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Abstract

Generalized linear mixed models have become a frequently used tool for the analysis of
non-Gaussian longitudinal data. Estimation is often based on maximum likelihood theory,
which assumes that the underlying probability model is correctly specified. Recent research
shows that the results obtained from these models are not always robust against departures
from the assumptions on which they are based. Therefore, diagnostic tools for the detection
of model misspecifications are of the utmost importance. In this paper, we propose two
diagnostic tests that are based on two equivalent representations of the model information
matrix. We evaluate the power of both tests using theoretical considerations as well as
via simulation. In the simulations the performance of the new tools is evaluated in many
settings of practical relevance, focusing on misspecification of the random-effects structure.
In all the scenarios the results were encouraging, however, the tests also exhibited inflated
type I error rates when the sample size was small or moderate. Importantly, a parametric
bootstrap version of the tests seems to overcome this problem, although more research in
this direction may be needed. Finally, both tests were also applied to analyze a real case
study in psychiatry.

KEY WORDS: Generalized linear mixed model; Information matrix test; Linear mixed
model; Random-effects Misspecification; Sandwich Estimator.
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1 Introduction

Over the last decades, hierarchical models have developed into an effective tool for statistical

analysis across a variety of applications. The parameters of interest are often estimated using

maximum likelihood (ML) and assuming that the model is correctly specified. One of the basic

assumptions underlying hierarchical models concerns the distribution of the random effects. To

improve mathematical tractability and numerical performance, random effects are commonly

assumed to be normally distributed. Nonetheless, since random effects are not observed, the

validity of this presumption is difficult to verify.

For linear mixed models (LMM), Verbeke and Lesaffre (1997) showed that the maximum like-

lihood estimators of the fixed effects and variance components, obtained under the assumption

of normal random effects, are consistent and asymptotically normal, even when the random-

effects distribution is misspecified. However, recent research suggests that this does not hold

for generalized linear mixed models (GLMM). According to Agresti et al. (2004), the choice of

the random-effects distribution seems to have, in most situations, little effect on the maximum

likelihood estimators. In spite of that, when there is a severe polarization of subjects, e.g., by

omitting an influential binary covariate, the predictive qualities of characteristics involving the

random effects as well as the fixed effects can be affected. Similarly, Heagerty and Kurland

(2001) found substantial bias while using a random-intercept model when the random-effect dis-

tribution depends on measured covariates. Litière et al. (2008) found that the estimates of the

variance components are always subject to considerable bias when the random-effect distribution

is misspecified. The bias induced in the estimates of the linear predictor parameters appears to

depend on the magnitude of the variance component, whereby a large bias is associated with a

large random-effect variance. Furthermore, Litière et al. (2007) and Woods (2008) established
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that the Type I error rate related to the tests of the linear predictor parameters, can also be

severely impacted. The situation worsens when more complicated random-effects structures are

used.

Evidently, in these circumstances, the development of diagnostic tools for GLMMs is of great

importance. However, up to now, this problem has received only moderate attention in the

literature. For instance, Waagepetersen (2006) proposed a simulation-based test to evaluate the

appropriateness of the choice of the random-effects distribution, by generating random effects

while conditioning on the observations. Although simulations with Poisson responses showed a

reasonable power, this test required very large cluster and sample sizes to produce similar results

with binary outcomes. Tchetgen and Coull (2006) introduced a diagnostic test to evaluate the

assumed random-effects distribution, by comparing marginal and conditional maximum likelihood

estimators of a subset of fixed effects in the model. The applicability of their test is restricted to

those settings where at least one within-cluster covariate is available. Another limitation of this

test is that it cannot be applied when auto-regressive random effects are present. However, as will

be illustrated in Section 4, misspecification in this scenario may seriously affect our inferences.

White (1982) proposed a general test for model misspecification. Notwithstanding, his Informa-

tion Matrix Test (IMT) requires third-order partial derivatives of the likelihood function. Even

though the calculation of higher-order derivatives might not be an issue in cases where the like-

lihood is available in a closed form, it can become an important problem when working with

complicated likelihood functions, like in generalized linear mixed models. Consequently, one has

to resort to numerical approximations, which can be burdensome and less than straightforward

to carry out using conventional statistical packages. In the present work, we propose two alter-

native diagnostic tools along the ideas of the IMT, but without the need for third-order partial
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derivatives of the likelihood.

The motivating case study will be introduced in Section 2. In Section 3, the new tests are

presented and some of their properties are discussed at a theoretical level. In Section 4 we

study the performance of the newly proposed tools via simulations. Next, in Section 5, the

appropriateness of the model chosen for the case study is evaluated using the diagnostic tools

introduced in Section 3. Finally, in Section 6 some concluding remarks are given.

2 Case Study

The case study consists of individual patient data from a randomized clinical trial, comparing the

effect of risperidone to conventional antipsychotic agents for the treatment of chronic schizophre-

nia (Alonso et al., 2004).The response variable is the Clinical Global Impression (CGI), a 7-grade

scale used to characterize a subject’s mental condition. Often, clinicians are interested in a di-

chotomic version of the scale that equals 1 for patients classified as normal to mildly ill, and 0 for

patients classified as moderately to severely ill. In total, n = 453 patients were included in the

trial, from which 226 were randomly assigned to the experimental treatment (zi = 1) and the rest

(227) to the control group (zi = 0). Treatment was administered for 8 weeks and the outcome

measured at 6 fixed time points: 0, 1, 2, 4, 6, and 8 weeks. Figure 1 summarizes the probability

of being classified as normal to mildly ill (P (Y = 1)) by time point and treatment group. Note

that, due to the random treatment allocation, the two treatment groups have similar average

response at the start of the study, however, a very rapid onset of the treatment is observed at

week 1 in the experimental group.
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2.1 Generalized Linear Mixed Models

