
General-Purpose Computing on GPUs

Dirk Vanden Boer

Promoter: Frank Van Reeth

Supervisor: Tom Van Laerhoven

Final dissertation submitted for obtaining the degree of

master in computer science, graduate variant Multimedia

School of Information Technology

Transnationale Universiteit Limburg
Diepenbeek, June 6, 2005

Abstract

GPGPU stands for General-Purpose computation on GPUs. With the in-
creasing programmability of commodity graphics processing units (GPUs),
these chips are capable of performing more than the specific graphics com-
putations for which they were designed. They are now capable coprocessors,
and their high speed makes them useful for a variety of applications [1].

We give a brief history of the GPU to see how it has developed over the last
couple of years, discuss the benefits and drawbacks of using the GPU and
show why it is so useful for solving general problems. We also take a look at
what the future GPUs will probably look like. To get some insight of how
programming on the GPU works we explain the stream programming model
used to program on GPUs and discuss the operations that are available on
the GPU and how to deal with operations that are not available. Also, some
mechanisms are presented that are often used to convert algorithms from the
Central Processing Unit (CPU) to the GPU.

To give an idea of the applicability of GPGPU we give an overview of the
most important research areas in which the GPU can be used for general-
purpose computing and we give some successful examples for each research
area. We go into more detail on a paper by Fan et al. [2] to get acquainted
with the use of the GPU as general purpose processor. The paper describes
a streaming collision detection algorithm between star shaped objects that
is mapped to a stream processor.

Finally we made some implementations that use the GPU to speed up com-
putations. We discuss our implementation of a particle system that runs
on the GPU, give an overview of the algorithm and discuss the results we
achieved. We also discuss our implementation of a math-library on the GPU.
The library supports various vector and matrix operations that are performed
on the GPU by storing the data in textures. As a conclusion we compare the
speed of the GPU implementation with CPU based methods.

i

Acknowledgments

I would like to thank my promoter Prof. dr. Frank Van Reeth and my
supervisor Tom Van Laerhoven for giving me the chance to work on this
subject and for their valuable assistance.

Many thanks to the Expertise Centrum voor Digitale Media where I did my
summer intern which proved to be a good preparation for my thesis.

Also, I would like to thank Tony Witters for correcting all my spelling mis-
takes and Yannick Francken for the interesting discussions we had about the
fragment processor.

Finally I would like to thank my parents for supporting me, and my sister
for a final spelling check.

ii

Contents

1 Introduction 1

2 The Graphics Processing Unit 2
2.1 History . 2

2.1.1 Pre-GPU Graphics Acceleration 4
2.1.2 First-Generation GPUs 4
2.1.3 Second-Generation GPUs 4
2.1.4 Third-Generation GPUs 5
2.1.5 Fourth-Generation GPUs 5

2.2 Motivation . 6
2.2.1 Computational Power 6
2.2.2 Parallelism . 7
2.2.3 Flexibility and Precision 8

2.3 Limitations . 10
2.4 Future . 10

2.4.1 Increased Flexibility 11
2.4.2 Easier Programming 11
2.4.3 Increased Performance 11
2.4.4 New Hardware Features 12

3 Programming the GPU 14
3.1 The Stream Programming Model 14
3.2 Operations on the GPU . 15

3.2.1 Available Operations 15
3.2.2 Missing Operations . 16
3.2.3 Handling Some Missing Operations 17

3.3 CPU - GPU Analogies . 18
3.3.1 Data-lookups . 18
3.3.2 Looping . 19
3.3.3 Saving Data . 19
3.3.4 Algorithm Step . 20

iii

4 Research Areas 21
4.1 Databases . 21
4.2 Audio and Signal Processing 22
4.3 Advanced Rendering . 22
4.4 Computational Geometry . 23
4.5 Image and Volume Processing 23
4.6 Scientific Computing . 24

5 In-depth Example: Collision Detection 25
5.1 Introduction . 25
5.2 Algorithm . 25

5.2.1 Overview . 25
5.2.2 Ray Generation . 26
5.2.3 Ray - Triangle Intersection 27
5.2.4 Compare Threshold Values 28

5.3 Optimizations . 29
5.3.1 Direction Cone . 29
5.3.2 Back-face Culling . 29
5.3.3 Viewing Volume Culling 30
5.3.4 Triangles Caching and Organization 31

5.4 Results . 31

6 Particle System 34
6.1 Introduction . 34
6.2 Data Storage . 35
6.3 Algorithm . 36

6.3.1 Overview . 36
6.3.2 Step 1: Create and Destroy Particles 37
6.3.3 Step 2: Updating the Velocities 38
6.3.4 Step 3: Updating the Positions 40
6.3.5 Step 4: Transfer Texture Data to Vertex Data 41
6.3.6 Step 5: Render the Particles 41

6.4 Own Contributions . 42
6.4.1 Framebuffer Objects 42
6.4.2 Particle Initialisation 43

6.5 Results . 44
6.5.1 Original Method . 44
6.5.2 Full GPU Method . 45

7 GPU-math Library 46
7.1 Introduction . 46

iv

7.2 Data Storage . 47
7.2.1 Vectors . 47
7.2.2 Dense Matrices . 47
7.2.3 Banded Sparse Matrices 48

7.3 Operations . 48
7.3.1 Vector Operations . 48
7.3.2 Matrix - Vector Multiplication 49
7.3.3 Matrix - Matrix Multiplication 51
7.3.4 Vector Reduction . 53

7.4 Own Contributions . 54
7.4.1 Framebuffer Object . 54
7.4.2 Adjusted Vector Reduction 54
7.4.3 Adjusted Dense Matrix - Vector Multiplication 54
7.4.4 New Banded Sparse Matrix Method 55

7.5 Results . 55
7.5.1 Vector - Vector Operations 55
7.5.2 Vector Scale Operation 55
7.5.3 Vector Reduce Operation 56
7.5.4 Dense Matrix - Vector Multiplication 57
7.5.5 Banded Sparse Matrix - Vector Multiplication 58
7.5.6 Conjugate Gradient Method 58

8 Conclusion 60

Appendices 66

A Dutch Abstract 66

v

List of Figures

2.1 The graphics pipeline [3] . 3
2.2 The Cg Graphics pipeline [4] 9
2.3 Trends in GPU evolution [5] 12

3.1 The gather operation [6] . 16
3.2 The scatter operation [6] . 17
3.3 A loop on the CPU and the GPU [6] 19
3.4 Setup viewport in OpenGL . 20

5.1 Algorithm overview . 26
5.2 A sphere and its corresponding ray texture [2] 27
5.3 The stream of input data [2] 28
5.4 Ray-triangle intersection [2] 28
5.5 The direction cone [2] . 29
5.6 Back-face culling [2] . 30
5.7 Culling by the user-defined viewing volume [2] 31
5.8 Architecture of streaming collision detection [2] 32
5.9 Scenario 1: two spheres [2] . 32
5.10 Scenario 2: two star-shaped objects [2] 33

6.1 Particle storage in textures . 36
6.2 Algorithm overview . 37
6.3 Particle collision with a sphere 40
6.4 Render to vertex array . 41
6.5 Particle system: fountain behaviour 42
6.6 Particle system: smoke behaviour 43

7.1 Vector representation . 47
7.2 Dense matrix representation [7] 48
7.3 Banded sparse matrix representation 49
7.4 Dense matrix - Vector multiplication 50
7.5 Banded sparse matrix - Vector multiplication 52

vi

7.6 Vector reduction [7] . 54

vii

List of Tables

2.1 Feature overview [4] . 5
2.2 GFLOPS overview [6] . 6
2.3 Memory bandwidth overview [4] 7

5.1 Culling rates using optimizations [4] 33
5.2 Collision detection time and speedup [4] 33

6.1 Performance original method 44
6.2 Performance GPU method . 45

7.1 Timing of vector - vector operations 56
7.2 Timing of vector scale operation 56
7.3 Timing of vector reduce operation 57
7.4 Timing of dense matrix - vector multiplication 57
7.5 Timing of banded sparse matrix - vector multiplication 58
7.6 Timing of the conjugate gradient method with dense matrices 59

viii

1

Chapter 1

Introduction

Almost every modern computer gets shipped with a high quality video card
that contains a flexible and powerful processor. The purpose of these cards
is to generate realistic realtime graphics in today’s video games. Under the
influence of the multi-billion dollar games industry that continues to develop
games that push the latest generations of video cards to their limits, the
power of GPUs increases much faster than the power of CPUs [6]. Because
of this trend a new research area has arisen that tries to make use of the
GPU with it’s massive computational abilities as a coprocessor to solve more
general problems: General-Purpose Computing on GPUs.

In this thesis, we take a closer look at the graphics processor to see how it
has evolved over the last couple of years and why it is so powerful. We also
take a look at how the GPU can be used to perform general purpose tasks by
discussing the available operations on current GPUs and how they compare
to CPU operations. We discuss some of the research areas in which the GPU
has been successfully used to perform general purpose tasks and take a closer
look at one such example. Finally we have created some implementations
that make use of the GPU to speed up several tasks that would otherwise be
performed by the CPU.

2

Chapter 2

The Graphics Processing Unit

2.1 History

In this section we give an overview of the history of graphics cards. They
can be subdivided into a number of generations.

Let’s first explain the difference between a Graphics Processing Unit (GPU)
and a Graphics accelerator. Six years ago, computer workstations contained
graphics accelerators, as the name implies they only accelerated graphics [8].
If you removed the graphics accelerator, the computer would perform exactly
the same rendering operations, only more slowly. With the arrival of GPUs
the concept of graphics acceleration advanced to graphics processing. GPUs
became programmable and changes were made to the graphics pipeline, which
had nearly been unchanged for the past twenty years. The pipeline was
broken down to its basic components and was rebuilt out of programmable,
parallel-pipelined processors.

A rough version of the graphics pipeline is shown in figure 2.1. The pipeline
starts with the application stage which consists of the program running on
the CPU that is feeding commands to the graphics subsystem [4]. In the
geometry stage the vertex positions that were supplied by the application
are transformed from their 3D position to their position on the screen. The
geometry stage also computes extra attributes like vertex colours (influenced
by the lighting) or texture coordinates. The resulting 2D triangles will be
used as input for the rasterization stage. In this stage per-pixel operations
are performed, each triangle will be rasterized (converted to pixels) and ver-

2. The Graphics Processing Unit 3

tex attributes will be interpolated across the triangle. The pixels will then
be shaded and in the last step the visibility of the pixels is resolved by z-
buffering. The resulting pixels will be sent to the framebuffer.

As opposed to graphics accelerators the geometry and the rasterization stage
has become completely programmable on GPUs. This allows developers to
write programs (shaders) that are executed on the GPU. This way, the GPU
will help to reduce the computational burden on the Central Processing Unit
(CPU).

Figure 2.1: The graphics pipeline [3]

In the mid-1990s, the world’s fastest graphics hardware consisted of multiple
chips that worked together to render images and to output them to the
display. By the improvement of semiconductor technology over the years
hardware engineers were able to incorporate the functionality of complicated
multi-chip designs into a single graphics chip. Current graphics chips have
more transistors present in each microchip than current CPUs. For example,
the NVIDIA GeForce 6800 contains 222 million transistors while the Pentium
4 Prescott 3.2Ghz contains 125 million transistors.

