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The Diggle-Kenward Model for Dropout

1 Introduction

In medical research, studies are often designed in which specific parameters are measured

repeatedly over time in the participating subjects. This allows modeling the process of change

within each subject separately, based on both subject-specific factors (such as gender) and

experiment-specific factors (such as treatment). The analysis of this type of longitudinal data

requires statistical models which take into account the association between the measurements

within subjects. During the last decade, a lot of effort has been put into the search for flexible

longitudinal models (Diggle et al 2002, Verbeke and Molenberghs 2000, Molenberghs and

Verbeke 2005).

In practice, longitudinal studies often suffer from attrition, i.e., subjects dropping out

earlier than scheduled, for reasons outside the control of the investigator. The resulting data

are then unbalanced with unequal numbers of measures for each participant. Nowadays, several

statistical packages can handle unbalanced longitudinal data. However, they only yield valid

inferences under specific assumptions for the dropout process.

Generally, valid inferences can only be obtained by modeling the response measurements

and the dropout process simultaneously. Making various assumptions about the dropout mech-

anism, a large variety of models for continuous as well as categorical outcomes have been

proposed in the statistical literature (Verbeke and Molenberghs 2000, Molenberghs and Ver-
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beke 2005). With the volume of literature on models for incomplete data increasing, there has

been growing concern about the critical dependence of many of these models on the validity

of the underlying assumptions. To compound the issue, the data often have very little to say

about the correctness of such assumptions (Little and Rubin 2002, Chap. 11, Verbeke and

Molenberghs 2000).

When referring to the missing-value, or non-response, process we will use terminology of

Little and Rubin (2002, Chapter 6). A non-response process is said to be missing completely

at random (MCAR) if the missingness is independent of both unobserved and observed data

and missing at random (MAR) if, conditional on the observed data, the missingness is inde-

pendent of the unobserved measurements. A process that is neither MCAR nor MAR is termed

non-random (MNAR). In the context of likelihood inference, and when the parameters de-

scribing the measurement process are functionally independent of the parameters describing

the missingness process, MCAR and MAR are ignorable, while a non-random process is non-

ignorable. Ignorability implies that valid inferences about the measurement model parameters

can be obtained by analyzing the observed data alone, obviating the need for formulation of a

dropout model.

We will present one modeling framework that has been developed for incomplete longitu-

dinal data of a continuous nature, proposed by Diggle and Kenward (1994). The model has

been subject to criticism since it is rather vulnerable to modeling assumptions made. These

concerns will be discussed and a number of ways for dealing with it explored, a prominent

place given to sensitivity analysis.
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2 The Diggle-Kenward Model for Longitudinal Data

With Dropout

We assume that for subject i in the study, i = 1, . . . , N , a sequence of measurements Yij

is designed to be measured at time points tij, j = 1, . . . , ni, resulting in a vector Yi =

(Yi1, . . . , Yini)
′ of measurements for each participant. If dropout occurs, Yi is only partially

observed. We denote the occasion at which dropout occurs by Di > 1, and Yi is split

into the (Di − 1)-dimensional observed component Yi
obs and the (ni −Di + 1)-dimensional

missing component Yi
mis. In case of no dropout, we let Di = ni +1, and Yi equals Yi

obs. The

likelihood contribution of the ith subject, based on the observed data (yi
obs, di), is proportional

to the marginal density function

f(yi
obs, di|θ,ψ) =

∫
f(yi, di|θ,ψ) dyi

mis =
∫
f(yi|θ)f(di|yi,ψ) dyi

mis, (1)

in which a marginal model for Yi is combined with a model for the dropout process, conditional

on the response, and where θ and ψ are vectors of unknown parameters in the measurement

model and dropout model, respectively.