In this section we will introduce some general notation. Let us start by denoting yij the jth

response of subject i, with i = 1, . . . , n and j = 1, . . . , ni. Conditional on a vector of individual

random effects bi, the outcome variables are assumed to be independent, with density functions

belonging to the exponential family

f(yij|θij , ϕ) = exp[ϕ−1{yijθij − ψ(θij)} + c(yij, ϕ)], (1)

where ϕ is a scale parameter, c(.) is a function only depending on yij and ϕ, and ψ(.) is a function

satisfying E(yij|bi) = ψ′(θij) and Var(yij|bi) = ϕψ′′(θij). Further, E(yij|bi) = v(xT
ijβ + zT

ijbi),

where v(.) denotes a known link function, xij and zij are vectors of covariates, and β is a vector

of unknown fixed regression coefficients. The subject-specific effects bi are commonly assumed

to be normal distributed with mean zero and variance-covariance matrix D. Fitting the model

requires maximization of the marginal likelihood, which is obtained by integrating over the random

effects. Let the contribution of subject i to the marginal likelihood be given by

f(yi|β,D, ϕ) =

∫ ni∏

j=1

f(yij|θij, ϕ)f(bi|D) dbi, (2)

then we can write the marginal likelihood as

L(β,D, ϕ) =
n∏

i=1

∫ ni∏

j=1

f(yij|θij, ϕ)f(bi|D) dbi. (3)

The frequently used normal distribution for the random effects generally leads to intractable like-

lihood functions. In response, several numerical approximations to the likelihood have been im-

plemented in the available software packages. For example, Gaussian quadrature, as implemented

in the SAS procedure NLMIXED, approximates the integral using Gaussian-Hermite polynomials,

thereby employing specific properties of the normal distribution. All the analyses and simulations
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in this manuscript were carried out using this procedure, choosing adaptive Gaussian quadrature

with 50 quadrature points to approximate the likelihood.

2.2 Analysis of the Case Study

We analyzed the data using a random-intercept model and considering different link functions

and linear predictors. In the model building exercise, a total of twelve models were fitted. These

models were constructed as combinations of three link functions, i.e., the logit, log-log and probit

link, and four linear predictors. For these predictors, expressions which model the fast onset of

treatment, as in Model 4 below, were compared with structures in which this aspect of the data

was ignored. Further, it was studied whether the evolution of the subjects over time differed by

treatment group. The Akaike’s Information Criterion (AIC) was used to select the best fitting

model. The following final model emerged from this analysis

logit{P (yij = 1|b0i)} =

{
γ0 + γ1tj + γ2zitj + b0i when tj ≤ 1

(γ0 + γ1 − β1 − β2) + γ2zi + β1tj + β2t
2
j + b0i when tj > 1

, (4)

where i and tj denote the patient and the measurement occasion, respectively, and b0i is a

random effect, assumed to follow a zero-mean normal distribution with variance σ2
b . This model

captures the impact of randomization at the beginning of the study through the common intercept

parameter γ0. Furthermore, γ2 reflects the difference in the time evolutions of both groups during

the first week of treatment. Finally, after the first week, both groups exhibit parallel quadratic

evolutions over time, at the logit scale, characterized by the slope β1 and the quadratic effect

β2. Figure 1(a) displays the plot of the fitted values obtained from (4) against the observed

probability of being classified as normal to mildly ill (P (Y = 1)) by time point and treatment

group. The fitted probabilities are calculated by numerically integrating out the random effect

for each subject. Until week 4 there seems to be a reasonable agreement between the fitted and
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the observed values. Nevertheless, some discrepancy is observed in the last two measurement

occasions. This may be ascribed to the rather high proportion of dropout at the end of the study

(up to 27% and 21% for the control and experimental group respectively). We do not envisage

entering here a full discussion on the missing data problem; rather, we will assume that the

missing data generating mechanism is missing at random (MAR) making our likelihood approach

a valid option (Molenberghs and Kenward, 2007).

The maximum likelihood estimates for the parameters in (4) are displayed in the first part of

Table 1. Even though some evidence of treatment effect in the first week was observed, the

parameter characterizing this effect γ2 was not significant at the 5% level (p = 0.094). Moreover,

the relatively large value obtained for the variance of the random intercept could be explained

by the high proportion of patients that have a response pattern of nothing but zeros (60% and

55% in the control and experimental group, respectively). This high intra-subject correlation is

accommodated in the model through a large value of σ2
b . Note that such a large variance could

imply a serious bias in the estimation of the linear predictor parameters, including the treatment

effect, if the random-effect distribution is misspecified (Litière et al., 2008) and, at the same time,

it may also hint on the inappropriateness of the normal distribution for the random intercept.

Therefore, in this setting, one would like to test for possible misspecification of the random-effect

distribution, in particular, or any other misspecification, in general. In the following sections, we

will address this issue in some detail.

3 Testing for Misspecification

Let us start by considering a random variable y with probability density (mass) function h,

and a parametric family of probability density (mass) functions F = {f(y; ξ) : ξ ∈ Γ}. In
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this manuscript, f denotes the marginal model (2) associated with the hierarchical model defined

in (1), and the random effects are assumed to follow a normal distribution. Moreover, ξ represents

the vector of all parameters in (1), including the linear predictor parameters in β and the variance

components in D.

We say that the model is correctly specified if there exists a ξ0 ∈ Γ such that h(y) = f(y, ξ0).

White (1982) showed that, under some regularity conditions, the maximum likelihood estimator

ξ̂n will (strongly) converge to the value of ξ, denoted by ξ∗, which minimizes the so-called

Kullback-Leibler Information Criterion (KLIC)

I(h : f, ξ) = E

(
log

h(y)

f(y, ξ)

)
,

where the expectation is taken with respect to the true distribution. Note that if the model is

correctly specified, then the information criterion attains its unique minimum at ξ∗ = ξ0. In such

a case, ξ̂n is a consistent estimator for ξ0 and the inverse of the Fisher information matrix can

be used to obtain standard errors for ξ̂n. Nonetheless, this matrix does not yield valid results

when the model is misspecified. Instead, appropriate standard errors are obtained by replacing

the asymptotic covariance matrix by the so-called sandwich estimator. To this end, we introduce

the following additional notation

A(ξ) = E

({
∂2 log f(y, ξ)

∂ξk∂ξℓ

})
, B(ξ) = E

({
∂ log f(y, ξ)

∂ξk
· ∂ log f(y, ξ)

∂ξℓ

})
,

An(ξ) =

{
1

n

n∑

i=1

∂2 log f(yi, ξ)

