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SUMMARY

Generalized linear mixed models have become a frequently used tool for the analysis of non-Gaussian
longitudinal data. Estimation is often based on maximum likelihood theory, which assumes that the un-
derlying probability model is correctly specified. Recent research shows that the results obtained from
these models are not always robust against departures from the assumptions on which they are based.
Therefore, diagnostic tools for the detection of model misspecifications are of the utmost importance.
In this paper, we propose 2 diagnostic tests that are based on 2 equivalent representations of the model
information matrix. We evaluate the power of both tests using theoretical considerations as well as via
simulation. In the simulations, the performance of the new tools is evaluated in many settings of practical
relevance, focusing on misspecification of the random-effects structure. In all the scenarios, the results
were encouraging, however, the tests also exhibited inflated Type I error rates when the sample size was
small or moderate. Importantly, a parametric bootstrap version of the tests seems to overcome this prob-
lem, although more research in this direction may be needed. Finally, both tests were also applied to
analyze a real case study in psychiatry.

Keywords: Generalized linear mixed model; Information matrix test; Linear mixed model; Random-effects
misspecification; Sandwich estimator.

1. INTRODUCTION

Over the last decades, hierarchical models have developed into an effective tool for statistical analysis
across a variety of applications. The parameters of interest are often estimated using maximum likeli-
hood (ML) and assuming that the model is correctly specified. One of the basic assumptions underlying
hierarchical models concerns the distribution of the random effects. To improve mathematical tractability
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and numerical performance, random effects are commonly assumed to be normally distributed. Nonethe-
less, since random effects are not observed, the validity of this presumption is difficult to verify.

For linear mixed models,Verbeke and Lesaffre(1997) showed that the ML estimators of the fixed
effects and variance components, obtained under the assumption of normal random effects, are consistent
and asymptotically normal, even when the random-effects distribution is misspecified. However, recent
research suggests that this does not hold for generalized linear mixed models (GLMMs). According to
Agrestiand others(2004), the choice of the random-effects distribution seems to have, in most situations,
little effect on the ML estimators. In spite of that, when there is a severe polarization of subjects, for
example, by omitting an influential binary covariate, the predictive qualities of characteristics involving
the random effects as well as the fixed effects can be affected. Similarly,Heagerty and Kurland(2001)
found substantial bias while using a random-intercept model when the random-effect distribution depends
on measured covariates.Liti èreand others(2008) found that the estimates of the variance components are
always subject to considerable bias when the random-effect distribution is misspecified. The bias induced
in the estimates of the linear predictor parameters appears to depend on the magnitude of the variance
component, whereby a large bias is associated with a large random-effect variance. Furthermore,Liti ère
and others(2007) and Woods(2008) established that the Type I error rate related to the tests of the
linear predictor parameters can also be severely impacted. The situation worsens when more complicated
random-effects structures are used.

Evidently, in these circumstances, the development of diagnostic tools for GLMMs is of great im-
portance. However, up to now, this problem has received only moderate attention in the literature. For
instance,Waagepetersen(2006) proposed a simulation-based test to evaluate the appropriateness of the
choice of the random-effects distribution, by generating random effects while conditioning on the obser-
vations. Although simulations with Poisson responses showed a reasonable power, this test required very
large cluster and sample sizes to produce similar results with binary outcomes.Tchetgen and Coull(2006)
introduced a diagnostic test to evaluate the assumed random-effects distribution, by comparing marginal
and conditional ML estimators of a subset of fixed effects in the model. The applicability of their test is
restricted to those settings where at least one within-cluster covariate is available. Another limitation of
this test is that it cannot be applied when autoregressive random effects are present. However, as will be
illustrated in Section4, misspecification in this scenario may seriously affect our inferences.

White (1982) proposed a general test for model misspecification. Notwithstanding, his information
matrix test (IMT) requires third-order partial derivatives of the likelihood function. Even though the cal-
culation of higher-order derivatives might not be an issue in cases where the likelihood is available in a
closed form, it can become an important problem when working with complicated likelihood functions,
like in GLMMs. Consequently, one has to resort to numerical approximations, which can be burdensome
and less than straightforward to carry out using conventional statistical packages. In the present work,
we propose 2 alternative diagnostic tools along the ideas of the IMT but without the need for third-order
partial derivatives of the likelihood.

The motivating case study will be introduced in Section2. In Section3, the new tests are presented
and some of their properties are discussed at a theoretical level. In Section4, we study the performance of
the newly proposed tools via simulations. Next, in Section5, the appropriateness of the model chosen for
the case study is evaluated using the diagnostic tools introduced in Section3. Finally, in Section6, some
concluding remarks are given.

2. CASE STUDY

The case study consists of individual patient data from a randomized clinical trial, comparing the effect of
risperidone to conventional antipsychotic agents for the treatment of chronic schizophrenia (Alonsoand
others, 2004).The response variable is the “clinical global impression,” a 7-grade scale used to characterize
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Fig. 1. Evolution of the observed and fitted (using Model (2.4) with normal and uniform random effects) probabilities
to be classified as a normal to mildly ill patient by treatment group, denoted byZ.

a subject’s mental condition. Often, clinicians are interested in a dichotomic version of the scale that
equals 1 for patients classified as normal to mildly ill and 0 for patients classified as moderately to severely
ill. In total, n = 453 patients were included in the trial, from which 226 were randomly assigned to
the experimental treatment (zi = 1) and the rest (227) to the control group (zi = 0). Treatment was
administered for 8 weeks and the outcome measured at 6 fixed time points: 0, 1, 2, 4, 6, and 8 weeks.
Figure1 summarizes the probability of being classified as normal to mildly ill (P(Y = 1)) by time point
and treatment group. Note that, due to the random treatment allocation, the 2 treatment groups have similar
average response at the start of the study, however, a very rapid onset of the treatment is observed at week
1 in the experimental group.

