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Abstract

In this paper we investigate the effect of presmoothing on model selection. Christóbal Christóbal et
al. (1987) showed the beneficial effect of presmoothing for estimating the parameters in a linear regression
model. Here, in a regression setting, we show that smoothing the response data prior to model selection
by Akaike’s Information Criterion can lead to an improved selection procedure. The bootstrap is used to
control the magnitude of the random error structure in the smoothed data. The effect of presmoothing
on model selection is shown in simulations. The method is illustrated in a variety of settings, including
the selection of the best fractional polynomial in a generalized linear model.

Akaike Information Criterion; fractional polynomial; latent variable model; model selection; pres-
moothing

1 Introduction

Based on observations (xi, yi), i = 1, ..., n, consider the regression model

y ∼ f(y; θ,η), (1)

where
y = (y1, . . . , yn)

T , θ = (θ(x1), . . . , θ(xn))
T , η = (η(x1), . . . , η(xn))

T .

Here f denotes the joint density of y (given x), θ the parameter of interest and η a nuisance parameter. We
also assume that θ is in some way related to E(y), more precisely we assume that there exists a function g
such that

E(y) = g(θ;x).

The aim is to select an optimal or a few good models amongst a set of candidate models. Several model
selection criteria have been developed, in different settings and with different types of complexities in data
and models (see e.g. Akaike, 1973; Takeuchi, 1976; Schwarz, 1978; Spiegelhalter et al., 2002; Pan, 2001a,b;
Hens et al., 2006), to accomplish this.

Assume we start from a collection of models, in particular we consider models of the form (1) . The
well-known AIC criterion (Akaike, 1973)

AIC = −2L(y; θ̂, η̂) + 2K, (2)

with L(y; θ,η) denoting the loglikelihood of the model and (θ̂, η̂) the maximum likelihood (ML) estimator
of (θ,η), originates from information theory. Here K stands for the total number of estimated parameters,
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nuisance parameters included. The second term in the AIC formula is often interpreted as a penalization
for complexity. The AIC was designed to be an approximately unbiased estimator of the expected Kullback-

Leibler (KL) information. In general, the KL information between model f0 (denoting the ‘true’ model) and
model f (the approximating model (1)) is defined as (ignoring an ‘historical’ factor 2)

I(f0, f) = E

[
log

{
f0(y)

f(y; θ,η)

}]

(expectation with respect to the true model) and can be interpreted as the information loss using f to
approximate f0, or as the distance from f0 to f . This KL distance is not a metric, but it has the property
that I(f0, f) ≥ 0 with equality only if f ≡ f0.

The basic idea of the presmoothed AIC is to replace the observed value y by the estimated value yS =

Ê(y) = ĝ(x;λ) using a nonparametric regression model with smoothing parameter λ (e.g. local polynomials,
penalized regression splines, and so on). Next, the ‘smoothed’ AIC is calculated for all candidate models
using the “pseudo-data” (x,yS)

AICS = −2LS(y
S ; θ̂S , η̂S) + 2K, (3)

with (θ̂S , η̂S) the MLE’s of (θ,η) based on yS = (yS1 , . . . , y
S
n )

T . These presmoothed AIC values are then used
to select the final model, or to compute an averaged model (Burnham and Anderson, 2002). The likelihood
function LS might differ from the likelihood of the original data. The rationale of this method is as follows:
replacing the data by an estimated curve filters out most of the error structure and more clearly exhibits
the optimal parametric mean structure, as a function of x. It is clear of course that by presmoothing focus
is on model selection of the mean structure, so on the main parameter θ. There is some analogy with the
beneficial effect of presmoothing for linear regression estimators as shown in Christóbal Christóbal et al.
(1987), Faraldo Roca and González Manteiga (1987) and Janssen et al. (2001).

