
Made available by Hasselt University Library in https://documentserver.uhasselt.be

A hybrid system of neural networks and rough sets for road safety

performance indicators

Peer-reviewed author version

SHEN, Yongjun; Li, Tianrui; HERMANS, Elke; RUAN, Da; WETS, Geert; VANHOOF,

Koen & BRIJS, Tom (2010) A hybrid system of neural networks and rough sets for

road safety performance indicators. In: SOFT COMPUTING, 14 (12). p. 1255-1263.

DOI: 10.1007/s00500-009-0492-3

Handle: http://hdl.handle.net/1942/11117



A hybrid system of neural networks and rough sets 
for road safety performance indicators 

 
Yongjun Shen1, Tianrui Li2, Elke Hermans1, Da Ruan1, 3, Geert Wets1, Koen Vanhoof1 and 

Tom Brijs1 
1
Transportation Research Institute – Hasselt University 

Wetenschapspark 1 bus 12, 3590 Diepenbeek, Belgium 

{yongjun.shen, elke.hermans, da.ruan, geert.wets, koen.vanhoof, tom.brijs}@uhasselt.be 
2
School of Information Science and Technology, Southwest Jiaotong University 

Chengdu 610031, China  

trli@swjtu.edu.cn  
3
Belgian Nuclear Research Centre (SCK·CEN) 

Boeretang 200, 2400 Mol, Belgium 

druan@sckcen.be 
 

 

Abstract 

Road safety performance indicators are comprehensible tools that provide a better 
understanding of current safety conditions and can be used to monitor the effect of policy 
interventions. New insights can be gained in case one road safety index is composed of all 
risk indicators. The overall safety performance can then be evaluated, and countries ranked. In 
this paper, a promising structure of neural networks based on decision rules generated by 
rough sets—is proposed to develop an overall road safety index. This novel hybrid system 
integrates the ability of neural networks on self-learning and that of rough sets on 
automatically transforming data into knowledge. By means of simulation, optimal weights are 
assigned to seven road safety performance indicators. The ranking of 21 European countries 
in terms of their road safety index scores is compared to a ranking based on the number of 
road fatalities per million inhabitants. Evaluation results imply the feasibility of this 
intelligent decision support system and valuable predictive power for the road safety 
indicators context. 
 
Keywords: Road safety performance indicators; (Composite) index; Road safety output 
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1 Introduction 
Steadily increased traffic volume resulted in continuously increasing safety problems during 
the past decades. Every year, about 40,000 people die in Europe as a consequence of road 
crashes (European Transport Safety Council 2008). Thereby, the European Union has set 
itself a target of halving the yearly number of road fatalities between 2001 and 2010 
(European Commission 2001). To reach this target, besides analyzing the number of accidents 
and casualties, road safety policymakers and analysts also need to take into account as many 
underlying risk factors influencing safety as possible or, at least, those factors that they are 
able to affect or control. At the same time, each risk factor should be represented by a set of 
quantifiable road safety performance indicators, which provide a means for monitoring the 
effectiveness of the safety actions that are taken (European Transport Safety Council 2001). 
Moreover, to obtain an overall idea of road safety performance, the development of a 
composite indicator or index, which is a combination of individual indicators in several risk 
domains, is helpful and desirable (Hermans et al. 2008a, b; Wegman et al. 2008). The index 



can be used for reducing the complexity of the road safety problem, benchmarking and 
prioritizing road safety actions (Hermans et al. 2008a, b). As concluded in Nardo et al. (2005), 
the application of this kind of indicator is a clear symptom of its political importance and 
operational relevance in decision making. However, the construction of a composite indicator 
involves several methodological stages: the selection of indicators, data normalization, 
imputation of missing values, the choice of aggregation models, the weights of the indicators, 
and so on (Hermans 2009). Although other factors may have a certain impact on the final 
scores and rankings, the issue of weighting plays a central role to the development of a 
composite indicator. Ideally, the weighting, i.e., assessing a relative importance to the 
underlying individual indicators, should be made explicitly and accepted by an as wide as 
possible public. However, this is practically impossible, as among several methods in the 
composite indicator literature (Hermans et al. 2008a, b; Nardo et al. 2005) for weighting the 
different indicators, there is no best one to use in all circumstances. 

