UI generation, de-
signers refuge to manually designing UIs and need to master
different design tools for different target platforms. Switch-
ing between design environments can be disorienting (e.g.
if consistency among platforms is important), but also the
different styles for designing interfaces and the incompatibil-
ities between design environments causes problems [9]. The
lack of interoperability between design tools makes it hard
to reuse UI elements across devices and to keep the content
of multi-device UIs consistent [13, 14]. UI content can be
for example the text of a button or the items in a container
widget.

To overcome the aforementioned issues when designing
cross-device UIs manually, it would be beneficial if design-
ers could create UIs for different computing platforms and
toolkits inside one design environment which has the ability
to share and edit parts of UIs across devices. We introduce
Jelly (see Figure 2), a UI design environment manifesting
this idea.

The three contributions to multi-device UI design research
presented in this paper are (see Figure 1):

• The Jelly design tool to design UIs for multiple com-
puting platforms (see Figure 1, left). The cornerstone
of this design tool is a flexible architecture that can
target a broad set of computing platforms and toolk-
its including mobile phone toolkits such as Android or
Windows Mobile, web toolkits such as Adobe Flex, and
PC-based toolkits such as Java Swing and the Win-
dows Presentation Foundation (WPF). Jelly is tightly

Figure 2: Jelly is a multi-device graphical UI design environment that allows designers to copy UI elements
across different UI toolkits and platforms.

coupled with device emulators, which facilitates UI
testing without deployment time.

• A cross-device copy extension to Jelly, allowing design-
ers to copy parts of a UI across devices (see Figure 1,
middle). For copying UI elements between device spe-
cific toolkits, Jelly employs an abstract UI description
under the hood. This higher level of abstraction en-
ables Jelly to compute how the copied element can be
represented on a different device that has a different
toolkit.

• Linked editing, a technique that allows designers to edit
the content of UI elements across devices in concert
(see Figure 1, right). This technique originates from
the CodeLink [23] programming editor where it enables
programmers to modify duplicated source code. In
Jelly, linked editing is employed to keep the content of
duplicated UI elements consistent across different UIs
on multiple devices.

2. FIELDWORK
To learn about the existing needs for supporting multi-

device UI design, we met with 9 UI design professionals
across four different design companies. During these meet-
ings, we stimulated discussion about future multi-device tool
support by demonstrating the existing Gummy [15] multi-
device GUI builder. This GUI builder employs a sequential
design approach, where designers first design a UI for one
single platform. When targeting another platform, Gummy
transforms this design into an initial design for the new plat-
form. Designers can then refine this design to reach the
desired result.

All of the UI design professionals rejected a tool that au-
tomatically transforms UIs from one platform to another.
They argued that mobile device UIs often support differ-
ent requirements than desktop UIs. When automatically
transforming a complete UI from one device to another, it
would be difficult to take these differences into account. In-
stead of transforming complete UIs, several designers noted
that transforming parts of a UI might be a better approach.
This requires a tool that supports a parallel design approach,
where designers edit UI designs for multiple devices in par-
allel.

The designers stressed the importance of testing during
the UI design process. Testing helps to discover how a UI
can anticipate on target device constraints such as display
size, screen resolution and interaction mechanisms. A bar-
rier when testing UIs is the time it usually takes to deploy
a design to a device or device emulator. One designer men-
tioned: “When building ITV applications, I connect my PC
directly to the TV screen. This increases development time
because the application can be compiled and tested directly
on the PC instead of using the slow deployment process on
the ITV emulator”. This testing barrier is similar to the in-
formation barrier in end user programming as identified by
Ko et al. [12], and the need for testing tool support in UI
design as identified by Grigoreanu et al. [9].

Several designers noted the limitation of Gummy to tar-
get only form-based UIs. Especially web designers would like
to work with customised interface controls since this allows
them to emphasise certain parts of a website. A common
desire of these designers is to reuse components that were
created with existing design tools inside a multi-device de-
sign environment. This desire is consistent with a large scale

survey of 259 designers conducted by Myers et al. [18], which
showed that reusing UI components across design projects
is common practice these days.

Most of the designers we interviewed were regularly fac-
ing problems to manage consistency across multi-device UIs.
One designer mentioned that “it would be great to have a
more powerful CSS that can adjust a website from one de-
vice to another while preserving its content”. Lin et al. also
found that designers experience manual consistency man-
agement as a major burden [14].