2.1 Generalized linear mixed models

In this section, we will introduce some general notation. Let us start by denotingyi j the j th response of
subjecti , with i = 1, . . . , n and j = 1, . . . , ni . Conditional on a vector of individual random effectsbi ,
the outcome variables are assumed to be independent, with density functions belonging to the exponential
family

f (yi j |θi j , ϕ) = exp[ϕ−1{yi j θi j − ψ(θi j )} + c(yi j , ϕ)], (2.1)

whereϕ is a scale parameter,c(∙) is a function only depending onyi j andϕ, andψ(∙) is a function sat-
isfying E(yi j |bi) = ψ ′(θi j ) and Var(yi j |bi) = ϕψ ′′(θi j ). Further, E(yi j |bi) = v(xT

i j βββ + zT
i j bi), wherev(∙)

denotes a known link function,xi j andzi j are vectors of covariates, andβββ is a vector of unknown fixed re-
gression coefficients. The subject-specific effectsbi are commonly assumed to be normal distributed with
mean zero and variance–covariance matrixD. Fitting the model requires maximization of the marginal
likelihood, which is obtained by integrating over the random effects. Let the contribution of subjecti to
the marginal likelihood be given by

f (yi |βββ,D, ϕ) =
∫ ni∏

j =1

f (yi j |θi j , ϕ) f (bi |D)dbi, (2.2)

Downloaded from https://academic.oup.com/biostatistics/article-abstract/11/4/771/371484
by Bibliotheek LUC-VOWL user
on 20 December 2017
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then we can write the marginal likelihood as

L(βββ,D, ϕ) =
n∏

i =1

∫ ni∏

j =1

f (yi j |θi j , ϕ) f (bi |D)dbi . (2.3)

The frequently used normal distribution for the random effects generally leads to intractable likelihood
functions. In response, several numerical approximations to the likelihood have been implemented in the
available software packages. For example, Gaussian quadrature, as implemented in the SAS procedure
NLMIXED, approximates the integral using Gaussian–Hermite polynomials, thereby employing specific
properties of the normal distribution. All the analyses and simulations in this article were carried out
using this procedure, choosing adaptive Gaussian quadrature with 50 quadrature points to approximate
the likelihood.

2.2 Analysis of the case study

We analyzed the data using a random-intercept model and considering different link functions and linear
predictors. In the model building exercise, a total of 12 models were fitted. These models were constructed
as combinations of 3 link functions, that is, the logit, log–log and probit link, and 4 linear predictors. For
these predictors, expressions which model the fast onset of treatment, as in Model (2.4) below, were
compared with structures in which this aspect of the data was ignored. Further, it was studied whether the
evolution of the subjects over time differed by treatment group. The Akaike’s information criterion (AIC)
was used to select the best fitting model. The following final model emerged from this analysis:

logit{P(yi j = 1|b0i )} =

{
γ0 + γ1t j + γ2zi t j + b0i whent j 6 1,

(γ0 + γ1 − β1 − β2)+ γ2zi + β1t j + β2t2
j + b0i whent j > 1,

(2.4)

wherei andt j denote the patient and the measurement occasion, respectively, andb0i is a random effect,
assumed to follow a zero-mean normal distribution with varianceσ 2

b . This model captures the impact of
randomization at the beginning of the study through the common intercept parameterγ0. Furthermore,γ2
reflects the difference in the time evolutions of both groups during the first week of treatment. Finally, after
the first week, both groups exhibit parallel quadratic evolutions over time, at the logit scale, characterized
by the slopeβ1 and the quadratic effectβ2. Figure1(a) displays the plot of the fitted values obtained from
(2.4) against the observed probability of being classified as normal to mildly ill (P(Y = 1)) by time point
and treatment group. The fitted probabilities are calculated by numerically integrating out the random
effect for each subject. Until week 4, there seems to be a reasonable agreement between the fitted and the
observed values. Nevertheless, some discrepancy is observed in the last 2 measurement occasions. This
may be ascribed to the rather high proportion of dropout at the end of the study (up to 27% and 21% for
the control and experimental group, respectively). We do not envisage entering here a full discussion on
the missing data problem; rather, we will assume that the missing data generating mechanism is missing
at random making our likelihood approach a valid option (Molenberghs and Kenward, 2007).

The ML estimates for the parameters in (2.4) are displayed in the first part of Table1. Even though
some evidence of treatment effect in the first week was observed, the parameter characterizing this effect
γ2 was not significant at the 5% level (p = 0.094). Moreover, the relatively large value obtained for
the variance of the random intercept could be explained by the high proportion of patients that have a
response pattern of nothing but zeros (60% and 55% in the control and experimental group, respectively).
This high intrasubject correlation is accommodated in the model through a large value ofσ 2

b . Note that
such a large variance could imply a serious bias in the estimation of the linear predictor parameters,
including the treatment effect, if the random-effect distribution is misspecified (Liti èreand others, 2008)
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Table 1. Parameter estimates and standard errors (SEs) using the logistic random-intercept Model(2.4)
with the random effect (RE) assumed to follow a normal distribution (GLMM), a chi-square, an exponen-

tial, a uniform, a lognormal, and a mixture of2 and3 normals

Model γ̂0 (SE) γ̂1 (SE) γ̂2 (SE) β̂1 (SE) β̂2 (SE) σ̂2
b (SE) AIC

1 GLMM −6.79 (0.52) 1.41 (0.39) 0.73+ (0.44) 1.03 (0.18) −0.06 (0.02) 24.1 (4.0) 1649.7
2 RE, uni. −6.87 (0.58) 1.09 (0.35) 0.70† (0.44) 1.00 (0.18) −0.05 (0.02) 22.5 (3.7) 1641.9
3 RE,χ2 −6.37 (0.50) 1.57 (0.40) 0.70† (0.44) 1.06 (0.18) −0.06 (0.02) 20.8 (3.7) 1658.4
4 RE, exp. −5.86 (0.45) 1.76 (0.41) 0.55† (0.41) 1.08 (0.18) −0.06 (0.02) 19.3 (3.4) 1673.4
5 RE, logn. −4.36 (0.49) 2.07 (0.42) 0.29† (0.31) 1.06 (0.18) −0.07 (0.02) 213 (115) 1735.3
6 Mixture,k = 2 −7.18 (2.00) 1.01 (0.33) 0.99∗ (0.37) 0.94 (0.20) −0.05 (0.02) 26.4 (10.8) 1645.3
7 Mixture,k = 3 −7.80 (40.7) 1.17 (0.35) 0.71+ (0.40) 0.97 (0.20) −0.05 (0.02) 34.9 (513) 1648.3

∗ p = 0.007,+ 0.05< p < 0.10,† p > 0.10.

and, at the same time, it may also hint on the inappropriateness of the normal distribution for the random
intercept. Therefore, in this setting, one would like to test for possible misspecification of the random-
effect distribution, in particular, or any other misspecification, in general. In the following sections, we
will address this issue in some detail.

