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    Abstract

Classical regression models, ANOVA models and linear mixed models are
just three examples (out of many) in which the normal distribution of
the response is an essential assumption of the model. In this paper we
use a dataset of 2000 euro coins containing information (up to the
milligram) about the weight of each coin, to illustrate that the
normality assumption might be incorrect. As the physical coin production
process is subject to a multitude of (very small) variability sources,
it seems reasonable to expect that the empirical distribution of the
weight of euro coins does agree with the normal distribution. Goodness
of fit tests however show that this is not the case. Moreover, some
outliers complicate the analysis. As alternative approaches, mixtures of
normal distributions and skew normal distributions are fitted to the
data and reveal that the distribution of the weight of euro coins is not
as normal as expected.

    1. Introduction

The last couple of decades have seen a reform in the K-12 mathematics
curriculum in the United States. In the same period, the undergraduate
curriculum in collegiate mathematics has undergone a major review.

The recommendations towards a significant pedagogical reform include
emphasis on so-called data-driven  mathematics education, and by� �
extension, on data-driven statistics education. In the K-12 mathematics
curriculum, statistics (referred to as Data Analysis and Probability� �
in the NCTM 2000 Principles and Standards for School Mathematics) has a
much more prominent role than ever before. The recent introduction of
the AP (Advanced Placement) Examination in Statistics focused attention
on the importance of statistics even more.

In The Case for Undergraduate Statistics  Richard L. Scheaffer and Carl� �
Lee write: Many now realize that statistical thinking and statistical�
concepts are essential skills for all academic disciplines as well as
for life-long learning. As a result of this thinking, spurred on by the
influx of freshmen who have already seen basic statistics by the time
they arrive at the college door, statistics is receiving more attention
at two-year colleges, four-year colleges, and universities." Also here,



the increased attention given to statistics goes hand in hand with an
increased emphasis on statistical thinking" and data and concepts", as� �
recommended by the ASA-MAA Joint Curriculum Committee.

The Guidelines for Assessment and Instruction in Statistics Education
(GAISE) were endorsed by the ASA on May 17, 2005. The GAISE reports
contain excellent recommendations for statistics education, as well in
PreK-12 years as at the introductory college level.

This change in the teaching of statistics is not confined to the U.S.
alone, but it takes place in many countries all over the world, and at
different pace and intensity. In Flanders for example (the Flemish part
of Belgium), statistics played only a minor role in mathematics
education at school. A recent curriculum reform (compulsory for all
schools) imposes a significant increase of statistics in grades eight
through twelve.

At the university level, the recent introduction of a European-wide
bachelor-master system has forced almost all institutions to restructure
their curricula. Flemish universities have turned this burden into an
opportunity for reshaping the statistics education, starting with an
introductory course where data and concepts prevail over formal
mathematical proofs.

In the light of these reforms, several real life projects are being
developed, providing examples of what can be done in class. Not so long
ago, the introduction of the Euro has had a major impact in the daily
life of everyone (many people still have to count back into the old�
currency  to make sure that they rightly value the Euro price!). It�
therefore was considered a good idea to look a bit closer at the new� �
coin itself, and to consider some of its physical properties. After all,
everybody in Belgium (and in the many countries of the European Union)
has to use such coins now. Here, the choice was made to study the one�
Euro  coin. This coin has one side that is the same everywhere (with the�
number 1 on it), but the other side has a representation that is country
dependent. Therefore, the choice was made to restrict the study to the

Belgian 1 Euro  coin.� �

The paper is organized as follows. The data are introduced in Section 2
<v14n2/datasets.aerts.html#Sect2> and a first analysis, using the
Kolmogorov-Smirnov and Shapiro-Wilk goodness of fit tests, is presented
in Section 3 <v14n2/datasets.aerts.html#Sect3>. A second analysis, based
on normal mixture models, is discussed in Section 4
<v14n2/datasets.aerts.html#Sect4>. As it will contribute to a better
understanding, the details of the data collection procedure are given in
Section 5 <v14n2/datasets.aerts.html#Sect5>. In a third and final
analysis, in Section 6 <v14n2/datasets.aerts.html#Sect6>, we do not
assume that the distribution of the euro coins is symmetric. The family
of skew normal distributions, a class of distributions which includes
the normal ones (Azzalini 1985
<v14n2/datasets.aerts.html#Azzalini1985>), offers an interesting
alternative to model the weight of euro coins. A possible classroom use
of the data is discussed in Section 7 <v14n2/datasets.aerts.html#Sect7>.