3. JELLY
Building on what we learned during the fieldwork, we cre-

ated Jelly: a tool for designing multi-device GUIs. This
section gives a detailed description of Jelly’s user interface
and its usage model.

3.1 Multiple Design Workspaces
Jelly’s user interface is subdivided in several individual

design workspaces. When starting up Jelly, the target plat-
forms have to be selected and for each of these platforms a
design workspace will be loaded. Workspaces can be ac-
cessed through a tabpage at the top of the design envi-
ronment. For example, Figure 2 shows Jelly for designing
Adobe Flex webbased UIs and UIs for handheld devices on
top of the Windows Mobile .NET UI toolkit. At any time
in the design process, designers can add additional target
platforms.

A design workspace in Jelly is not that different from most
traditional GUI builders. It contains a toolbox showing the
available user interface elements (see Figure 2-B), a canvas
to build the actual user interface (see Figure 2-C), a tree
view showing the UI design structure (see Figure 2-D) and
a properties panel to change the style properties of the user
interface elements on the canvas (see Figure 2-E). Jelly also
contains a content panel to modify the contents of a selected
UI element (see Figure 2-F).

3.2 Parallel UI Design
Jelly supports a parallel design approach. Throughout

the design process, designers can always switch between
workspaces. Every UI design workspace is structured in the
same way, which does not force designers to learn new tools
and different usage models when targeting a new platform.
Designers can also transfer UI elements from one workspace
to another, which is a unique feature since design tools for
different toolkits are often incompatible.

Using Jelly’s parallel design approach, a designer can for
example start by selecting the Windows Mobile workspace
(see Figure 3-step 1) and drag a combobox from the toolbox
to the canvas. The combobox is now visualised on Jelly’s
canvas and is surrounded by a manipulator (see Figure 3-
step 2). This manipulator enables designers to manipulate
a component’s size and position using direct manipulation.
The designer can now copy this element by right clicking
on it and selecting the copy option in the context menu
(Figure 3-step 3). Next, she can switch to the Adobe Flex
workspace through the corresponding tab (Figure 3-step 4).
In this workspace, the designer can now right click on the
canvas and select the “paste as” option (see Figure 3-step
5). Here she can select how the element on the clipboard
should appear in a different toolkit on a different device. By
selecting for example the “fish-eye view” option in this list,

the copied combobox will be added as a fish-eye view to the
Adobe Flex design. This fish-eye view is a custom horizontal
listbox that enlarges the items below the mouse cursor.

3.3 Managing Consistency with Linked Edit-
ing

When an element is copied from one platform to another,
Jelly considers these elements as being linked to each other.
Jelly enables designers to edit the content of these elements
in concert using the linked editing mechanism. This way,
designers can ensure the consistency of UI content across
different devices and toolkits.

For example, when copying a combobox element from the
Windows Mobile design environment as a fish-eye view se-
lection element in Adobe Flex, Jelly will recognise and re-
member these are linked. When the fish-eye view is selected,
its properties can be modified in the content panel just as
would be the case in a regular environment (see Figure 3-
step 6). When the linked editing option is on (presented by
a checkbox in the design environment), these properties will
be changed for the Adobe Flex fish-eye view as well as for the
Windows Mobile combobox. Afterwards, both components
will contain the same contents.

3.4 Instant UI Testing
Jelly is closely integrated with device emulators (see sec-

tion 4.1) and allows designers to test their designs contin-
uously with a minimal deployment time. Clicking on the
“test designs” button (see Figure 3-step 7) will immediately
show a running version of the UI designs . Testing mostly
happens on the same PC as the design environment, for in-
stance inside a device emulator. For example, the fish-eye
view can be quickly tested inside a web browser while the
Windows Mobile design is running in a device emulator (see
Figure 3-step 8).

Emulators are important tools, since they provide the de-
signer with a relatively precise approximation of the targeted
device context. When building UIs for mobile devices (e.g.
smartphones running Android or Windows Mobile), the em-
ulators are used during the design activities and often for
early evaluations. They are clearly indispensable tools to
get the design right for a particular platform. This is not
different from how designers create website designs: these
designs are first rendered “offline” in different web browsers
for evaluation and testing purposes.