Neural networks (NNs) and rough sets are two valuable soft computing techniques that 
have been widely studied and successfully applied to a variety of activities (Hornik et al. 1989; 
Xiang et al. 2005; Skowron 1995; Peters and Skowron 2002). Further exploration of their 
combination is also conducted, in which rough sets are usually utilized to reduce the set of 
attributes followed by NNs (Luo and Shao 2006; Jiang et al. 2006; Xiao et al. 2009). In this 
paper, a new idea of the integration of these two techniques is proposed and applied as a novel 
weighting method. More specifically, we integrate these two techniques into an intelligent 
decision support system and cooperatively obtain weights for the road safety performance 
indicators and subsequently composite index values. In this hybrid framework, two neural 
networks—a single neuron and a two-layer feed-forward network called a gating network— 
are introduced to calculate the weight of each indicator by self-learning based on their 
remarkable ability to derive meaning from complicated or imprecise data that are too complex 
to be noticed by either humans or other computer techniques. At the same time, in order to 
deal with two main uncertain factors linked to neural networks training, i.e., the initial value 
of network weights and the number of iterations, rough sets theory, which is capable of rule 
induction and feature selection in decision situations, is utilized to determine the most 
important road safety attribute and therefore generating a decision rule to guide the network 
training. 

The remaining of the paper is organized as follows: in Sect. 2, the data used in this 
study are discussed. The construction and training algorithm of neural networks, as well as the 
selection of the initial value and the number of iterations are specified in Sect. 3, while Sect. 4 
introduces the fundamentals of rough sets theory and its application in this study. The hybrid 
system based on neural networks and rough sets is illustrated in Sect. 5 and the simulation 
results are discussed in Sect. 6. The paper ends with conclusions and topics for further 
research. 

 

2 Road safety data 
Road safety performance indicators are measures that are causally related to accidents or 
injuries and are used in addition to the number of accidents or injuries, in order to indicate 
safety performance or better understand the processes that lead to accidents (European 
Transport Safety Council 2001). In the European SafetyNet project work package on safety 
performance indicators (SafetyNet Work Package 3 2005), the following seven risk domains 
are designated as central to road safety activities in Europe and are selected for the 
development of safety performance indicators: alcohol and drugs, speed, protective systems, 
daytime running lights, vehicle, roads, and trauma management. Moreover, each risk domain 
needs to be represented by at least one quantifiable performance indicator which is policy 
relevant and has data available and reliable (Litman 2007). 



In this paper, an overall index will be constructed based on seven indicators. For alcohol 
and drugs, the percentage of drivers respecting the blood alcohol content (BAC) limit is the 
indicator (I1), the speed indicator is the percentage of drivers with a driving speed below the 
maximum speed limit (I2), the protective systems domain is represented by the seat belt 
wearing rate in the front seats (I3), the existence of a law obligating daytime running lights 
(DRL) is selected for the DRL domain (I4), the share of cars of maximum five years old is the 
selected vehicle indicator (I5), the network density describes the roads domain (I6) and for 
trauma management (TM) the health expenditure as share of the gross domestic product is the 
selected indicator (I7). 

From international data sources (amongst others [SARTRE 3 Report 2004]) values 
related to 2003 were obtained for these seven risk indicators for 21 European countries being 
Austria (AT), Belgium (BE), Cyprus (CY), Czech Republic (CZ), Denmark (DK), Estonia 
(EE), Finland (FI), France (FR), Germany (DE), Greece (EL), Hungary (HU), Ireland (IR), 
Italy (IT), the Netherlands (NL), Poland (PL), Portugal (PT), Slovenia (SL), Spain (ES), 
Sweden (SE), Switzerland (CH), and United Kingdom (UK). To eliminate the effect of the 
measurement unit and the scale of each indicator, we normalize all indicator values into an 
interval of [0,1] with a higher value representing a better performance, as presented in Table 1. 
The last column corresponds to a common road safety output (RSO), i.e., the number of road 
fatalities per million inhabitants. Here, the values represent one minus the normalized number 
of road fatalities per million inhabitants with a high score also implying a good performance. 
In other words, Sweden has the lowest number of road fatalities per million inhabitants and is 
considered the safest country (in 2003 fatality terms). The countries’ ranking based on the 
constructed index consisting of seven road safety performance indicators should approximate 
the RSO ranking to the utmost extent. In the following sections, the methodology is described 
in detail. 
 