3. TESTING FOR MISSPECIFICATION

Let us start by considering a random variableyyy with probability density (mass) functionh, and a para-
metric family of probability density (mass) functionsF = { f (yyy; ξξξ): ξξξ ∈ 0}. In this article, f denotes
the marginal model (2.2) associated with the hierarchical model defined in (2.1), and the random effects
are assumed to follow a normal distribution. Moreover,ξξξ represents the vector of all parameters in (2.1),
including the linear predictor parameters inβββ and the variance components inD.

We say that the model is correctly specified if there exists aξξξ0 ∈ 0 such thath(yyy) = f (yyy, ξξξ0). White
(1982) showed that, under some regularity conditions, the ML estimatorξ̂ξξn will (strongly) converge to
the value ofξξξ , denoted byξξξ∗, which minimizes the so-called Kullback–Leibler information criterion

I (h: f, ξξξ) = E

(
log

h(yyy)

f (yyy, ξξξ)

)
,

where the expectation is taken with respect to the true distribution. Note that if the model is correctly
specified, then the information criterion attains its unique minimum atξξξ∗ = ξξξ0. In such a case,̂ξξξn is a
consistent estimator forξξξ0 and the inverse of the Fisher information matrix can be used to obtain standard
errors for̂ξξξn. Nonetheless, this matrix does not yield valid results when the model is misspecified. Instead,
appropriate standard errors are obtained by replacing the asymptotic covariance matrix by the so-called
sandwich estimator. To this end, we introduce the following additional notation:

A(ξξξ) = E

({
∂2 log f (y, ξξξ)
∂ξk∂ξ`

})

, B(ξξξ) = E

({
∂ log f (y, ξξξ)

∂ξk
∙
∂ log f (y, ξξξ)

∂ξ`

})
,

An(ξξξ) =
{

1

n

n∑

i =1

∂2 log f (yi , ξξξ)

∂ξk∂ξ`

}
, Bn(ξξξ) =

{
1

n

n∑

i =1

∂ log f (yi , ξξξ)

∂ξk
∙
∂ log f (yi , ξξξ)

∂ξ`

}
,
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wherek, ` = 1, . . . , p, andp denotes the number of parameters in the model. If we further defineV(ξξξ) =
A−1(ξξξ)B(ξξξ)A−1(ξξξ) then, asymptotically,

√
n(̂ξξξn − ξξξ∗) ∼ N(000,V(ξξξ∗)). Additionally, when the model is

correctly specified, the so-called “information matrix equality” holds, that is,

B(ξξξ∗ = ξξξ0)+ A(ξξξ∗ = ξξξ0) = 000, (3.1)

and therefore

V(ξξξ∗ = ξξξ0) = −A−1(ξξξ∗ = ξξξ0), (3.2)

that is, we recover the inverse of the Fisher information matrix. Based on these results, the elements of
B(ξξξ∗)+A(ξξξ∗) or V(ξξξ∗)+A−1(ξξξ∗) can be used as potential indicators of misspecification. This is the basic
idea underlying the diagnostic tools that will be introduced in the following sections where, to simplify
the notation, the∗ will be omitted.

3.1 The sandwich estimator test

Let us recall the equivalent form of the information matrix equality given in (3.2) and valid under a
correctly specified model. Our first proposal focuses on the difference betweenV(ξξξ) and−A−1(ξξξ) as a
possible indicator of misspecification.

The IMT, introduced byWhite(1982), is based onB(ξξξ)+ A(ξξξ). However, as this author claims, it may
be prohibitive to base the test on all the elements of this matrix. Indeed, as the number of parameters in
the model increases, so will the number of elements to be tested jointly, as well as the degrees of freedom
of the test. Along these ideas, in the present work we will focus only on the diagonal ofV(ξξξ)+ A−1(ξξξ).

Let us now definẽVn(ξξξ) = A−1(ξξξ)Bn(ξξξ)A−1(ξξξ) andvvvn(ξξξ) = diag(Ṽn(ξξξ) + A−1(ξξξ)). Observe that
vvvn(ξξξ) can also be written as1vec[Ṽn(ξξξ) + A−1(ξξξ)]. In this expression, the operator vec(∙ ∙ ∙ ) is the
vector obtained by stacking the columns of the matrix one below the other and1 is the p × p2 matrix
with elements

1k` =

{
1 for k = 1, . . . , p and` = (k − 1)p + k,

0 otherwise.
(3.3)

Further, let us consider

bbbi (ξξξ) = vec

[{
∂ log f (yi , ξξξ)

∂ξk
∙
∂ log f (yi , ξξξ)

∂ξ`

}]
,

and letμμμb(ξξξ) andVb(ξξξ) denote the mean and the covariance matrix ofbbbi (ξξξ). An unbiased estimator of
μμμb(ξξξ) is given byμ̂μμb(ξξξ) = (1/n)

∑n
i =1 bbbi (ξξξ) = vec[Bn(ξξξ)], whereasVb(ξξξ) can be estimated through

V̂b(ξξξ) =
1

n − 1

n∑

i =1

(bbbi (ξξξ)− μ̂μμb(ξξξ))(bbbi (ξξξ)− μ̂μμb(ξξξ))
T . (3.4)