Industry observers have identified four generations of GPU evolution so far,
with each generation giving better performance and a richer feature set for
programmability [4].

2. The Graphics Processing Unit 4

2.1.1 Pre-GPU Graphics Acceleration

Before the introduction of GPUs, there were companies like Silicon Graphics
(SGI) and Evans & Sutherland (E&S) [4] that designed specialized graphics
hardware. These systems played an important role in the historical develop-
ment of computer graphics but because they were so expensive they never
achieved the mass-market success of single-chip GPUs. Nevertheless, these
systems introduced the first hardware-based solutions for vertex transforma-
tion and texture mapping.

2.1.2 First-Generation GPUs

The first generation of consumer-level graphics processors appeared around
1998. They include the NVIDIA TNT2, the ATI Rage and the 3DFX
Voodoo3 [4]. These cards are capable of rasterizing pre-transformed triangles
and multi-texturing which allowed blending of two textures in the rasteriza-
tion step. The set of blending functions available to the programmer was
very limited. These processors had around 10 million transistors [9].

2.1.3 Second-Generation GPUs

The second generation of GPUs appeared late 1999, early 2000. They in-
clude the NVIDIA GeForce 256 and GeForce2, ATI’s Radeon 7500 and S3’s
Savage3D [4]. These cards are also called the T&L GPUs because they
off-load 3D vertex transformation and lighting from the CPU. The vertices
can be passed untransformed because the GPU is responsible for keeping
the transformation matrices and making the transformation and lighting cal-
culations. This is a great improvement for real-time graphics applications
because these operations are performed constantly while rendering a scene.
Although the available operations for the programmer to combine textures
and colour pixels have expanded in this generation of GPUs, the possibilities
are still limited. This generation is more configurable, but still not truly
programmable. These GPUs contained about 25 million transistors [9].

2. The Graphics Processing Unit 5

2.1.4 Third-Generation GPUs

The third generation of GPUs arrived in 2001. They include NVIDIA’s Ge-
Force3 and GeForce4 Ti and the ATI Radeon 8500 [4]. This is the first
generation that provides vertex programmability rather than merely offering
more configurability. Vertex programs have a maximum of 128 instructions.
Fragment programs are limited by the way they can access texture data
(dependant lookups are limited) and the format of the texture data (only
fixed point data). The programs are also limited by the fact that there was
no program flow control (branching is impossible). The first attempts of
general purpose computing were performed on these GPUs. They contain
around 60 million transistors [9].

2.1.5 Fourth-Generation GPUs

The fourth generation of GPUs date from 2002 and on, they include the
NVIDIA Geforce FX and GeForce 6800 series and ATI Radeon 9700 9800
and X800 series [4]. Vertex and fragment shaders can now have thousands
of instructions. The latest cards even support infinite length vertex and
fragment shaders. This level of programmability enables developers to move
complex vertex transformations and pixel-shading operations from the CPU
to the GPU. These cards also have floating-point units, which makes them
more interesting for general purpose tasks that require greater precision. The
latest GPUs contain more than 200 million transistors [9].

Generation Year Product Process Transist.
AA Polygon

Fill Rate Rate

First Late 1998 RIVA TNT 0.25 µ 7 M 50 M 6 M
First Early 1999 RIVA TNT2 0.22 µ 9 M 75 M 9 M

Second Late 1999 GeForce 256 0.22 µ 23 M 120 M 15 M
Second Early 2000 GeForce2 0.18 µ 25 M 200 M 25 M
Third Early 2001 GeForce3 0.15 µ 57 M 800 M 30 M
Third Early 2002 GeForce4 Ti 0.15 µ 63 M 1200 M 60 M
Fourth Early 2003 GeForce FX 0.13 µ 125 M 2000 M 200 M
Fourth Early 2004 GeForce6 0.13 µ 220 M 4000 M 375 M

Table 2.1: Feature overview [4]

Table 2.1 lists an overview of the features and it uses a couple of terms :

2. The Graphics Processing Unit 6

Process: the minimum feature size in microns (µ, millionths of a meter) for
the semiconductor process used to fabricate each microchip

Transistors: an approximate measure, in millions (M), of the chips’ design
and manufacturing complexity

Antialiasing fill rate: a GPU’s ability to fill pixels, measured in millions
(M) of 32-bit RGBA pixels per second, assuming two-sample antialias-
ing, numbers in italics indicate fill rates that are de-rated because the
hardware lacks true antialiased rendering

Polygon rate: a GPU’s ability to draw triangles, measured in millions (M)
of triangles per second

2.2 Motivation

In this section we will explain why the use of Graphics Hardware to perform
general-purpose computing has become so popular during the last couple of
years.

2.2.1 Computational Power

The latest generations of GPUs are extremely fast, table 2.2 gives an overview
of the number of GFLOPS (billion floating point operations per second) of
modern hardware [6]. You immediately notice that graphics processors easily
outperform regular CPUs. The GeForce 6800 Ultra can even perform more
than four times as many floating point operations per second than a Pentium
4 3GHz.

Processor GFLOPS

Pentium 4 3GHz 12 (theoretical)
GeForce FX 5900 40 (observed)
GeForce 6800 Ultra 53 (observed)
Radeon X800 42 (observed)

Table 2.2: GFLOPS overview [6]

2. The Graphics Processing Unit 7

Another aspect of why GPUs are so fast is memory bandwidth [10]. Table 2.3
gives an overview of the memory bandwidth in different parts of a computer
system. As you can see the GPU has a great amount of internal bandwidth
at its disposal. This bandwidth can be used to get dramatic performance
improvements compared to the CPU. The communication between the CPU
and the GPU happens through the PCI-express bus or AGP-bus on the
motherboard. PCI-express is the new standard that was introduced in 2004
and is the successor to AGP. The biggest improvement of PCI-express is not
just the increased speed but the fact that data transfers are equally fast in
both directions (4 GB/sec in every direction) while readback of the AGP-bus
happens at PCI-speed (∼256MB/sec). This is especially useful for general-
purpose computing because the results of the computations often need to be
transferred back to main memory.

Component Bandwidth

GPU memory interface 35 GB/sec
AGP Bus (x4) 1066 MB/sec
PCI Express Bus (x16) 8 GB/sec
CPU memory interface

6 GB/sec
(800 MHz Frontside bus)

Table 2.3: Memory bandwidth overview [4]

Add to these facts that GPU speed is increasing faster than Moore’s law [6]
and you will realise the GPU is a very interesting platform to perform heavy
computations.

2.2.2 Parallelism

CPUs normally have only one processor. GPUs on the other hand have two
types of programmable processors: the vertex processor and the fragment
processor [10]. Each processor operates in a different stage of the graphics
pipeline but both processors allow parallel data-processing. Modern GPUs
have 6 vertex pipelines en 16 fragment pipelines.

GPUs have SIMD (Single Instruction Multiple Data) characteristics [11].
They have native support for 4-tuples (positions, colours) which allows op-
erations on vectors at the cost of 1 instruction. Another SIMD characteristic

2. The Graphics Processing Unit 8

of GPUs is stream processing. The same function (shader) is applied to
each element in a stream, such a function is also called a kernel. The use of
streams allows a great level of data parallelism and because there are very few
dependencies between elements in a stream, it encourages high arithmetical
intensity [6].

2.2.3 Flexibility and Precision

GPUs have programmable pixel and vertex engines. Thanks to high level
shading languages developers gain much more flexibility when writing vertex
and fragment shaders. Before the introduction of these languages, shaders
were written in assembly languages provided by vendors but they had porta-
bility issues and were tiresome to code. Thanks to the high level languages,
writing shaders has become much more intuitive which allows easier shader
creation, easier code reuse and easier debugging. Next we will give an
overview of the most frequently used shading languages.

C for Graphics (Cg)

Cg is the shading language developed by NVIDIA. Cg has a similar syntax to
ANSI C, but it also adopts some ideas from modern languages such as C++
and java and from earlier shading languages like Renderman or Stanford
Shading Language [4]. A schematic view of the Cg model is shown in figure
2.2. Cg is platform independant thanks to its compatibility with OpenGL.
Cg is also compatible with Direct3D. To cope with the divergence of available
graphics hardware the Cg API introduces profiles [12]. A Cg profile supports
a subset of the Cg Language, this way a program written against a certain
profile is guaranteed to run on all hardware that supports the features of that
profile.

High Level Shading Language (HLSL)

HLSL was introduced with the release of DirectX 9. Shaders were first sup-
ported in DirectX 8 but had to be written in assembly back then.
Cg and HLSL are actually the same language. Cg/HLSL was co-developed
by NVIDIA and Microsoft. They have different names for branding purposes.

2. The Graphics Processing Unit 9

Figure 2.2: The Cg Graphics pipeline [4]

HLSL is part of Microsoft’s DirectX API and only compiles into Direct3D
code, while Cg can compile to DirectX and OpenGL.

OpenGL Shading Language (GLSlang)

GLSlang is available since OpenGL 1.4 and is a part of the core OpenGL 2.0
specification [13]. The OpenGL shading language is based on ANSI C and
many of the features have been retained except when they are in conflict with
performance or ease of implementation. C has been extended with vector and
matrix types (with hardware based qualifiers) to make it more concise for the
typical operations carried out in 3D graphics. Some mechanisms from C++
have also been borrowed, such as overloading functions based on argument
types, and the ability to declare variables where they are first needed instead
of at the beginning of blocks.

GPUs also gained a lot of precision over the last years. The latest models of
NVIDIA support 32-bit floating point (fp32) precision over the entire pipeline
[10] which allows general-purpose algorithms to return accurate results. ATI
currently supports 24-bit precision. Hower fp32 does not mean fully IEEE
754 compliant [14], the results can show slight deviations.

2. The Graphics Processing Unit 10

2.3 Limitations

Programming on the GPU also introduces some limitations. GPUs are not
designed to perform general purpose tasks, they are designed to provide
realistic realtime graphics for computer games or 3D visualisations. This
causes some limitations [6]

You have to use a graphics API: this is necessary if you want to execute
shaders. As a result algorithms have to be converted to a format that is
supported by that API. For example, if you want to pass data to a shader
you can not just put it in an array and pass it as an argument because this is
not supported. The only thing that can be passed as arguments are vectors
and textures. So all data will have to be stored in textures to be able to
access it from a shader.

You have a limited memory interface: the data you use for computations is
stored in textures This causes some limitations because texture access in a
shader is read-only. As a result, operations on fragments in one rendering
pass need to be completely independent of each other because the kernels are
executed in parallel.

Lack of debuggers and profilers: for a long time the only possibility to debug
your shaders was to read back the texture from the graphics card memory
and investigate the colour values. However support for profiling and debug-
ging is gradually improving with recently released tools like gDEBugger or
NVShaderPerf.

Limited bandwidth from the GPU to the CPU: currently the most used
interface to communicate with the graphics card is still the AGP-bus of which
readback is limited to PCI-speeds (∼256MB/sec). This should be resolved
in the near future with the growing number of PCI-express cards.

2.4 Future

In the previous section we have seen that graphics hardware has gone through
some great improvements over the last couple of years, not only in perfor-
mance but also in the amount of available features. In this section we give
an overview of what to expect from future hardware.

