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Abstract

This work aims at investigating marginal correlation within and between longitudinal data
sequences. Useful and intuitive approximate expressions are derived based on generalized linear
mixed models. Data from four double-blind randomized clinical trials are used to estimate the
intra-class coefficient of reliability for a binary response. Additionally, the correlation between
such a binary response and a continuous response is derived to evaluate the criterion validity of
the binary response variable and the established continuous response variable.

Some Keywords: Binary data; Intraclass correlation; Random effects; Reliability; Variances.

1 Introduction

In applied sciences, one is often confronted with the collection of hierarchical data or repeated mea-

sures, in particular longitudinal or clustered data. Methods for continuous such data are centered

around the well-developed linear mixed effects model (LMM, Verbeke and Molenberghs 2000); the

same is true for software implementation. Drawing from the normal distribution, the LMM allows one

to obtain marginal characteristics, such as marginal means, marginal covariate effects, and marginal

correlation coefficients, in a very straightforward way. This is because the natural parameters in an

LMM have a hierarchical and a marginal interpretation at the same time. Hence, deriving the intr-

aclass correlation (ICC) from a random-intercept LMM is particularly straightforward and coincides
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with the correlation from a compound-symmetric structure, the latter being the marginalization of

the former. This makes the LMM a flexible tool to study psychometric reliability based on longi-

tudinal data, as in Vangeneugden et al (2005). Reliability reflects the amount of error inherent in

any measurement and hence, in a general sense, how replication of the administration would give a

different result (Streiner and Norman 1995).

While also non-Gaussian outcomes are prominent, model formulation is less straightforward. One

distinguishes between marginal and random-effects model families with now no easy relationship

between both. An example of the marginal family is generalized estimating equations (GEE, Liang

and Zeger 1986), whereas the generalized linear mixed model (GLMM, Breslow and Clayton 1993)

is a well-known random-effects model. Whereas GEE is convenient and frequently used, it models

the marginal regression function, treating the second and higher-order moments as nuisance. When

the correlation is of primary scientific interest, e.g., when determining the ICC or studying reliability,

a non-likelihood method like GEE has clear limitations. The GLMM has a full likelihood basis, but

fails to produce the marginal correlations in an easy fashion, owing to a non-linear link function, as

well as the mean-variance link (Molenberghs and Verbeke 2005, Chapter 16). Due to the flexibility

of the GLMM, it is a viable modeling candidate, even when the marginal correlation is of interest.

We will show that the derivation of such correlations is generally feasible and derive the intra-class

correlation coefficient of reliability. Note that, in classical terms, reliability is defined as the variance

attributed to the difference among subjects divided by the total variance (Shrout and Fleiss 1979)

and therefore takes the form of the intra-class correlation coefficient. We also investigate correlation

of this binary response variable with an established continuous, interval-scaled variable in view of the

criterion validity of the derived response variable and the continuous response variable.

Reliability is an important aspect of any clinical-trial response. Fleiss (1986) states: “The most

elegant design of a clinical study will not overcome the damage by unreliable or imprecise measure-

ment.” In clinical trials, one typically wants to differentiate among treatments. If reliability is low,

the ability to differentiate between the subjects in the different treatment arm decreases. Fleiss lists

consequences of unreliability and brings up reasons for attenuation of correlation in studies designed

to estimate correlation between variables. First, he mentions poor reliability. A second cause is biased

sample selection where patients are selected with a minimum level of a certain measurement with
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low reliability. Third, an increased sample size for trials with a primary parameter with low reliability

causes attenuation since one can then easily show that for a paired t-test, the required sample size

becomes n = n∗/R where R denotes the reliability coefficient and n∗ is the required sample size for

the true score, i.e., the required sample size in the ideal but hypothetical case where the reliability

is equal to 100%. Investigators in the mental disorders traditionally have been more concerned with

the reliability of their measures than have their colleagues in other medical specialties.

When the trials are finished and reported, it is astonishing how little attention is given to the

observed reliability of a certain scale. Here, we propose a framework to study trial- or population-

specific reliability. Clinical trial data can be used to make progress when studying reliability as well

as generalizability in case of interval scaled data (Vangeneugden et al 2004, 2005), given one is

willing to make a number of assumptions, enabling one to “translate” biomedical data to a parallel

measurements setting. The softer an endpoint or the less it has been calibrated, the more crucial

psychometric validation becomes. Such analyses focus on variance components rather than treatment

differences and can provide insight into scale behavior in (sub)populations: trial-population specific

reliability coefficient can be produced and via generalizability testing, sources of variation and their

impact on reliability can be studied. Here, a general formula will be derived to handle broad classes

of data, with an application to a binary response. The goal is to use clinical trial data at hand and

to evaluate reliability of the binary response. The intention is not to replace up-front validity and

reliability testing but to stimulate post hoc evaluation on the performance of the scale or any other

measurement. These methods can also deliver a population-trial specific measure for reliability in

case there is a need to confirm earlier reliability testing results; regulatory authorities might question

reliability of the scale in the specific trial population.

The validity of a questionnaire is defined as the degree to which the questionnaire measures what

it purports to measure. This can be performed through the analysis of content, construct, and

criterion validity. Content validity can be defined as the extent to which the instrument assesses

all the relevant or important content or domains. Criterion validity can be divided into two types:

concurrent validity and predictive validity. With concurrent validity we correlate the measurement

with a criterion measure (gold standard), both of which are given at the same time. In predictive

validity, the criterion will not be available until some time in the future at which time the true endpoint
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is actually observed. This also clearly links validity testing to surrogate marker validation as shown in

Alonso et al (2002). Of course, while measures of correlation are an important aspect of surrogacy

evaluation, there is more to it than this (Baker and Kramer 2003, Burzykowski, Molenberghs, and

Buyse 2005). The most commonly used method to assess the validity is by calculation of the Pearson

correlation coefficient.