Presmoothing can also be motivated in the following way. It is well-known that model selection is a highly
variable process, in the sense that small perturbations in the data can lead to very different models being
chosen. Ye (1998) showed that the cost of model selection (in the sense of overestimation of the strength of
the fit of the chosen model) is directly related to stability of the model selection procedure when the data
are perturbed, which is itself related to the strength of the structure in the data relative to the noise. The
goal of presmoothing is to effectively increase the signal in the data relative to the noise by using estimated
curve values as the response data, thereby increasing the stability of the model selection when the data are
perturbed, and reducing the cost of model selection.

The paper is organized as follows. In Section 2 we consider the basic implementation of the method in
the setting of linear regression. Simulations illustrate the performance of the basic method. An interesting
application is the selection of the optimal fractional polynomial (Royston and Altman, 1994). Section 3
highlights some shortcomings and complications of the basic method. A bootstrap approach is proposed to
solve these difficulties. The more general setting of categorical response data and generalized linear models
is studied in Section 4. This smoothed latent variable approach is illustrated on a example of age stratified
seroprevalence data on Hepatitis A. A final discussion section indicates some possible extensions and topics
for further research.

2 Presmoothing Data Prior to Model Selection

In this section we focus on the smoothed AIC criterion (3) in the setting of linear regression with normal
error structure.

2.1 Akaike Information Criterion Based on Presmoothed Data

Consider classical regression and suppose data are generated by a true model

y
f0∼ Nn(µ0, σ

2
0In),

where µ0 = (µ0(1), . . . , µ0(n))
T , Nn denotes an n-variate normal distribution and In the n × n identity

matrix . Consider the approximating, or candidate, family of models

y
f∼ Nn(µ(θ), σ

2In),
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where µ(θ) = (µ(x1; θ), , . . . , µ(xn; θ))
T .

For this setting, E{log f(y; θ,η)} can be written as (φ denoting the univariate normal density)

E{
n∑

i=1

logφ(yi;µ(xi), σ
2)} = −n

2
log(2πσ2)− E

[
{y − µ(θ)}T {y − µ(θ)}

]
/(2σ2).

Using an analogous expression for E{log f0(y)}, it is easy to verify that

I(f0, f) =
n

2
log(σ2/σ2

0) +
n

2

{
σ2
0

σ2
− 1

}
+ {µ0 − µ(θ)}T {µ0 − µ(θ)}/(2σ2). (4)

It follows that this measure is minimized as a function of σ2 and µ(θ) (and equals 0) by taking σ2 = σ2
0 and

µ(θ) = µ0.
Now, let us introduce presmoothing based on a linear smoother. Define

yS = Sλy,

with Sλ the smoother matrix. In the case that rank(Sλ) = n, we have that (see e.g. Chapter 6 in Ruppert
et al., 2003)

yS f0∼ Nn(Sλµ0, σ
2
0SλS

T
λ ).

Approximating this smoothed ‘true’ model fS
0 by the smoothed approximate model fS

yS fS

∼ Nn(Sλµ(θ), σ
2SλS

T
λ ),

would lead to exactly the same KL distance I(f0, f) = I(fS
0 , f

S). This is not unexpected since a linear
transformation of the type Ay with y multivariate normal and with A of rank n results again in multivariate
normal data with accordingly transformed mean and covariance structure. In general, however, Sλ is singular
with rank close to sample size n for so-called full-rank smoothers and with rank considerably less than n
for low-rank smoothers (see e.g. Ruppert et al., 2003). Consequently the multivariate distribution of yS is
degenerate (at least one component of yS can be written as a linear combination of the others).

Therefore we consider, as a simplification, a first basic implementation in which we ignore the dependence
structure. We work with an ‘independence true model’ f̃0

yS f̃0≃ Nn(Sλµ0, σ
2
0Dλ),

and its corresponding approximate model f̃S

yS f̃S

≃ Nn(Sλµ(θ), σ
2Dλ),

with Dλ = diag(s21, . . . , s
2
n) where s2i is the ith diagonal element of SλS

T
λ .