In the end, designers can use Jelly to deploy their designs
to the actual target device. This way, designers can check
if a design works well with device specific constraints such
as touchscreen sensitivity, screen resolutions or processing
power. Standard components like buttons or comboboxes
have a very predictable behaviour, but complex custom com-
ponents like the fish-eye view might be more difficult to han-
dle on certain platforms.

4. ARCHITECTURE
This section describes the details for realizing a multi-

device UI design environment that can target a broad set of
computing platforms.

4.1 See-Through Interface
The Jelly design environment is inspired by the see-through

interfaces [3] described by Bier et al. The canvas in Jelly’s
design workspace is a semi-transparant panel that is placed

Figure 3: Jelly supports a parallel UI design approach across devices in combination with “linked editing” to
maintain the consistency of multi-device UI content

Figure 4: Jelly’s see-through interface approach.

on top of a running version of the currently designed GUI
that is hosted by a rendering engine (see Figure 4). When
a designer makes changes to a UI design in Jelly, the design
modifications are communicated to this rendering engine.
The latter will then update the running GUI accordingly,
which can be perceived through the semi-transparant can-
vas.

The see-through interface approach gives Jelly the re-
quired flexibility to target a broad set of computing devices.
The rendering engine is loosely coupled to the design tool
and can be implemented in any programming language, it
just has to be placed behind the design tool’s canvas run-
ning in a device emulator, in a webbrowser, or directly on
the same PC as Jelly. Currently, we have implemented ren-
dering engines in three different programming languages for
different platforms (see Figure 5): an Action Scripting (AS3)
rendering engine for producing web based Adobe Flex UIs, a
.NET rendering engine for targeting desktop and Windows
Mobile UIs and a Java rendering engine for designing Google

Android mobile interfaces.
In Jelly, the UI deployment time is reduced dramatically.

During UI design, Jelly automatically aligns the rendering
engine with the design canvas using Windows API calls.
When going to testing mode, Jelly brings the running GUIs
to the front. This reduces the deployment time for testing
a GUI to a few milliseconds (i.e. the time needed to bring
a window in front). A designer can easily go back to design
mode by clicking on the design button.

4.2 Implementation
Jelly’s design-tool and rendering engine are designed as a

three-tier architecture (see Figure 6) having a user interface,
data and network layer. Before discussing the details of each
layer, we describe the pipeline that is used to exchange in-
formation between the design tool and the rendering engine.

Communication pipeline. Each time a designer alters
the UI design in the design tool (see Figure 6 - 1), the inter-
nal representation of this UI is adapted in the data layer (see
Figure 6 - 2), and sent to the rendering engine over the net-
work layer (see Figure 6 - 3). When receiving this message,
the rendering engine updates the internal UI representation
in its data layer (see Figure 6 - 4). Next, the running GUI
will be updated accordingly to make this change visible (see
Figure 6 - 5). Updating a running GUI implicitly reevalu-
ates the GUI’s layout managers which may change layout
properties of several UI elements. These changes are stored
in the rendering engine’s data layer (see Figure 4 - 6) and
sent back to the design tool through the network layer. The
design tool will then update its internal data representation
(see Figure 4 - 7) and finally its design workspace.

Figure 5: Jelly’s canvas is a semi-transparant window that is placed on top of a UI rendering engine.

Figure 6: Detailed view on the communication be-
tween the design tool and the runtime GUI, hosted
by a rendering engine.

The user interface layer contains the design tool’s UI
implemented in .NET using the Windows Presentation Foun-
dation (WPF) toolkit. On the rendering engine side, the
user interface layer consists of the running version of the
currently designed GUI. This running GUI is located be-
hind the transparant canvas of the design tool.

The data layer employs a tree datastructure to describe
the currently designed UI. The design tool uses the UI datas-
tructure to build up its treeview, properties- and content
panel. In the rendering engine, this datastructure is used to
update and visualise the running GUI. This tree is inspired
by the User Interface Markup Language [11] and describes
a UI in a toolkit- and device-independent way. Each node
in the tree corresponds to a UI element and describes the
element’s name, toolkit mapping, content, properties and
bounding box. The properties and the element’s content
are described by their names, toolkit mappings and values.
Mentioning the toolkit mappings explicitly enables Jelly to
extend the number of supported components dynamically
with new custom components. Figure 7 shows a snippet of
Jelly’s internal tree datastructure for an Adobe Flex UI.