    2. The Dataset

According to information from the National Bank of Belgium  the 1 Euro� �
coin weighs 7.5 grams. It was anticipated that the weight of this coin
would be normally distributed with mean 7.5 g. Students could try this
out in class, and this type of data collection is fortunately not very
complicated. Most schools possess precise weighing scales in their
physics or chemistry labs, and asking each student to bring a couple of



1 Euro coins from home looks trivial. A variety of statistical
techniques could be demonstrated by the teacher, going from histograms
to /z/-scores, from sample averages to confidence intervals, and so on.
Since we didn't want to take our assumptions for granted, we started out
to construct a kind of reference set , to be made available to all� �
participating schools. A local bank was kind enough to let us borrow� �
2000 coins. Then, two of our assistants, Sofie Bogaerts and Saskia
Litière, weighted those coins one by one. They had reserved a small
chemistry lab where a precise digital weighing scale of the type
Sartorius BP 310s was available. This scale gives a reading of up to a
thousandth of a gram. With the help of the technicians from the lab, the
scale was put in place and well calibrated. They then started the
following standard procedure. Saskia made sure that the scale gave a
reading of 0.000 /g/. She then put one coin on the scale and waited
until the reading was stable. She then told the resulting number to
Sofie, who wrote it down in a spreadsheet of her laptop. The two
assistants were the only persons in the room, the doors were closed and
the temperature was kept constant. The total procedure took 7 hours and
22 minutes. At the end, we had a database consisting of 2000 weights (in
milligrams) of Belgian 1 Euro  coins.� �

    3. A First Analysis

Figure1 <v14n2/datasets.aerts.html#Figure1> shows a normal probability
plot for the weight of the 2000 euro coins and reveals three outliers
(all marked by arrows). Let /Y/ be the weight of a euro coin. Based on
the sample /y__i /, /i/ = 1, ... ,2000, we wish to test the hypotheses

H__0 : /Y/ is normally distributed,      
H__1 : /Y/ is not normally distributed. (1)

The two-sided Kolmogorov-Smirnov (KS, see e.g. Section 6.5.2 in Shao
1999 <v14n2/datasets.aerts.html#Shao1999>) test statistic equals 0.0234
resulting in a /p/-value of 0.0131, indicating that the null hypothesis
can be rejected at a significance level of 5%. The Shapiro-Wilk (SW)
statistic is equal to 0.975 (/p/-value < 0.0001). This latter test is
designed specifically for testing normality and is therefore more
powerful than the KS test. The SW statistic is also attractive because
it has a simple, graphical interpretation as an approximate measure of
the correlation in the normal probability plot in Figure 1
<v14n2/datasets.aerts.html#Figure1> (see e.g. Stuart, Ord, and Kendall
1991 <v14n2/datasets.aerts.html#Stuart1991>).
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Figure 1 <v14n2/datasets.aerts_figure1.gif>

Figure 1: Normal probability plot for the weight of 2000 euro coins.
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It is interesting to examine the influence of the three outliers 7.201
/g/,7.656 /g/ and 7.752 /g/ on the analysis. Figure 2
<v14n2/datasets.aerts.html#Figure2> shows the corresponding normal
probability plot after excluding these outliers. Now, the KS test
statistic equals 0.0246 (/p/-value=0.0071) and the SW statistic is
0.9974 (/p/-value=0.0022), indicating, once again, that the null
hypothesis of normally distributed weights can be rejected. This shows
that non-normality of the weight variable /Y/ is not simply a matter of
excluding outliers but that there are more fundamental features of the
data that are not in line with a normal distribution.
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Figure 2 <v14n2/datasets.aerts_figure2.gif>

Figure 2: Normal probability plot for the weight of 1997 Euro coins,
excluding the three outliers 7.201 /g/,7.656 /g/ and 7.752 /g/ from the
original dataset.
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As the observed deviation from normality can be induced by heterogeneity
in the mean and variance parameter of the normal distribution, an
interesting option is to extend a single normal distribution to a
hierarchical normal mixture model. The plausibility of this first
extension is discussed in the next section.