2. The Graphics Processing Unit 11

2.4.1 Increased Flexibility

New features are constantly being added to the graphics APIs which are used
to communicate with the GPU. These new features will help developers to
access the graphics hardware more efficiently and in an easier way. High level
shading languages also keep evolving by providing instructions to access new
hardware features when they become available and with better optimization
techniques to convert the shaders into more efficient assembly code.

As a consequence of these improvements more algorithms will become suit-
able to be converted to the GPU. This will allow the GPU to be used in a
growing number of research domains.

2.4.2 Easier Programming

In the future it might be possible to perform computation on the GPU with
non-graphics APIs and languages [15]. This would be a big improvement for
developers of general-purpose algorithms on the GPU because they would
not have to create textures and other graphics-specific objects to store their
data.

A first step in the right direction is the BrookGPU shading language. This
language provides an abstraction to the graphics API. Programs written in
BrookGPU will be converted to instructions of the graphics API which is
very useful for developers that have little experience with graphics APIs but
want to convert their algorithms to the GPU.

2.4.3 Increased Performance

GPUs will keep getting faster. The major driving force behind the graphics
industry is the computer games industry. As computer games keep getting
more complex they need faster GPUs. The cards will be equipped with more
vertex and fragment processors and will have better branching techniques
[15] which will allow more complex shaders.

As a consequence of the increased power, GPUs will be able to produce more
and more GFLOPS. An expected performance trend is shown in figure 2.3.
As you can see we are rapidly approaching the point where GPUs will be

2. The Graphics Processing Unit 12

able to perform TFLOPS. The GPU will ultimately encapsulate the power
of a supercomputer on a single chip!

Figure 2.3: Trends in GPU evolution [5]

2.4.4 New Hardware Features

Note that this section discusses future features and technologies (either devel-
oping or developed) that are based on unofficial information and are expected
to be included in shader model 4.0 [16, 17].

A few possible new features are:

Geometry shader: this will be a new type of shader that is responsible
for creating new vertices. This will be an addition to the currently
available vertex shader which is only capable of transforming vertices.

Unified Shader Model: this implies that fragment and vertex shaders will
be identical in both syntax and feature set. This will allow the hardware
to combine the different hardware units together in a single pool. This
has an added benefit that any increase in shading power increases both
vertex and pixel shading performance. This would also mean that these

2. The Graphics Processing Unit 13

unified shaders would always be 100% loaded and would make it easier
for programmers because they would not need to waste time searching
for bottlenecks.

CPU-like data types: GPUs will have support for data types as used in
CPU-programming (e.g. integer)

IEEE 754 compliant floating points: currently GPUs have support for
32-bit floating point values but these are not full IEEE 754 compliant
[14]. This could change in the next shader model. This would finally
allow GPU algorithms to run in 32-bit precision with as much accuracy
as the algorithms on the CPU in 32-bit precision.

14

Chapter 3

Programming the GPU

In this chapter we explain the basics of programming the GPU. We discuss
the stream programming model and give an overview of the operations that
are available and unavailable on the GPU. Finally we discuss some analogies
between programming on the GPU and on the CPU.

3.1 The Stream Programming Model

The concept of viewing the graphics hardware as a streaming processor was
first proposed by Purcell et al. [18]. Streaming computing differs from tradi-
tional computing in that the system reads the data required for a computa-
tion as a sequential stream of elements. Each element of a stream is a record
of data requiring a similar computation. The system executes a program or
kernel on each element of the input stream placing the result on an output
stream. In this sense, a programmable graphics processor executes a vertex
program on a stream of vertices, and a fragment program on a stream of
fragments [18].

The streaming model leads to efficient implementations for three reasons [18]:

1. Because each element in a stream of data is independent from the other
elements, additional pipelines can be added to the hardware to process
elements of the stream in parallel.

3. Programming the GPU 15

2. Kernels achieve high arithmetic intensity, a lot of computation is per-
formed per fix-sized record. This results in a high computation to
memory bandwidth ratio.

3. Streaming hardware can hide the latency of texture lookups by using
prefetching. When the hardware fetches a texture for a fragment, the
fragment registers are placed in a FIFO and the fragment processor
starts processing another fragment. Only after the texture has been
fetched does the processor return to that fragment.

General-purpose computing on GPUs often relies on the stream programming
model. Textures represent the streams of data and the kernel is the fragment
program. The fragment program is applied to each pixel of the texture.

3.2 Operations on the GPU

The operations that are available on the GPU are not as familiar as the ones
on the GPU, they are more graphics-centric. In this section we will give an
overview of the operations that are available to work with on the GPU.

3.2.1 Available Operations

The available operations on the GPU are [19]:

Read-only memory: The GPU has access to read-only memory. This is
done by performing texture lookups.

Random access read-only memory (gather): It is also possible to per-
form random access to the texture by generating texture coordinates
inside the fragment shader. This allows the gather operation to be
implemented in fragment shaders. A gather operation is an operation
that computes a value in a grid based on other values of the grid (cf.
figure 3.1).

Per-data-element interpolants: Arguments can be given to the fragment
shader that vary per data element and are interpolations between val-
ues. An example is the texture coordinate that will be used to fetch a

3. Programming the GPU 16

value from the texture. This value will be interpolated according to the
values that were generated in a vertex shader or that were specified by
the programmer with commands supplied by the graphics API. These
values will be stored in varying registers.

Temporary storage: Temporary values can be created in shaders. These
values can be used in computations and will be stored in local registers.

Read-only constants: Constants can be passed to a shader after the cre-
ation. These values will then be used every time the shader is executed
but can not be altered. They are stored in constant registers.

Write-only memory: The output values of a shader are normally written
to the framebuffer. But with the render-to-texture mechanism these
values can be rendered directly to a texture. So these textures func-
tion as write-only memory because they can not be bound as an input
texture at the same time.

Floating point ALUops: Shaders support arithmetic operations like ad-
dition, subtraction, multiplication and division on floating point values.

Figure 3.1: The gather operation [6]

3.2.2 Missing Operations

Some operations are missing on the GPU. Reasons are that there is a lack of
demand for these operations from game developers and some operations do
not scale well to the stream programming model:

3. Programming the GPU 17

• Stack

• Heap

• Integer or bitwise operations

• Scatter operation: a scatter operation requires nearby elements in a grid
to be updated, based on computations involving the current element of
the stream (cf. figure 3.2). This is not possible on a GPU because a
fragment program can only output a value to the address of the current
pixel.

• No reduction operations (min, max, sum): it is not possible to perform
operations based on all the elements in the stream inside a shader.

• Limited number of outputs: currently fragment shaders can only output
four values per pixel.

Figure 3.2: The scatter operation [6]

3.2.3 Handling Some Missing Operations

In this section we will give a couple of examples of how some missing opera-
tions can be performed on the GPU.

3. Programming the GPU 18

Scatter Operation

There are two possible solutions to perform a scatter operation. A first solu-
tion would be to try to convert the scatter operation into a gather operation,
since gather operations work well in a fragment program.

Another solution would be to actually emulate the scatter operation with the
help of the vertex processor. A vertex program can change the position of
the current vertex but cannot read from other vertices. By rendering points
instead of quads this enables the shader to perform a scatter operation. The
position of the vertex will be changed to the position of the value that needs
to be adjusted. These values can then be used again as input to the vertex
shader by using the render to vertex array method. This method is described
in section 6.3.5

Reduction Operation

The reduction operation (min, max, . . .) can be emulated by a fragment
program. This is done by repeatedly performing gather operations until only
a single value is left. A more detailed description of this mechanism can
be found in section 7.3.4. The problem with this emulation is that multiple
render passes are needed to perform the reduction, which can be costly.

3.3 CPU - GPU Analogies

In this section we will show some anologies between programming on the
CPU and the GPU [6].

3.3.1 Data-lookups

Retrieving data on the CPU is done by reading data out of the main memory,
the data is retrieved by providing the address of the data in the memory. On
the GPU data is retrieved by performing a texture lookup. The data is
retrieved by providing the coordinate of the pixel that contains the data.

3. Programming the GPU 19

3.3.2 Looping

When a particular action needs to be performed on lots of elements, a loop
is created on the CPU with a for or while statement. On the GPU such an
action is implemented in a fragment shader. The shader will be executed for
every pixel in a texture. When converting algorithms from the CPU to the
GPU the body of a loop will often end up in a shader as shown in figure 3.3.

Figure 3.3: A loop on the CPU and the GPU [6]

3.3.3 Saving Data

Saving data on the CPU simply implies writing the data to an element of an
array. Saving data on the GPU is done with the render-to-texture mecha-

3. Programming the GPU 20

nism. Instead of writing the output values of the shader to the framebuffer
the values are written to a texture that is bound to an off-screen framebuffer.
This does mean that double-buffering techniques sometimes have to be used
when the output texture will be used as the input texture to the same shader
in the next pass because you can not use the same texture as input and out-
put of a fragment program. The use of the double-buffering method and the
needed extension is explained in more detail in section 6.4.1.

3.3.4 Algorithm Step

On the CPU a step of an algorithm usually resides in a method that contains
a loop where the algorithm is executed. Invoking that method will cause the
algorithm to advance a step.

Computation on the GPU is invoked by drawing a pixel. This will cause the
fragment shader to be executed. To perform an algorithm step, all the values
need to be updated by a shader. Invoking computation on all the values is
done by drawing geometry. The most common operation in GPGPU is to
draw a viewport sized quad. This will cause all the values of the framebuffer
to be updated. Setting up the viewport is shown in figure 3.4. After the
viewport has been setup, the correct framebuffer needs to be activated that
will be used as a render target. Then the input textures of the fragment
shaders are assigned and finally a viewport sized quad is rendered that will
cause all the values to be updated.

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2d(0, 1, 0, 1);

glViewport(0, 0, resX, resY);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

Figure 3.4: Setup viewport in OpenGL

21

Chapter 4

Research Areas

In this chapter we give an overview of some research areas in which general-
purpose computing on graphics hardware has been successful.

4.1 Databases

GPUs have been successfully used as a coprocessor to accelerate various
database operations.

Lloyd et al. [20] describe some algorithms for performing fast computation
of several database operations on graphics hardware. In particular the paper
describes operations such as conjunctive selections, aggregations and semi-
linear queries which are heavily used in typical database, data warehousing
and datamining applications. The paper compares the performance of these
operations with an optimized CPU-based implementation. The experiments
indicate that the graphics processor is an effective coprocessor for performing
database operations.

Sun et al. [21] discuss how the GPU can be effectively used to accelerate the
performance of spatial database operations. Spatial database operations,
especially which involve polygon datasets, have been known to be computa-
tionally expensive. The paper describes a hardware / software coprocessing
technique which uses basic features of a GPU to reduce the spatial query pro-
cessing cost. Experimental evaluation shows that their hardware-based ap-
proach can significantly outperform leading software-based techniques. How-

4. Research Areas 22

ever, this evaluation is done in a stand-alone setting where there are no
indices, preprocessing or other optimizations available in a database.

4.2 Audio and Signal Processing

GPUs have also been used to perform audio effects or calculate audio accous-
tics.