Figure 7: Jelly’s internal representation of an Adobe
Flex UI.

Before sending a piece of this tree through the network
layer, it is serialised in the Javascript Object Notation (JSON)
or XML. The former facilitates the development of web-
based rendering engines (e.g. the Adobe Flex rendering en-
gine), while the latter is mostly employed by native platform
rendering engines such as for the Android or .NET toolkits.

An important point in our architecture is the network
layer that enables the rendering engine and design tool to
exchange information. This requires a communication pro-
tocol that is available in multiple programming languages
and on multiple platforms. We chose for the IETF stan-
dard Extensible Messaging and Presence Protocol (XMPP).
Pierce et al. [22] have shown that this instant messaging
protocol provides the required functionalities and flexibil-
ity to build cross-platform distributed applications. Several
open-source XMPP libraries exist in different programming
languages, which simplifies the development of new render-
ing engines. In our rendering engines, we used the XIFF 1

library for AS3, AGSXMPP 2 in .NET and Smack 3 in Java.

5. REMAPPING UI ELEMENTS
When copying a UI element from one device to another,

Jelly needs to remap the copied UI element to a suitable
element in the other device’s toolkit. First, Jelly computes
all elements in the new device toolkit that are similar to
the original UI element and allows the designer to select one
of these elements through the “paste as. . . ” menu. Jelly

1http://www.igniterealtime.org/projects/xiff/
2http://www.ag-software.de/agsxmpp-sdk.html
3http://www.igniterealtime.org/projects/smack/

adds an instance of the selected element to the current de-
sign workspace and gives it the same content as the copied
element.

In order to compute elements similar to the copied ele-
ment, Jelly adopts a similar approach as the user interface
semantic networks described by Demeure et al. [6] and Ver-
meulen et al. [25]. These UI semantic networks describe the
relationship between concrete UI components and Abstract
Interaction Objects (AIOs). AIOs describe UI components
independently of any platform and interaction modality (e.g.
graphical, vocal, tactile, ...) [24]. When copying an element
from one device to another, the corresponding elements on
the other device can be computed by asking the semantic
network for components that are linked to the same AIO as
the copied element on the first device.

Jelly loads its UI semantic network from a custom XML
format. Storing the network in an external XML file allows
adding new (custom) controls to the network at any time.
Our network employs the same set of high-level AIO types
as described by Vermeulen et al. [25]. These AIOs are dif-
ferentiated according to the functionality they offer to the
user: (1) input components allow users to enter or manipu-
late content; (2) output components present content to the
user; (3) action components allow users to trigger an action;
and finally (4) group components group other components
into a hierarchical structure.

When querying our UI network to find components sim-
ilar to a given component, we look for all components that
have the same AIO type (i.e. input,output,action or group)
and have the same content datatype as the given compo-
nent. Currently, we support the five primitive types of
XML Schema (e.g. decimal, string, void, etc.), a number of
datatypes that are often used in user interfaces (e.g. Image,
Colour, etc.) and container datatypes that group content
items of a certain type together (e.g. a list of strings, a tree
of images, etc.).

For example, assume we are querying our network for all
Adobe Flex components that can represent a Windows Mo-
bile combobox. Since the combobox is linked to an input
AIO, the network is first searched for all Adobe Flex com-
ponents that are linked to an input AIO. This returns a
huge list of controls such as checkbox, spinbox, listbox, com-
bobox, fish-eye view, etc. Secondly, this list is searched for
all components that support the same datatype as the Win-
dows Mobile combobox (i.e. a list of strings). This finally
results in three Adobe Flex components: listbox, combobox
and fish-eye view. These components are then displayed in
Jelly’s “paste as. . . ” menu (see Figure 3, step 4).

6. EVALUATION
We conducted a first informal use study of Jelly in order

to gain feedback about the usefulness of the tool and the us-
ability of the basic interactions, such as instant UI testing,
copying and pasting elements across devices and linked edit-
ing. Eight lab members participated in the study, all having
a reasonable level of experience with commercial user inter-
face design tools. Five of them had experience with UI de-
sign for other devices than desktop PCs such as multi-touch
tables or mobile devices.

One evaluation session was conducted per participant, and
each evaluation session consisted of three parts. First, the
participant was asked to read a written tutorial about the
Jelly design tool and its basic functionalities. The second

part was to get the participant used to interacting with
Jelly. We asked the user to add a component to one design
workspace, to copy this element to another workspace and
to adapt the contents of this element using linked editing.