    4. A Second Analysis: Normal Mixtures

The analyses performed in the previous section assume that all Euro
coins were sampled from the same normal population. However, if the
packages were samples from different normal subpopulations the
distribution of the 2000 Euro coins is not expected to be normal but
rather a mixture of normal distributions (Gelman, Carlin, Stern, and
Rubin 1995 <v14n2/datasets.aerts.html#Gelman1995>; Gilks, Richardson,
and Spiegelhalter 1996; <v14n2/datasets.aerts.html#Gilks1996>Congdon2003
<v14n2/datasets.aerts.html#Congdon2003>). Let /g(y)/ be the density
function of /y/. A finite mixture distribution has the form of

where , are called the mixture components, are the mixture probabilities
and are the parameters to be estimated. In what follows, we focus on a
mixture of two normal populations with possibly different mean and
variance parameters and, following the approach of Congdon (2003)
<v14n2/datasets.aerts.html#Congdon2003> we formulate the mixture model
in terms of an hierarchical model using a latent indicator variable.

      4.1 A Two Components Normal Mixture With Known Mixture Probability

Let /G__i / be an indicator variable that takes the value of 1 if the
individual belongs to the first group and 0 otherwise. Hence, the
likelihood in the first stage of the hierarchical model is given by

(2)

The variable /G__i / can be seen as a latent classification random
variable for which we assume a Bernoulli distribution

(3)

In this stage we temporarily assume that the mixing probability is
known. To complete the specification of the hierarchical model, the
following (non informative) prior and hyperprior distributions are assumed

(4)

Here, gamma(, ) denotes a gamma distribution with mean equal to / and
variance /^2 . Hence, by choosing = = 0.0001, the prior (and hyperprior)
distribution for the variance parameters is a gamma distribution with
mean 1 and variance 10000, which reflects our uncertainty about the true
value of the parameters (see, for example Gilks, et al. 1996
<v14n2/datasets.aerts.html#Gilks1996>). Three different values for were
examined, = 0.95, 0.99, or 0.995. Table 1



<v14n2/datasets.aerts.html#Table1> presents the posterior means for the
mean and variance parameters of the two normal mixture components. The
upper panels of Figure 3 <v14n2/datasets.aerts.html#Figure3> show the
posterior means of /G__i / while the lower panels show the posterior
medians for the three values of . Note that since /G__i / is a binary
variable, the median and the mode of the posterior distribution are
equal. Based on the two sets of plots the coins can be classified into
the two components of the mixture. For = 0.995 (right panels), 4 coins
are classified into the second component of the mixture. This group of
coins does contain the three outliers. So the two component normal
mixture is able to cope with the three outliers. Note that as the value
of decreases the number of coins which are classified into the second
component of the mixture increases (5 and 11 for equal to 0.99 and 0.95,
respectively).

------------------------------------------------------------------------

Table 1: Posterior mean for and , /j/ =1, 2, for a two component normal
mixture with known mixture probability . /N/__2 is the number of
observations assigned to group 2.