Jȩdrzejewski [22] proposes a way to accelerate the computation of sound
paths between sound sources and receivers by using the GPU. The algorithm
is similar to a raytracer, rays are cast from audio sources. If they intersect
with the sphere, representing an approximation of the user, after a number
of steps they will be included in an echogram that is used in the auralization
process. The application can run in real time with up to 64.000 rays.

BionicFX [23] created a technology for music production that turns NVIDIA
video cards into audio effects processors. It uses a mechanism called Audio
Video Exchange (AVEX) to convert digital audio into graphics data, and
then perform effect calculations using the GPU. The AVEX technology allows
music hobbyists and professional artists to run high quality audio effects at
high sample rates on their desktop computer.

4.3 Advanced Rendering

A lot of research has been done to perform advanced rendering techniques
like ray tracing, global illumination and image based modeling and rendering
on the GPU.

Purcell [24] has done research on GPU-based ray tracing and photon mapping
algorithms. His results prove that advanced rendering techniques can be
successfully run on modern graphics hardware.

Hillesland et al. [25] have created a framework used to solve two distinct
image-based modeling problems: light field mapping approximation and fit-
ting the Lafortune model to spatial bidirectional reflectance functions. The
graphics hardware implementation outperformed the CPU implementation
with a 5-fold speedup.

4. Research Areas 23

4.4 Computational Geometry

Another research area that has found the GPU useful to perform some heavy
tasks is computational geometry (eg. collision detection, Constructive Solid
Geometry (CSG)).

Stewart et al. [26] have created an algorithm for Overlap Graph subtrac-
tion Sequences on the GPU and describe how it can be combined with the
Sequenced Convex Subtraction (SCS) algorithm for Constructive Solid Ge-
ometry. An overlap graph stores the spatial relationship of the objects in
a CSG product. Nodes in the graph correspond to shapes or objects while
edges in the graph indicate spatial overlaps. Experimental results indicated
speed-up factors of up to three.

Pascucci [27] has developed a technique to compute isosurfaces on program-
mable GPUs. Using the vertex programming capability of modern graphics
cards the cost of computing an isosurface from the CPU is transfered to the
GPU. This has the advantage that the task is off-loaded from the CPU and
it can be avoided to store the surface in main memory.

4.5 Image and Volume Processing

GPUs have been successfully used to perform image and volume processing
tasks.

Moreland et al. [28] describe an implementation of the Fast Fourier Trans-
form (FFT) on the GPU. The Fourier transform is a well known and widely
used tool in many scientific and engineering fields. It is essential for many im-
age processing techniques, including filtering, manipulation, correction and
compression. The computer graphics community could benefit greatly from
such a tool if it were part of the graphics pipeline.

Krueger et al. [29] have done research for acceleration techniques for GPU-
based Volume Rendering. Direct volume rendering via 3D textures is a useful
tool for the display and visual analysis of volumetric scalar fields. The paper
proposes some acceleration techniques like early ray termination and empty
space-skipping resulting in performance gains of factors up to 3.

4. Research Areas 24

4.6 Scientific Computing

Another research area that benefits from high performance GPUs is scientific
computing. GPUs can be used to perform lots of arithmetic computations
allowing more realistic simulations in real-time.

Fan et al. [30] have created a GPU cluster for high performance scientific
computing. As an example application, they have developed a parallel flow
simulation using the Lattice Boltzmann Model (LBM) on a GPU cluster and
have simulated the dispersion of airborne contaminants in the Times Square
area of New York City. With 30 GPU nodes they achieved speeds that were
4.6 times faster than their implementation on a CPU cluster.

Liu et al. [31] present a way to process complex boundary conditions when
simulating fluid flow using the Navier-Stokes Equations on the GPU. The
test results prove the efficiency of the method, and as a result, it is feasible
to run middle-scale problems of 3D fluid dynamics at interactive speeds with
complex geometry.

25

Chapter 5

In-depth Example: Collision
Detection

5.1 Introduction

Real-time collision detection is a classic and important problem in areas
like computer graphics, virtual reality, computer games, CAD, robotics and
manufacturing. Recently the GPU has been used to speed up the process of
collision detection. Fan et al. [2] describe an implementation on the GPU
with the goal of maximum performance at the lowest cost. The implementa-
tion performs collision detection between star shaped objects and is mapped
to the streaming processor by performing lots of ray triangle intersections.

5.2 Algorithm

5.2.1 Overview

The goal is to perform collision detection between star-shaped objects. A
star-shaped object is defined as an object in which there exists at least one
point O (we call O the origin of the object) and any semi-finite ray originating
from the point O will intersect the surface of the object at exactly one point
[2]

5. In-depth Example: Collision Detection 26

Mapping collision detection to programmable GPUs is done in three steps:
ray generation, ray triangle intersection and the comparison of the threshold
values as indicated in figure 5.1.

Figure 5.1: Algorithm overview

5.2.2 Ray Generation

In the first step of the algorithm rays are emitted from the origin of an object
to its surface vertices. Each ray is represented parametrically as shown in
equation 5.1, where orig is the ray origin and dir is the ray direction.

ray(t) = orig + t · dir (5.1)

For each ray, the distance between the origin and the surface vertices is
calculated and recorded (this distance is called the threshold value). Since
all the rays are emitted from the same origin, it can be stored as a constant
vector. The ray directions and corresponding thresholds are stored in an
RGBA texture. The red, green and blue channels are used to store the
direction and the alpha channel is used to store the threshold value. So each
ray corresponds to a pixel in the texture. The texture size is determined by
the number of rays which in turn is determined by the number of vertices of
the object. The way to determine the size of the texture is given in equation
5.2, where nr is the number of rays and width and height denote the size of
the texture. Before each step, the threshold values of the rays are stored in
the depth buffer and the colour buffer

width = height = b√nrc + 1 (5.2)

An example of a ray texture is shown in figure 5.2.

5. In-depth Example: Collision Detection 27

Figure 5.2: A sphere and its corresponding ray texture [2]

5.2.3 Ray - Triangle Intersection

Suppose you have two star-shaped objects: A and B. In each iteration of the
ray-triangle intersection, an intersection test will be performed with every ray
of object A and one triangle of object B. So multiple passes will be needed
to perform intersection tests with every triangle of object B.

To pass the triangle to the fragment shader a quadrilateral is rendered of
which the attributes of its four vertices consist of the attributes of the cur-
rent triangle. The attributes are passed to a vertex shader. Rasterization of
this quadrilateral causes the attributes to be interpolated for each pixel of its
screen projection. The attributes are the same for each vertex of the quadri-
lateral and consists of the triangle id which is stored in the colour attribute,
the three vertices of the triangle which are stored as texture coordinates and
the triangles front facing normal which is stored in a second colour attribute.
The vectors v1, v2, v3, n, e12(= v2 − v1) and e13(= v3 − v1) can be obtained
from the vertex shader. v1, v2 and v3 are passed to the vertex shader and the
other values are calculated inside the vertex shader and can then be passed
to the fragment shader.

Next, the intersection test is performed in a fragment program which executes
by rendering a viewport sized quadrilateral. The input data to the ray-
triangle intersection shader will consist of two parts: the ray texture and the
triangle data. This is shown in figure 5.3

The intersection test is shown in figure 5.4. The test passes if all three
barycentric coordinates u, v and w are all in the interval (0,1). If the ray
does not intersect the triangles, the maximum limited value is returned as
its parameter t. A depth test function is used to test parameter t.

5. In-depth Example: Collision Detection 28

Figure 5.3: The stream of input data [2]

float4 Detect_Rays_with_Triangle(float3 orig, float3 dir, float3 v1,

float3 v2, float3 e12, float3 e13)

{

float3 v1o = orig - v1; float3 v2o = orig - v2;

float3 v1od = cross(v1o, dir); float3 v2od = cross(v2o, dir);

float3 ed = cross(e, dir);

bool bHit = false; float det = dot(e13, e12d);

bHit = (det< -0.000001f) ? true: bHit; bHit = (det>= 0.000001f) ? true: bHit;

float u = dot(e13, v1od) / det; float v = - dot(e12, v1od) / det;

float w = u+v;

bHit = (u>=0.0f) ? bHit:false; bHit = (u<1.0f) ? bHit:false;

bHit = (v>=0.0f) ? bHit:false; bHit = (w<1.0f) ? bHit:false;

t = (bHit) ? (- dot(n, v1o)/ dot(n, dir)) : MaxT;

return bHit;

}

Figure 5.4: Ray-triangle intersection [2]

5.2.4 Compare Threshold Values

After the ray-triangle intersection tests, a stream of ray triangle hits is out-
putted. It is then determined via depth comparison whether the depth buffer
and colour buffer should be updated. At each pixel of the viewport, if the
ray-triangle intersection value t is smaller than the current depth value in the
depth buffer, the depth buffer is updated with the t value and correspond-
ingly, the colour indexed by the triangle id is written to the colour buffer.
If there exists at least one pixel of which the value has been updated to a
colour other than white, the two objects overlap.

5. In-depth Example: Collision Detection 29

5.3 Optimizations

Some optimizations can be applied to the presented algorithm to increase
performance.

5.3.1 Direction Cone

In order to decrease the number of rays that need to be tested, a direction
cone is created. Before the collision detection takes place, the overlapping
region of the bounding volumes of the two objects is determined. Next, the
bounding sphere of this region is created. Now the direction can be created
by setting the ray origin as the cone’s apex and by setting the line between
the ray origin and the center of the bounding sphere as the cone’s axis. This
is shown in figure 5.5.

Figure 5.5: The direction cone [2]

All the rays starting in the origin can now be checked to see if they are in the
direction cone. If that is not the case, the rays can be rejected. This way only
a small subset of the rays need to be checked for ray-triangle intersection.

5.3.2 Back-face Culling

In order to further decrease the number of ray-triangle intersection tests a
modified version of back-face culling is applied. The normal of every triangle

5. In-depth Example: Collision Detection 30

is compared to the axis of the direction cone. If the normal of the triangle is
in the opposite direction of the cone’s axis an intersection test does not need
to be performed. This is shown in figure 5.6.

Figure 5.6: Back-face culling [2]

5.3.3 Viewing Volume Culling

OpenGL provides a mechanism to determine which objects of the scene are
visible in the current viewport. This is done by switching the rendermode
of OpenGL to GL SELECT with the function glRenderMode(). This mode
does not necessarily require the display to be updated. By setting the ren-
dermode to GL SELECT and displaying the scene, OpenGL will return the
list of primitives that are located in the viewport.

This method is used to cull triangles that appear outside of the bounding
volume of the overlapping region of the two objects. Axis aligned bounding
boxes (AABBs) are used as the bounding volumes. The overlapping volume
is also an AABB and will be set as the viewing volume. The object will
now be rendered with the GL SELECT rendering mode. The list of triangles
that appear in the viewing volume will be returned by OpenGL, the other
triangles are culled.

Figure 5.7 shows 2 objects of which the overlapping region, which is set as the
viewing volume is marked. The only one of the faces of object B appearing
inside of the viewing volume is face f5. Thus only f5 needs to be passed to
the ray triangle intersection test.