The final task was a design task, where we asked the par-
ticipants to create a music player GUI for a Windows Mobile
device and an Adobe Flex website. We chose a music-player
since this is a well-known application that exists on many
devices with a reasonable variety in the different device spe-
cific UIs. The designers were provided with two mockup
sketches that gave them an idea of what we expected from
the music-player GUIs. The desired music player features
were for example selecting a song in a playlist, controlling
the volume of the music and navigating through a song.

During the experiment, a think aloud protocol was used
to understand the actions and decisions of the participants.
Additional questions were asked by the observers if neces-
sary. After the participants finished their task, they filled
out a questionnaire asking about Jelly’s core features such
as testing UI elements, copying UI elements and linked edit-
ing in terms of usefulness and ease-of-use. The participants
rated their usefulness and ease-of-use responses on 5-point
Likert scales ranging from “not very useful” to “very useful”,
and from “very difficult to use” to “very easy to use”.

6.1 Results and Feedback
Figures 8 summarises the results of the post-test question-

naire. From all features we tested in Jelly, the participants
ranked copying elements across devices as Jelly’s most useful
feature (mean=4.38, median=4.50, σ = 0.74). On the other
hand, the participants rated this feature as the most difficult
to use (mean=3.38, median=3.00, σ = 0.92). This seems to
indicate that users felt that this technique’s conceptual idea
was on target, but that its current implementation can be
improved.

Figure 8: Post-experiment questionnaire results.

Two participants suggested to distinguish between “triv-
ial copy operations” that copy a UI element to a very sim-
ilar element (e.g. copying a Windows Mobile button to an
Adobe Flex button) and “complex copy operations” where
an element is pasted as a very different widget (e.g. mi-
grating a Combobox as a fish-eye view). They would like to
do the straightforward copy operations for multiple items at
the same time, while doing complex copy operations one-by-
one. Another participant wanted to have more visual feed-
back about the component that is currently stored on the
clipboard: “it would be great to have a ‘paste X as Y or Z’
option, where ‘X’ is the component on the clipboard and ‘Y’
or ‘Z’ are candidate widgets to represent ‘X’ ”. The current
implementation of Jelly only migrates a component’s con-

tent when it is copied from one device to another. Several
users wanted to have the option to copy other properties as
well. One designer mentioned that “copying would be more
useful if the spatial layout would remain more or less intact”.

The participants also gave high marks to the usefulness
of Jelly’s instant testing feature (mean=4.13, median=4.00,
σ = 0.64) and gave this feature a fairly high usability rating
(mean=4.25, median=4.00, σ = 0.71). In the Adobe Flex
design, we noticed that almost each participant used a cus-
tom round range slider as a volume control for the music
player. Six participants switched to the testing mode after
adding this custom control and tested its behaviour in a web
browser. Most of the participants liked the instant switch
between test and design mode.

Jelly’s linked editing was also rated as useful (mean=4.13,
median=4.00, σ = 0.83) and easy to use (mean=4.25, me-
dian=4.00, σ = 0.46). During the post-test survey, several
participants noticed that this technique would be great dur-
ing software maintenance or updates of larger multi-device
projects. They also mentioned that inconsistency between
UIs mostly appears during software maintenance, where up-
dates are done in one version of the UI but not in the other
and vice versa.

7. RELATED WORK
Jelly draws on related work in two areas of research: auto-

matic user interface generation and multi-device UI design
tools. We discuss each area in turn.

7.1 Automatic User Interface Generation
Automatic user interface generation originates from model-

based systems such as XWeb [21], PUC [19], Teresa [16]
and Supple [7]. Rather than specifying a visual UI design
from scratch for each computing platform, these systems
allow designers to specify a UI only once by means of an ab-
stract model. The platform-specific UIs are then generated
automatically from this abstract description. Even though
model-based UI design can simplify the development of UIs
for multiple devices in a few specific application domains [19,
8], this technique can be daunting for designers. Design-
ers have to master a new language to specify the high-level
models and cannot control the look and feel of the result-
ing UI [17]. In Jelly, this problem is solved since designers
can directly alter the visual design instead of abstract UI
descriptions.