/N/__2
0.995 7.521 0.001087 7.504 0.06362 4
0.99 7.521 0.001072 7.509 0.01987 5
0.95 7.521 0.001016 7.52 0.004859 11

------------------------------------------------------------------------

Figure 3 <v14n2/datasets.aerts_figure3.gif>

Figure 3: Upper panels: posterior mean for /G__i / with = 0.95 (left),
0.99 (middle) and 0.995 (right). Lower panels: posterior medians for
/G__i / with = 0.95 (left), 0.99 (middle) and 0.995 (right).
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      4.2 A Mixture of Two Components With Unknown Mixture Probability

In the previous section the mixture probability was assumed to be known.
In this section we relax this assumption and specify a prior
distribution for . Hence, we modify the model in Equation (3)
<v14n2/datasets.aerts.html#Eqn3> to

(5)

The likelihood in Equation (2) <v14n2/datasets.aerts.html#Eqn2> and the
hyperprior distributions in Equation (4)
<v14n2/datasets.aerts.html#Eqn4> remain the same.

A density estimate for the posterior distribution of is shown in Figure
4 <v14n2/datasets.aerts.html#Figure4> and Table 2
<v14n2/datasets.aerts.html#Table2> presents the posterior means for the
mean and the variance parameter of both mixture components. The
posterior mean of equals 0.9964. Figure 5
<v14n2/datasets.aerts.html#Figure5> shows that, according to the
posterior mean and mode of /G__i /, in this case only two coins are
classified into the second component. These two coins correspond to the
two extreme outliers (7.201 /g/ and 7.752 /g/).
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Figure 4 <v14n2/datasets.aerts_figure4.gif>



Figure 4: Density estimate for the posterior distribution of .
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Table 2: Posterior mean for and , /i/ = 1, 2. /N/__2 is the number of
observations assigned to group 2.

Parameter Estimate
7.521
7.431
0.001093
3.928

posterior mean 0.9964
/N/__2 2

------------------------------------------------------------------------

Figure 5 <v14n2/datasets.aerts_figure5.gif>

Figure 5: Left (right) panel: posterior mean (median) for /G__i / with =
0.9964.
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The two component normal mixture approach is able to attribute the
outlying values to a separate normal component. But since our first
analysis showed that the normal distribution hypothesis could not be
retained after excluding the outliers, this approach is still not giving
us a satisfactory insight in which way the weight distribution deviates
from a normal one. Of course many other distributions could be fit to
these data. But to better understand the reason for this non-normality,
we investigated the nature of the data and its collection in more detail.

    5. The Data Collection

The rather surprising result of our first data analysis made us
suspicious about the data collection process. The design of the study
was set up so that the 2000 coins would make up a simple random sample
(SRS) from the collection of all Belgian 1 euro coins. Since the euro
has been introduced for some time now, it was anticipated that the coins
would be well mixed by now. Hence, it was expected that collecting coins
from any bank would result in a sample, which, for all practical
purposes, could be considered as an SRS.

But what happened in reality? From our side, we had asked the
cooperation of the university administration (section finances) since
they have good contacts with local banks. They contacted a bank and sent
an employee to go and collect the coins. But when the employee asked for

Belgian only  coins, he found out that banks do not store Belgian euros� �
separated from other euros. Fortunately, he was told that the National�
Bank of Belgium  possesses Belgian only  coins. So, he went to that� � �
place and came back with the 2000 coins.

We further asked our two assistants about the way in which they
physically  received those coins. Here came the big surprise. The� �
National Bank of Belgium , which is the distributor of money to other� �

banks, had given 8 packages of 250 brand new coins each. Our assistants
explained further that they had worked systematically, package by
package, and that the weights were entered into the spreadsheet in that
order. This gives additional information, in the sense that the weight
of each coin can also be classified according to the package to which it



belongs.

Knowing that the 2000 coins came from 8 different packages made us
perform a further analysis, as described in the next paragraph. Of
course, this analysis now should be seen in the context of the peculiar
way in which the data were collected, and any resulting conclusion
should be handled with caution.