5. In-depth Example: Collision Detection 31

Figure 5.7: Culling by the user-defined viewing volume [2]

5.3.4 Triangles Caching and Organization

The collision detection process can be further optimized by using coherence.
When collision is detected, the intersecting triangles’ ids are stored in the
colour buffer. These values are then read back to the main memory by the
CPU and they are put into a triangle cache. In the next frame the algorithm
will first render the quads corresponding to the triangles in the cache.

Besides reading back the results in the framebuffer, the CPU is also used to
organize the architecture of the algorithm. Figure 5.8 shows a representation
of the algorithm.

5.4 Results

The streaming collision detection algorithm was run on a PC with a Pen-
tium 4 1.6 GHz processor with 512MB of RAM and an NVIDIA GeForce4
Ti4200 with 64MB of RAM. The driver is an NVIDIA CineFX (NV30) em-
ulator driver because the graphics card does not support the required NV30
instruction set.

Two scenarios were tested: one with two spheres (530 triangles cf. figure
5.9) and one with two star shaped objects (5420 triangles cf. figure 5.10).
Tables 5.1 and 5.2 show that the optimization techniques have been proven
to be efficient. The overall performance was not quite satisfactory because
emulation drivers had to be used. Moreover, they did not provide a compar-
ison with a pure software implementation of a collision detection algorithm.

5. In-depth Example: Collision Detection 32

Figure 5.8: Architecture of streaming collision detection [2]

Figure 5.9: Scenario 1: two spheres [2]

We expect that using a hardware NV30 feature set will seriously boost the
performance of this implementation making it able to compete with or even
outperform software implementations.

5. In-depth Example: Collision Detection 33

Figure 5.10: Scenario 2: two star-shaped objects [2]

Optimizations
Culling rate (%)

Scenario 1 Scenario 2

Direction cone 61.9 78.4

Back-face culling (BFC) 49.6 48.7

Viewing volume culling (VVC) 31.2 36.8

Table 5.1: Culling rates using optimizations [4]

Methods
Scenerio 1 Scenerio 2

Tcd (ms) Speedup Tcd (ms) Speedup

No optimizations 191.7 1.00 1129.3 1.00

Direction cone (DC) 132.6 1.45 693.6 1.63

DC + BFC 81.5 2.35 440.2 2.57

DC+BF+VVC+TC 67.2 2.85 330.7 3.41
Tcd is the average collision detection time.

Table 5.2: Collision detection time and speedup [4]

34

Chapter 6

Particle System

The implementation of the particle system that we made is based on the
paper of Lutz Latta: Building a Million Particle System [32]. The paper
describes a full GPU implementation of both the simulation and rendering
of a particle system. The application renders a particle system in OpenGL
while the positions and velocities of the particles are being updated on the
GPU by storing the data in textures.

We also made some modifications to the proposed algorithm by creating an
implementation that runs entirely on the GPU instead of managing the cre-
ation and deletion of particles on the CPU. Furthermore, we used framebuffer
objects [33] for rendering to off-screen framebuffers.

6.1 Introduction

Particle systems can be used for pretty much anything you want, however as
a general rule, a particle system is a collection of a great number of entities
that are either related or unrelated and behave according to a set of logical

6. Particle System 35

rules. An example of a particle system is a fountain. The drops of water are
the entities and they behave according to the rule of gravity. Entities in a
particle system usually have a very limited lifespan and will be replaced by
other entities as soon as they die.

Real-time particle systems are usually limited by the fill rate or the com-
munication between the CPU and GPU [32]. The fill rate is the number of
pixels the GPU can draw each frame. Fill rate usually is a problem when
relatively large particles are used which causes a lot of overlapping between
particles. Particle systems generally use small particles because this increases
realism so the fill rate limitation loses importance. The second limitation,
the transfer of particle data (position, colour, ...) from the simulation on the
CPU to the GPU, is the dominating factor. In typical game applications,
CPU-based particle systems usually achieve only 10,000 particles per frame
while sharing the graphics bus with many other rendering tasks. By mov-
ing the simulation of the particles to the GPU, the graphics bus will have
more available bandwidth for other rendering tasks because the particle data
resides in the graphics memory and it will allow to render more particles
because the communication limitation is no longer an issue.

There are two types of particle systems: stateless and state-preserving parti-
cle systems [32]. Stateless particle systems do not store the current positions
and other data of the particles. New positions of particles are determined
by a closed form function from the initial position and the current time.
State-preserving particle systems allow using numerical, iterative integra-
tion methods to compute the particle data from previous values. Using this
method it is also possible to have collision detection with dynamic objects in
the environment. Our implementation is a state-preserving particle system.

6.2 Data Storage

The data of the particles can be split up into two major categories: positions
and velocities. All this data is stored into two floating point textures. The
RGB colour components of these textures will be treated like the x, y, and z

coordinates. The textures are used as inputs to a shader to read the current
positions and velocities, but they are also used as render targets to update
the positions and velocities in every timestep. Because you can not read and
write from the same texture in one rendering pass, double-buffering is used
(cf. figure 6.1). This means you have a pair of each texture and the textures

6. Particle System 36

will be used in turn as input and output textures.

The user has the choice of creating 16bit or 32bit floating point textures.
32bit textures will increase the precision of the particles but will of course
have an impact on the performance of the particle system.

Figure 6.1: Particle storage in textures

6.3 Algorithm

6.3.1 Overview

The positions and velocities of the particles are stored in floating point tex-
tures. These textures will also be used as render targets. In a first step new
particles will be created and old particles will be destroyed. Next, the veloc-
ities and positions of the particles will be updated. When the new positions
are calculated they need to be copied from a texture to a vertex buffer so
they can be transferred to the vertex shader where they will be rendered to
the screen as point sprites or regular points. An overview is shown in figure
6.2.

6. Particle System 37

Figure 6.2: Algorithm overview

6.3.2 Step 1: Create and Destroy Particles

Original Method

The particles of a particle system do not have an eternal lifespan. Every
timestep new particles are created which will replace the position in the
textures of old particles. The data structure that holds the particles and
their index in the textures is a queue. This queue will be stored in main
memory so the available positions can be determined on the CPU. It is hard
to do this on the GPU because allocation problems are serial by nature and
can not be done efficiently with a parallel algorithm on the GPU.

Every timestep, a number of particles are added to the queue depending
on the duration of the last frame. If the queue is already full, this means
the maximum number of particles is reached because there are no more free
indexes in the texture. We simply remove the first item in the queue because
this is the oldest active particle. This method eliminates the need to manage
the age of the particles because the oldest particles are automatically replaced
by new ones.

6. Particle System 38

The initial speed and velocities of the particles are determined by the be-
haviour of the particle system. The behaviour can be specified at the initial-
isation of the particle system. Finally the values of the new positions and
velocites are written to the textures using a fragment program.

GPU Method

In an attempt to create an implemention of a particle system that runs
completely on the GPU we tried to create an allocation mechanism that
does map to the GPU.

The creation of new particles requires the use of random numbers to deter-
mine the initial velocity of the particles. Since random number generation is
not supported on current GPUs, a preprocessing step on the CPU is needed
to create an initial set of velocities based on the behaviour of the particle
system. This set of velocities is stored in a floating point texture. To deter-
mine which particles need to be replaced a new field is added to the position
texture storing the age of the particle. This field will be stored in the alpha
value of the pixels.

The creation of new particles can now be done in a fragment shader. The
arguments of the shader are the max age of the particles and three textures:
one containing the pre-generated random velocities and two others containing
the positions and the velocities. The shader will check the age of the current
particle, if this value is bigger than the maximum age the particle will be
replaced by a new one. This is done by performing a texture lookup in the
random velocity texture to determine the new velocity of the particle and by
resetting the position and age of the particle.

6.3.3 Step 2: Updating the Velocities

In the next step the velocities of the particles will be updated. This is done
in a fragment shader that has two textures as arguments (positions and
velocities). The shader will be executed for each pixel of the render target
by rendering a screen-sized quad. The render target will be one of the two
velocity textures (the one not used as input). Other parameters of the shader
include the timestep, gravity, and the location and radius of the sphere.

6. Particle System 39

First the shader performs two texture lookups to determine the current ve-
locity and position of the particle. Next an estimate of the position in the
following timestep will be made based on these values and with the help of an
Euler integration. The Euler integration is shown in equation 6.1, where pest

is the new estimated position, pold is the result from the texture lookup in
the position texture, vold is the result from the texture lookup in the velocity
texture and ∆t is the timestep.

pest = pold + vold · ∆t (6.1)

Next the global and local forces will be calculated and accumulated into a
single vector so the acceleration can be calculated with Newtonian physics as
shown in equation 6.2 with a the acceleration vector, F the accumulated force
and m the mass of the particle. In our implementation, all particles have
unit mass and the only global force is gravity. So gravity can be immediately
used as the acceleration vector.

a =
F

m
(6.2)

The next step is collision detection. Collision with complex objects is not
very practical on GPUs. Collision with simple objects like a plane or a sphere
however is pretty cheap to compute. Collision detection is done with the
expected next position that was calculated before. The expected position is
used instead of the current position to avoid particles getting caught inside a
collider for one integration step. When collision is detected, the new velocity
after the collision has to be computed. This is done by splitting up the current
velocity into a normal and tangential component as shown in equations 6.3
and 6.4 where n is the normal of the collider at the collision point and vold

is the result from the texture lookup in the velocity texture.

vn = (vold · n)n (6.3)

vt = vold − vn (6.4)

When the new velocity is calculated two material properties are taken into
consideration: dynamic friction µ and resilience ε. Dynamic friction influ-
ences the tangential component of the resulting velocity and simulates a
reduction in velocity due to friction with the collider. Resilience influences
the normal component of the new velocity and simulates the loss of returned

6. Particle System 40

energy caused by the collision. The new velocity resulting from the collision
can now be computed with the formula of equation 6.5.

vnew = (1 − µ)vt − εvn (6.5)

A schematic representation of a collision with a sphere is shown in figure 6.3.

Figure 6.3: Particle collision with a sphere

6.3.4 Step 3: Updating the Positions

After we have determined the new velocities of the particles we can calculate
the new positions. This is also done in a fragment shader, that has two
textures as arguments (positions and velocities) and a floating point value
that contains the timestep ∆t. First the current position and velocity of
the particles are looked up in the textures resulting in pold and vnew. The
new position can now be computed with an Euler integration as shown in
equation 6.6.

pnew = pold + vnew · ∆t (6.6)

Note: When the hardware has support for multiple render targets (a fragment
shader can output up to four values per rendering pass as specified in the
ARB draw buffers extension [34]) the particle system will use this extension
to update the positions and velocities of the particles at the same time. This
means that steps 2 and 3 can be done in one rendering pass.

6. Particle System 41

6.3.5 Step 4: Transfer Texture Data to Vertex Data

There are two possible ways to transfer texture data to a vertex shader:
Vertex textures [35] or Vertex buffer objects [36].

Vertex textures require Vertex shader 3.0 and allow you to perform texture
lookups from a vertex program just like you can do in a fragment program.
This method seems rather optimal but because the lookup introduces a small
latency [37] this method is only advisable when a fair amount of computation
has to be performed on every lookup to hide the latency. Since that is not the
case in our particle system it is actually faster to use Vertex Buffer Objects.