Table 1.  Data on the seven road safety risk indicators and fatalities 

 Alc. Speed Prot. Syst. DRL Vehicle Roads TM 
Outcome 

 I1 I2 I3 I4 I5 I6 I7 

AT 0.88 0.56 0.65 1.00 0.48 0.29 0.43 0.38 

BE 0.73 0.38 0.46 0.50 0.64 1.00 0.66 0.36 

CY 0.00 0.13 0.70 0.00 0.00 0.22 0.21 0.17 

CZ 0.91 0.81 0.37 0.50 0.06 0.30 0.41 0.08 

DK 0.99 0.38 0.77 1.00 0.59 0.31 0.61 0.77 

EE 0.93 0.00 0.61 1.00 0.00 0.22 0.00 0.31 

FI 0.99 0.63 0.86 1.00 0.32 0.00 0.36 0.84 

FR 0.77 0.63 1.00 0.50 0.54 0.34 0.75 0.53 

DE 0.89 0.19 0.95 0.50 0.56 0.34 0.95 0.77 

EL 0.64 0.06 0.00 0.00 0.29 0.14 0.72 0.03 

HU 0.94 0.19 0.33 0.50 0.25 0.32 0.44 0.20 

IR 0.89 1.00 0.79 0.00 1.00 0.24 0.36 0.72 

IT 0.67 0.31 0.54 0.50 0.49 0.30 0.56 0.49 

NL 0.91 0.38 0.81 0.00 0.58 0.60 0.66 0.96 

PL 0.99 0.56 0.54 0.50 0.14 0.24 0.16 0.00 

PT 0.81 0.31 0.84 0.50 0.31 0.14 0.69 0.01 

SL 0.88 0.63 0.72 1.00 0.88 0.36 0.51 0.31 

ES 0.67 0.44 0.81 0.50 0.51 0.10 0.41 0.21 

SE 1.00 0.38 0.91 1.00 0.60 0.05 0.67 1.00 

CH 0.81 0.13 0.70 0.50 0.60 0.32 1.00 0.82 

UK 0.97 0.75 0.93 0.00 0.73 0.28 0.43 0.98 

 



 

3 Neural networks: theory and application 
Neural networks are computational architectures that combine simple units in an arrangement 
that can then exhibit complex behavior (Haykin 1999). One of the most familiar architectures 
is the feed-forward NN (Hornik et al. 1989; Xiang et al. 2005). Over the years, NNs have 
proven to be a very powerful tool capable of extracting reliable information and patterns from 
complicated data even in the absence of models describing the data (Reich and Baraib 2000). 
In this section, a composite feed-forward NN will be illustrated and experimented with in 
order to obtain the weights of seven road safety performance indicators. 
 

3.1 Construction of neural networks 
In the case of aggregating N road safety performance indicators into one combined index, a 
typical composite indicator takes the following form (Nardo et al. 2005): 
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In order to characterize the above composite indicator, two neural networks are 
introduced to work in unison, whose structure is shown in Figure 1. One (the upper part) is a 
single neuron used to calculate the composite index, see (1), and the other one (the lower part) 
is a two-layer feed-forward network with no hidden layers in it, the so-called gating network, 
aimed at assigning weights to the corresponding indicators, thereby guaranteeing the 
satisfaction of (2) (Shen et al. 2008). 
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Figure 1. Construction of neural networks 

 
In this respect, an intermediary variable 
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network is calculated as follows:  
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In (3),  
T

i iv xξ =  (4) 

where ( 1, 2, )
i

v i N= ⋅⋅⋅  are the vectors of the matrix V , i.e., the weight coefficients of the gating 

network. 
 

3.2 Network Training 
By definition of the gating network, the tuning of the weights

i
w  is transformed into the self-

learning of the weights of the gating network, i.e., V. To guarantee the accuracy and stability 
of the system, the application of a learning algorithm, the selection of the initial value of V 
and the number of iterations are three essential aspects. 
 
3.2.1 Learning Algorithm 

In the NNs training, various error back propagation (EBP) algorithms (Rumelhart et al. 1986; 
Werbos 1988) exist, such as the gradient descent method, the conjugate gradient method, the 
Gauss–Newton algorithm, and the Levenberg–Marquardt (LM) algorithm. Different types of 
learning algorithms affect the speed and accuracy of the training to a great extent. Among 
them, the LM algorithm as a blend of the gradient descent and Gauss–Newton method is the 
most widely used optimization algorithm since it converges in a much faster way by using the 
second-order information (Hagan and Menhaj 1994). The learning process is as follows. 