Let hij = (yi1, . . . , yi;j−1) denote the observed history of subject i up to time ti,j−1. The

Diggle-Kenward model for the dropout process allows the conditional probability for dropout

at occasion j, given that the subject was still observed at the previous occasion, to depend on

the history hij and the possibly unobserved current outcome yij, but not on future outcomes

yik, k > j. These conditional probabilities P (Di = j|Di ≥ j,hij , yij ,ψ) can now be used to

calculate the probability of dropout at each occasion:

P (Di = j|yi,ψ) = P (Di = j|hij , yij,ψ)
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=





P (Di = j|Di ≥ j,hij , yij,ψ) j = 2,

P (Di = j|Di ≥ j,hij , yij,ψ)

×
j−1∏

k=2

[1 − P (Di = k|Di ≥ k,hik, yik,ψ)] j = 3, . . . , ni,

ni∏

k=2

[1 − P (Di = k|Di ≥ k,hik, yik,ψ)] j = ni + 1.

Diggle and Kenward (1994) combine a multivariate normal model for the measurement

process with a logistic regression model for the dropout process. More specifically, the mea-

surement model assumes that the vector Yi of repeated measurements for the ith subject

satisfies the linear regression model Yi ∼ N(Xiβ, Vi), (i = 1, . . . , N). The matrix Vi can be

left unstructured or assumed to be of a specific form, e.g., resulting from a linear mixed model,

a factor-analytic structure, or spatial covariance structure (Verbeke and Molenberghs 2000).

The logistic dropout model can, for example, take the form

logit [P (Di = j | Di ≥ j,hij , yij ,ψ)] = ψ0 + ψ1yij + ψ2yi,j−1. (2)

More general models can easily be constructed by including the complete history hij =

(yi1, . . . , yi;j−1), as well as external covariates, in the above conditional dropout model. Note

also that, strictly speaking, one could allow dropout at a specific occasion to be related to

all future responses as well. However, this is rather counter-intuitive in many cases. More-

over, including future outcomes seriously complicates the calculations since computation of

the likelihood (1) then requires evaluation of a possibly high-dimensional integral. Note also

that special cases of model (2) are obtained from setting ψ1 = 0 or ψ1 = ψ2 = 0, respectively.

In the first case, dropout is no longer allowed to depend on the current measurement, imply-

ing MAR. In the second case, dropout is independent of the outcome, which corresponds to

MCAR.
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Diggle and Kenward (1994) obtained parameter and precision estimates by maximum likeli-

hood. The likelihood involves marginalization over the unobserved outcomes Yi
mis. Practically,

this involves relatively tedious and computationally demanding forms of numerical integration.

This, combined with likelihood surfaces tending to be rather flat, makes the model difficult to

use. These issues are related to the problems to be discussed next.

3 Remarks on Sensitivity Analysis and Other Models

Apart from the technical difficulties encountered during parameter estimation, there are fur-

ther important issues surrounding MNAR based models. Even when the measurement model

(e.g., the multivariate normal model) would beyond any doubt be the choice of preference for

describing the measurement process should the data be complete, then the analysis of the

actually observed, incomplete version is, in addition, subject to further untestable modeling

assumptions.

When missingness is MAR, the problems are less complex, since it has been shown that, in a

likelihood or Bayesian framework, it is sufficient to analyze the observed data, without explicitly

modeling the dropout process (Rubin 1976, Molenberghs and Verbeke 2000). However, the

very assumption of MAR is itself untestable. Therefore, ignoring MNAR models is as little

an option as blindly shifting to one particular MNAR model. A sensible compromise between

considering a single MNAR model on the one hand or excluding such models from consideration

on the other hand, is to study the nature of such sensitivities and, building on this knowledge,

formulate ways for conducting sensitivity analyses. Indeed, a strong conclusion, arising from
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most sensitivity analysis work, is that MNAR models have to be approached cautiously. This

was made clear by several discussants to the original paper by Diggle and Kenward (1994),

in particular by Laird, Little, and Rubin. An implication is that, for example, formal tests for

the null hypothesis of MAR versus the alternative of MNAR, should be approached with the

utmost caution, a topic studied in detail by Jansen et al (2005).