A vertex buffer object is a powerful extension that allows you to store certain
data in high-performance memory on the server side [38]. This extension
enables a very interesting optimization: Render to vertex array. This allows
us to copy the position data stored in textures to a vertex buffer object which
avoids copying the texture to the client side and putting it back on the server
as input for a vertex shader as shown in figure 6.4.

Figure 6.4: Render to vertex array

6.3.6 Step 5: Render the Particles

In a last step the particles are rendered to the screen in a vertex shader. The
particles are rendered as point sprites using the ARB point sprite extension
[39]. The extension allows you to render the particles as quads with the cost
of only rendering a single point. The particles are rendered with the colour
and size as is defined in the behaviour that is specified at the initialisation
of the particle system. Images of the rendering result are shown in figure 6.5
and 6.6.

6. Particle System 42

Figure 6.5: Particle system: fountain behaviour

6.4 Own Contributions

In this section we discuss some differences between our implementation and
the already existing implementations of particle systems on the GPU.

6.4.1 Framebuffer Objects

Our implementation uses the EXT FRAMEBUFFER OBJECT extension
[33] to render data directly to textures. This extension was approved by
the ARB ”superbuffers” working group on January 31, 2005 and has only
been implemented in leaked beta drivers by NVIDIA (≥ Forceware 75.95)1.
Framebuffer objects (FBOs) are designed to be windowsystem- and vendor-
independent. This allows them to be used on every platform that supports
OpenGL in contrast to the WGL ARB render texture [40] which is usually

1At the time of writing

6. Particle System 43

Figure 6.6: Particle system: smoke behaviour

used in combination with the WGL ARB pbuffer extension [41] to render
directly to textures and is only supported on the Windows platform.

After creating a framebuffer object, textures can be attached as colour at-
tachments to the framebuffer. Multiple textures can be added to the same
FBO if they have the same format and size. This makes it possible to ren-
der to different textures in consecutive shaders whithout invoking a context
switch. To set the target texture glDrawBuffer() needs to be called with
the appropriate colour attachment as argument.

6.4.2 Particle Initialisation

As discussed earlier we also created a version of the particle system that
performs the particle initialisation on the GPU. Existing implementations
always use the CPU to manage the particles. On our implementation the
CPU is only used to organise the graphics-API calls.

6. Particle System 44

6.5 Results

In this section we show the resulting performance of the particle system we
created by running some scenarios with a varying number of particles and
precision. All the tests were run under Windows XP on an AthlonXP 2000
with 512MB ram equipped with an NVIDIA Geforce 6800 with 128MB ram
(12 pixel pipelines, 5 vertex units) connected with an AGP 4x bus.

6.5.1 Original Method

The results of our implementation of the particle system using the original
method are shown in table 6.1. The table shows some test scenarios with a
varying numbers of particles and precision. A difference is also made between
rendering the particles with simple GL POINTS or rendering with point
sprites.

The results are pretty straightforward, rendering more particles decreases
the framerate because larger textures are needed which causes the shaders
to perform more work. Using 16-bit precision is faster than using 32-bit
precision. Except when a large number of point sprites are being rendered
the precision does not seem to matter. The reason for this is that when a
large number of point sprites need to be rendered, the application becomes
limited by the fill rate of the graphics card because drawing lots of point
sprites in a small region requires all these sprites to be blended together.

The results we obtained are satisfactory. We can simulate one million parti-
cles in realtime at 29 frames per second in 32-bit precision.

particles Precision
Frames per second

GL POINTS Point sprites

65536 16 bit 512 175

65536 32 bit 432 148

262144 16 bit 169 48

262144 32 bit 128 51

1048576 16 bit 46 15

1048576 32 bit 29 14

Table 6.1: Performance of the particle system using the original method

6. Particle System 45

6.5.2 Full GPU Method

The results of the particle system using the GPU method to initialise the
particles are shown in table 6.2. Again the table shows some test scenarios
with a varying number of particles. This time only 32-bit is supported.

Again the results are pretty much what we expected, rendering more par-
ticles means less frames per second. If we compare this method with the
original method we see that it is being outperformed by the original method,
especially with fewer particles. But as the number of particles increases the
GPU method starts to catch up with the original method. The reason that
the original method is faster is because part of the work is done on the CPU.
But as the number of particles gets above 1 million the difference gets smaller
because then the CPU has to perform a fair amount of computation too.

particles Precision
Frames per second

GL POINTS Point sprites

65536 32 bit 365 194

262144 32 bit 115 53

1048576 32 bit 25 11

Table 6.2: Performance of the particle system using the GPU method for
initialisation

46

Chapter 7

GPU-math Library

The implementation of the GPU-math library that we made is based on the
paper of Jens Krüger and Rüdiger Westermann: Linear Algebra Operators
for GPU Implementation of Numerical Algorithms [7].

7.1 Introduction

Numerical techniques for solving partial differential equations have a variety
of applications in physics based simulation and modeling and are frequently
used in computer graphics to provide realistic simulation of real-world phe-
nomena. The downside is that because of the numerical complexity of these
techniques they often exceed the limits of available memory and computa-
tional power. Therefore off-loading the computation to the GPU with its
extreme power and parallelism should make it possible to perform real-time
simulations with floating point precision.

A math library that performs matrix and vector operations on the GPU
will aid in the implementation of these numerical techniques by providing
an abstraction of the various operations, thus making it easier to convert
numerical algorithms to the GPU. Available operations of the library are:

• matrix - matrix operations (addition, multiplication,. . .)

• matrix - vector multiplication

7. GPU-math Library 47

• vector reduction (min, max, sum,. . .)

• vector scale

7.2 Data Storage

7.2.1 Vectors

The easiest way to store vectors of length N would be to create 1xN 1D-
textures, but this method is limited in several ways. The width and height
of textures is limited by the hardware. By using 1D-textures the size of
a vector would be limited by the maximum width of the texture. If you
store the vector in a 2D-texture the size of the vector will be limited by
the square of the maximum width, which allows you to create much bigger
vectors. Secondly, square textures are rendered faster in graphics hardware
than rectangular textures [7]. To allow even bigger vectors and to benefit
from the SIMD-architecture of GPUs, RGBA textures will be used. (cf.
figure 7.1)

Figure 7.1: Vector representation

7.2.2 Dense Matrices

Dense matrices are matrices that have their non-zero values spread all over
the matrix. Thus you can treat them as a set of column vectors. Each column

7. GPU-math Library 48

will be stored in a vector which is a 2D-texture as indicated in the previous
section. A schematic representation is shown in figure 7.2.

Figure 7.2: Dense matrix representation [7]

7.2.3 Banded Sparse Matrices

Banded sparse matrices are matrices that contain only zeros, accept for some
bands around the diagonal. These matrices are treated as a set of diagonal
vectors, so only the diagonals need to be stored in textures. A schematic
representation is shown in figure 7.3. The bands to the left of the diagonal
are stored from the beginning of the texture and zeros are appended to the
end. Bands to the right of the diagonal need to be stored a bit differently,
zeros need to prepended to the texture. The number of zeros depends on the
position of the band. If it is the first band to the right of the diagonal 1 zero
is prepended, if it is the second band to the right of the diagonal two zeros
need to be prepended and so on. This shifting operation is done to ease the
matrix - vector multiplication that is discussed in the next section.

7.3 Operations

7.3.1 Vector Operations

Basic artithmetic operations on two vectors can be performed in simple frag-
ment shaders. Both vectors are passed as arguments to the shader and their

7. GPU-math Library 49

Figure 7.3: Banded sparse matrix representation

values will be combined. Supported operations are addition, subtraction and
multiplication. Each operation is defined in different shader. This approach
is used in favor of passing the operation as an argument to avoid costly
branching operations. The product of a vector and a scalar is done pass-
ing the scalar as an argument to the fragment shader. This results in the
following list of available functions:

clVecRGBA & add(clVecRGBA & v1, clVecRGBA & v2, float a = 1, float b = 1)

clVecRGBA & sub(clVecRGBA & v1, clVecRGBA & v2, float a = 1, float b = 1)

clVecRGBA & mult(clVecRGBA & v1, clVecRGBA & v2, float a = 1, float b = 1)

clVecRGBA & scale(clVecRGBA & vec, float scalar)

the two float values a and b that are passed as arguments to the add, sub

and mult functions are multiplied with v1 and v2 respectively before the
computation.

7.3.2 Matrix - Vector Multiplication

Dense Matrices

Matrix vector multiplication is done by multiplying every i-th column of the
matrix with the i-th element of the vector and then adding these results to-
gether. An example is shown in figure 7.4. The multiplication is performed

7. GPU-math Library 50

in a fragment shader that performs several columns per pass by using multi-
texturing. Several columns (2D-textures) of the matrix are passed as argu-
ments to the shader. The vector that will be used in the multiplication is
also passed as a parameter. The texture coordinates that need to be used to
lookup the i-th element of the vector, used to multiply with the i-th column
of the vector, are calculated on the CPU and are passed to the shader as
uniform paramaters. In order to be able to save the output of the shader and
use the intermediate result in the next pass as input to the shader double-
buffering will be used.

Figure 7.4: Dense matrix - Vector multiplication

This results in the following list of available functions:

clVecRGBA & matVecOp(clDenseMatRGBA & A, clVecRGBA & x)

clVecRGBA & matVecOp(clMath::Op op, clDenseMatRGBA & A, clVecRGBA & x, clVecRGBA & y)

The first function simply performs the computation of dense matrix A with
vector x. The second function performs the computation of Ax op y where
op can be CL ADD (addition), CL SUB (subtraction) or CL MULT (multi-
plication).

7. GPU-math Library 51

Banded Sparse Matrices

Banded sparse matrices can be multiplied with a vector in one pass. All the
bands and the vector are passed as arguments to the shader. A representation
is shown in figure 7.5. Every pixel from the bands is multiplied with the
corresponding pixel of the vector. This is possible because we already shifted
the bands that appear on the right side of the diagonal to ensure the red,
green, blue and alpha channels of the pixels can be directly multiplied with
each other. Next we need to add the right values from the result of the
multiplication together to get the final result. The values that need to be
added together are presented in the same colour in figure 7.5. The values
inside the square are the results of the calculations from the current pixel.
However, some values needed to achieve the resulting pixel are outside of this
square. This is solved by also performing a texture lookup for the previous
and the next pixels of the bands and the vector and perfoming the same
multiplication as we did for the current pixel. Finally the values of the same
colour can be added together to get the value of the output pixel.

Because the values that need to be added together depend on the number
of bands different shaders have been written for different numbers of bands.
This also means that the maximum number of bands 15 because on current
hardware, multi-texturing is only supported for up to 16 textures and one
texture is used for the vector, so 15 textures remain for the bands.

This results in the following list of available functions:

clVecRGBA & matVecOp(clBandedSparseMatRGBA & A, clVecRGBA & x)

clVecRGBA & matVecOp(clMath::Op op, clBandedSparseMatRGBA & A, clVecRGBA & x, clVecRGBA & y)

The first function simply performs the computation of banded sparse matrix
A with vector x. The second function performs the computation of Ax op y

where op can be CL ADD (addition), CL SUB (subtraction) or CL MULT
(multiplication).