In addition, let us define

Cv(ξξξ) = 1{A−1(ξξξ)⊗ A−1(ξξξ)}Vb(ξξξ){A−1(ξξξ)⊗ A−1(ξξξ)}1T , (3.5)

a consistent estimator̂Cv(ξξξ) can then be obtained by plugging (3.4) into (3.5). Using all these elements,
we can now establish the following result.
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THEOREM 1 (SANDWICH ESTIMATOR TEST) Under general regularity conditions, if the model is cor-
rectly specified then, asymptotically,

√
nvvvn(ξξξ0) ∼ Np(000,Cv(ξξξ0)). From the previous expression and the

Cochran theorem (Sen and Singer, 1993), it follows:

δs(n) = nvvvT
n (ξξξ0)Ĉ

−1
v (ξξξ0)vvvn(ξξξ0) ∼ χ2

p. (3.6)

A proof of this result can be found in Section A of the supplementary material available atBiostatistics
online. Some important comments come into place here. Notice first that, in all the previous deductions,
it has been implicitly assumed that the matrixA is known. However, when Theorem1 is applied in prac-
tice, A−1(ξξξ0) in (3.6) needs to be substituted by its consistent estimator under the nullA−1

n (̂ξξξ0). As a
consequence, the test statistic introduced in Theorem1 clearly omits 2 potentially important sources of
variability, that is, the variability introduced by estimatingA−1(ξξξ0) by A−1

n (ξξξ0) and the variability intro-
duced by estimatingξξξ0 by its consistent estimator under the nullξ̂ξξn. In what follows, we will introduce
an alternative of the IMT that not only evades the previous assumption about the matrixA−1(ξξξ0) but also
avoids the calculation of higher-order derivatives.

3.2 The modified information matrix test

In this section, we directly consider the information matrix equality given in (3.1) and valid under a
correctly specified model. Let us first definedn(ξξξ) = 1vec[An(ξξξ) + Bn(ξξξ)], where1 is given by (3.3).
While developing the sandwich estimator test (SET), the variability of vec[Bn(ξξξ)] was estimated using
the empirical covariance estimator (3.4). We will now use the same idea to obtain an empirical estimate
of the variability of vec[An(ξξξ)]. Notice that from the previous expression fordn(ξξξ) follows:

n−1CD(ξξξ) = cov(dn(ξξξ)) = 1cov(vec[An(ξξξ)] + vec[Bn(ξξξ)])1
T , (3.7)

where

cov(vec[An(ξξξ)] + vec[Bn(ξξξ)]) = cov(vec[An(ξξξ)])+ cov(vec[Bn(ξξξ)])

+cov(vec[Bn(ξξξ)], vec[An(ξξξ)])

+cov(vec[An(ξξξ)], vec[Bn(ξξξ)]).

Further, cov(vec[Bn(ξξξ)]) = n−1Vb(ξξξ) andVb(ξξξ) can be consistently estimated using (3.4). Similarly to
what was done in Section3.1, we can now define

aaai (ξξξ) = vec

[{
∂2 log f (yi , ξξξ)

∂ξk∂ξ`

}]

.

Let μμμa(ξξξ) andVa(ξξξ) represent the mean and the covariance matrix ofaaai (ξξξ). It is then easy to show that
cov(vec[An(ξξξ)]) = n−1Va(ξξξ) and a consistent estimator ofVa(ξξξ) is given by

V̂a(ξξξ) =
1

n − 1

n∑

i =1

(aaai (ξξξ)− μ̂μμa(ξξξ))(aaai (ξξξ)− μ̂μμa(ξξξ))
T , (3.8)

where μ̂μμa(ξξξ) = 1
n

∑n
i =1 aaai (ξξξ). Finally, let Cab(ξξξ) and Cba(ξξξ) denote the covariance matrices asso-

ciated with aaai (ξξξ) and bi (ξξξ) and bi (ξξξ) and aaai (ξξξ), respectively. It then follows that cov(vec[An(ξξξ)],
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778 A. ALONSO ABAD AND OTHERS

vec[Bn(ξξξ)]) = 1
nCab(ξξξ) and cov(vec[Bn(ξξξ)], vec[An(ξξξ)]) = 1

nCba(ξξξ). Consistent estimators for these
matrices are given by

Ĉab(ξξξ) =
1

n − 1

n∑

i =1

(aaai (ξξξ)− μ̂μμa(ξξξ))(bbbi (ξξξ)− μ̂μμb(ξξξ))
T ,

Ĉba(ξξξ) =
1

n − 1

n∑

i =1

(bbbi (ξξξ)− μ̂μμb(ξξξ))(aaai (ξξξ)− μ̂μμa(ξξξ))
T .

Plugging the previous estimators into (3.7), we can obtain a consistent estimatorĈD(ξξξ) for CD(ξξξ). Using
all these elements, we can now formulate the following theorem.

THEOREM 2 (MODIFIED INFORMATION MATRIX TEST) Under general regularity conditions, if the
model is correctly specified then, asymptotically,

√
ndn(ξξξ0) ∼ Np(000,CD(ξξξ0)). From the previous

expression and the Cochran theorem (Sen and Singer, 1993), it follows:

=m(n) = ndT
n (ξξξ0)Ĉ

−1
D (ξξξ0)dn(ξξξ0) ∼ χ2

p. (3.9)

A proof for this result is available in Section B of the supplementary material available atBiostatistics
online. Observe that, unlike the SET, the modified information matrix test (MIMT) does take into account
the variability introduced by replacingA(ξξξ0) with its consistent estimatorAn(ξξξ0). However, unlike the
IMT, the MIMT still does not take into account the extra variability coming from replacingξξξ0 with ξ̂ξξn.
This is the only source of variability ignored by the test and it can be seen as the price to pay for avoiding
high-order derivatives and gaining simplicity.