Some straightforward calculations show that I(f̃0, f̃
S) equals

n

2
log(σ2/σ2

0) +
n

2

{
σ2
0

σ2
− 1

}
+ {µ0 − µ(θ)}TST

λ D
−1
λ Sλ{µ0 − µ(θ)}/(2σ2).

First of all note that I(f̃0, f̃
S) ≥ 0 with equality only if µ0 = µ(θ) and σ2

0 = σ2, so only if f ≡ f0. Assuming
that both bias terms ‖ (Sλ−In)µ0 ‖2 and ‖ (Sλ−In)µ(θ) ‖2 are negligible, the only difference with I(f0, f)
as shown in (4), is the diagonal matrix D−1

λ . Expressing distance as the square root of a positive definite
quadratic form allows for a geometrical interpretation based on the eigenvalues s−2

i and eigenvectors of D−1
λ .

The half-length from the origin µ0 = µ(θ) on the hyperellipsoid, defined by {µ0 − µ(θ)}TD−1
λ {µ0 −µ(θ)},

in the direction of the ith observation is equal to si
∑n

j=1((µ0(j) − µ(xj ; θ))/sj)
2. For instance, in the

case of a single covariate and using a local linear smoother with bandwidth hn (the λ in our notation), it
asymptotically holds that s2i ∼ Ci/nh for some constants Ci, leading to a half-length of the order

√
nhn.

An optimal bandwidth hn ∼ n−1/5 (see e.g. formula (5.13) on page 152 in Simonoff, 1996) shows that the

3



half-lengths grow with n, showing the way in which this distance measure magnifies the difference between
the true model f0 and the approximating model f .

Ignoring the bias of the smoother, as in the discussion above, we further simplify the smoothed AIC
criterion (3) by taking LS the likelihood associated with the model

yS f̃S

≃ Nn(µ(θ), σ
2In), (5)

resulting in
AICS = n log(σ̂2

S) + 2K, (6)

where

σ̂2
S =

n∑

i=1

(ySi − µ(xi; θ̂S))
2/n

with θ̂S the ML estimator for θ using the likelihood (5). That is, model selection proceeds by first fitting a
nonparametric smoothed model to the data, and then the usual AIC measure based on the resultant fitted
values is used to compare models.

In the next section we study this basic smoothed AIC criterion. It is based on a substantially simplified
normal likelihood. Note however that even if the response data are not normally distributed, ySi , for each
i = 1, . . . , n, will be approximately normally distributed for most smoothers.

In Section 3 we reconsider the simplifications made above, and propose a bootstrap-based approach to
overcome shortcomings related to them.

2.2 Simulations

We consider two scenarios: in scenario A the family of candidate models consists of models with linear,
quadratic and interaction terms in two explanatory variables; in scenario B the family of candidate models
is the set of fractional polynomials (Royston and Altman, 1994) in a regression setting.

2.3 Scenario A

In a first scenario, uniform [0, 10] x-values were generated, together with (independently) Bernoulli(0.5) z-
values. Given x and z, response y-values were generated from a normal distribution with mean µ0(x, z) and
variance σ2

0 , which will be specified later on. Samples {(xi, zi, yi), i = 1, . . . , n} were generated with fixed
design {xi, zi, i = 1 . . . , n}. The candidate set of models consists of all submodels (hierarchical in x-effect) of

µ(x, z) = β0 + β1x+ β2x
2 + β3z + β4xz.

Four presmoothing strategies were considered based on:

(1) a penalized regression spline y ∼ s(x), with the level of smoothing chosen using generalized cross-
validation (Eilers and Marx, 1996);

(2) a Generalized Additive Model (GAM, see Hastie and Tibshirani, 1990) with penalized splines built from
y ∼ s(x) + z + zs(x) according to Wood and Augustin (2002): a term is dropped if i) the estimated
degrees of freedom (edf) for the term is close to their lower limit (e.g., 1 for a univariate smooth and
‘close to’ specified as edf less than 1.6), and ii) the 95% confidence region for the smooth includes zero
everywhere, and iii) the GCV score for the model goes down if the term is removed from the model;
this approach is a “middle way” between the GAM framework based on backfitting (being flexible and
efficient, but facing difficulties when it comes to model selection and inference) and the computationally
very expensive approach of the generalized spline smoothers of Gu and Wahba (1991);