∂ξk∂ξℓ

}
, Bn(ξ) =

{
1

n

n∑

i=1

∂ log f(yi, ξ)

∂ξk
· ∂ log f(yi, ξ)

∂ξℓ

}
,

where k, ℓ = 1, . . . , p, and p denotes the number of parameters in the model. If we further define

V (ξ) = A−1(ξ)B(ξ)A−1(ξ) then, asymptotically,
√
n

(
ξ̂n − ξ∗

)
∼ N (0,V (ξ∗)). Additionally,

when the model is correctly specified, the so-called information matrix equality holds, i.e.,

B(ξ∗ = ξ0) + A(ξ∗ = ξ0) = 0, (5)
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and therefore

V (ξ∗ = ξ0) = −A−1(ξ∗ = ξ0), (6)

i.e., we recover the inverse of the Fisher Information-Matrix. Based on these results, the elements

of B(ξ∗) + A(ξ∗) or V (ξ∗) + A−1(ξ∗) can be used as potential indicators of misspecification.

This is the basic idea underlying the diagnostic tools that will be introduced in the following

sections where, to simplify the notation, the ∗ will be omited.

3.1 The Sandwich Estimator Test

Let us recall the equivalent form of the information matrix equality given in (6) and valid under

a correctly specified model. Our first proposal focuses on the difference between V (ξ) and

−A−1(ξ) as a possible indicator of misspecification.

The Information-Matrix Test (IMT), introduced by White (1982), is based on B(ξ) + A(ξ).

However, as this author claims, it may be prohibitive to base the test on all the elements of

this matrix. Indeed, as the number of parameters in the model increases, so will the number of

elements to be tested jointly, as well as the degrees of freedom of the test. Along these ideas, in

the present work we will focus only on the diagonal of V (ξ) + A−1(ξ).

Let us now define Ṽ n(ξ) = A−1(ξ)Bn(ξ)A−1(ξ) and vn(ξ) = diag
(
Ṽ n(ξ) + A−1(ξ)

)
. Ob-

serve that vn(ξ) can also be written as ∆vec
[
Ṽ n(ξ) + A−1(ξ)

]
. In this expression, the operator

vec(· · · ) is the vector obtained by stacking the columns of the matrix one below the other and

∆ is the p× p2 matrix with elements

∆kℓ =

{
1 for k = 1, . . . , p and ℓ = (k − 1)p+ k,

0 otherwise.
(7)
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Further, let us consider

bi(ξ) = vec

[{
∂ log f(yi, ξ)

∂ξk
· ∂ log f(yi, ξ)

∂ξℓ

}]
,

and let µb(ξ) and V b(ξ) denote the mean and the covariance matrix of bi(ξ). An unbiased

estimator of µb(ξ) is given by µ̂b(ξ) = (1/n)
∑n

i=1
bi(ξ) = vec [Bn(ξ)], whereas V b(ξ) can be

estimated through

V̂ b(ξ) =
1

n− 1

n∑

i=1

(bi(ξ) − µ̂b(ξ)) (bi(ξ) − µ̂b(ξ))T . (8)

In addition, let us define

Cv(ξ) = ∆{A−1(ξ) ⊗ A−1(ξ)}V b(ξ){A−1(ξ) ⊗ A−1(ξ)}∆T , (9)

a consistent estimator Ĉv(ξ) can then be obtained by plugging (8) into (9). Using all of these

elements, we can now establish the following result.

Theorem 1 (Sandwich Estimator Test) Under general regularity conditions, if the model is

correctly specified then, asymptotically,
√
nvn(ξ0) ∼ Np (0,Cv(ξ0)). From the previous expres-

sion and the Cochran theorem (Sen and Singer, 1993) it follows

δs(n) = nvT
n (ξ0)Ĉ

−1

v (ξ0)vn(ξ0) ∼ χ2

p. (10)

A proof of this result can be found on http://www.ibiostat.be/software, the software web-

page of I-Biostat. Some important comments come into place here. Notice first that, in all

the previous deductions, it has been implicitly assumed that the matrix A is known. However,

when Theorem 1 is applied in practice, A−1(ξ0) in (10) needs to be substituted by its consistent

estimator under the null A−1

n (ξ̂0). As a consequence, the test statistic introduced in Theorem 1
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clearly omits two potentially important sources of variability, i.e., the variability introduced by

estimating A−1(ξ0) by A−1

n (ξ0) and the variability introduced by estimating ξ0 by its consistent

estimator under the null ξ̂n. In what follows we will introduce an alternative of the IMT that not

only evades the previous assumption about the matrix A−1(ξ0) but also avoids the calculation

of higher order derivatives.

3.2 The Modified Information Matrix Test

In this section we directly consider the information matrix equality given in (5) and valid under a

correctly specified model. Let us first define dn(ξ) = ∆vec [An(ξ) + Bn(ξ)], where ∆ is given

by (7). While developing the Sandwich Estimator Test (SET), the variability of vec [Bn(ξ)] was

estimated using the empirical covariance estimator (8). We will now use the same idea to obtain

an empirical estimate of the variability of vec [An(ξ)]. Notice that from the previous expression

for dn(ξ) follows

n−1CD(ξ) = cov (dn(ξ)) = ∆cov (vec [An(ξ)] + vec [Bn(ξ)]) ∆T (11)

where

cov (vec [An(ξ)] + vec [Bn(ξ)]) =cov (vec [An(ξ)]) + cov (vec [Bn(ξ)])

+ cov (vec [Bn(ξ)] , vec [An(ξ)])

+ cov (vec [An(ξ)] , vec [Bn(ξ)]) .

Further, cov (vec [Bn(ξ)]) = n−1V b(ξ), and V b(ξ) can be consistently estimated using (8).