The output of the network has to be judged using some error criterion. This criterion 
determines the size of the error to be back propagated. In general, the mean squared error 
(MSE) criterion is used: 
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where y’ represents the desired output value, i.e., the RSO value in this case, M is the size of 
the learning set, and k the number of iterations. 

The objective during the training is to minimize the MSE by choosing appropriate 
weights, which are adjusted in the following way: 

( 1) ( ) 1[ ]µ+ −= − +k k T T
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where J is the Jacobi matrix as calculated as follows: 
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I denotes the identity matrix with the same size as J, and µ is the learning rate (e.g., 0.01). 

The introduction of the term Iµ  is to guarantee the existence of the inverse of matrix T
J J , 

which is used as an approximation of the second derivative Hessian matrix.  
 

3.2.2 Initial Value 

The selection of the initial weight coefficients is one of the most fundamental and important 
concepts in the study of NNs because ill-conditioning is a common cause of slow and 
inaccurate or even divergent results from back propagation algorithms (Atiya and Ji 1997). 
Following the construction of NNs and the LM algorithm specified in the previous section, 
the NNs are applied to the data in Table 1 to construct a composite indicator starting from 
several sets of random initial weights. 



In the simulation, the seven road safety indicators are presented as the inputs of the NN and 
the RSO as the system derived output. The number of iterations equals 1,000. The assigned 
weights are shown in Table 2. It can be seen that different initial values lead to different 
weights within the same algorithm and the same number of iterations. Although indicators I3 
and I5 corresponding to the protective systems and vehicle domain get relatively high weights, 
while the share assigned to the DRL domain (I4) is the lowest in all experiments, there is no 
uniform result and this causes a difficulty in interpretation. 

 

Table 2.  Weights after 1000 iterations based on several random initial values 
Initial value I1 I2 I3 I4 I5 I6 I7 

random1 0.040 0.028 0.339 0.005 0.391 0.055 0.143 

random2 0.038 0.017 0.342 0.009 0.416 0.055 0.124 

random3 0.040 0.020 0.312 0.013 0.421 0.038 0.156 

 

3.2.3 Number of Iterations 

Besides the selection of the initial weights the iteration time is another uncertain factor in the 
self-learning of NNs which alter the final results to a certain extent. In the current case, the 
same learning algorithm is used, and the same initial weights are given, i.e., a zero matrix is 
selected as the initial value of V. After the calculation of (3) and (4), 

i
ξ  is equal to zero and 

i
w  

results in 1/ N , which implies that at the first step of iteration, equal weighting is applied. It 
guarantees the initial stability of the system. Then, after 400, 800, and 1,000 iterations, 
respectively, different results are obtained in Table 3. 
 

Table 3.  Weights after different iteration times starting from equal weights 
Iterations I1 I2 I3 I4 I5 I6 I7 

400 0.068 0.059 0.294 0.025 0.318 0.076 0.160 

800 0.042 0.03 0.332 0.010 0.384 0.058 0.143 

1000 0.035 0.023 0.342 0.007 0.401 0.054 0.138 

 

Table 3 shows the final weights of the corresponding road safety indicators after different 
numbers of iterations. Along with the increase of the number of iterations, the weights of 
indicators I3 and I5 go upward, while the shares of the other indicators decline, especially the 
DRL domain, which even tends to zero. However, there are no certain constraint conditions to 
determine the best time to stop the algorithm. 

In the next section, rough sets theory as a useful tool for both rule induction and feature 
selection will be explained and applied to guide the network training by generating a decision 
rule to determine the initial weights and the iteration time. 
 

4 Rough Sets 
Rough sets theory originated by Pawlak is a formal mathematical theory modeling knowledge 
about the domain of interest in terms of a collection of equivalence relations (Pawlak 1991). It 
is mainly an automated transformation of data into knowledge without any preliminary or 
additional information about the data like probability in probability theory, or grade of 
membership in fuzzy set theory. It is based on the concept of an upper and a lower 
approximation of a set, approximation space, reduct and core, etc. The concepts in rough sets 
theory are used to define the necessity of features. The measures of necessity are calculated 
by the lower and upper approximations. These measures are employed as heuristics to guide 
the feature selection process. Nowadays, many rough sets based approaches have been 
successfully applied in the field of knowledge discovery (Skowron 1995; Peters and Skowron 
2002; Cao et al. 2003, Pawlak and Skowron 2007). 
 