It is important to point out that both the SET and the MIMT have been constructed based on the
diagonal elements of the matricesV(ξξξ∗)+ A−1(ξξξ∗) andA(ξξξ∗)+ B(ξξξ∗), respectively. However, this does
not preclude the use of other elements of these matrices if necessary. Indeed, both tests can be easily
adapted by doing the appropriate modifications in the matrix1 and selecting the adequateaaai (ξξξ) and
bbbi (ξξξ) vectors.

In the following sections, we will study the power of both tests using a general theoretical framework
and via simulations. In the simulation studies, we will focus on exploring the power of both tools to
detect misspecifications of the random-effects structure that have been shown to distort the inferences and
introduce bias in the point estimators.

3.3 Asymptotic power of the diagnostic tools

The SET and the MIMT can be applied to detect different types of misspecifications. Therefore, and
following the notation of Section3, the hypotheses of interest can be written asH0: h ∈ F versus the
alternativeH1: h /∈ F. In what follows, we will give an expression for the asymptotic power of the SET,
but the same ideas can be used to calculate the asymptotic power of the MIMT. If we denote the power of
the test byβ(h) then, asymptotically

β(h) = P(δs(n) > χ
2
α,p|h), (3.10)

whereχ2
α,p denotes theα percentile of a chi-square distribution withp degrees of freedom. Note that

whenh ∈ F, the model is correctly specified and (3.10) quantifies the Type I error rate withβ(h) 6 α. On
the other hand, ifh /∈ F then the model has been misspecified and (3.10) quantifies the power to detect
such a misspecification, when the real data generating mechanism ish. It can be shown that, in general,
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δs(n) ∼ χ2
p(λ), whereχ2

p(λ) denotes a noncentral chi-square distribution withp degrees of freedom and

noncentrality parameterλ = μμμT
v (ξξξ

∗)C−1
v (ξξξ∗)μμμv(ξξξ

∗) with μμμv(ξξξ
∗) = 1vec[V(ξξξ∗)+ A−1(ξξξ∗)]. Using all

the previous elements, we can now rewrite (3.10) as

β(λ) = P(χ2
p(λ) > χ

2
α,p|λ). (3.11)

From (3.11), it is easy to see that the power is an increasing function ofλ and, as a consequence, increasing
λ will redound in an increased power of the test to detect the misspecification. To enhance insight into
this issue, let us assume that one element ofμμμv(ξξξ

∗) increases in absolute value, while the others remain
constant and let us denote the increasing component ofμμμv(ξξξ

∗) by μ∗
k. Note that under the nullξξξ∗ = ξξξ0

andμμμv(ξξξ0) = 000 and, therefore, increasing absolute values ofμ∗
k will correspond with distributions in

the alternative that are “moving” away from the null. Moreover,λ is a positive definite quadratic form in
μμμv(ξξξ

∗) and this implies that lim|μ∗
k|→+∞ λ(μ∗

k) = +∞. As a result, the power of the test will go to one
as we move away from the null hypothesis. The same conclusion is valid if more than one component of
μμμv(ξξξ

∗) increase in absolute value.
It is important to point out that the test will fail to detect misspecifications which do not distort (3.2)

and a similar statement also holds for the MIMT. However, this potential lack of power of the SET and
the MIMT to detect certain type of misspecifications is not surprising. Indeed, it is well known that
uniformly most powerful tests (UMP) are difficult to find, even in the simpler scenario where the null
and the alternative hypotheses are just subsets of the real line. For instance, it has been proven that when
a testing problem has nuisance parameters, the UMP tests do not generally exist (Nomakuchi, 1992).
Additionally, it is also well known that UMP tests do not generally exist when the alternative hypothesis
is two-sided (Sen and Singer, 1993). Hence, it is not surprising that a given test can have low power to
detect certain elements in the alternative, specially in complicated settings like the one considered in the
present work.

3.4 Implementation

One major advantage of the diagnostic tools proposed in this article is their easy implementation us-
ing standard software, like the SAS procedures NLMIXED and IML. Indeed, first note that the Hessian
An(̂ξξξn) follows directly from NLMIXED. The subject contributions toBn(̂ξξξn) can also be obtained in a
relatively straightforward way but they need some extra calculations. To compute these values, we need
to fit the final model in NLMIXED to each subject separately, keeping the ML estimates fixed by setting
maxiter= 0, and saving the corresponding first-order derivatives. Macros that compute both tests can be
obtained from the authors.

4. SIMULATION STUDY

Heagerty and Kurland(2001) studied the impact of random-effects misspecification in a number of differ-
ent settings. They presented bias calculations for plausible violations of the random-effects assumptions,
using a logistic normal model when (i) the random effect is generated from a nonnormal distribution; (ii)
the variance of the random effect depends on a covariate in the mean structure; (iii) the random structure
includes both a random intercept and slope; and (iv) the random effects are autocorrelated. In the follow-
ing, we will study the performance of the SET and the MIMT in detecting these model misspecifications.

4.1 Nonnormal random effects

In this section, binary responses were generated using the logistic random-intercept model given by

logit{P(yi j = 1|b0i )} = β0 + β1zi + β2t j + b0i , (4.1)
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including an intercept, a binary covariatezi taking values 0 and 1, a within-cluster covariatet j taking
values 0, 1, 2, 4, 6, and 8 and a random interceptb0i sampled from 5 zero-mean distributions: the normal,
power function, lognormal distribution, a discrete distribution with equal probability at 2 support points
and an asymmetric mixture of 2 normal densities. For all the previous distributions, variancesσ 2

b = 4 and
32 were considered. Note thatσ 2

b = 32 is of the same order of magnitude as the estimate obtained from
the case study, whereasσ 2

b = 4 is used to analyze the performance of the tests in less extreme scenarios.
The parameters in the mean structure were fixed atβ0 = −8,β1 = 2, andβ2 = 1. Six different sample

sizes were considered, namely 50, 100, 200, 350, 500, and 1000. For each setting, 500 data sets were
generated and (4.1) was fitted to these data under the assumption of normally distributed random effects.
We then determined the proportion of cases in which a significant result at the prespecified significance
level of 5% was detected, using the the MIMT=m(n) and the SETδs(n). When the random effects are
generated from a normal distribution, this proportion corresponds to the Type I error rate; otherwise, it
represents the power of the tests. The results of these simulations are shown in Table2.