Thus, using concepts of Vangeneugden et al (2004, 2005), we will show how correlations can be

derived by means of a GLMM, with particular attention to the reliability functions, operationalized by

means of the ICC. At the same time, our results apply to settings quite different form psychometric

validation, where nevertheless marginal correlations are of interest. It will be clear in what follows

that, in the non-Gaussian case, reliability will no longer be constant, excepting special cases. And

correlation between concurrently measured response variables will be derived via fitting a joint, bivari-

ate GLMM. Our framework allows for derivation of a correlation coefficient between two response

variables of any kind. As an example, the correlation between a binary response and an interval

scaled response will be derived to investigate criterion validity between the derived binary response

and the more standard continuous response.

In Section 2, the motivating case study is introduced, while methodology is described in Section 3.

Section 4 reports simulations, directed at evaluating the quality of the approximation. In Section 5,

we will apply the derived formulae to the data introduced above to estimate reliability of a binary

response variable. In Section 6, we will extend the methodology to calculate correlation between

concurrently measured responses to study criterion validity.

2 Motivating Study

In this section, we introduce individual patient data from four double-blind randomized clinical trials,

comparing the effects of risperidone to conventional anti psychotic agents for the treatment of chronic

schizophrenia. Schizophrenia has long been recognized as a heterogeneous disorder with patients

suffering from both “negative” and “positive” symptoms. Negative symptoms are characterized by

deficits in social functions such as poverty of speech, apathy and emotional withdrawal. Positive

symptoms entail more florid symptoms such as delusions and hallucinations, which are superimposed
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on the mental status. Several measures can be considered to assess a patient’s global condition. The

Positive and Negative Syndrome Scale (PANSS) consists of 30 items that provide an operationalized,

drug-sensitive instrument, which is highly useful for both typological and dimensional assessment of

schizophrenia (Kay, Fiszbein, and Opler 1987). Classical reliability of the PANSS has been studied

previously (Kay, Opler and Lindenmayer 1988; Bell et al 1992; Peralta and Cuesta 1994). The

Clinical Global Impression (CGI) of overall change versus baseline is a 7-grade scale used by the

treating physician to characterize how well a subject has improved since baseline. The levels are:

“very much improved”, “much improved”, “minimally improved”, “no change”, “minimally worse”,

“much worse”, “very much worse”. Clinical response is often defined as a CGI score of “very much

improved” or “much improved”. Note that, while the psychometric characteristics of the PANSS

scale are known to be very good, CGI has been in common use, for regulatory and other purposes.

It is therefore important to study its merits, also relative to PANSS. This may guide researchers and

regulators when choosing endpoints in future trials. Since the label in most countries recommend

doses ranging from 4-6 mg/day, we include in our analysis only patients who received either these

doses of risperidone or an active control (haloperidol, perphenazine, or zuclopenthixol). Depending on

the trial, treatment was administered for a duration of 6-8 weeks. For example, in the international

trials by Peuskens et al (1995), Marder and Meibach (1994), and Hoyberg et al (1993) patients

received treatment for 8 weeks; while in the study by Huttunen et al (1995) patients were treated

over a period of 6 weeks. The sample sizes were 453, 176, 74, and 71, respectively. Measurements

were taken at Week 1, 2, 4, 6, and 8.

3 Methodology

First, Vangeneugden et al (2004) derived the intra-class correlation coefficient (ICC) of reliability

for the classical linear mixed-effects model. Then we introduce the generalized linear mixed model

and subsequently we derive an approximate formula for the variance-covariance matrix based on a

GLMM. The latter will be the basis for general correlation coefficient computations.
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3.1 ICC for a Linear Mixed-effects Model

A linear mixed-effects model with serial correlation can be written as (Verbeke and Molenberghs

2000): Y i = X iβ + Zibi + W i + εi, where Y i is the ni dimensional response vector for sub-

ject i, 1 ≤ i ≤ N , N is the number of subjects, X i and Zi are (ni × p) and (ni × q) known

design matrices, β is the p dimensional vector containing the fixed effects, bi ∼ N (0,D) is the q

dimensional vector containing the random effects, εi ∼ N (0, σ2Ini
) is a ni dimensional vector of

measurement error components, and b1, . . . , bN , ε1, . . . , εN are assumed to be independent. Apart

from the random-effects variances (the diagonal elements of D), there can be covariances as well,

allowing for correlation between the random effects. For example, with growth curves, if subjects

starting high also grow fast, the random intercept and random slope in time would be positively

correlated. If in addition, there is serial correlation, it is captured by the realization of a Gaussian

stochastic process, W i, which is assumed to follow a N (0, τ2Hi) law. The serial correlation matrix

Hi only depends on i through the number ni of observations and through the time points tij at

which measurements are taken. The structure of the matrix Hi is determined through the auto-

correlation function ρ(tij − tik). A first simplifying assumption is that it depends only on the time

interval between two measurements Yij and Yik, i.e., ρ(tij −tik) = ρ(|tij−tik |), where u = |tij −tik|

denotes time lag. This function decreases such that ρ(0) = 1 and ρ(+∞) = 0. Finally, D is a

general (q × q) covariance matrix with (i, j) element dij = dji.