7.3.3 Matrix - Matrix Multiplication

Dense matrices

Matrix - matrix multiplications can be completely computed with the func-
tionality that is already present in the library. Suppose we have two matrices

7. GPU-math Library 52

Figure 7.5: Banded sparse matrix - Vector multiplication

7. GPU-math Library 53

A and B. Then the resulting matrix C will be computed by multiplying A

with every row of B by calling the matVecop method and adding the resulting
vectors as rows to C.

This results in the following function:

clDenseMatRGBA & matMatOp(clDenseMatRGBA * m1, clDenseMatRGBA * m2);

The function simply takes two dense matrices as arguments and computes
the product.

7.3.4 Vector Reduction

Sometimes it is necessary to combine all the values of a vector into a single
value, e.g. computing the maximum, minimum, sum, . . . of all the values.
Therefore a reduce operation is added to the library.

The algorithm starts with a 2D-texture that contains the values of the vec-
tor. Two textures are created that will act as a double-buffer. In each step
a quadrilateral is rendered that is half the size of the previous quadrilateral.
The values are written to the current drawbuffer. Each pixel of the rendered
texture will contain a combination of four pixels of the previous texture. This
means that in every pass four texture lookups are performed. An operation
will be applied to these values and the result will be written to the render
target. This is repeated untill the size of the quadrilateral is 1x1, the final
pixel then contains the result of the reduction. The technique is shown in fig-
ure 7.6. Available operations are CL ADD, CL MULT, CL MAX, CL MIN,
CL NORM. For a vector that is represented in a texture of dimension 2n, n

rendering passes need to be performed to compute the resulting value.

This results in the following list of available functions:

float reduceVecOp(clMath::Op op, clVecRGBA & v1);

float reduceVecOp(clMath::Op op, clVecRGBA & v1, clVecRGBA & v2);

The first function will perform the reduce operation on vector v1 with op-
eration op. The second function will perform the reduce operation on the
product of v1 and v2 with operation op.

7. GPU-math Library 54

Figure 7.6: Vector reduction [7]

7.4 Own Contributions

7.4.1 Framebuffer Object

We made use of the EXT FRAMEBUFFER OBJECT extension for render-
ing to off-screen buffers. This extension was already explained in section
6.4.1

7.4.2 Adjusted Vector Reduction

In the original paper the vector reduction was performed by rendering every
intermediate result into a new texture that was half the size of the currently
active texture. Instead we used a double-buffering approach with fixed size
textures, but simply halved the viewport on every pass. This resulted in a
performance gain because less textures had to be created and less context
switches were needed.

7.4.3 Adjusted Dense Matrix - Vector Multiplication

Instead of using the diagonal approach to represent dense matrices, we have
chosen to use a column based approach. This made it easier to perform dense

7. GPU-math Library 55

matrix - vector multiplications when using rgba-textures to store the data.

7.4.4 New Banded Sparse Matrix Method

We created a new method for the banded sparse matrix - vector multiplica-
tion. It proved to be much faster than the dense matrix approach as is shown
in section 7.5.5

7.5 Results

In this section we will show the results of the benchmarks that were performed
with the math-library. All the tests were run under Linux on an AthlonXP
2000 with 512MB ram equipped with an NVIDIA Geforce 6800 with 128MB
ram (12 pixel pipelines, 5 vertex units) connected with an AGP 4x bus. For
comparison with CPU performance we used Matlab.

7.5.1 Vector - Vector Operations

To test vector-vector operations we simply took two vectors, multiplied both
vectors with a scalar value and then added them together a number of times.
Results are shown in table 7.1.

The CPU outperforms the GPU implementation when small vectors are used,
this is because the overhead of creating textures and framebuffer objects on
the GPU is too big for the little amount of computation that needs to be
performed. When the size of the vectors increases, more computation needs
to be performed, eliminating the overhead of the GPU implementation. For
vectors of 1000000 elements the GPU implementation runs approximately 20
times faster than the CPU.

7.5.2 Vector Scale Operation

To test the vector scale operation a vector was multiplied with a scalar value
a number of times. Results are shown in table 7.2.

7. GPU-math Library 56

Vectorsize Iterations
Time (seconds)

Factor
GPU CPU

100 50000 2.970 0.134 0.05

10000 50000 2.960 5.356 1.81

50000 50000 4.620 92.125 19.84

100000 50000 9.120 185.046 20.29

500000 50000 44.530 937.030 21.04

1000000 50000 86.390 1853.600 21.46

Table 7.1: Timing of vector - vector operations

The vector scale operation shows similar results to the vector - vector opera-
tions. The GPU is slower for small vectors due to the overhead but faster for
larger vectors. For a vector of 1000000 elements the GPU implementation is
25 times faster than the CPU. The vector scale operation performs slightly
better than the vector - vector operation because only one texture lookup
has to be performed per kernel execution instead of two.

Vectorsize Iterations
Time (seconds)

Factor
GPU CPU

100 50000 1.279 0.031 0.02

10000 50000 1.279 1.610 1.26

50000 50000 2.844 57.031 20.05

100000 50000 5.510 118.391 21.45

500000 50000 24.490 544.220 22.22

1000000 50000 50.840 1306.090 25.69

Table 7.2: Timing of vector scale operation

7.5.3 Vector Reduce Operation

To test the vector reduce operation a vector was reduced a number of times.
Results are shown in table 7.3.

Again we see that the CPU version is much faster when small vectors are
used but it becomes slower when the vector size increases. Reducing a vector
of 1000000 elements is 7 times faster on the GPU than on the CPU. The

7. GPU-math Library 57

speedup is smaller than in previous operations because a reduce operation
requires multiple render passes. And since double-buffering is used the render
target needs to be changed each pass which also involves a cost. What might
seem weird is that reducing a vector of 500000 elements takes just as long
as reducing a vector of 1000000 elements. This is actually normal since both
vectors are stored in textures that have quadratic dimensions, so both vectors
are stored in 512x512 textures that are completely updated.

Vectorsize Iterations
Time (seconds)

Factor
GPU CPU

100 10000 2.170 0.027 0.01

10000 10000 3.470 0.879 0.25

50000 10000 3.900 7.047 1.81

100000 10000 6.530 15.144 2.74

500000 10000 19.740 74.346 3.77

1000000 10000 19.750 148.297 7.51

Table 7.3: Timing of vector reduce operation

7.5.4 Dense Matrix - Vector Multiplication

We performed multiplications of dense matrices with vectors. The results
are shown in table 7.4

The dense matrix - vector multiplication is always slower on the GPU than
on the CPU. The main reason for the bad performance is the number of
rendereing passes that need to be executed. Dense matrices require a lot of
rendering passes because only 12 columns can be multiplied per pass.

Matrixsize Iterations
Time (seconds)

Factor
GPU CPU

100x100 10000 5.797 0.250 0.04

200x200 10000 11.343 3.078 0.27

400x400 10000 25.422 14.500 0.57

1000x1000 10000 107.880 99.954 0.93

Table 7.4: Timing of dense matrix - vector multiplication

7. GPU-math Library 58

7.5.5 Banded Sparse Matrix - Vector Multiplication

The same tests as in the previous section were performed, instead now we
used banded sparse matrices. The results are shown in table 7.5

Since banded sparse matrices can be multiplied with vectors in one pass the
performance is better than the dense matrix multiplication. The more bands
the matrix contains, the better the GPU performance will be because more
computation needs to be performed per pass which allows the GPU to better
hide the overhead.

Size Iter.

Time (seconds)

1 band 3 bands

GPU CPU Factor GPU CPU Factor

100x100 100000 3.875 0.937 0.24 4.719 1.500 0.32

200x200 100000 3.859 1.437 0.37 3.859 2.547 0.66

400x400 100000 4.265 2.234 0.52 5.125 4.515 0.88

1000x1000 100000 6.500 4.828 0.74 7.830 10.703 1.37

5 bands 7 bands

100x100 100000 5.235 2.047 0.39 5.625 2.570 0.46

200x200 100000 5.188 3.640 0.70 5.625 4.765 0.85

400x400 100000 5.578 6.890 1.24 6.125 9.016 1.47

1000x1000 100000 8.660 16.375 1.89 9.630 22.297 2.32

Table 7.5: Timing of banded sparse matrix - vector multiplication

7.5.6 Conjugate Gradient Method

Using the available operations of our library, we created a Conjugate Gradient
(CG) solver on the GPU. The CG method is the most popular iterative
method for solving large systems of linear equations. CG is effective for
systems of the form Ax = b where x is an unknown vector, b is a known
vector, and A is a known, square, symmetric, positive-definite (or positive-
indefinite) matrix [42].

The results of the method when using dense matrices are shown in table 7.6.
Again we can see that for small matrices the CPU is faster than the GPU.
However, when we increase the size of the matrix the GPU starts to perform
better than the CPU. At sizes of 1800x1800, the GPU is twice as fast as the
CPU. The main loop of the algorithm consists of four reduce operations, one

7. GPU-math Library 59

matrix - vector multiplication and 2 vector - vector operations. The biggest
slowdown factor is the matrix - vector operation since it is by far the least
performant operation of the three, even if it is only executed once. The cg-
method starts to catch up to the CPU at sizes of 1000x1000 because at those
sizes the dense matrix vector -multiplication starts to catch up to the CPU
too, as shown in section 7.5.4

Matrixsize Iterations
Time (seconds)

Factor
GPU CPU

100x100 10 10.734 0.125 0.01

500x500 10 16.531 6.031 0.36

1000x1000 10 22.707 20.625 0.91

1800x1800 10 32.640 65.671 2.01

Table 7.6: Timing of the conjugate gradient method with dense matrices

60

Chapter 8

Conclusion

In this thesis we studied the use of graphics hardware for general-purpose
computation. We learned that modern GPUs contain very powerful proces-
sors that can be used for more than just graphics.

We gave some examples of research areas in which the GPU has been suc-
cessfully used and we created two applications that use the GPU for general-
purpose tasks. One is a particle system of which the particles are updated on
the GPU. The system can render over a million particles in real-time. The
other was a math-library that performs matrix and vector operations on the
GPU. In general we saw a performance increase when comparing the results
to the CPU. Some operations where even 25 times faster than their CPU
equivalent.

Our results confirmed that the GPU can indeed be used for general-purpose
tasks, but before the GPU can be widely used as a general purpose processor
some barriers need to be broken:

• Better debuggers and profilers need to be developed

• A GPU programming language is needed that provides an abstraction
to the graphics API

• Platform independence between different graphics vendors (our imple-
mentations do not run on ATI hardware)

Our guess is that GPUs will mostly be used to perform general-purpose

8. Conclusion 61

tasks for computations that need to be transferred to the GPU anyway. Our
particle system is such an example.

62

Bibliography

[1] GPGPU website. http://www.gpgpu.org/.

[2] Zhaowei Fan, Huagan Wan, and Shuming Gao. Streaming collision de-
tection using programmable graphics hardware, 2003.

[3] Cyril Zeller. Introduction to the hardware graphics pipeline. Presenta-
tion at Eurographics 2004.

[4] Randima Fernando and Mark J. Kilgard. The Cg Tutorial: The Defini-
tive Guide to Programmable Real-Time Graphics. Addison-Wesley, 2003.

[5] Randy Fernando. Trends in GPU evolution. Presentation at Eurograph-
ics 2004.