In this setting, the SET encountered problems to detect the misspecification when the random intercept
was generated from a power function or an asymmetric mixture of 2 normal distributions, especially with
σ 2

0b = 4. The test performed clearly better when the variance of the random intercept was large. This is,

Table 2. Power and Type I error for detecting a misspecified random-effects distribution, at the5% sig-
nificance level, using the the SETδs(n) and the MIMT=m(n) in GLMMs: a normal random intercept
is assumed, whereas the random effects are generated from a normal, a power function, a discrete,
an asymmetric mixture of2 normals or a lognormal distribution, with varianceσ 2

0b = 4 or 32. For
those settings for which a bootstrap correction was performed, corrected results are added inbetween

parenthesis

n σ2
0b = 4 σ2

0b = 32 σ2
0b = 4 σ2

0b = 32

δs(n) =m(n) δs(n) =m(n) δs(n) =m(n) δs(n) =m(n)

Normal Powerfunction

50 0.278 (0.048) 0.259 (0.004) 0.234 0.154 0.242 (0.016) 0.589 (0.069) 0.264 0.762
100 0.192 (0.044) 0.242 (0.060) 0.122 0.102 0.172 (0.044) 0.515 (0.128) 0.288 0.922
200 0.098 (0.032) 0.180 (0.088) 0.072 0.072 0.092 (0.044) 0.620 (0.344) 0.406 0.996
350 0.046 0.108 0.038 0.056 0.086 0.710 0.650 1.000
500 0.044 0.080 0.040 0.048 0.096 0.820 0.812 1.000

1000 0.026 0.054 0.016 0.032 0.164 0.952 0.998 1.000

Discrete Asymmetricmixture

50 0.304 (0.024) 0.782 (0.224) 0.710 0.982 0.230 (0.032) 0.471 (0.036) 0.242 0.788
100 0.306 (0.056) 0.914 (0.584) 0.830 0.998 0.146 (0.040) 0.374 (0.120) 0.172 0.926
200 0.430 (0.308) 0.968 (0.860 ) 0.948 1.000 0.092 (0.076) 0.458 (0.212) 0.114 0.996
350 0.688 0.988 0.996 1.000 0.070 0.514 0.136 1.000
500 0.848 1.000 1.000 1.000 0.064 0.588 0.098 1.000

1000 0.986 1.000 1.000 1.000 0.058 0.784 0.166 1.000

Lognormal

50 0.355 (0.048) 0.446 (0.024) 0.480 0.547
100 0.251 (0.092) 0.545 (0.076) 0.338 0.772
200 0.198 (0.084) 0.792 (0.288) 0.430 0.984
350 0.224 0.964 0.724 1.000
500 0.332 0.996 0.892 1.000

1000 0.780 1.000 1.000 1.000
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however, a desirable behavior given the results obtained byLiti èreand others(2008) and presented in
Section1.

The MIMT on the other hand clearly outperforms the SET. Values of power above 70% were obtained
in most of the settings with sample sizes as of 350 subjects. In addition, the MIMT has a remarkable
power for detecting random-effects misspecification whenσ 2

0b = 32. Indeed, in this scenario, the test
could always detect the misspecification for sample sizes greater or equal than 350.

In spite of these encouraging results, the Type I error rates shown in Table2 are larger than the pre-
specified 5% level for small and moderate sample sizes. This behavior has been well documented for the
IMT (Taylor, 1987) and given the relationship between the IMT and the proposed SET and MIMT, the
inflated Type I error rates observed for the latter 2 are not entirely unexpected.

We approached this problem following the idea introduced byHorowitz (1994) and used a parametric
bootstrap to account for the small-sample bias. To study the performance of this bootstrap version of the
tests, a new simulation study was carried out. The details of these additional simulations were as follows:
250 data sets were generated using Model (4.1), considering the normal, the power function, the discrete,
the asymmetric mixture, and the lognormal distributions with varianceσ 2

b = 4 for the random effect.
The samples sizes were fixed at 50, 100, and 200 subjects. For each generated data set, the ML estimates
β̂0n, β̂1n, β̂2n, and σ̂ 2

bn were calculated. Further, based on these values, the SETδs(n) and the MIMT
=m(n) were computed. Afterward, new responsesyi j were generated using Model (4.1) with the linear
predictorβ̂0n + β̂1nzi + β̂2nt j + bB

i . Note thatzi and t j follow from the original (simulated) data set
and the random effectsbB

i were generated from a normal distribution with mean zero and varianceσ̂ 2
bn.

This process was repeated 1000 times, such that in total for each simulated data set, 1000 new bootstrap
replicas were created. In a final step, these bootstrap data sets were analyzed using Model (4.1) and
assuming normal random effects. Estimates for the SET and the MIMT were obtained from each of the
bootstrap samples and used to estimate the empirical distribution function and corresponding bootstrap-
based critical value for each test. Table2 shows, between parenthesis, the Type I error rates and power
obtained after comparison of the original SET and MIMT values with their respective bootstrap-based
critical values.

Clearly, parametric bootstrap does importantly reduce the Type I error rates. This is a very promising
result and this approach should certainly be further explored. Note that, even though these bootstrap
versions of the tests are computationally demanding, the current power of personal computers make them
affordable alternatives in practical situations.

4.2 Random-intercepts variance depending on a binary covariate

Following the approach byHeagerty and Kurland(2001), let binary responses be generated using the
model

logit{P(yi j = 1|bi )} = β0 + β1zi + β2t j + β3zi t j + bi j , (4.2)

wherezi is a binary covariate defined as before andt j is a within-cluster covariate representing a linear
trend, witht j = ( j − 1)/(ni − 1) andni = 6. The variance of the random interceptbi j = bi 0 depends on
the value of the binary covariatezi such that

bi 0 ∼

{
N(0, σ 2

0 ) when zi = 0,

N(0, σ 2
1 ) when zi = 1.