In this setting, it is easy to show that for subject i on time point j and k we have Var(Yij) =

zjDz′

j + τ2 + σ2, Var(Yik) = zkDz′

k + τ2 + σ2, and Cov(Yij, Yik) = zjDz′

k + τ2(Hi)jk, and

therefore, the correlation between time point j and k, the ICC of reliability can be written as:

ρjk = Corr(Yij, Yik) =
zjDz′

k + τ2(Hi)jk√
zjDz′

k + τ2 + σ2

√
zkDz′

k + τ2 + σ2

. (1)

In case of a simple random-intercept model, Y i = X iβ + bi + εi, with no serial correlation, (1)

simplifies to:

ρst = Corr(Yis, Yit) =
d

d+ σ2
, (2)

where d is the variance of the random intercept bi, i.e., the variance between patients, and σ2 the

measurement error. See Vangeneugden et al (2004) for the derivation of the ICC of reliability for

more complex linear models.
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3.2 ICC Based on the Generalized Linear Mixed Model

The generalized linear mixed model (GLMM, Breslow and Clayton 1993) is the most frequently used

random effects model for discrete outcomes. As before, Yij is the jth outcome measured for subjects

i, i = 1, . . . , N, j = 1, . . . , ni and Y i is the ni-dimensional vector of all measurements available for

cluster i. This model assumes that, conditionally on q-dimensional random effects bi, assumed to be

drawn independent from the N (0,D), the outcomes Yij are independent with densities of the form

fi(yij |bi,β, φ) = exp
{
φ−1[yijθij − ψ(θij)] + c(yij, φ)

}
, where the mean µij is modeled through a

linear predictor containing fixed regression parameters β as well as subject-specific parameters bi, i.e.,

g(µij) = g(E(Yij|bi)) = x′

ijβ +z′

ijbi for a known link function g(.), with xij and zij p-dimensional

and q-dimensional vectors of known covariate values, with β a p-dimensional vector of unknown

fixed regression coefficients, and with φ a scale parameter. With a natural link function this becomes

θij = x′

ijβ + z′

ijbi. The random effects bi are assumed to be sampled from a (multivariate) normal

distribution with mean 0 and covariance matrix D.

In this GLMM setting, we can write the general model as follows:

Y i = µi + εi, (3)

where µi, the conditional mean, given the random effects, can be written as µi = µi(θi) =

µi(X iβ + Zibi), Xi and Zi are known design matrices, β are fixed-effect parameters, bi are

random effects, and h is a known link function. Finally, εi is the residual error component. At first

sight, decomposition (3) is somewhat unusual and may be perceived as restrictive. However, it is a

device used by, for example, Nelder and Wedderburn (1972) and McCullagh and Nelder (1989), for

univariate data, and by Wolfinger and O’Connell (1993) for vector-valued outcomes in the context

of generalized linear mixed models, which is also our setting. It is merely a way of decomposing an

observation into its systematic and stochastic components. For continuous outcomes, it is customary

to assume the error is normally distributed. For binary data, the outcome can take two values only,

and then some algebraic calculations show that the error structure automatically will be of a Bernoulli

type, as it ought to. Therefore, (3) does not need to be seen as restrictive.

We will now derive a general formula for the variance-covariance matrix of Y i without any restriction

on the distribution of the outcome variable and allowing for serial correlation. This maximizes the
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similarity with the case of continuous, normally distributed outcomes. However, a key distinction is

that in the linear case there is no mean-variance link, whereas here the residual variance will follow

from the mean. The variance covariance matrix can be derived as follows:

V i = Var(Y i) = Var(µi + εi) = Var(µi) + Var(εi) + 2Cov(µi, εi). (4)

It is easy to show that Cov(µi, εi) = Cov[E(µi|bi),E(εi|bi)] + E[Cov(µi, εi|bi)] = 0 since the

first term is 0 and the second term equals E[E(µi − E(µi))(εi)|bi] = 0 as µi is a constant when

conditioning on bi. For the first term in (4) we have, using a first-order Taylor series expansion

around bi = 0:

Var(µi) = Var(µi(ηi)) = Var(µi(X iβ + Zibi)) (5)

∼=
(
∂µi

∂bi

∣∣∣∣
bi=0

)
Var(bi)

(
∂µi

∂bi

∣∣∣∣
bi=0

)
′

=

(
∂µi

∂ηi

∂ηi

∂bi

∣∣∣∣
bi=0

)
D

(
∂µi

∂ηi

∂ηi

∂bi

∣∣∣∣
bi=0

)
′

= ∆iZiDZ ′

i∆
′

i, (6)

where ∆i =
∂µi

∂ηi

∣∣∣∣
bi=0

. For the second term in (4), we have:

Var(εi) = Var[E(εi|bi)] +E[Var(εi|bi)] = E[Var(εi|bi)] = Φ
1

2ΣiΦ
1

2 , (7)

where Φ is a diagonal matrix with the overdispersion parameters along the diagonal. In case there

are no overdispersion parameters, Φ is set equal to the identity matrix. We can expand the variance

function Σi so that

Var(εi) = Φ
1

2 Ai

1

2 RiAi

1

2 Φ
1

2 , (8)

where Ri is the correlation matrix, capturing serial correlation, similar in spirit to the linear mixed

model where H i is used to this end; Ai is a diagonal matrix containing the variances following

from the generalized linear model specification of Y ij given the random effects bi = 0, i.e., with

diagonal elements v(µij|bi = 0). Using (6) and (8), we have the following expression for the

variance-covariance matrix (4):