Similarly to what was done in Section 3.1, we can now define

ai(ξ) = vec

[{
∂2 log f(yi, ξ)

∂ξk∂ξℓ

}]
.
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Let µa(ξ) and V a(ξ) represent the mean and the covariance matrix of ai(ξ). It is then easy to

show that cov (vec [An(ξ)]) = n−1V a(ξ), and a consistent estimator of V a(ξ) is given by

V̂ a(ξ) =
1

n− 1

n∑

i=1

(ai(ξ) − µ̂a(ξ)) (ai(ξ) − µ̂a(ξ))T , (12)

where µ̂a(ξ) = 1

n

∑n

i=1
ai(ξ). Finally, let Cab(ξ) and Cba(ξ) denote the covariance matri-

ces associated with ai(ξ) and bi(ξ), and bi(ξ) and ai(ξ) respectively. It then follows that

cov (vec [An(ξ)] , vec [Bn(ξ)]) =
1

n
Cab(ξ) and cov (vec [Bn(ξ)] , vec [An(ξ)]) = 1

n
Cba(ξ). Con-

sistent estimators for these matrices are given by

Ĉab(ξ) =
1

n− 1

n∑

i=1

(ai(ξ) − µ̂a(ξ)) (bi(ξ) − µ̂b(ξ))T ,

Ĉba(ξ) =
1

n− 1

n∑

i=1

(bi(ξ) − µ̂b(ξ)) (ai(ξ) − µ̂a(ξ))T .

Plugging the previous estimators into (11) we can obtain a consistent estimator ĈD(ξ) for CD(ξ).

Using all these elements, we can now formulate the following theorem.

Theorem 2 (Modified Information Matrix Test) Under general regularity conditions, if the

model is correctly specified then, asymptotically,
√
ndn(ξ0) ∼ Np (0,CD(ξ0)). From the previous

expression and the Cochran theorem (Sen and Singer, 1993) it follows

ℑm(n) = ndT
n (ξ0)Ĉ

−1

D (ξ0)dn(ξ0) ∼ χ2

p. (13)

A proof for this result is also available on the aforementioned web-page. Observe that, unlike

the SET, the Modified Information Matrix Test (MIMT) does take into account the variability

introduced by replacing A(ξ0) with its consistent estimator An(ξ0). However, unlike the IMT,

the MIMT still does not take into account the extra variability coming from replacing ξ0 with
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ξ̂n. This is the only source of variability ignored by the test and it can be seen as the price to

pay for avoiding high-order derivatives and gaining simplicity.

It is important to point out that both the SET and the MIMT have been constructed based on the

diagonal elements of the matrices V (ξ∗) + A−1(ξ∗) and A(ξ∗) + B(ξ∗), respectively. However,

this does not preclude the use of other elements of these matrices if necessary. Indeed, both tests

can be easily adapted by doing the appropriate modifications in the matrix ∆ and selecting the

adequate ai(ξ) and bi(ξ) vectors.

In the following sections we will study the power of both tests using a general theoretical framework

and via simulations. In the simulation studies, we will focus on exploring the power of both tools

to detect misspecifications of the random-effects structure, that have been shown to distort the

inferences and introduce bias in the point estimators.

3.3 Asymptotic Power of the Diagnostic Tools

The SET and the MIMT can be applied to detect different types of misspecifications. Therefore,

and following the notation of Section 3, the hypotheses of interest can be written as: H0 : h ∈ F

versus the alternative H1 : h /∈ F. In what follows we will give an expression for the asymptotic

power of the SET, but the same ideas can be used to calculate the asymptotic power of the

MIMT. If we denote the power of the test by β(h) then, asymptotically

β(h) = P
(
δs(n) > χ2

α,p | h
)
, (14)

where χ2
α,p denotes the α percentile of a chi-square distribution with p degrees of freedom. Note

that when h ∈ F the model is correctly specified and (14) quantifies the Type I error rate with

β(h) ≤ α. On the other hand, if h /∈ F then the model has been misspecified and (14) quantifies
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the power to detect such a misspecification, when the real data generating mechanism is h. It

can be shown that, in general, δs(n) ∼ χ2
p(λ), where χ2

p(λ) denotes a noncentral chi-square

distribution with p degrees of freedom and noncentrality parameter λ = µT
v (ξ∗)C−1

v (ξ∗)µv(ξ
∗)

with µv(ξ
∗) = ∆vec

[
V (ξ∗) + A−1(ξ∗)

]
. Using all the previous elements we can now rewrite

(14) as

β(λ) = P
(
χ2

p(λ) > χ2

α,p | λ
)
. (15)

From (15) it is easy to see that the power is an increasing function of λ and, as a consequence,

increasing λ will redound in an increased power of the test to detect the misspecification. To

enhance insight into this issue, let us assume that one element of µv(ξ
∗) increases in absolute

value while the others remain constant and let us denote the increasing component of µv(ξ
∗)

by µ∗
k. Note that under the null ξ∗ = ξ0 and µv(ξ0) = 0 and, therefore, increasing absolute

values of µ∗
k will correspond with distributions in the alternative that are “moving” away from

the null. Moreover, λ is a positive definite quadratic form in µv(ξ
∗) and this implies that

lim|µ∗

k
|→+∞ λ(µ∗

k) = +∞. As a result, the power of the test will go to one as we move away

from the null hypothesis. The same conclusion is valid if more than one component of µv(ξ
∗)

increase in absolute value.

It is important to point out that the test will fail to detect misspecifications which do not distort

(6) and a similar statement also holds for the MIMT. However, this potential lack of power of the

SET and the MIMT to detect certain type of misspecifications is not surprising. Indeed, it is well

known that uniformly most powerful tests (UMP) are difficult to find, even in the simpler scenario

where the null and the alternative hypotheses are just subsets of the real line. For instance, it

has been proven that when a testing problem has nuisance parameters, the UMP tests do not

generally exist (Nomakuchi, 1992). Additionally, it is also well known that UMP tests do not
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generally exist when the alternative hypothesis is two-sided (Sen and Singer, 1993). Hence, it is

not surprising that a given test can have low power to detect certain elements in the alternative,

specially in complicated settings like the one considered in the present work.

3.4 Implementation

One major advantage of the diagnostic tools proposed in this manuscript is their easy implemen-

tation using standard software, like the SAS procedures NLMIXED and IML. Indeed, note first

that the Hessian An(ξ̂n) follows directly from NLMIXED. The subject contributions to Bn(ξ̂n)

can also be obtained in a relatively straightforward way, but they need some extra calculations.