(3) a GAM model with penalized splines built from y ∼ s(x) + z + zs(x) using the corrected AIC-criterion
as proposed by Hurvich et al. (1998), and

(4) using a GAM model y ∼ s(x) + z + zs(x) with penalized splines without model building.
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Table 1: Scenario A, µ1
0(x, z): the number of times each model has been selected, using the original data and

presmoothed data from the four smoothing strategies.

1 x z x, x2 x, z x, z, x, x2, x, x2,
xz z z, xz

Original Data 0 259 0 511 44 35 93 58
(1) 0 14 0 888 3 0 63 32
(2) 0 10 0 752 5 7 110 116
(3) 0 15 0 663 8 16 155 143
(4) 0 5 0 47 7 26 99 816

Note that since all of these methods include only a smooth curve for x, s(x), none of the model building
techniques associated with them address the question of interest here; that is, whether a linear or quadratic
term in x is necessary.

When evaluating the properties of model selection criteria, an important distinction is between the situa-
tion where the ‘true’ model is among the candidate models, and the situation where it is not (McQuarrie and
Tsai, 1998). AIC is known to be an inconsistent model selection criterion (a consistent model selection crite-
rion is one that, with probability approaching 1 as the sample size increases, chooses the ‘true’ model, when it
is among the candidate models). It is, however, asymptotically efficient (an efficient model selection criterion
is one that chooses the model with prediction error asymptotically indistinguishable from that of the best
model among all candidate models, when the ‘true’ model is not among the candidate models), which is in
most cases to be preferred (since in practice the true model is unknown and typically too complex to be part
of the candidate set of models, and a predictive criterion is natural in the regression context). Theoretically,
however, it is worthwhile to consider both situations where the generating model is part of the set of candidate
models and where it is not. Therefore, we consider two different mean structures for the normal distribution
from which response y-values are generated, µ1

0(x, z) = −3+3x+5x2 and µ2
0(x, z) = −3− 3 log(x+1)+5x2,

while we take σ0 = exp(5).
For µ1

0(x, z), Table 1 shows the selection results for 1000 simulated samples of size n = 50. Strategy (1)
outperforms all others. The true model with x- and x2-effects is chosen much more often than based on
the original data. Strategy (1) assumes no z-effect (as in the generating model), an assumption that makes
model building unnecessary, but which has to be checked in real data analyses. But strategies (2) and (3)
also lead to an increased selection of the true model. Model selection after smoothing without model building
(strategy 4), however, results in the selection of models that are far too complex. This already illustrates a
crucial point. Replacing the original responses with presmoothed data, without any careful consideration or
model building, might falsely turn very small effects as produced by the smoother into relevant effects (since
noise has essentially been removed). Of course, selection of (too) complicated models is not disadvantageous
in and of itself. Therefore, we also compared the different strategies by looking at the mean averaged squared
error (MASE), again based on 1000 simulated samples of size n = 50,

MASE =
1

1000

1000∑

r=1

{
1

n

n∑

i=1

(µ̂(r)(xi, zi)− µ0(xi, zi))
2

}
.

Here, µ̂(r)(xi, zi) denotes the fitted value within simulation run r and µ0(xi, zi) the true generating model.
In Table 2, MASE-values together with bias and variance decomposition confirm the performance of the
different methods. There is a large decrease in bias and applying methods (1), (2) and (3) reduces the
variability, while using method (4) results in an increased variability compared to model selection based on
the original data. Different simulation settings (different sample sizes n, different values of σ0) show similar
results: strategies (1) to (4) always keep their relative ordering from best (strategy 1) to worst (strategy 4),
and the classical AIC on the original data is often worse than strategies (1) to (3) but sometimes close and
even better than some of the strategies (1) to (3) (especially for n large). This is further illustrated in the
next setting.
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Table 2: Scenario A, µ1
0(x, z): MASE and bias and variance decomposition, using the original data and

presmoothed data from the four smoothing strategies.