[6] Mark Harris. GPGPU: General purpose computation on GPUs. Pre-
sentation at the Game Developers Conference 2005.

[7] Jens Krüger and Rüdiger Westermann. Linear algebra operators for
GPU implementation of numerical algorithms. In Proceedings of ACM
SIGGRAPH 2003, volume 22(3) of ACM Transactions on Graphics,
pages 908–916, 2003.

[8] Randima Fernando. GPU Gems: Programming Techniques, Tips, and
Tricks for Real-Time Graphics. Addison-Wesley Professional, March
2004.

[9] João Luiz Dihl Comba, Carlos A. Dietrich, Christian Augusto Pagot,
and Carlos Eduardo Scheidegger. Computation on gpus: From a pro-
grammable pipeline to an efficient stream processor. RITA, 10(1), 2003.

[10] Matt Pharr and Randima Fernando. GPU Gems 2 : Programming
Techniques for High-Performance Graphics and General-Purpose Com-
putation. Addison-Wesley Professional, March 2005.

BIBLIOGRAPHY 63

[11] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröder. Sparse
matrix solvers on the gpu: conjugate gradients and multigrid. ACM
Trans. Graph., 22(3):917–924, 2003.

[12] Cg Toolkit, User’s manual: A developer’s guide to programmable graph-
ics, January 2004.

[13] John Kessenichand Dave Baldwin and Randi Rost. The OpenGL Shad-
ing Language, April 2004.

[14] K. Hillesland and A. Lastra. GPU floating-point paranoia. In GP2,
2004.

[15] Randy Fernando. GPGPU: General-purpose computation using graphics
hardware. Presentation at I3D 2005.

[16] Dx.next: The near and nearest future of hardware graphic acceleration.
http://www.digit-life.com/articles2/dx-next/.

[17] Directx next early preview.
http://bink.nu/Article606.bink.

[18] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan.
Ray tracing on programmable graphics hardware. ACM Transactions
on Graphics, 21(3):703–712, July 2002. ISSN 0730-0301 (Proceedings of
ACM SIGGRAPH 2002).

[19] Aaron Lefohn, Ian Buck, John Owens, and Robert Strzodka. GPGPU:
General purpose computation on graphics processors. Presentation at
IEEE Visualization 2004.

[20] Brandon Lloyd, Dinesh Manocha, Ming Lin, Naga K. Govindaraju, and
Wei Wang. Fast computation of database operations using graphics,
March 21 2004.

[21] Chengyu Sun, Divyakant Agrawal, and Amr El Abbadi. Hardware ac-
celeration for spatial selections and joins. In SIGMOD ’03: Proceedings
of the 2003 ACM SIGMOD international conference on Management of
data, pages 455–466, New York, NY, USA, 2003. ACM Press.

[22] Marcin Jȩdrzejewski. Computation of room acoustics on programmable
video hardware, 2004.

[23] BionicFX announces audio processing on NVIDIA gpu, 2004.

BIBLIOGRAPHY 64

[24] Timothy John Purcell. Ray Tracing on a Stream Processor. PhD thesis,
Department of Computer Science, Stanford University, Stanford, CA,
March 2004.

[25] Karl E. Hillesland, Sergey Molinov, and Radek Grzeszczuk. Nonlinear
optimization framework for image-based modelling on programmable
graphics hardware. ACM Trans. Graph., 22(3):925–934, 2003.

[26] Nigel Stewart, Geoff Leach, and Sabu John. Improved CSG rendering
using overlap graph subtraction sequences. In GRAPHITE ’03: Pro-
ceedings of the 1st international conference on Computer graphics and
interactive techniques in Australasia and South East Asia, pages 47–53,
New York, NY, USA, 2003. ACM Press.

[27] Valerio Pascucci. Isosurface computation made simple. In VisSym, pages
293–300, 2004.

[28] Kenneth Moreland and Edward Angel. The FFT on a GPU. In SIG-
GRAPH/Eurographics Workshop on Graphics Hardware, pages 112–119.
Eurographics Association, 2003.

[29] Jens Krueger and Ruediger Westermann. Acceleration techniques for
gpu-based volume rendering. In Proceedings IEEE Visualization 2003,
2003.

[30] Zhe Fan, Feng Qiu, Arie Kaufman, and Suzanne Yoakum-Stover. GPU
cluster for high performance computing. In SC’2004 Conference CD,
Pittsburgh, PA, November 2004. IEEE/ACM SIGARCH. Stony Brook
University.

[31] Youquan Liu, Xuehui Liu, and Enhua Wu. Real-time 3d fluid simulation
on the gpu with complex obstacles, 2004.

[32] Lutz Latta. Building a million particle system, 2004.

[33] EXT framebuffer object.
http://oss.sgi.com/projects/ogl-sample/registry/EXT/framebuffer object.txt .

[34] ARB draw buffers specification.
http://oss.sgi.com/projects/ogl-sample/registry/ARB/draw buffers.txt .

[35] ARB vertex shader specification.
http://oss.sgi.com/projects/ogl-sample/registry/ARB/vertex shader.txt .

BIBLIOGRAPHY 65

[36] ARB vertex buffer object specification.
http://oss.sgi.com/projects/ogl-sample/registry/ARB/vertex buffer object.txt .

[37] Philipp Gerasimov, Randima (Randy) Fernando, and Simon Green.
Shader model 3.0: Using vertex textures, June 2004.

[38] Using vertex buffer objects (vbos), October 2003.

[39] ARB point sprite specification.
http://oss.sgi.com/projects/ogl-sample/registry/ARB/point sprite.txt .

[40] WGL ARB render texture.
http://oss.sgi.com/projects/ogl-sample/registry/ARB/wgl render texture.txt .

[41] WGL ARB pbuffer.
http://oss.sgi.com/projects/ogl-sample/registry/ARB/wgl pbuffer.txt .

[42] Jonathan R Shewchuk. An introduction to the conjugate gradient
method without the agonizing pain. Technical report, Pittsburgh, PA,
USA, 1994.

66

Appendix A

Dutch Abstract

De Grafische Verwerkings eenheid (GPU)

Het verschil tussen een GPU en een grafische versneller zit hem in het feit
dat GPUs niet enkel grafische bewerkingen versnellen, maar dat ze bepaalde
fases uit de grafische pijplijn programmeerbaar maken.

GPUs zijn de laatste jaren zeer snel geworden. De laatste generatie GPUs
kunnen viermaal zoveel floating point operaties uitvoeren per seconde dan de
laatste generatie CPUs. Bovendien kan de GPU inkomende data in parallel
verwerken, omdat hij uitgerust is met meerdere vertex- en pixelprocessors.

Door de komst van de high-level programmeertalen voor GPUs is het boven-
dien veel intüıtiever geworden voor de programmeur om shaders te maken.
Hierdoor kunnen shaders sneller aangemaakt worden en wordt het gemakke-
lijker om de code te herbruiken en te debuggen. Voeg hier aan toe dat de
laatste generatie videokaarten 32-bit floating point operaties ondersteunen
over gans de grafische pijplijn en je bekomt een interessant apparaat om
preciese bewerkingen op uit te voeren.

Er zijn ook nadelen verbonden aan het werken op de GPU. Zo is het noodza-
kelijk om gebruik te maken van een grafische API, je hebt een beperkte
geheugeninterface en er is nog een gebrek aan degelijke debuggers en profil-
ers. Bovendien is de bandbreedte om data van de GPU terug naar de CPU
te halen beperkt.

A. Dutch Abstract 67

Programmeren op de GPU

Programmeren op de GPU gebeurt volgens het stream programming model.
Dit houdt in dat alle invoerdata gelezen worden als een stroom van elementen
en elk element van de stroom is een data record waarop dezelfde bewerking
dient te worden uitgevoerd. Het systeem voert dan een programma uit voor
ieder element in de invoerstroom en plaatst het resultaat in een uitvoer-
stroom.

Een aantal beschikbare operaties op de GPU zijn: (random access) read-
only geheugen, per-data-element interpolanten, tijdelijke registers, read-only
constanten, write-only geheugen en floating point mathematische operatoren.

Operaties die momenteel niet beschikbaar zijn: stack, heap, operaties op
integers, scatter operatie, reducties en een beperkt aantal outputwaardes per
pixel. Sommige van deze operaties zijn te omzeilen, maar dit brengt een kost
met zich mee.

Onderzoeksgebieden

GPUs werden al met succes ingezet in verschillende onderzoeksgebieden zoals
daar zijn databases (uitvoeren van queries), audio- en signaalverwerking
(voortplanting van geluid berekenen), geavanceerde rendering (ray tracing),
computationele geometrie (collision detection), beeld- en volumeverwerking
(fast fourier transform) en wetenschappelijk onderzoek (vloeistofsimulatie)

Voorbeeld: Collision detection

In hoofdstuk 5 wordt een gedetailleerde bespreking gegeven van een paper
die collision detection algoritme op de GPU beschrijft. Het algoritme voert
collision detection uit op sterlichamen.

Het algoritme bestaat uit drie stappen. In een eerste stap worden stralen
gegenereerd vanuit het centrum van een lichaam. Daarna wordt er gecon-
troleerd of deze stralen intersecteren met een driehoek van een ander lichaam.
Vervolgens gebeurt er een vergelijking van de threshold waardes.

A. Dutch Abstract 68

Verder worden er nog een aantal optimalisatietechnieken besproken die de
performantie van het algoritme verhogen (direction cone, backface culling,
viewing volume culling, triangle caching and organization).

Particle Systeem

In hoofdstuk 6 bespreken we onze implementatie van een Particle Systeem op
de GPU. De data van de particles, zoals positie en snelheid, wordt opgeslagen
in textures waarvan de rgb-waardes gebruikt worden om de xyz-coordinaten
in op te slaan.

Het algoritme van het particle systeem bestaat uit 5 stappen. In de eerste
stap worden nieuwe particles aangemaakt en oude verwijderd. Daarna wor-
den de snelheden van de particles en vervolgens worden de posities aangepast.
In de vierde stap wordt de texture data die de posities bevat omgezet naar
vertex data. In de laatste stap worden de particles dan gerendered aan de
hand van deze vertex data.

Op deze manier kunnen ruim een miljoen particles in realtime gerendered
worden op de laatste generatie grafische kaarten.

GPU-math bibliotheek

In hoofdstuk 7 bespreken we onze implementatie van een math-bibliotheek
op de GPU. Deze bibliotheek ondersteunt allerlei matrix en vector operaties
die gebruikt kunnen worden voor het oplossen van numerieke methodes op
de GPU.

Beschikbare operaties van de bibliotheek zijn:

• matrix - matrix operaties (optellen, vermenigvuldigen,. . .)

• matrix - vector vermenigvuldiging

• vector reductie (min, max, som, norm,. . .)

• vector scalering

A. Dutch Abstract 69

Uit de resultaten blijkt dat het voor grote vectors en matrices zeker de moeite
kan zijn om deze bewerkingen op de GPU uit te voeren. In sommige gevallen
was de GPU-implementatie zelfs tot 25 maal sneller dan de CPU-versie. Voor
kleine data blijkt de gegenereerde overhead te groot te zijn om snelheidswinst
te boeken.