V i
∼= ∆iZiDZ′

i∆
′

i + Φ
1

2 Ai

1

2 RiAi

1

2Φ
1

2 . (9)

If the canonical link is used, we have Ai = ∆i and (9) can be written as: V i
∼= ∆iZiDZ′

i∆
′

i +

Φ
1

2∆

1

2

i Ri∆

1

2

i Φ
1

2 . If in addition, conditional independence (no serial correlation) is assumed, then
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(9) simplifies to: V i
∼= ∆iZiDZ ′

i∆
′

i + Φ
1

2∆iΦ
1

2 . Further, if we reduce the random-effects part to

a random-intercept model, i.e., Z i = 1 and D = d, and (9) then reduces to V i
∼= ∆i(dJ)∆′

i +

Φ
1

2∆iΦ
1

2 . Note that, if we have a normal distribution with the canonical identity link, ∆i reduces

to the identity matrix I and Φ = σ2I, in which case it follows that V i reduces to dJ + σ2I, with

J a square ni dimensional matrix of ones, which is consistent with (2). Moreover, when we have

a normal distribution with a general random-effects structure but without serial correlation, it is

easy to show that V i
∼= ZiDZ ′

i + σ2I and that subsequently ρ equals (1) when we leave out the

serial correlation (τ). This shows that (9) can be seen as a generalization of (1). While the above

derivation is referred to as a first-order Taylor series expansion, the exact same expression follows if

a second-order expansion is considered, owing to terms vanishing. Therefore, we are authorized to

refer to it as a second-order Taylor series expansion, too. In the following section we will derive the

marginal correlation for the case of binary data when applying a random intercept model.

3.3 ICC for a Random-intercept Model for Binary Data

In this section, we will derive the formula for the ICC, being the marginal correlation function, in case

of a random intercept model for binomial data with a logit link and assuming no overdispersion. In

this case, V i reduces to V i
∼= ∆i(dJ)∆′

i +∆i = ∆i(dJ +∆
−1

i )∆′

i. Furthermore, ∆i is a diagonal

matrix with Vij(0) as diagonal elements, where the variance function Vij(0) = µij |bi=0
(1−µij |bi=0

), and therefore V i
∼= diag(Vij(0))[dJ + diag(Vij(0))−1]diag(Vij(0)). In other words, the variance-

covariance matrix for subject i is specified by the matrix with elements: vijj = Vij(0)[1 + Vij(0)d],

vijk = dVij(0)Vik(0), (j 6= k). Based on these, we can determine a first-order approximation of

the marginal correlation between time point j and k, which is the intra class correlation coefficient

of reliability:

ρijk = Corr(Yij, Yik) =
Vij(0)Vik(0)d√

{Vij(0)[1 + Vij(0)d]}{Vik(0)[1 + Vik(0)d]}
. (10)

It ought to be noted that this is a very special case of the general result (9). The latter is useful when

the mean structure, the random-effects structure, and/or the serial structure takes a general form.

The expression is useful though, because it allow to make a few simple but important observations.

For any value of Vij(0) and Vik(0), ρijk = 0 whenever d = 0, while ρijk tends to 1 when d tends to
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+∞. Even though this may seem obvious at first sight, especially because it is similar to the behavior

of the intraclass correlation in the classical linear model for continuous data, one must give proper

reflection to the impact of the binary nature of our outcomes, since certain correlation coefficients

in certain models are highly constrained. For example, the correlation coefficients in the Bahadur

(1961) model are highly constrained (Aerts et al 2002). These authors showed that in some realistic

settings only a tiny interval around zero of allowable correlations remains. It is useful to realize that

such constraints already apply to the Pearson correlation in a simple two by two contingency table.

A mild form of the Bahadur constraints survives in generalized estimating equations, especially those

of the second order. The multivariate probit model (Molenberghs and Verbeke 2005), on the other

hand, is constrained only by the requirement that their correlations form a positive definite matrix.

This advantage of the probit model is counterbalanced by its heavy computational burden. Also, the

beta-binomial model (Molenberghs and Verbeke 2005) allows for all non-negative correlations as well

as moderate negative values (Molenberghs and Verbeke 2005). The beta-binomial model suffers from

its inability to accommodate within-cluster covariates, such as time in longitudinal studies. Thus,

the proposed modeling framework is at the same time flexible, relatively easy from a numerical point

of view, and does not face the strong constraints like in, for example, the Bahadur (1961) model.

One might wonder why no negative correlations are allowed. Also this aspect is similar to the

linear mixed model, where the random-intercepts model, when its full hierarchical interpretation is

adopted, does not allow for negative correlations. Once attention is restricted to the marginal model,

some negative correlation can occur as well. Indeed, the compound-symmetry model can produce

negative correlations, as long as the overall correlation matrix, of the form σ2I + dJ , remains

positive-definite. Note that, while this article focuses on the correlation coefficient, also in line with

classical reliability approaches, other measures of association between the outcomes, such as the odds

ratio model (Molenberghs and Verbeke 2005) could be entertained. Arguably, this would require a

fundamentally different approach, and is beyond the scope of this article.

4 Simulation Study

A reason for concern is the quality of approximation (10) since, unlike in the linear case, here a Taylor

series expansion needs to be used. To provide a perspective on the impact of this issue, we conducted
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a limited but insightful set of simulations. Precisely, we generated data from the Bahadur (1961)

model, and then estimated the correlation coefficient using both generalized estimating equations

(GEE, Liang and Zeger 1986) and our proposed approach. While it ought to be noted that a

correlation coefficient for non-continuous data is a model-dependent concept, the relative agreement

between the coefficients resulting from the various models still sheds some light on the quality of the

approximation.