Verbeke, Lesaffre, and Spiessens (2001) have shown, in the context of an onychomycosis

study, that excluding a small amount of measurement error, drastically changes the likelihood

ratio test statistics for the MAR null hypothesis. Kenward (1998) revisited the analysis of the

mastitis data performed by Diggle and Kenward (1994). In this study, the milk yields of 107

cows were to be recorded during two consecutive years. While data were complete in the first

year, 27 animals were missing in the second year because they developed mastitis and their milk

yield was no longer of use. While in Diggle and Kenward (1994) there was strong evidence for

MNAR, Kenward (1998) showed that removing two out of 107 anomalous profiles, completely

removed this evidence. In addition, he showed that changing the conditional distribution of the

year 2 yield, given the year 1 yield, from a normal distribution to a heavy-tailed t, also led to

the same result of no residual evidence for MNAR. This particular conditional distribution is of

great importance, because a subject with missing data does not contribute to it, and hence is

a source of sensitivity issues. Once more, the conclusion is that fitting a MNAR model should

be subject to careful scrutiny.

In addition to the instances described above, sensitivity to model assumptions has been

reported for about two decades (Verbeke and Molenberghs 2000, Molenberghs and Verbeke

2005). In an attempt to formulate an answer to these concerns, a number of authors have pro-
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posed strategies to study sensitivity. We broadly distinguish between two types. A first family

of approaches can be termed substantive-driven in the sense that they start from particularities

of the problem at hand. Kenward’s (1998) approach falls within this category. Arguably, such

approaches are extremely useful, both in their own right and as a preamble to using the second

family, where what could be termed general purpose tools are used.

Broadly, we could define a sensitivity analysis as one in which several statistical models

are considered simultaneously and/or where a statistical model is further scrutinized using

specialized tools (such as diagnostic measures). This rather loose and very general definition

encompasses a wide variety of useful approaches. The simplest procedure is to fit a selected

number of (MNAR) models which are all deemed plausible or one in which a preferred (pri-

mary) analysis is supplemented with a number of variations. The extent to which conclusions

(inferences) are stable across such ranges provides an indication about the belief that can be

put into them. Variations to a basic model can be constructed in different ways. The most

obvious strategy is to consider various dependencies of the missing data process on the out-

comes and/or on covariates. Alternatively, the distributional assumptions of the models can

be changed.

Several authors have proposed the use of global and local influence tools (Verbeke et al

2001, Verbeke and Molenberghs 2000, Molenberghs and Verbeke 2005). Molenberghs et al

(2001) revisited the mastitis example. They were able to identify the same two cows found by

Kenward (1998), in addition to another one. Thus, an important question is to what exactly

are the sources causing an MNAR model to provide evidence for MNAR against MAR. There

is evidence to believe that a multitude of outlying aspects, but not necessarily the (outlying)
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nature of the missingness mechanism in one or a few subjects, is responsible for an apparent

MNAR mechanism (Jansen et al 2005). The consequence of this is that local influence should

be applied and interpreted with due caution.

Of course, the above discussion is not limited to the Diggle-Kenward model. A vari-

ety of other models have been proposed for incomplete longitudinal data. First, the model

has been formulated within the selection model framework, in which the joint distribution

of the outcome and dropout processes is factorized as the marginal distribution of the out-

comes f(yi|θ) and the conditional distribution of the dropout process, given the outcomes

f(di|yi,ψ). Molenberghs, Kenward, and Lesaffre (1997) proposed a version for categorical

data. Within the selection model framework, models have been proposed for non-monotone

missingness as well (Jansen and Molenberghs 2005), and further a number of proposals have

been made for non-Gaussian outcomes (Molenberghs and Verbeke 2005). Apart from the selec-

tion model framework, so-called pattern-mixture models have gained popularity (Verbeke and

Molenberghs 2000, Molenberghs and Verbeke 2005), where the reverse factorization is applied,

with factors f(yi|di,θ) and f(di|ψ). Also within this framework, both models and sensitivity

analysis tools for them have been formulated. A third framework consists of so-called shared

parameter models, where random effects are employed to describe the relationship between

the measurement and dropout processes (Wu and Carroll 1988, DeGruttola and Tu 1994).

Geert Molenberghs and Geert Verbeke

See Longitudinal/Repeated Measures Data, Missing Values, Mixed Models, Repeated Mea-

sures Analysis of Variance,
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