To compute these values, we need to fit the final model in NLMIXED to each subject sepa-

rately, keeping the maximum likelihood estimates fixed by setting maxiter=0, and saving the

corresponding first order derivatives. Macros that compute both tests can be obtained from the

authors.

4 Simulation Study

Heagerty and Kurland (2001) studied the impact of random-effects misspecification in a number

of different settings. They presented bias calculations for plausible violations of the random-

effects assumptions, using a logistic-normal model when: (i) the random effect is generated from

a non-normal distribution; (ii) the variance of the random effect depends on a covariate in the

mean structure; (iii) the random structure includes both a random intercept and slope; and (iv)

the random effects are auto-correlated. In the following, we will study the performance of the

SET and the MIMT in detecting these model misspecifications.
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4.1 Non-normal Random Effects

In this section, binary responses were generated using the logistic random-intercept model given

by

logit{P (yij = 1|b0i)} = β0 + β1zi + β2tj + b0i, (16)

including an intercept, a binary covariate zi taking values 0 and 1, a within-cluster covariate

tj taking values 0, 1, 2, 4, 6, and 8 and a random intercept b0i sampled from 5 mean-zero

distributions: the normal, power function, lognormal distribution, a discrete distribution with

equal probability at two support points and an asymmetric mixture of two normal densities. For

all the previous distributions variances σ2
b = 4 and 32 were considered. Note that σ2

b = 32 is of

the same order of magnitude as the estimate obtained from the case study, whereas σ2
b = 4 is

used to analyze the performance of the tests in less extreme scenarios.

The parameters in the mean structure were fixed at β0 = −8, β1 = 2 and β2 = 1. Six different

sample sizes were considered, namely 50, 100, 200, 350, 500, and 1000. For each setting, 500

data sets were generated and (16) was fitted to these data under the assumption of normally

distributed random effects. We then determined the proportion of cases in which a significant

result at the pre-specified significance level of 5% was detected, using the the MIMT ℑm(n)

and the SET δs(n). When the random effects are generated from a normal distribution, this

proportion corresponds to the Type I error rate; otherwise, it represents the power of the tests.

The results of these simulations are shown in Table 2.

In this setting the SET encountered problems to detect the misspecification when the random

intercept was generated from a power function or an asymmetric mixture of two normal distribu-

tions, especially with σ2
0b = 4. The test performed clearly better when the variance of the random
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intercept was large. This is, however, a desirable behavior given the results obtained by Litière et

al. (2008) and presented in Section 1.

The MIMT on the other hand clearly outperforms the SET. Values of power above 70% were

obtained in most of the settings with sample sizes as of 350 subjects. In addition, the MIMT has

a remarkable power for detecting random-effects misspecification when σ2
0b = 32. Indeed, in this

scenario, the test could always detect the misspecification for sample sizes greater or equal than

350.

In spite of these encouraging results, the Type I error rates shown in Table 2 are larger than

the pre-specified 5% level for small and moderate sample sizes. This behavior has been well

documented for the IMT (Taylor, 1987) and given the relationship between the IMT and the

proposed SET and MIMT, the inflated Type I error rates observed for the latter two are not

entirely unexpected.

We approached this problem following the idea introduced by Horowitz (1994) and used a para-

metric bootstrap to account for the small sample bias. To study the performance of this bootstrap

version of the tests, a new simulation study was carried out. The details of these additional sim-

ulations were as follows: 250 data sets were generated using Model (16), considering the normal,

the power function, the discrete, the asymmetric mixture and the lognormal distributions with

variance σ2
b = 4 for the random effect. The samples sizes were fixed at 50, 100 and 200 sub-

jects. For each generated data set the maximum likelihood estimates β̂0n, β̂1n, β̂2n and σ̂2
bn were

calculated. Further, based on these values the SET δs(n) and the MIMT ℑm(n) were com-

puted. Afterwards, new responses yij were generated using Model (16) with the linear predictor

β̂0n + β̂1nzi + β̂2ntj + bBi . Note that zi and tj follow from the original (simulated) data set and
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the random effects bBi were generated from a normal distribution with mean zero and variance

σ̂2
bn. This process was repeated 1000 times, such that in total for each simulated data set 1000

new bootstrap replicas were created. In a final step, these bootstrap data sets were analyzed

using Model (16) and assuming normal random effects. Estimates for the SET and the MIMT

were obtained from each of the bootstrap samples and used to estimate the empirical distribution

function and corresponding bootstrap-based critical value for each test. Table 2 shows, between

parenthesis, the Type I error rates and power obtained after comparison of the original SET and

MIMT values with their respective bootstrap-based critical values.

Clearly, parametric bootstrap does importantly reduce the Type I error rates. This is a very

promising result and this approach should certainly be further explored. Note that, even though

these bootstrap versions of the tests are computationally demanding, the current power of personal

computers make them affordable alternatives in practical situations.

4.2 Random-intercepts Variance Depending on a Binary Covariate

Following the approach by Heagerty and Kurland (2001), let binary responses be generated using

the model

logit{P (yij = 1|bi)} = β0 + β1zi + β2tj + β3zitj + bij , (17)

where zi is a binary covariate defined as before, and tj is a within-cluster covariate representing

a linear trend, with tj = (j − 1)/(ni − 1) and ni = 6. The variance of the random intercept

bij = bi0 depends on the value of the binary covariate zi, such that

bi0 ∼
{

N(0, σ2
0) when zi = 0,

N(0, σ2
1) when zi = 1.

(18)

The parameters in the linear predictor were fixed at β0
0 = −2, β0

1 = 1, β0
2 = 0.5, and β0

3 = −0.25.

For each setting, 500 data sets were generated with n = 500 subjects, and analyzed using the
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model given by (17), assuming that bij = bi0 ∼ N(0, σ2
b ).

Heagerty and Kurland (2001) found that substantial bias can occur for all coefficients in the

model, when σ0 and σ1 are very different. For example, they reported 38% and 31% of relative

bias in the estimation of β1 and β3 respectively, when σ0 = 1 and σ1 = 2. Moreover, they

observed that, as the discrepancy between the two parameters increases, so does the bias in the

parameter estimates.