The Bahadur model is defined in terms of the marginal probability πij = E(Yij) = P (Yij = 1) and

standardized deviations εij = (Yij − πij)/
√
πij(1 − πij) and eij = (yij − πij)/

√
πij(1 − πij), where

yij is an actual value of the binary response variable Yij . Further, letting ρij1j2 = E(εij1εij2),

ρij1j2j3 = E(εij1εij2εij3), . . ., ρi12...ni
= E(εi1εi2 . . . εini

), the general Bahadur model can be

represented by the expression f(yi) = f1(yi)c(yi), where f1(yi) =
∏ni

j=1
π

yij

ij (1 − πij)
1−yij and

c(yi) = 1 +
∑

j1<j2
ρij1j2eij1eij2 +

∑
j1<j2<j3

ρij1j2j3eij1eij2eij3 + . . .+ ρi12...ni
ei1ei2 . . . eini

. For

the purpose of our simulations, we will restrict this model to 2 and 3 measurements per subject,

respectively. In the latter case, the three pairwise correlation will be set equal, while the third-order

correlation will be set to zero. GEE can be viewed as a version of the Bahadur model where the

higher-order correlations are left unspecified, and the pairwise correlation structure is considered a

nuisance characteristic.

For the number of measurements equal to ni = n = 2, the true correlations ρ = 0.25, 0.50, and 0.75

were considered, while for ni = n = 3 we focused on ρ = 0.20, 0.40, and 0.60. For all six settings,

1000 datasets of size 200 patients were generated. For each such dataset, the pairwise correlation

was estimated using both GEE and the proposed GLMM-based expression (10). Table 1 presents

the results in terms of the simulation-averaged correlation together with its standard deviation. Note

that, for the three-way model, there is a common GEE correlation, while for GLMM the correlation

is specific to a pair of time points, indicated by ρjk, with 1 ≤ j < k ≤ 3. Not surprising, the

agreement between GEE and the generating Bahadur model is excellent, because GEE can be viewed

as a restricted-moment version of the Bahadur model. We believe it is at the same time useful

to study the performance of the random-effects models, because in many applications such will be

the modeler’s preference given that it allows for subject-specific inferences. At the same time, one

might then want to derive marginal association parameters, underscoring the rationale for our work.
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Table 1: Results of the simulation study. n refers to the number of measurements per subject.

‘True’ is the correlation used in the generating Bahadur model. For both GEE and GLMM, the

simulation-averaged correlation coefficients and their simulation standard deviations are reported.

GEE GLMM

n = ni True ρ Est.(s.d.) Coeff Est.(s.d.)

2 0.25 0.248 (0.07) ρ 0.270 (0.08)

2 0.50 0.499 (0.06) ρ 0.554 (0.07)

2 0.75 0.753 (0.05) ρ 0.568 (0.30)

ρ12 0.225 (0.06)

3 0.20 0.199 (0.05) ρ13 0.228 (0.06)

ρ23 0.237 (0.06)

ρ12 0.467 (0.06)

3 0.40 0.398 (0.05) ρ13 0.474 (0.06)

ρ23 0.497 (0.06)

ρ12 0.666 (0.05)

3 0.60 0.598 (0.04) ρ13 0.678 (0.05)

ρ23 0.723 (0.04)

Importantly for our purposes, the behavior of the GLMM-based expression (10) is quite acceptable.

While, as stated earlier, the correlation is model-dependent, it falls everywhere within the same

range as the one of the generating model. Note that, for our approach when n = 3, we have three

coefficients, one for each pair of measurements. It would, in principle, be possible to replace the

three estimates with a common one. Since this would come down in averaging the three correlations,

it would further enhance stability. This is why we have chosen this somewhat more variable and

therefore conservative presentation in terms of three separate coefficients.

Additionally, a simulation based on an actual GLMM was performed, using a simple random-effects

model with Xiβ = β0. In this simulation, 10,000 datasets with 200 subjects were generated, each

subject having 5 measurements as in the application of Section 5. Here, β0 = −1.61 and the variance
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of the random intercept, d = 6.57, was taken as observed in the application. Also here, the pairwise

correlation was estimated using both GEE as well as the proposed GLMM-based expression (10). For

the GEE, the mean correlation and its standard deviation was observed to be 0.465 (s.d. 0.04) and

for GLMM the results were very similar, leading to a mean correlation of 0.473 (s.d. 0.05). Note

that the GLMM based correlation of the real data was estimated to be 0.48.

Thus, we conclude that the correlation, based on GLMM, is a practically acceptable indication for

association. In principle, it would be possible to further enhance performance using Monte-Carlo

Markov Chain based methods, including the bootstrap. While such an approach would increase the

computational burden somewhat, it certainly falls within the realm of practical feasibility.

5 Data Analysis

Let us now apply the concepts described above to the pooled data described in Section 2. We will

calculate the ICC for response defined as obtaining either very much improved or much improved

on the CGI of overall change versus baseline. The focus of this analysis is not to study treatment

differences, but rather to investigate correlation between longitudinal binary data. To do so, we will

calculate the ICC under different assumptions, with gradually increasing modeling complexity. For

simplicity, we will focus on models with random intercepts and no serial correlation. Of course, as

stated in Section 3, the extension to the more general case is straightforward but algebraically a bit

more tedious.