4.1 Fundamentals of Rough Sets Theory 
Basic concepts and relevant notions of rough sets theory are briefly cited from Swiniarski and 
Skowron (2003), Pawlak et al. (2005) and Li et al. (2007). An information system can be 
represented as S= (U, A, V, f), where U is the universe, a finite set of n objects {x1, x2, …, xn}. 
A is a finite set of attributes, and A C D= ∪ , where C is a set of condition attributes, and D is a 

set of decision attributes. aa A
V V

∈
=∪ , where Va is a domain of the attribute a. :f U A V× →  is a 

decision function (called the information function) such that ( , )
a

f x a V∈  for every ,a A x U∈ ∈ . 

A subset of attributes P A⊆  defines an indiscernibility relation on U: 
( ) {( , ) : ( , ) ( , ), }IND P x y U U f x a f y a a P= ∈ × = ∀ ∈  (8) 

Obviously, the indiscernibility relation is an equivalence relation (Swiniarski 2001). 
IND(P) is the Partition of U determined by P. The family of all equivalence classes of IND(P) 
(Partition of U determined by P) is denoted by U/IND(P). Each element in U/IND(P) is a set 
of indiscernible objects with respect to P. Equivalence classes U/IND(C) and U/IND(D) are 
called condition and decision classes. For any concept X U⊆  and attribute subset P A⊆ , X 

could be approximated by the P-lower approximation and P-upper approximation using the 
knowledge of P. The lower approximation of X is the set of objects of U that are surely in X, 
defined as: 

( ) { / ( ) : }P X B U IND P B X= ∈ ⊆∪  (9) 

The upper approximation of X is the set of objects of U that are possibly in X, defined as: 

( ) { / ( ) : }P X B U IND P B X= ∈ ≠ ∅∩∪  (10) 

The boundary region is defined as:  

( ) ( ) ( )
P

BND X P X P X= −  (11) 

If the boundary region is empty, that is, ( ) ( )P X P X= , concept X is said to be P-definable. 

Otherwise X is a rough set with respect to P. 
An attribute a A∈  is called dispensable in the set A if IND(A)=IND(A-{a}) (it means 

that indiscernibility relations generated by sets A and A-{a} are identical). Otherwise the 
attribute a is indispensable in A. Obviously, the dispensable attribute does not improve the 
classification of the original information system. The set P A⊆  is called orthogonal if all its 

attributes are indispensable. A proper subset R A⊂  is defined as a reduct set of A if R is 
orthogonal and preserves the classification generated by A. The reduct set of A, denoted by 
RED(A), is defined as: 

( ) { : , ( ) ( ),  is orthogonal}RED A R R A IND R IND A R= ⊂ =  (12) 

A core of A is the intersection of all the reducts of A: 
( ) ( )CORE A RED A=∩  (13) 

The core contains all the attributes that cannot be removed from the set A without 
changing the original classification. 
 

4.2 Application of Rough Sets 
The reduct and core are two fundamental concepts of rough sets theory that can be used for 
both feature selection and data reduction. A reduct is the essential part of an information 
system which can discern all objects by the original set of attributes of the information system. 
A core is a common part of all reducts. It is the most important attribute of an information 
system since it cannot be removed from the information system without causing collapse of 
the equivalence class structure. By this feature, we determine the most important attribute or 
indicator (with the highest weight) for the final calculation of the composite indicator.  

Most of the road safety performance indicator measurements are real numbers and have 
to be discretized before the rough sets approach can be applied. A discretization method finds 
a set of cuts that divides the range of an attribute a into a set of intervals or bins. Let 
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(14) 

Several discretization methods exist, and equal frequency binning is used in this study. 
This is an unsupervised method that divides the range into n intervals so that the frequency of 
the objects is the same in each interval, i.e., |Ui|=|Uj| for all 0≤i, j≤n-1. It is generally better 
than equal interval binning since an uneven distribution might seriously impair the ability of 
the attribute to build good decision structures. The discretized data (here we use 1, 2, 3, and 4 
to represent the bins) are shown in Table 4 by using the equal frequency binning discretization 
method—PKIDiscretize, in Weka (Witten and Frank 2005). 

 
Table 4 Discretized data on the seven road safety performance indicators and the road 

fatalities 

 
For the DRL domain, there are only three values in the raw data set, so only 
three discretized values are obtained 

 
From the discretized data, all reducts could be obtained by ROSETTA (Øhrn et al. 