To study the performance of our proposals in this particular setting, we have applied the SET

and the MIMT to the generated data sets and determined the proportion out of 500 replications

in which the tests were able to detect the misspecification (at a 5% significance level). The

corresponding powers are displayed in the first part of Table 3 as a function of σ0 and σ1.

First, observe that, when σ0 = σ1, this corresponds to the Type I error rate of the tests. With a

sample size of 500 subjects, in these settings the Type I error rate is always maintained under the

pre-specified 5% level. Additionally, both tests show a good power as of differences between the

two variance parameters exceeding 1.0. Here again, the MIMT has a better performance than

the SET in most of the settings. In general, we conclude that both tests are able to detect the

misspecification, especially in those settings where Heagerty and Kurland (2001) reported that

the maximum likelihood estimators of the linear predictors could be most affected.

4.3 Ignoring a Random Effect

Another type of misspecification in the random structure occurs when a random slope is incorrectly

assumed to be fixed. To study the performance of our proposals in this setting, we have generated

binary responses from the model given by (17), with bij = bi0 + bi1tj , and σ2
0 and σ2

1 representing
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the variance of the random intercept bi0 and the random slope bi1, respectively.

Simulations by Heagerty and Kurland (2001) showed that, when these data are analyzed wrongly

assuming that bij = bi0, moderate bias can appear in the estimation of the regression coefficients.

For instance, they observed asymptotic relative biases as large as 30–50% in the estimates of β2

and β3 when σ0 is small and σ1 is large. On the other hand, the bias for the estimators of the

intercept β0 and the cluster-level covariate effect β1 remained below 15% for all (σ0, σ1) pairs

considered.

The second panel of Table 3 shows the power of the diagnostic tools to detect this type of

misspecification, as a function of σ0 and σ1. The power of both tests was more moderate in this

scenario. Indeed, as one would expect, both tests fail to detect the misspecification when σ1 is

small. However, the bias calculations by Heagerty and Kurland (2001) showed that little bias is

present in this case. The SET and the MIMT increase their power when σ1 is increased, relative

to σ0. Nevertheless, when σ1 = 1 and σ0 = 0.5, precisely the setting in which bias as large as

52% was obtained for β2 and β3, we only observed a power of 55% with the SET to detect the

misspecification, and 61% with the MIMT. Even though, as we stated before, these results are

milder than the ones observed for the other misspecification, these levels of power can still be

relevant in many practical applications.

4.4 Auto-regressive Random Effects

In the analysis of longitudinal data, one often observes that the dependence between two repeated

measurements within a cluster decays with their separation in time. This could be accounted

for in a generalized linear mixed model by including autocorrelated random effects bij for which

cov(bij , bik) = σ2ρ|tij−tik |. Simulations by Heagerty and Kurland (2001) for this type of misspec-
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ification have shown that substantial negative bias can arise in the estimated fixed effects, with

increasing bias as σ increases, especially when ρ is small. Note that the random-intercept model

follows as a special case of the auto-regressive model when ρ = 1. For models with ρ < 1, a

potentially large negative bias can be observed in σ̂n, given that it estimates the common variance

and, therefore, it approximates the true covariances σ2ρ|tij−tik|. These authors observed that, as

ρ decreases, the negative bias in σ̂n increases, ranging between −30% and −50% when ρ = 0.7,

and between −47% and −70% when ρ = 0.5. As a result, substantial negative bias can also arise

in the estimated regression coefficients, with increasing bias as σ increases. For instance, when

(ρ, σ) = (0.5, 3.0), negative bias as high as −45% occurred in each of the parameter estimates

in the linear predictor.

The third panel in Table 3 shows the power of the diagnostic tools to detect this type of misspec-

ification as a function of σ and ρ. From the table it follows that both tests have a high power to

detect this type of misspecification when σ is sufficiently large. Given that bias in the estimation

of the linear predictor parameters was seen to be more substantial as of σ ≥ 2, this is a very

desirable property. Note that, for smaller values of σ the power of both tests is considerably lower

but in these settings the impact of the misspecification is also minor.

5 Revisiting the Case Study

In this section, we apply the SET and the MIMT to assess the suitability of Model (4) with normal

random effects for the analysis of the case study. It follows that δs(n) = 8.5 and compared to a

χ2 distribution with 6 degrees of freedom, this leads to p = 0.205. In contrast, ℑm(n) = 13.1

with corresponding p = 0.041. According to the MIMT, the data at hand give evidence of some

model misspecification. In comparison, using parametric bootstrap, the p-value associated with
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the SET reduces to 0.097, whereas a p = 0.040 was observed for the MIMT.

Therefore, a more detailed investigation of the model assumptions is required. To study how sen-

sitive are our results to the choice of the random-effects distribution, we performed a sensitivity

analysis including an exponential, a chi-square, a uniform, and a lognormal distribution. Such

analysis can be easily carried out using probability integral transformations in the SAS procedure

NLMIXED. We further considered a mixture of two and three normal distributions (see Molen-

berghs and Verbeke, 2005, Chapter 23). The corresponding parameter estimates are shown in

Table 1.

The uniform distribution produced the best results according to the AIC, with an AIC weight of

ωAIC−uni = 0.804 (Burnham and Anderson 2002). It was followed by the models with the mixture

of two and three normals, which have AIC weights ωAIC−two = 0.147 and ωAIC−three = 0.033

respectively. The GLMM with a normal random effect ranked fourth with an AIC weight

ωAIC−one = 0.016. Careful exploration of these models showed also a better fit of the marginal

evolutions when the random effect distribution was the uniform (see Figure 1(b)). Moreover,

the diagnostic tools do not detect any further misspecification when this model is adopted

(δs(n) = 2.1 with p = 0.911, and ℑm(n) = 6.5 with p = 0.366).

Interestingly, the inferential results for the treatment effect may differ depending on the choice

of the random-effects distribution. Indeed, while γ2 was found to be non-significant (at the pre-

specified 5% level) in the best fitting model, it changed to very significant (p = 0.007) when the

distribution of the random effects was assumed to be a two-component mixture, i.e., the second

best model. This example clearly illustrates that inferences for the linear predictor parameters

can depend on the distributional assumptions for the random effects. Therefore, the evaluation
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of these assumptions is of utmost importance.