MASE bias2 var
Original Data 1942.41 27.63 1914.79
(1) 1295.03 2.41 1292.62
(2) 1573.91 2.69 1571.22
(3) 1646.58 2.69 1643.90
(4) 2108.53 2.68 2105.85
Correct 1230.81 2.38 1228.44

In a second setting, we took µ2
0(x, z), i.e. the generating model is not included in the set of candidate

models. Figure 1 shows MASE results as a function of the sample size n ∈ {50, 100, 150, 200}, and for
σ0 ∈ {exp(5), exp(6), exp(7)}. This figure shows that strategy (1) (indicated as gam(x) in the figure) is
performing very well, especially for σ0 small or n large. It gets close to the MASE of the (estimated) true
model µ2

0(x, z). Model selection based on presmoothed data according to strategy (2) and (3) is better than
based on the original data, except when the variance is very large. If the sample size gets large, all methods
seem to converge. Strategy (4) is no longer included.

Figure 1: Scenario A, µ2
0(x, z): MASE-values based on model selection using AIC for the original data, the

GAM(x)-presmoothed data (strategy 1), the Wood-presmoothed data (strategy 2), the AICc-presmoothed
data (strategy 3) and the correct model µ2

0(x, z). The horizontal axis of each plot indexes sample size n,
while σ0 increases from exp(5) (left) to exp(6) (middle) to exp(7) (right panel).
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Table 3: Scenario B, µ1
0(x, z): selected powers within the family of fractional polynomials, using the AIC-

criterion (left) and AICS-criterion (right).

AIC AICS

p1\p2 0.0 0.5 1.0 2.0 3.0 p1\p2 0.5 1.0 2.0 3.0
-2.0 1 4 28 134 87 -2.0 7 7
-1.0 2 3 10 29 36 -1.0 4 9 8
-0.5 2 13 14 11 39 -0.5 2 1 16 19
0.0 11 14 10 36 0.0 7 11 28 24
0.5 29 42 15 31 0.5 11 26 68 43
1.0 49 16 31 1.0 48 297 159
2.0 12 8 2.0 40 45
3.0 118 3.0 120

2.4 Scenario B

In a second scenario we generate data according to the same setting as Scenario A with µ1
0(x, z), but now the

family of candidate models is the family of fractional polynomials of degree 1 and 2 within the recommended
grid {−2,−1,−0.5, 0, 0.5, 1, 2, 3} (Royston and Altman, 1994) . Note that the true model is a fractional
polynomial of degree 2 with p1 = 1 and p2 = 2. Since the candidate models here include no z-effect, only
presmoothing strategy (1) was applied.

Table 3 shows an overview of the powers chosen by AIC and AICS . Powers not chosen by any of the
selection criteria were omitted from the table. All fractional polynomials selected using the AIC-and AICS-
criterion are of degree 2. It can be seen that the generating model, which is contained in the set of the
candidate models (p1, p2) = (1, 2), was chosen 16 times by the AIC-criterion while it was chosen 297 times
using AICS . Moreover there is a clear concentration around the true combination (p1, p2) = (1, 2) for AICS ,
whereas AIC leads to a larger spread over different and typically lower powers. Many other simulations with
different true functions were performed, but they essentially showed the same results.

We also compared the MASE of the best models selected by AICS with the ones selected by AIC, by
looking at the ratio MASE(AIC)/MASE(AICS). In about 85%, these ratios are larger than 1, indicating an
improved model choice when using the AICS-criterion.

Using µ2
0(x, z) as generating model, again a large majority (84%) of the ratios is larger than 1. The smallest

value was 0.58, the largest 204.33, again indicating that the models selected by presmoothing outperform the
ones selected by original data.