1998): 



Reducts={{Alcohol and drugs, Speed, Vehicle}; {Alcohol and drugs, Speed, Roads, 
Trauma Management}; {Alcohol and drugs, Speed, Protective Systems, Roads}; {Alcohol 
and drugs, Speed, Daytime Running Lights, Roads}; {Speed, DRL, Roads, Trauma 
Management}; {Speed, Protective Systems, Daytime Running Lights, Roads}; {Speed, 
Protective Systems, Daytime Running Lights, Vehicle}; {Speed, Daytime Running Lights, 
Vehicle, Trauma Management}}.  

Then, calculating the intersection of these eight reducts, we get: Core={Speed}.  
Therefore, the speed indicator appears to be the most important attribute and should be 

allocated the highest weight in the calculation of the composite road safety performance index. 
This is also validated by a recent research surveying some road safety experts (Hermans et al. 
2008a, b). This result will be used to direct the training of NNs by adding the constraint 
condition that the speed indicator should have the highest weight. 
 

5 Hybrid System based on Neural Networks and Rough Sets 
By integrating neural networks and rough sets principles into a hybrid system, we derive a 
novel intelligent decision support system, i.e., a construction of neural networks based on 
decision rules generated by rough sets (NNRS), shown in Fig. 2. 
 

�

 
Figure 2. Construction of the hybrid system based on neural networks and rough sets  

 

In this hybrid framework, NNs as self-learning machines are introduced to obtain the weights 
of the seven road safety performance indicators and subsequently the composite index scores. 
At the same time, in order to reduce two main uncertain elements of NNs, i.e., the initial value 
of the network weights and the number of iterations, rough sets theory are utilized to 
determine the most important attribute in this system, which is translated into a decision rule 
to guide the network training. The detailed steps of the methodological process are as follows, 
and the results are presented in the next section. 

Step 1. Data discretization based on the method of equal frequency binning. 
Step 2. The rough sets process: 

a. Calculate the reducts of the discretized information system by ROSETTA. 



b. Select the core indicators that are the intersections of all the reducts. 
c. Generate the decision rules to guide the network training. 

Step 3. The neural network process: 
a. Assign initial weights to the gating network. 
b. Network training based on the LM algorithm. 
c. Obtain the optimal weights and compute the final composite indicator scores. 

 

6 Simulation results and discussions 
To guarantee the satisfaction of the constraint condition derived from the rough sets theory—
the speed indicator should be allocated the highest weight—the initial values of the weights of 
the gating network are as follows: 
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In the computation of the weights ( 1,2, ,7)
i

w i = ⋅⋅⋅ , the weight of the speed domain, i.e., 2w  gets the highest 

value at the beginning of the learning, then the NNRS searches for the most optimal weights resulting in a 
minimal MSE while respecting the ‘speed’ constraint. The learning algorithm is the same as before (see Section 
3).  The self-tuning of the neural networks stops at 572 iterations and the final weights are shown in Table 4. 

In the computation of the weights ( 1,2, ,7)
i

w i = ⋅⋅⋅ , the weight of the speed domain, i.e., 2w  gets 

the highest value at the beginning of the learning. Next, the NNRS searches for the most 
optimal weights resulting in a minimal MSE while respecting the ‘speed’ constraint. The 
learning algorithm is the same as before (see Sect. 3). The self-tuning of the neural networks 
stops after 572 iterations and the final weights are shown in Table 5.  
 

Table 5.  Weights based on the hybrid system 
      I1     I2   I3    I4   I5 I6 I7 

Weights based 
on NNRS 

0.052 0.238 0.237 0.033 0.204 0.049 0.187 

 

It shows that indicator I2 (corresponding to the speed domain) keeps the highest weight, 
followed by I3 and I5, while the weight assigned to the DRL indicator is still the lowest. This 
set of weights as well as the weights based on the neural networks shown in Tables 2 and 3 
are respectively used to calculate the composite road safety performance index score for the 
21 countries. We compute the sum of the product of each normalized indicator value and its 
assigned weight to obtain these scores and subsequently rank the countries in such a manner 
that a higher score or performance relates to a better rank. The ranking results even as the 
RSO ranking are shown in Table 6, where E1 to E6 represent the experiments carried out with 
respect to several sets of random initial weights and different numbers of iterations (see Sect. 
3). 
 