Finally, observe that the variance of the random intercept was rather large in all scenarios consid-

ered, with a median around 24. Hence, all models consistently hint on a very strong within-subject

association.

6 Discussion

In this manuscript, we proposed the so-called Sandwich Estimator Test and the Modified Informa-

tion Matrix Test to detect misspecifications in generalized linear mixed models. In our simulations

we mainly focussed on the detection of misspecifications in the random effect structure. In gen-

eral both tests showed a good power, with values frequently above 70%, in most of the settings

considered. However, in scenarios with small or moderate sample sizes, the Type I error rates were

inflated, jeopardizing the interpretation of the results. Therefore, we recommend the use of these

tools in their original form, only when the sample size is greater than 350 subjects. Importantly,

parametric bootstrap versions of the tests were able to control the Type I error rates and they

could be an attractive option when the sample size at hand is small or moderate (n ≤ 350). A

finite sample correction to solve this problem would also be worth having and future research in

this direction will surely follow.

Interestingly, the SET was clearly outperformed by the MIMT in most of the settings. This could

be partly attributed to the fact that, unlike the SET, the MIMT accounts for the extra variability

introduced by replacing A(ξ0) with its consistent estimator An(ξ̂n). Additionally, note that

whereas the MIMT depends on An(ξ̂n) and Bn(ξ̂n) directly, more rounding errors may have

been introduced to obtain V n(ξ̂n) and A−1

n (ξ̂n). These may interfere with the power of the
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SET to detect misspecifications and could help to explain the differences observed between the

performance of the SET and the MIMT.

When constructing the SET and the MIMT we used only the diagonal elements of the matrices

V (ξ∗) + A−1(ξ∗) and A(ξ∗) + B(ξ∗). Some reasons justified this choice. First, using all the

elements of the previous matrices frequently led to a singular variance covariance matrix for the

test statistic. Second, including more elements outside the diagonal also provoked a huge upward

bias in the Type I error rates, especially in small samples. It is important to point out, however,

that our choice does not preclude the use of other elements outside the diagonal and both tests

can be easily adapted to do that.

Finally, even though we focused on misspecification of the random-effects structure, a significant

result from the SET and/or the MIMT does not necessarily imply that the random effects are

misspecified. These diagnostic tools are, in principle, also suitable to detect other types of

model misspecification, such as a misspecified link function or a misspecified mean structure.

Nevertheless, given the good power observed in our simulations to detect misspecifications in the

random effect structure, this would obviously be a first place to start.

Acknowledgment

The authors gratefully acknowledge the financial support from the IAP research Network P6/03

of the Belgian Government (Belgian Science Policy).

24



References

Agresti, A., Caffo, B., and Ohman-Strickland, P. (2004). Examples in which misspecification

of a random effects distribution reduces efficiency, and possible remedies. Computational

Statistics and Data Analysis 47, 639–653.

Alonso, A., Geys, H., Molenberghs, G., Kenward, M.G., and Vangeneugden, T. (2004). Valida-

tion of surrogate markers in multiple randomized clinical trials with repeated measurements:

canonical correlation approach. Biometrics 60, 845–853.

Burnham, K. P., and Anderson, D. R. (2002). Model selection and multimodel inference: a

practical information-theoretic approach (2nd Edition). New York: Springer-Verlag.

Heagerty, P.J. and Kurland, B.F. (2001). Misspecified maximum likelihood estimates and gen-

eralised linear mixed models. Biometrika 88, 973–985.

Horowitz, J.L. (1994) Bootstrap-based critical values for the information matrix test. Journal

of Econometrics, 61, 394–411.

Litière, S., Alonso, A., and Molenberghs, G. (2007). Type I and Type II error random-effects

misspecification in generalized linear mixed models. Biometrics 63, 1038–1044.

Litière, S., Alonso, A. and Molenberghs, G. (2008). The impact of a misspecified random-

effects distribution on maximum likelihood estimation in generalized linear mixed models.

Statistics in Medicine 27, 3125–3144.

Molenberghs, G. and Verbeke, G. (2005). Models for Discrete Longitudinal Data. New York:

Springer.

25



Molenberghs, G. and Kenward, M. (2007). Missing Data in Clinical Studies. Hoboken, NJ :

John Wiley & Sons.

Nomakuchi, K. (1992). A note on the uniformly most powerful tests in the presence of nuisance

parameters. Annals of the Institute of Statistical Mathematics 44, 141–145.

Sen, P.K., and Singer, J.M. (1993). Large Sample Methods in Statistics: An Introduction With

Applications. New York: Chapman & Hall.

Taylor, L.W. (1987) The size bias of White’s information matrix test. Economics Letters 24,

63–67.

Tchetgen, E.J., and Coull, B.A. (2006). A diagnostic test for the mixing distribution in a

generalized linear mixed model. Biometrika 93, 1003–1010.

Verbeke, G. and Lesaffre, E. (1997). The effect of misspecifying the random-effects distribution

in linear mixed models for longitudinal data. Computational Statistics and Data Analysis

53, 541–556.

Waagepetersen, R. (2006). A simulation-based goodness-of-fit test for random effects in gen-

eralized linear mixed models. Scandinavian Journal of Statistics 33, 721–731.

White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica 50,

1–25.

Woods, C. M. (2008). Likelihood-ratio DIF testing: Effects of nonnormality. Applied Psycho-

logical Measurement, 32, 511–526.

26



Table 1: Parameter estimates and standard errors using the logistic random-intercept Model (4)
with the random effect (RE) assumed to follow a normal distribution (GLMM), a chi-square, an
exponential, a uniform, a lognormal, and a mixture of two and three normals.