7.2 Multi-Device User Interface Design Tools
For creating multi-device UIs, designers can rely on de-

sign tools for cross-platform UI toolkits such as AWT [1]
or Qt [2]. UIs created with these toolkits can run on ev-
ery platform that is supported by the underlying toolkit.
This is benificial for targeting a wide variation of platforms,
but most of the cross-platform toolkits are subject to some
restrictions (e.g. speed of execution, user experience, avail-
ability of certain widgets, only available for a subset of plat-
forms...) [20]. Jelly takes it one step further: it can produce
consistent UIs for different platforms while using different
toolkits. Jelly is a design environment that supports design-
ing for a set of arbitrary computing platforms, regardless of
the availability of a cross platform toolkit that covers this
set.

Damask [14] is a UI design system that allows designers
to prototype multi-device UIs and employs layers to manage

the consistency of these UIs across devices. When adding a
component to the all devices layer, Damask uses an auto-
matic transformation to add a version of this component to
all devices. Jelly differs in two ways from this work. First,
Jelly does not use layers but enables designers copy compo-
nents across devices. Each time an element is copied from
one device to another, designers can select from a list of
available widgets how this element should look on the other
device. This provides more fain grained control over the
transformation process. Second, Jelly focuses on creating
running UIs on top of existing toolkits instead of sketching
low fidelity prototypes.

Existing design environments that can produce running
GUIs for multiple devices and toolkits are SketchiXML [4],
the mixed fidelity framework [5] and Gummy [15]. Each of
these systems provides designers with a GUI builder workspace
to shape UIs for multiple devices. Since Jelly also targets
the creation of one design environment for many comput-
ing platforms, its contributions are complementary. Jelly
goes beyond these multi-device design environments in two
ways: it contributes a novel design tool architecture that
can target a very broad set of computing platforms, and it
introduces a linked editing technique to keep the content of
UIs consistent across these different platforms.

Linked editing was first introduced by Toomim et al. in
the Codelink programming environment to edit duplicated
code fragments as one [23]. Hartmann et al. extended this
technique to maintain UI design alternatives in the Juxta-
pose programming environment [10]. Jelly shares the moti-
vation of the two aforementioned approaches to edit dupli-
cated items in concert. While Codelink and Juxtapose focus
on textual programming, Jelly integrates this technique in
a graphical design environment to edit the content of dupli-
cated UI elements across different platforms.

8. CONCLUSION AND FUTURE WORK
This paper presented a set of techniques to design and

manage UIs for multiple devices integrated in a single multi-
device UI design environment: Jelly. In Jelly, UIs can be
designed for multiple computing platforms in parallel. The
tool allows designers to copy elements from one device de-
sign canvas to another while preserving the consistency of
their content across devices using linked editing. Jelly’s un-
derlying architecture is designed to cover a broad set of com-
puting devices and facilitates instant UI testing using device
emulators. In an informal study with eight participants, we
found that they were enthusiastic about Jelly’s techniques
and would like to use such a system in their work.

Future research will explore how Jelly can be used for
designing interface behaviour that goes with the graphical
interface design. We will evaluate how designers and pro-
grammers can benefit from a multi-device design environ-
ment to add behaviour to their cross-platform UI designs.
This allows for the creation of more complex and complete
user interfaces.

Based on our current findings we continue the develop-
ment of Jelly and release it as open source software4. Thor-
ough validation is still needed to estimate the value of Jelly
in long-term multi-device UI design projects. Especially the
role of Jelly during the software maintenance phase seems
to be an important area for future research.

4http://research.edm.uhasselt.be/~jmeskens/jelly/

Acknowledgments
This research was funded by the AMASS++ (Advanced
Multimedia Alignment and Structured Summarization) project
IWT 060051, which is directly funded by the IWT (Flemish
subsidy organization).

9. REFERENCES
[1] AWT - Abstract Window Toolkit.

http://java.sun.com/products/jdk/awt/.

[2] Qt - Cross-platform application and UI framework.
http://qt.nokia.com/.

[3] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and
T. D. DeRose. Toolglass and magic lenses: the
see-through interface. In Proc. SIGGRAPH ’93, pages
73–80, New York, NY, USA, 1993. ACM.

[4] A. Coyette, S. Kieffer, and J. Vanderdonckt.
Multi-fidelity prototyping of user interfaces. In Proc.
INTERACT’07, 2007.