Table 6.  Rankings based on NNs, NNRS and RSO 

Countries 
E1 ranks E2 ranks E3 ranks E4 ranks  E5 ranks E6 ranks NNRS 

ranks 
RSO ranks 

random1 random2 random3 400 800 1000 

AT 13 13 13 12 13 13 11 11 

BE 10 10 10 10 10 10 12 12 

CY 19 18 20 21 19 18 20 17 

CZ 18 19 18 18 18 19 16 18 

DK 9 9 9 9 9 9 7 6.5 

EE 20 20 21 19 20 20 21 13.5 



FI 14 14 14 14 14 14 10 4 

FR 5 5 5 4 5 5 2 9 

DE 2 4 3 3 3 3 6 6.5 

EL 21 21 19 20 21 21 19 19 

HU 16 16 16 17 16 16 18 16 

IR 1 1 1 1 1 1 1 8 

IT 15 15 15 15 15 15 15 10 

NL 7 7 8 7 7 7 8 3 

PL 17 17 17 16 17 17 17 21 

PT 12 12 12 13 12 12 14 20 

SL 3 2 2 2 2 2 4 13.5 

ES 11 11 11 11 11 11 13 15 

SE 6 6 6 6 6 6 5 1 

CH 8 8 7 8 8 8 9 5 

UK  4 3 4 5 4 4 3 2 

 

In order to evaluate the different rankings, the values of penalty factor and the correlation 
coefficient are calculated. We define a penalty factor=|*-RSO ranks|, where * represents one 
of the seven index ranks. All penalty factors with regard to the 21 countries are calculated and 
their average values are shown in Table 7. 
 

Table 7.  Average penalty factor of the seven index ranking results 
 E1 ranks E2 ranks E3 ranks E4 ranks E5 ranks E6 ranks NNRS ranks 

Average 4.190 4.095 4.190 4.286 4.190 4.190 3.619 

 
 
Obviously, the hybrid system integrating neural networks and rough sets is characterized by 
the lowest average penalty factor while the different experiments based on the NNs (E1 to E6) 
obtain results within the same order of magnitude. In other words, the hybrid system proposed 
in this paper performs best since it has the highest fit with the RSO ranking. Similar 
conclusions are deduced by conducting a correlation analysis of which the results are shown 
in Table 8. 
 

Table 8.  Correlation coefficients between the index ranking and the RSO ranking 
 E1 ranks E2 ranks E3 ranks E4 ranks E5 ranks E6 ranks NNRS ranks 

Correlation 0.652 0.650 0.631 0.641 0.643 0.645 0.716 

 

7 Conclusions 
In this paper, we presented a hybrid system which integrates neural networks and rough sets 
theory to combine individual road safety performance indicators into an overall composite 
index. In this hybrid system, two neural networks—a single neuron and a two-layer feed-
forward network called a gating network—are introduced to assign weights to the seven road 
safety performance indicators using the Levenberg–Marquardt algorithm. However, the fact 
that different initial weights of the gating network and a different number of iterations 
possibly lead to other results thereby resulting in interpretation issues, limits the use of this 
technique to some extent. Therefore, rough sets theory as a useful tool in dealing with 
vagueness and uncertainty in decision situations is utilized to determine the most important 
attribute and thereby generating a decision rule to guide the network training. In our case, 
using the concepts of reduct and core we transformed the data into knowledge that the speed 
indicator should contribute most. Therefore, the initial weights of the gating network are 



stressing this indicator, and the self-tuning of the neural network stops before this is no longer 
the case. 
By simulation, optimal weights are assigned, which provide new insights into road safety 
policy making. More specifically, important risk domains are identified by means of relatively 
high weights such as speed (0.238), protective systems (0.237) and vehicle (0.204). 
Furthermore, final index scores are computed to assess the relative overall road safety 
performance of countries. Ranking results of the 21 European countries are deduced and 
compared with the ones calculated by the method of neural networks only. The evaluation 
results based on the average penalty factor and the correlation coefficients demonstrate the 
feasibility of this hybrid framework. 
In the future, a further exploitation of this research is worthwhile. For example, a feed-
forward multilayer neural network (with one or more hidden layers) could be introduced as 
the gating network; other features such as the degree of dependency and significance of 
attributes in rough sets theory are worthwhile applying. Furthermore, as the results obtained in 
this paper are totally derived from the data, it is meaningful to take expert knowledge into 
account on the one hand, and to apply the methodology on another road safety performance 
indicator data set on the other hand. 
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