(4.3)

The parameters in the linear predictor were fixed atβ0
0 = −2, β0

1 = 1, β0
2 = 0.5, andβ0

3 = −0.25. For
each setting, 500 data sets were generated withn = 500 subjects, and analyzed using the model given by
(4.2), assuming thatbi j = bi 0 ∼ N(0, σ 2

b ).
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Table 3. Power of the SETδs(n) and the MIMT=m(n) to detect model misspecification, at the5%
significance level, when a logistic-normal random-intercept model is assumed, but (i) the variance of
the random intercept depends on a binary cluster-level covariate,[bi 0|Xi,1 = 0] ∼ N(0, σ 2

0 ) and
[bi 0|Xi,1 = 1] ∼ N(0, σ 2

1 ); (ii) the data are generated using both a random intercept and slope
(bi j = bi 0 + bi 1xj ), with varianceσ 2

0 andσ 2
1 , respectively; and (iii) the data are generated using auto-

correlated random effects bi j such thatcov(bi j , bik) = σ 2ρ|ti j −tik |

(i) (ii) (iii)

σ1 σ0 δs(n) =m(n) σ1 σ0 δs(n) =m(n) ρ σ δs(n) =m(n)

0.5 0.5 0.040 0.064 0.2 0.5 0.030 0.066 0.5 0.5 0.013 0.054
1.0 0.102 0.514 1.0 0.012 0.032 1.0 0.046 0.064
2.0 0.984 1.000 2.0 0.008 0.018 2.0 0.696 0.264
3.0 1.000 1.000 3.0 0.022 0.036 3.0 0.980 0.594

1.0 0.5 0.078 0.696 0.5 0.5 0.052 0.098 0.7 0.5 0.019 0.071
1.0 0.018 0.038 1.0 0.026 0.056 1.0 0.044 0.056
2.0 0.620 0.980 2.0 0.006 0.024 2.0 0.888 0.544
3.0 0.994 1.000 3.0 0.013 0.032 3.0 1.000 0.958

2.0 0.5 0.770 1.000 0.8 0.5 0.230 0.282 0.9 0.5 0.024 0.064
1.0 0.452 0.980 1.0 0.070 0.156 1.0 0.018 0.034
2.0 0.020 0.020 2.0 0.022 0.076 2.0 0.368 0.306
3.0 0.244 0.608 3.0 0.014 0.034 3.0 0.922 0.924

3.0 0.5 0.992 1.000 1.0 0.5 0.546 0.610
1.0 0.974 1.000 1.0 0.234 0.394
2.0 0.184 0.630 2.0 0.054 0.166
3.0 0.016 0.014 3.0 0.044 0.012

Heagerty and Kurland(2001) found that substantial bias can occur for all coefficients in the model,
whenσ0 andσ1 are very different. For example, they reported 38% and 31% of relative bias in the estima-
tion of β1 andβ3, respectively, whenσ0 = 1 andσ1 = 2. Moreover, they observed that as the discrepancy
between the 2 parameters increases, so does the bias in the parameter estimates.

To study the performance of our proposals in this particular setting, we have applied the SET and
the MIMT to the generated data sets and determined the proportion out of 500 replications in which the
tests were able to detect the misspecification (at a 5% significance level). The corresponding powers are
displayed in the first part of Table3 as a function ofσ0 andσ1.

First, observe that, whenσ0 = σ1, this corresponds to the Type I error rate of the tests. With a sample
size of 500 subjects, in these settings, the Type I error rate is always maintained under the prespecified
5% level. Additionally, both tests show a good power as of differences between the 2 variance parameters
exceeding 1.0. Here again, the MIMT has a better performance than the SET in most of the settings. In
general, we conclude that both tests are able to detect the misspecification, especially in those settings
whereHeagerty and Kurland(2001) reported that the ML estimators of the linear predictors could be
most affected.

4.3 Ignoring a random effect

Another type of misspecification in the random structure occurs when a random slope is incorrectly as-
sumed to be fixed. To study the performance of our proposals in this setting, we have generated binary
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responses from the model given by (4.2), with bi j = bi 0 + bi 1t j , andσ 2
0 andσ 2

1 representing the variance
of the random interceptbi 0 and the random slopebi 1, respectively.

Simulations byHeagerty and Kurland(2001) showed that when these data are analyzed wrongly
assuming thatbi j = bi 0, moderate bias can appear in the estimation of the regression coefficients. For
instance, they observed asymptotic relative biases as large as 30–50% in the estimates ofβ2 andβ3 when
σ0 is small andσ1 is large. On the other hand, the bias for the estimators of the interceptβ0 and the
cluster-level covariate effectβ1 remained below 15% for all(σ0, σ1) pairs considered.

The second panel of Table3 shows the power of the diagnostic tools to detect this type of misspeci-
fication, as a function ofσ0 andσ1. The power of both tests was more moderate in this scenario. Indeed,
as one would expect, both tests fail to detect the misspecification whenσ1 is small. However, the bias cal-
culations byHeagerty and Kurland(2001) showed that little bias is present in this case. The SET and the
MIMT increase their power whenσ1 is increased, relative toσ0. Nevertheless, whenσ1 = 1 andσ0 = 0.5,
precisely the setting in which bias as large as 52% was obtained forβ2 andβ3, we only observed a power
of 55% with the SET to detect the misspecification and 61% with the MIMT. Even though, as we stated
before, these results are milder than the ones observed for the other misspecification, these levels of power
can still be relevant in many practical applications.