5.1 Observed Response Rate and Correlation

The observed response rate increases over time from 0.15 at Week 1 to 0.47 at Week 8. Also note

that only 490 from the 774 subjects who started treatment have an observed CGI score at Week 8

due to attrition. The correlation is high if we compare Week 1 and 2, but decreases slightly over time,

when the lag time between observations is increased. On the other hand, the correlation between

Week 6 and 8 is higher.
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Table 2: Summary of different subgroup analysis investigating time and treatment effect. Standard

errors are calculated from the delta method.

Intraclass correlation ρ (s.e.)

time points included combined treatments risperidone active control

all time points 0.48 (0.026) 0.55 (0.038) 0.40 (0.035)

Week 1 and Week 8 0.11 (0.045) 0.11 (0.066) 0.10 (0.060)

Week 6 and Week 8 0.85 (0.026) 0.87 (0.032) 0.82 (0.043)

5.2 Initial Analysis

To exemplify computations, let us assume there are no covariates. Then, Xisβ = β is constant

and (10) simplifies to: Vij(0) = V (0) = exp(β)/(1 + exp(β))2 and ρijk = ρ = V (0)d/(1 + V (0)d).

When using this expression for a variety of subgroups and/or combination of times, a detailed picture

can emerge but, as we will illustrate in what follows, it is possible and more elegant to incorporate

the ICC into a fully specified model.

We can use the SAS procedure NLMIXED to fit this random-effects model, using adaptive Gaussian

quadrature. Table 2 summarizes the results for a selection of subgroups. Before discussing these, let

us note that subgroup analyses can rightfully be considered unsatisfactory by some. Therefore, we

will revisit the concept of subgroups, but then in a more principled modeling approach, in Section 5.3.

An added advantage of this approach is that the quality of the fit will be enhanced, owing to the

high-quality approximation to the integration, required for likelihood evaluation. This is important,

not only for the determination of the correlation coefficient, but also for other assessments, such as

whether there is a significant treatment difference. Of course, one should be aware that reaching

convergence with the NLMIXED procedure or related software for non-linear models is not straight-

forward. Tools exploiting linearity of the predictor are somewhat easier, but often based on poor

approximations such as first-order PQL or MQL (Molenberghs and Verbeke 2005). Such alterna-

tive procedures may be used, however, to obtain good starting values, upon which the use of the

non-linear procedures becomes easier.
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Table 3: Overall ICC (s.e.) matrix, marginal over treatment. Standard errors are calculated from

the delta method.

Week

Week 2 4 6 8

1 0.29 (0.029) 0.33 (0.030) 0.35 (0.029) 0.35 (0.029)

2 1 0.53 (0.032) 0.57 (0.030) 0.57 (0.029)

4 1 0.64 (0.027) 0.65 (0.026)

6 1 0.70 (0.024)

One observes that the ICC is somewhat larger in the risperidone treatment group. Additionally, we

see that the ICC for observations measured at Week 1 and Week 8 is much smaller than the ICC

measured from observations at Week 6 and Week 8. Here we should note that the ICC between

Week 6 and 8 can truly be interpreted as an ICC of reliability in the psychometric sense. Indeed, the

psychiatric condition of the patients was rather stable and did not change between Week 6 and 8: the

mean total PANSS was 69.2 at Week 6 and 68.8 at Week 8. It is in such stable conditions that test-

retest reliability of scale is evaluated, and often with a two-week time interval (Streiner and Norman

1995, Chapter 8). The same is not true when comparing Week 1 (mean PANSS of 80.8) and Week

8; that is, the ICC between Week 1 and 8 cannot be interpreted as an ICC of reliability but merely a

correlation between two time points. As discussed in Vangeneugden et al (2004), appropriate models

can be used to model and extract time and treatment effects, which avoids the need to assume that

there is no change in a patient’s situation over time. Thus, by using an appropriate model with

well chosen covariate effects, a trial population is, in a broad sense, standardized towards a general

population. By correcting for covariates, it is assumed that the correlation structure of the residuals

can be approximated by an exchangeable structure, captured via a random intercept. While this may

be perceived as somewhat more subjective than when a dedicated reliability study is undertaken, the

important advantage is that data already collected can be used, which may have important practical,

economic, and even ethical advantages. It is important to note that, in case a random intercept is

deemed insufficient to capture the correlation structure, more versatile random-effects structures can

be used, whilst maintaining the idea behind the calculations for the marginal correlation coefficients.
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We will gradually take account of this, by first extracting time and then subsequently treatment

effects. Of course, one ought not to forget that important but potentially complicated issues, such

as dropout and non-compliance, may intervene. Since the method is likelihood-based, it is valid under

the broad assumption of missingness at random, whereby missingness depends on observed outcomes

and covariates but, given these, not further on unobserved outcomes. Likewise, when compliance

issues intervene, it is important the covariates are chosen such that the causal interpretation of the

resulting model be maintained. With good to perfect compliance, this is taken care of by virtue of

randomization.

5.3 Accounting for Time and Treatment

If we adjust for time and ignore treatment, then ρ can be derived via (10) and it is easy to show

that Vij(0) = exp(βj)/(1 + exp(βj))
2, where βj is the estimated coefficient of the indicator variable

representing time j, when we use a model without an intercept in the fixed effects. The variation of

the random effect was estimated to be d̂ = 10.04 and this time we had β̂W1 = −3.79, β̂W2 = −2.25,

β̂W4 = −1.50, β̂W6 = −3.79 and β̂W8 = −0.41. Table 3 provides the estimated intra-class

correlation coefficient matrix. This is in line with the well-known relationship between marginal

and random-effects regression parameters (Molenberghs and Verbeke 2005), the correlations are

determined by the random-intercept variance, together with the marginal probabilities factoring into

the variance function: βj
∼=

√
1 + 0.346 d · logit(pj). Hence, these correlations are constant only

in the simple case of a constant mean. Otherwise, they are functions of the covariates. Note that,

in case a random-intercepts model is deemed too simple, a more elaborate random-effects structure

can be assumed, whilst maintaining the essence of the proposed calculations.