    6. A Third Analysis: Testing Normality by Package

In this section we redo the first analysis, by package, both including
and excluding the three outliers (one outlier from package 3 (7.201
/g/), one from package 5 (7.656 /g/) and one from package 8 (7.752
/g/)). Figure 6 <v14n2/datasets.aerts.html#Figure6> shows the normal
probability plots for each package (after excluding the outliers) and
Table 3 <v14n2/datasets.aerts.html#Table3> presents the values of the KS
and the SW test statistics together with sample means and variances. An
overall comparison of the two goodness of fit tests confirms the
conservative nature of the KS test and the better power characteristics
of the SW test. When including the outliers, the null hypothesis of a
normal distribution is clearly rejected for package 3, 6 and 8. For the
fifth package, and with or without the outlying euro coin with weight
7.656 /g/, the null hypothesis cannot be rejected. When the three
outliers were excluded from the analysis (last three rows in Table 3
<v14n2/datasets.aerts.html#Table3>), the null hypothesis of a normal
distribution cannot be rejected for packages 3 and 8, at the
significance level of 5% (borderline for package 3). So, after excluding
the outliers, the packages with the smallest /p/-values for the SW test
are: package 6 (0.0068), package 3 (0.0565) and package 8 (0.0833); all
other packages result in a /p/-value about 10% (package 7 is next with
/p/-value 0.1120). Recall that when the coins from the 8 packages were
pooled together, excluding the 3 outliers, the null hypothesis was
rejected.
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Figure 6 <v14n2/datasets.aerts_figure6.gif>

Figure 6: Normal probability plots by package (outliers excluded). Upper
plots: packages 1 to 4, from left to right; lower plots: packages 5 to
8, from left to right.
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Table 3: KS and SW two-sided tests for normality, by package.
First 8 rows: all data, last three rows: excluding the outliers.
Here, SD = standard deviation, /N/ = size of package.

Package KS (/p/-value) SW (/p/-value) Mean SD /N/
1 0.038 (0.500) 0.995 (0.6830) 7.520 0.034 250
2 0.033 (0.500) 0.991 (0.1219) 7.523 0.035 250
3 0.078 (0.001) 0.863 (<0.0001) 7.510 0.037 250
4 0.045 (0.500) 0.995 (0.6827) 7.531 0.029 250
5 0.035 (0.500) 0.991 (0.1290) 7.531 0.030 250
6 0.055 (0.063) 0.984 (0.0068) 7.515 0.033 250
7 0.042 (0.500) 0.990 (0.1120) 7.523 0.033 250
8 0.070 (0.005) 0.936 (<0.0001) 7.517 0.036 250
------------------------------------------------------------------------
3 0.047 (0.500) 0.989 (0.0565) 7.511 0.031 249
5 0.045 (0.500) 0.993 (0.4204) 7.531 0.029 249
8 0.053 (0.081) 0.989 (0.0833) 7.516 0.033 249
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Some of the normal probability plots in Figure 6
<v14n2/datasets.aerts.html#Figure6> reveal a clear pattern of departure
from normality: package 3, 6 and 8 (U-shaped about the straight line,
indicating some skewness to the right), and to some lesser extent,
package 7 (U-shaped below the straight line, indicating some skewness to
the left). This was the motivation to consider a non-symmetric extension
of the normal distribution: the skew-normal distribution as introduced
by Azzalini (1985) <v14n2/datasets.aerts.html#Azzalini1985>.

    7. A Fourth Analysis: Skew-Normal Distributions

The univariate-skew normal distribution, proposed by Azzalini (1985)
<v14n2/datasets.aerts.html#Azzalini1985>, is an extension of the normal
distribution with three parameters: the mean the variance and the shape
parameter . The normal distribution is a special case, taking the shape
parameter equal to zero. Formally, the density function of the skew
normal distribution SN() is given by

(6)

where /z/ is a /z/-score, is the standard normal density function, is
the standard normal distribution function and is the shape parameter.
Note that for = 0, the skew-normal density reduces to the standard
normal density. Figure 7 <v14n2/datasets.aerts.html#Figure7> shows some
graphs of the skew-normal density functions for several values of . Note
that as goes to infinity the skew-normal distribution converges to the
so called half-normal distribution.
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Figure 7 <v14n2/datasets.aerts_figure7.gif>

Figure 7: Skew-normal densities for different values of the shape
parameter .