[5] M. de Sá, L. Carriço, L. Duarte, and T. Reis. A
mixed-fidelity prototyping tool for mobile devices. In
Proc. AVI ’08, pages 225–232. ACM, 2008.

[6] A. Demeure, G. Calvary, J. Coutaz, and
J. Vanderdonckt. The comets inspector. In Proc.
CADUI’06, pages 167–174, 2006.

[7] K. Gajos and D. S. Weld. Supple: automatically
generating user interfaces. In Proc. IUI ’04, pages
93–100. ACM, 2004.

[8] K. Z. Gajos, J. O. Wobbrock, and D. S. Weld.
Improving the performance of motor-impaired users
with automatically-generated, ability-based interfaces.
In Proc. CHI ’08, pages 1257–1266. ACM, 2008.

[9] V. Grigoreanu, R. Fernandez, K. Inkpen, and
G. Robertson. What designers want: Needs of
interactive application designers. In Proc.
VL/HCC’09. IEEE Computer Society, 2009.

[10] B. Hartmann, L. Yu, A. Allison, Y. Yang, and S. R.
Klemmer. Design as exploration: creating interface
alternatives through parallel authoring and runtime
tuning. In Proc. UIST ’08, pages 91–100. ACM, 2008.

[11] J. Helms and M. Abrams. Retrospective on ui
description languages, based on eight years´
experience with the user interface markup language
(uiml). IJWET’08, 4(2), 2008.

[12] A. J. Ko, B. A. Myers, and H. H. Aung. Six learning
barriers in end-user programming systems. In Proc. of
VLHCC ’04, pages 199–206, Washington, DC, USA,
2004. IEEE Computer Society.

[13] J. Lin. Using Patterns and Layers to Support the
Early-Stage Design and Prototyping of Cross-Device
User Interfaces. Dissertation, University of California,
Berkeley, 2005.

[14] J. Lin and J. A. Landay. Employing patterns and
layers for early-stage design and prototyping of
cross-device user interfaces. In Proc. CHI ’08, pages
1313–1322. ACM, 2008.

[15] J. Meskens, J. Vermeulen, K. Luyten, and K. Coninx.
Gummy for multi-platform user interface designs:
Shape me, multiply me, fix me, use me. In Proc.
AVI’08. ACM, 2008.

[16] G. Mori, F. Paterno, and C. Santoro. Design and
development of multidevice user interfaces through
multiple logical descriptions. IEEE Trans. Softw.
Eng., 30(8):507–520, August 2004.

[17] B. Myers, S. E. Hudson, and R. Pausch. Past, present,
and future of user interface software tools. ACM
Trans. Comput.-Hum. Interact., 7(1):3–28, 2000.

[18] B. Myers, S. Y. Park, Y. Nakano, G. Mueller, and
A. Ko. How designers design and program interactive
behaviors. In Proc. VLHCC ’08, pages 177–184,
Washington, DC, USA, 2008. IEEE Computer Society.

[19] J. Nichols, D. Horng Chau, and B. A. Myers.
Demonstrating the viability of automatically
generated user interfaces. In Proc. CHI’07. ACM,
2007.

[20] E. G. Nilsson. Combining compound conceptual user
interface components with modelling patterns - a
promising direction for model-based cross-platform
user interface development. In Proc. DSV-IS’02, 2002.

[21] D. R. Olsen, Jr., S. Jefferies, T. Nielsen, W. Moyes,
and P. Fredrickson. Cross-modal interaction using
xweb. In Proc. UIST ’00, pages 191–200, New York,
NY, USA, 2000. ACM.

[22] J. S. Pierce and J. Nichols. An infrastructure for
extending applications’ user experiences across
multiple personal devices. In Proc. UIST ’08, pages
101–110. ACM, 2008.

[23] M. Toomim, A. Begel, and S. L. Graham. Managing
duplicated code with linked editing. In Proc. VLHCC
’04, pages 173–180. IEEE, 2004.

[24] J. Vanderdonckt. Advice-giving systems for selecting
interaction objects. In Proc. UIDIS ’99, page 152.
IEEE Computer Society, 1999.

[25] J. Vermeulen, Y. Vandriessche, T. Clerckx, K. Luyten,
and K. Coninx. Service-interaction descriptions:
Augmenting services with user interface models. In
Proc. EIS’07. Springer, March 2007.