When exploring Table 3, correlations clearly vary considerably. This indicates that pairs of measure-

ments early in the sequence are less reliable for one another than pairs later in the sequence. Indeed,

one can realistically assume that measurements earlier in the sequence are more prone to variability

than later on, when subjects are more adapted to the study protocol and/or learning effects have

taken place. If we repeat this for each treatment group separately, we consistently have a higher

correlation coefficient in the risperidone treated subjects. Note that the ICC between observations

from Week 6 and Week 8 (ρ = 0.70) is lower as estimated in the previous section (ρ = 0.85). In
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the latter, however, only the subgroup of subjects with Week 6 and 8 was used, and if we apply the

same model, accounting for time in this subgroup, then we have ρ = 0.80 instead of 0.70.

Jointly accounting for time and treatment produces a different ICC for each treatment group sep-

arately and also for each pair of time points. We allowed for interactions in the model. Table 4

summarizes the results. Apart from the estimated ICC, also the empirical Pearson (product-moment)

correlation coefficients are added. The agreement between both is reasonable, especially when it is

taken into account that the ICC does, but the Pearson correlation does not take the effect of covari-

ates into account. After adjusting for time and treatment, the ICC between observations at Week 1

and 8 increased from 0.11 (2) to 0.40 in the risperidone group.

6 Extensions

So far, the application focused on correlation of repeated measures within a subject. As a specific

application, the ICC was derived to estimate reliability of a binary response. Often, one is confronted

with the situation that multiple response variables are measured over time, sometimes referred to

as a family of responses. These different response variables can but do not have to be of the same

type. Sometimes, the goal is to estimate treatment effects in a multivariate way, i.e., jointly estimate

treatment effects on the binary and the continuous responses. In that case, one not only needs to

take account of the correlation within a subject for a specific single response, but also take account

of the correlation between the different responses for a specific subject. One application in the

psychometric literature is the situation where one wants to estimate the correlation of a certain

response variable with a gold standard to establish criterion validity. For instance, suppose we want

to study the correlation between a continuous interval scaled parameter Yi1 and a binary response

Yi2, then a GLM can be extended too, as described in Molenberghs and Verbeke (2005):



Yi1

Yi2


 =




µ1 + λbi + α1Xi

exp[µ2 + bi + α2Xi]
1 + exp[µ2 + bi + α2Xi]


 +



εi1

εi2


 .

Here, εi1 and εi2 are the error terms for the continuous and binary outcomes, respectively. Obviously,

the first one will be normally distributed while the second one follows a Bernoulli distribution. We

have included a scale parameter λ in the continuous component of an otherwise random-intercept
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Table 4: The first entries represent the overall ICC of reliability (s.e.) matrix, accounting for

treatment, time and their interaction. Standard errors are calculated from the delta method. The

second entries are the ordinary Pearson correlation coefficients between the pairs of measurements.

Week 2 4 6 8

risperidone

1 0.36 (.045) 0.39 (.044) 0.40 (.042) 0.40 (.042)

0.51 0.41 0.33 0.27

2 1 0.62 (.036) 0.64 (.033) 0.64 (.032)

0.65 0.52 0.53

4 1 0.69 (.026) 0.69 (.026)

0.70 0.61

6 1 0.71 (.023)

0.75

active control

1 0.22 (.036) 0.27 (.038) 0.31 (.038) 0.31 (.038)

0.52 0.34 0.33 0.27

2 1 0.42 (.046) 0.48 (.043) 0.49 (.041)

0.59 0.49 0.43

4 1 0.57 (.039) 0.59 (.037)

0.66 0.57

6 1 0.67 (.029)

0.70

model, because the continuous and binary outcome are measured on a different scale. In this case,
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we have

Zi = (λ ) 1,∆i =




1 0

0 vi2(0)


 ,φ =



σ2 0

0 1


 ,

with vi2(0) = µi |bi=0
(1−µi |bi=0

). Note that Z i is not a design matrix in the strict sense, since it

contains an unknown parameter. Nevertheless, it is useful to consider this decomposition, implying

that (9) becomes

V i =




λ2 vi2(0)λ

vi2(0)λ vi2(0)2


 τ2 +



σ2 0

0 vi2(0)


 =



λ2τ2 + σ2 vi2(0)λτ2

vi2(0)λτ2 vi2(0)2τ2 + vi2(0)


 .

Here, τ2 is the random-intercept variance. As a result, we have the following approximation for the

marginal correlation: ρ(β) = vi2λτ
2/
√
λ2τ2 + σ2

√
v2

i2τ
2 + vi2, which we can now apply to the same

data set to estimate the correlation at Week 8 between the binary response variable defined above

and the continuous response defined as the total PANSS, the sum of all 30 items of the PANSS.