------------------------------------------------------------------------

For a random variable /Z/ ~ SN(), it can be shown that E(/Z/) = /b/ and
Var(/Z/ = 1 - (/b/)^2 , where and . Using a linear transformation , we
get a random variable with mean , variance ^2 and shape parameter . For
more details on moments and cumulants, see Azzalini (1985)
<v14n2/datasets.aerts.html#Azzalini1985>.

The shape parameter was estimated for the data in each package, as shown
in Table 4 <v14n2/datasets.aerts.html#Table4>. In the sequel, we work
with the reduced data, excluding the three outliers. Using maximum
likelihood estimation, the shape parameter in package 6 is estimated to
be 0.512, with estimated standard error 0.143. This indicates a right
skewed distribution. Within this three-parameter family of distributions
the normality hypothesis is equivalent to the hypothesis

H__0 : = 0. (7)

Using the Wald test

(8)

the normality hypothesis (7) <v14n2/datasets.aerts.html#Eqn7> can be
tested using a chi-square null distribution (see e.g. Section~6.4.2 in
Shao 1999 <v14n2/datasets.aerts.html#Shao1999>). For package 6 the value



of /W/ equals 12.85 which corresponds to a /p/-value of about 0.0003
leading us to reject normality. So, this confirms the previous analysis
of this particular package. Moreover the fitted skew-normal distribution
can now be used to model the package 6 data.

------------------------------------------------------------------------

Table 4: Estimates of the shape parameter and corresponding estimated
standard errors for the skew-normal distribution, by package.

Package 
1 0.161 0.176
2 -0.142 0.136
3 0.225 0.145
4 0.000 0.025
5 -0.072 0.175
6 0.512 0.143
7 -0.189 0.164
8 0.390 0.147

------------------------------------------------------------------------

Also for package 8 the estimated lambda parameter and its estimated
standard error leads to a rejection of the normality hypothesis (7)
<v14n2/datasets.aerts.html#Eqn7>: = 0.39, = 0.147, and the value of /W/
equals 7.04 with /p/-value 0.008. These are the only packages for which
the normality hypothesis (7) <v14n2/datasets.aerts.html#Eqn7> can be
rejected at the 5% significance level (which is in line with the results
in the previous analysis). Also for other packages, like package 3 and 7
and even package 2, the magnitude of relative to its agrees with the
/p/-values in Table 3 <v14n2/datasets.aerts.html#Table3>.

Histograms of the weight of the euro coins by package, overlaid with the
estimated skew normal density (solid line), are shown in Figure 8
<v14n2/datasets.aerts.html#Figure8>. The 95% confidence intervals for ,
by package, are shown in Figure 9 <v14n2/datasets.aerts.html#Figure9>.
As expected, the confidence intervals for package 6 and 8 do not cover
the value of zero.

------------------------------------------------------------------------

Figure 8 <v14n2/datasets.aerts_figure8.gif>

Figure 8: Histogram, fitted skew normal density (solid line) and fitted
normal density (dashed line), by package. Upper row: packages 1 to 4,
from left to right; lower row: packages 5 to 8, from left to right.
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Figure 9 <v14n2/datasets.aerts_figure9.gif>

Figure 9: Estimated shape parameter with 95% confidence intervals, by
package.

------------------------------------------------------------------------

    8. Classroom Use And Final Discussion

Initial exploration of the dataset might start with methods from
exploratory data analysis (EDA). A simple normal probability plot like
in Figure 1 <v14n2/datasets.aerts.html#Figure1> reveals the existence of
three probable outliers. A deviation in the tails might hint at



skewness. When the 3 outliers are excluded, a new normal probability
plot in Figure 2 shows the same behavior in the tails. One then could go
one step further and perform a formal test. Shapiro-Wilk confirms that
the null hypothesis about the normality of the weights can be rejected.
A more advanced course in statistics then could concentrate on finding a
model that better fits the data. A first idea could come from the class
of normal mixtures, leading to the discussion in Section 4
<v14n2/datasets.aerts.html#Sect4>.