Model γ̂0 (s.e.) γ̂1 (s.e.) γ̂2 (s.e.) β̂1 (s.e.) β̂4 (s.e.) σ̂2
b (s.e.) AIC

1 GLMM -6.79 (0.52) 1.41 (0.39) 0.73+ (0.44) 1.03 (0.18) -0.06 (0.02) 24.1 ( 4.0) 1649.7

2 RE, uni. -6.87 (0.58) 1.09 (0.35) 0.70† (0.44) 1.00 (0.18) -0.05 (0.02) 22.5 ( 3.7) 1641.9

3 RE, χ2 -6.37 (0.50) 1.57 (0.40) 0.70† (0.44) 1.06 (0.18) -0.06 (0.02) 20.8 ( 3.7) 1658.4

4 RE, exp. -5.86 (0.45) 1.76 (0.41) 0.55† (0.41) 1.08 (0.18) -0.06 (0.02) 19.3 ( 3.4) 1673.4

5 RE, logn. -4.36 (0.49) 2.07 (0.42) 0.29† (0.31) 1.06 (0.18) -0.07 (0.02) 213 (115) 1735.3

6 Mixture, k = 2 -7.18 (2.00) 1.01 (0.33) 0.99∗ (0.37) 0.94 (0.20) -0.05 (0.02) 26.4 (10.8) 1645.3

7 Mixture, k = 3 -7.80 (40.7) 1.17 (0.35) 0.71+ (0.40) 0.97 (0.20) -0.05 (0.02) 34.9 (513) 1648.3

∗ p = 0.007, + 0.05 < p < 0.10, † p > 0.10
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Table 2: Power and Type I error for detecting a misspecified random-effects distribution, at the
5% significance level, using the the SET δs(n) and the MIMT ℑm(n) in generalized linear mixed
models: a normal random intercept is assumed, whereas the random effects are generated from
a normal, a power function, a discrete, an asymmetric mixture of two normals or a lognormal
distribution, with variance σ2

0b = 4 or 32. For those settings for which a bootstrap correction was
performed, corrected results are added inbetween parenthesis.

σ2
0b = 4 σ2

0b = 32 σ2
0b = 4 σ2

0b = 32

n δs(n) ℑm(n) δs(n) ℑm(n) δs(n) ℑm(n) δs(n) ℑm(n)

Normal Power function

50 0.278 (0.048) 0.259 (0.004) 0.234 0.154 0.242 (0.016) 0.589 (0.069) 0.264 0.762

100 0.192 (0.044) 0.242 (0.060) 0.122 0.102 0.172 (0.044) 0.515 (0.128) 0.288 0.922

200 0.098 (0.032) 0.180 (0.088) 0.072 0.072 0.092 (0.044) 0.620 (0.344) 0.406 0.996

350 0.046 0.108 0.038 0.056 0.086 0.710 0.650 1.000

500 0.044 0.080 0.040 0.048 0.096 0.820 0.812 1.000

1000 0.026 0.054 0.016 0.032 0.164 0.952 0.998 1.000

Discrete Asymmetric mixture

50 0.304 (0.024) 0.782 (0.224) 0.710 0.982 0.230 (0.032) 0.471 (0.036) 0.242 0.788

100 0.306 (0.056) 0.914 (0.584) 0.830 0.998 0.146 (0.040) 0.374 (0.120) 0.172 0.926

200 0.430 (0.308) 0.968 (0.860 ) 0.948 1.000 0.092 (0.076 ) 0.458 (0.212) 0.114 0.996

350 0.688 0.988 0.996 1.000 0.070 0.514 0.136 1.000

500 0.848 1.000 1.000 1.000 0.064 0.588 0.098 1.000

1000 0.986 1.000 1.000 1.000 0.058 0.784 0.166 1.000

Lognormal

50 0.355 (0.048) 0.446 (0.024) 0.480 0.547

100 0.251 (0.092) 0.545 (0.076) 0.338 0.772

200 0.198 (0.084) 0.792 (0.288) 0.430 0.984

350 0.224 0.964 0.724 1.000

500 0.332 0.996 0.892 1.000

1000 0.780 1.000 1.000 1.000
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Table 3: Power of the SET δs(n) and the MIMT ℑm(n) to detect model misspecification, at
the 5% significance level, when a logistic-normal random-intercept model is assumed, but (i) the
variance of the random intercept depends on a binary cluster-level covariate, [bi0|Xi,1 = 0] ∼
N(0, σ2

0) and [bi0|Xi,1 = 1] ∼ N(0, σ2
1); (ii) the data are generated using both a random intercept

and slope (bij = bi0+bi1xj), with variance σ2
0 and σ2

1, respectively; and (iii) the data are generated
using autocorrelated random effects bij such that cov(bij , bik) = σ2ρ|tij−tik |.

(i) (ii) (iii)

σ1 σ0 δs(n) ℑm(n) σ1 σ0 δs(n) ℑm(n) ρ σ δs(n) ℑm(n)

0.5 0.5 0.040 0.064 0.2 0.5 0.030 0.066 0.5 0.5 0.013 0.054

1.0 0.102 0.514 1.0 0.012 0.032 1.0 0.046 0.064

2.0 0.984 1.000 2.0 0.008 0.018 2.0 0.696 0.264

3.0 1.000 1.000 3.0 0.022 0.036 3.0 0.980 0.594

1.0 0.5 0.078 0.696 0.5 0.5 0.052 0.098 0.7 0.5 0.019 0.071

1.0 0.018 0.038 1.0 0.026 0.056 1.0 0.044 0.056

2.0 0.620 0.980 2.0 0.006 0.024 2.0 0.888 0.544

3.0 0.994 1.000 3.0 0.013 0.032 3.0 1.000 0.958

2.0 0.5 0.770 1.000 0.8 0.5 0.230 0.282 0.9 0.5 0.024 0.064

1.0 0.452 0.980 1.0 0.070 0.156 1.0 0.018 0.034

2.0 0.020 0.020 2.0 0.022 0.076 2.0 0.368 0.306

3.0 0.244 0.608 3.0 0.014 0.034 3.0 0.922 0.924

3.0 0.5 0.992 1.000 1.0 0.5 0.546 0.610

1.0 0.974 1.000 1.0 0.234 0.394

2.0 0.184 0.630 2.0 0.054 0.166

3.0 0.016 0.014 3.0 0.044 0.012
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(a) Normal random effects
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(b) Uniform random effects

Figure 1: Evolution of the observed and fitted (using Model (4) with normal and uniform random
effects) probabilities to be classified as a normal to mildly ill patient by treatment group, denoted
by Z.
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