Table 5 summarizes the results. We can conclude that there was a high correlation between the

response variable defined by the CGI and the total PANSS indicating criterion validity of the derived

CGI response and the total PANSS. This correlation was similar in both treatment groups. Note

that the correlation (−0.75 in the risperidone group and −0.74 in the control group) is negative

because higher PANSS values indicate a more psychotic condition and response was coded 1 if the

CGI was equal to “very much improved” or “much improved”. In the classical approach, often either

the Pearson, or the Spearman’s rank correlation, or both, are calculated, based on subjects observed

at Week 8, between the binary response and the continuous PANSS score, resulting in −0.59 and

−0.61, for Pearson’s and Spearman’s correlation, respectively.

While in this section we have considered two outcomes of a different type, hence restricting attention

to a cross-sectional setting, it is perfectly possible to combine the longitudinal ideas of previous

sections with the multivariate setting considered here, thus producing a flexible method that can

handle multivariate longitudinal data. One can then distinguish between various types of correlations,

e.g., within-sequence (referring to the reliability concept), between two different measurements taken

at the same time (of relevance in marker evaluation), and even between different measurements at

different times. Details on how such models can be built and fitted are given in Molenberghs and

Verbeke (Molenberghs and Verbeke 2005, Ch. 24).

19



Table 5: Parameter estimates (standard errors) for a bivariate joint GLMM analysis to estimate

criterion validity between response and total PANSS at Week 8. The SAS procedure NLMIXED has

been used. Standard errors are calculated using the delta method.

Endpoint Effect Parameter Estimate (s.e.)

Total PANSS Intercept µ1 68.98 (1.59)

Treatment α1 -0.41 (2.06)

Standard deviation σ1 13.83 (0.43)

Variation σ2
1 191.37 (11.90)

Inflation λ -0.97 (0.61)

Response (CGI) Intercept µ2 -2.56 (3.25)

Treatment α2 0.96 (2.44)

Common parameters R.I. st.dev. τ 16.84 (10.73)

R.I. var. τ2 283.74 (361.40)

Corr. (control) ρcont -0.74 (0.026)

Corr. (risperidone) ρris -0.75 (0.022)

7 Discussion

We proposed an approximation to calculate correlations from longitudinal data from generalized

linear mixed models. Whilst for continuous, interval scaled data, derivation of correlations, such

as the ICC of reliability is rather straightforward, it is more complex for other types of data. A

general formula was derived using the GLMM. This formula could be used for interval, binary or

other types of data, such as counts. For our case study, the reliability coefficient was derived for

a binary response, using a random-intercepts model. We observed that the correlation was higher

between Week 6 and 8 as compared to Week 1 and Week 8. The slightly decreasing correlation,

however, from Week 1 and Week 2 to Week 1 and Week 8 was not observed in the estimates. It

should be noted that the random-effects model does also properly account for missing values due to

attrition, provided the missing data are missing at random, which is not the case for the conventional
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ad hoc analyses. In contrast, classical methods such as the kappa statistics, can only include paired

observations. Another important advantage of the present method is that it becomes possible to

estimate trial-specific or population-specific reliability. This is especially true because, even in studies

designed to assess reliability, it is difficult to exclude fluctuations in the true scores and furthermore

these studies are often conducted with different populations and in different circumstances. After

extracting time and treatment effect and their interaction, clinical trial data can be used to make

progress when studying test-retest reliability as a function of time. Indeed, reliability should not be

perceived as a fixed quantity but changes with circumstances. Other covariates can bxincorporated

into the model to study their effect on error variance and on reliability. Modeling other sources of

variation, like for example country or rater, is therefore an interesting topic for further research. In

psychometric theory, this is referred to as generalizability theory.

Subgroup analyses using a simple model and more versatile models accounting for time and treatment

and their interaction suggested a higher ICC among subjects in the risperidone group than in subjects

in the active control group, indicating that responses over time within the same subject were more

consistent within the risperidone treatment group than in the active control group. The methodology

can be used to derive population or trial-specific ICC of reliability in case of binary data. In particular,

it extends the random intercepts model proposed in Vangeneugden et al (2004) to binary data. This

general framework cannot only be used to derive the intraclass correlation coefficient or in general

to study correlation of a single response variable of any type, but was also extended to investigate

correlation between concurrently measured longitudinal data. Also here, a general framework was

provided to deal with various possible situations. The correlation between the binary response derived

from the CGI and the total PANSS was calculated and a high correlation was found between these

two clinical endpoints at Week 8. A large number of general models, that can be fit using standard

software, can be found in Molenberghs and Verbeke (Molenberghs and Verbeke 2005, Part V). Clearly,

the quality of the proposed method hinges upon the accuracy of the Taylor series approximations

employed. This not dissimilar to the well-known accuracy issues with Breslow and Clayton’s (1993)

PQL method. For a discussion, see Molenberghs and Verbeke (2005). Arguably, our method will

perform reasonably well for two reasons. First, the parameter estimates plugged in are based on the

accurate adaptive Gaussian quadrature, obtained with the NLMIXED procedure, rather than with the
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expansion methods. Further, our method is a second-order rather than a first-order approximation,

since the second-order terms vanish. This explains why the approximation is rather well, as confirmed

by the simulation study. Therefore, even though, in principle, one could construct an approximation

about the conditional estimates of the random effects, rather than around zero, this does not appear

to be necessary for the correlation purposes of this work; this in itself is a nice feature, since such

an approximation would involve lengthy and, implementation-wise, time-consuming computations.

Furthermore, Rodŕıguez and Goldman (1995) documented that a Taylor series expansion might

produce relatively accurate estimates for the variances, even though the parameter estimates, for

binary data, might be biased.

The SAS developed used for this manuscript is available at the authors’ web site, as well as upon

simple request.
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