A second aspect to be discussed in class is certainly as important as
the exploration of the dataset. It is about the design of the study and
about the many practical issues that occur in real life . A big lesson� �
can be learned here. Even a well-designed study can produce data, which
are collected in such a way that one has to be cautious about the
conclusions of the further statistical analysis. Apart from the design,
one has to look at the size and the complications of the data collection
process. If one has to rely on collaborators for collecting the data,
one should monitor also this process carefully.

Within the restrictions of what has been said above, one could continue
and go for a further tentative  analysis. Fortunately, we were able to� �
identify which coin belonged to which batch, so that a study by batch
was possible. This is carried out in Section 6
<v14n2/datasets.aerts.html#Sect6>, using normal probability plots as
well as formal tests. Several of the plots seem to point in the
direction of some skewness. In a more advanced course in statistics, one
could take the opportunity here to study an interesting class of
distributions, having a shape parameter , but reducing to the
symmetrical normal when = 0. This class of skew-normal distributions,
introduced by Azzalini (1985) <v14n2/datasets.aerts.html#Azzalini1985>,
is studied in Section 7 <v14n2/datasets.aerts.html#Sect7> for fitting
the data of the 8 packages of coins.

    9. Getting the Data

The file euroweight.dat <datasets/euroweight.dat> is a text file
containing the raw data. The file euroweight.txt
<datasets/euroweight.txt> is a documentation file containing a brief
description of the dataset.
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    Appendix: Software

      Normal Probability Plots and KS and SW Test

We used the trellis figures library in S-PLUS to produce the normal
probability plots discussed above. Figure 1
<v14n2/datasets.aerts.html#Figure1> was produced using the following
code (note that y is an S-PLUS object containing the weights of the 2000
euro coins).



>y<-(euro$MASSA..G)
>upy<- max(y)
>loy<- min(y)
qqmath( ~ y , data = euro,ylim=c(loy,upy),
       prepanel = prepanel.qqmathline,
       panel = function(x, y) {
         panel.grid()
         panel.qqmathline(y, distribution = qnorm)
         panel.qqmath(x, y)},
       layout = c(1, 1), aspect = 1,
       xlab = "Unit Normal Quantile", ylab = "Weights (gr)")

For the KS two sided test we used

>ks.gof(y,alternative = "two.sided", distribution = "normal")

and for the SW test:

>shapiro.test(y)

      Normal Mixture with Two Components

The mixture models discussed in Section 4 were fitted in WinBUGS 1.3.
The posterior means for the parameters in each model are based on a
Markov Chain Monte Carlo (Gilks, et al. 1996
<v14n2/datasets.aerts.html#Gilks1996>) simulation with 10000 iterations.
The first 1000 were discarded from the analysis (treated as the burn-in
period). In order to avoid autocorrelation, the chains were monitored
every 10 iterations. The following code was used for the model with the
unknown mixture probabilities Nsub is the number of euro coins and Nmix
is the number of components in the mixture). For a more elaborate
discussion on hierarchical mixture models, we refer to Congdon (2003)
<v14n2/datasets.aerts.html#Congdon2003>.

model
    {
       for( i in 1 : Nsub ) {
       Yi[i]~dnorm(mu.y[T[i]],tau.i[T[i]]) #likelihood
       T[i]~dcat(P[]) #prior for G_i
       ti[i]<-T[i]-1
                           }
   for(k in 1:Nmix){
   tau.i[k] ~ dgamma(0.0001, 0.0001)
   mu.y[k] ~ dnorm(0,tau.mu)
   sigma[k]<-1/tau.i[k]
                   }
 tau.mu  ~ dgamma(0.0001, 0.0001)
 P[1]~dunif(0,1) #prior for pi
 P[2]<-1-P[1]
     }

      Skew-Normal Distribution

The skew-normal distributions were fitted using the S-PLUS library sn,
which is available on Professor Azzalini's website
azzalini.stat.unipd.it/SN/index.html#lib-sn
<v14n2/datasets.aerts_link1.html>. Maximum likelihood estimates for the
mean, variance and shape parameter were obtained using the function
sn.mle(). A call to this function has the form



>sn.mle(,x1,plotit=T)
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