4.4 Autoregressive random effects

In the analysis of longitudinal data, one often observes that the dependence between 2 repeated mea-
surements within a cluster decays with their separation in time. This could be accounted for in a GLMM
by including autocorrelated random effectsbi j for which cov(bi j , bik) = σ 2ρ|ti j −tik |. Simulations by
Heagerty and Kurland(2001) for this type of misspecification have shown that substantial negative bias
can arise in the estimated fixed effects, with increasing bias asσ increases, especially whenρ is small.
Note that the random-intercept model follows as a special case of the autoregressive model whenρ = 1.
For models withρ < 1, a potentially large negative bias can be observed inσ̂n, given that it estimates
the common variance and, therefore, it approximates the true covariancesσ 2ρ|ti j −tik |. These authors ob-
served that, asρ decreases, the negative bias inσ̂n increases, ranging between−30% and−50% when
ρ = 0.7 and between−47% and−70% whenρ = 0.5. As a result, substantial negative bias can also
arise in the estimated regression coefficients, with increasing bias asσ increases. For instance, when
(ρ, σ ) = (0.5, 3.0), negative bias as high as−45% occurred in each of the parameter estimates in the
linear predictor.

The third panel in Table3shows the power of the diagnostic tools to detect this type of misspecification
as a function ofσ andρ. From the table, it follows that both tests have a high power to detect this type
of misspecification whenσ is sufficiently large. Given that bias in the estimation of the linear predictor
parameters was seen to be more substantial as ofσ > 2, this is a very desirable property. Note that for
smaller values ofσ , the power of both tests is considerably lower but in these settings, the impact of the
misspecification is also minor.

5. REVISITING THE CASE STUDY

In this section, we apply the SET and the MIMT to assess the suitability of Model (2.4) with normal
random effects for the analysis of the case study. It follows thatδs(n) = 8.5 and compared to aχ2 distri-
bution with 6 degrees of freedom, this leads top = 0.205. In contrast,=m(n) = 13.1 with corresponding
p = 0.041. According to the MIMT, the data at hand give evidence of some model misspecification. In
comparison, using parametric bootstrap, thep-value associated with the SET reduces to 0.097, whereas a
p = 0.040 was observed for the MIMT.
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Therefore, a more detailed investigation of the model assumptions is required. To study how sensi-
tive are our results to the choice of the random-effects distribution, we performed a sensitivity analysis
including an exponential, a chi-square, a uniform, and a lognormal distribution. Such analysis can be eas-
ily carried out using probability integral transformations in the SAS procedure NLMIXED. We further
considered a mixture of 2 and 3 normal distributions (seeMolenberghs and Verbeke, 2005, Chapter 23).
The corresponding parameter estimates are shown in Table1.

The uniform distribution produced the best results according to the AIC, with an AIC weight of
ωAIC−uni = 0.804 (Burnham and Anderson, 2002). It was followed by the models with the mixture of
2 and 3 normals, which have AIC weightsωAIC−two = 0.147 andωAIC−three= 0.033, respectively. The
GLMM with a normal random effect ranked fourth with an AIC weightωAIC−one = 0.016. Careful ex-
ploration of these models showed also a better fit of the marginal evolutions when the random-effect
distribution was the uniform (see Figure1(b)). Moreover, the diagnostic tools do not detect any fur-
ther misspecification when this model is adopted (δs(n) = 2.1 with p = 0.911 and=m(n) = 6.5 with
p = 0.366).

Interestingly, the inferential results for the treatment effect may differ depending on the choice of the
random-effects distribution. Indeed, whileγ2 was found to be nonsignificant (at the prespecified 5% level)
in the best fitting model, it changed to very significant (p = 0.007) when the distribution of the random
effects was assumed to be a 2-component mixture, that is, the second best model. This example clearly
illustrates that inferences for the linear predictor parameters can depend on the distributional assumptions
for the random effects. Therefore, the evaluation of these assumptions is of utmost importance.

Finally, observe that the variance of the random intercept was rather large in all scenarios consid-
ered, with a median around 24. Hence, all models consistently hint on a very strong within-subject
association.

6. DISCUSSION

In this article, we proposed the so-called SET and the MIMT to detect misspecifications in GLMMs. In
our simulations, we mainly focused on the detection of misspecifications in the random-effect structure.
In general, both tests showed a good power, with values frequently above 70%, in most of the settings con-
sidered. However, in scenarios with small or moderate sample sizes, the Type I error rates were inflated,
jeopardizing the interpretation of the results. Therefore, we recommend the use of these tools in their
original form, only when the sample size is greater than 350 subjects. Importantly, parametric bootstrap
versions of the tests were able to control the Type I error rates and they could be an attractive option when
the sample size at hand is small or moderate (n 6 350). A finite-sample correction to solve this problem
would also be worth having and future research in this direction will surely follow.

Interestingly, the SET was clearly outperformed by the MIMT in most of the settings. This could be
partly attributed to the fact that, unlike the SET, the MIMT accounts for the extra variability introduced by
replacingA(ξξξ0) with its consistent estimatorAn(̂ξξξn). Additionally, note that whereas the MIMT depends
on An(̂ξξξn) andBn(̂ξξξn) directly, more rounding errors may have been introduced to obtainVn(̂ξξξn) and
A−1

n (̂ξξξn). These may interfere with the power of the SET to detect misspecifications and could help to
explain the differences observed between the performance of the SET and the MIMT.

When constructing the SET and the MIMT, we used only the diagonal elements of the matrices
V(ξξξ∗)+ A−1(ξξξ∗) andA(ξξξ∗)+ B(ξξξ∗). Some reasons justified this choice. First, using all the elements of
the previous matrices frequently led to a singular variance–covariance matrix for the test statistic. Second,
including more elements outside the diagonal also provoked a huge upward bias in the Type I error rates,
especially in small samples. It is important to point out, however, that our choice does not preclude the
use of other elements outside the diagonal and both tests can be easily adapted to do that.
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Finally, even though we focused on misspecification of the random-effects structure, a significant re-
sult from the SET and/or the MIMT does not necessarily imply that the random effects are misspecified.
These diagnostic tools are, in principle, also suitable to detect other types of model misspecification, such
as a misspecified link function or a misspecified mean structure. Nevertheless, given the good power ob-
served in our simulations to detect misspecifications in the random-effect structure, this would obviously
be a first place to start.

SUPPLEMENTARY MATERIAL

Supplementary material is available athttp://biostatistics.oxfordjournals.org
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