The main conclusions of these simulations on the basic presmoothing method, under Scenario A and B,
can be summarized as follows. The method clearly shows some potential to improve model selection in a
regression setting. This improvement is most apparent in the case where there are only one or two explanatory
variables and the family of candidate models is a very ‘rich family’ (like the family of fractional polynomials).
In the case where there are many explanatory variables and the family of candidate models does not contain
enough models to allow flexible curvatures, the preliminary smoothing has to be guided carefully, and some
model building is necessary. We do not recommend a blind use of the basic method proposed in this section,
but suggest to use it always in comparison with classical AIC (applied on the original data). The new
approach can reassure the selection based on classical AIC. In case they point at different models, one can
examine in more detail what causes this disagreement. Whether they agree or disagree, in both case we
recommend the use of the modified approach presented in the next section.

Finally, it is obvious that by focusing on the mean structure, the method cannot be used to compare
models with e.g. the same mean structure but different variance structures.

3 Presmoothing and Bootstrapping

The basic smoothed AIC approach (6) treats the smoothed data as independent, homoscedastic normal data,
hereby ignoring that i) Sλ is singular, ii) ySi , i = 1, . . . , n, are not independent, iii) ySi , i = 1, . . . , n, do not
have the same variance and iv) a smoother is biased. In the following section, we propose to generate new
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bootstrap samples, conditional on the original sample, and to apply AIC on these bootstrap samples to
overcome these limitations. We first restrict attention to the case of continuous response. Section 4 treats
the case of categorical outcomes.

3.1 A Bootstrap Approach

Consider the additive location model
y = g(θ;x) + ε, (7)

and the residuals resulting from an estimated smooth fit (with smoother matrix Sλ)

e = y − Sλy.

Define new observations, centered at the smooth fit, together with “controlled” error, using a constant
0 ≤ c ≤ 1,

ỹS(c) = Sλy + c e. (8)

Equation (8) mimics the location model (7) and allows one to control the signal-to-noise ratio by the constant
c. Both terms, the systematic component Sλy and the error component c e have distributional properties
driven by that of the original sample. The bootstrap allows us to disconnect this relation, thus avoiding
most of the drawbacks of the basic smoothed AIC approach. If the original error ε has an i.i.d. structure, a
nonparametric bootstrap approach can be defined as

y∗

S(c) = Sλy + c e∗, (9)

using resampled residuals e∗ = (e∗1, . . . , e
∗

n)
T , taking randomly with replacement from the set {e1, . . . , en}.

Once bootstrap data y∗

S(c) are generated, model selection can be based on the AIC-criterion (mimicking
(2))

AIC∗ = −2L(y∗

S(c); θ̂
∗

, η̂∗) + 2K,

with (θ̂
∗

, η̂∗) the MLE’s of (θ,η) based on y∗

S(c) and using the log-likelihood L of the original data y.
Conditional on the original sample these new smoothed and bootstrapped data y∗

S(c) reflect approximately
i) the right location, by consistency of Sλy (see e.g. Ruppert et al., 2003), and ii) the right i.i.d. error structure,
by consistency of the nonparametric bootstrap (see e.g. Efron and Tibshirani, 1998). By taking 0 < c < 1,
one can control the level of error and consequently, to some extent, the quality of the data in order to select
the most appropriate model.

Figure 2 illustrates this intuitively appealing idea. The black solid line is the true generating function (a
fitted spline model). The dashed line is the corresponding estimated spline model based on the original data,
shown in the left upper panel. The right upper panel and the lower left and right panels show bootstrap data
generated according to (9) with c taking decreasing values 1, 0.5 and 0.25. The idea is that the data shown
in the lower panels, according to smaller values of c, more clearly show the true underlying mean function.

Alternatively other bootstrap based error structures can be used, e.g. based on the parametric bootstrap,
e.g. for normal i.i.d. errors

e∗ ∼ Nn(0, σ̂
2
SIn),

where

σ̂2
S =

1

n
yT (I − Sλ)

T (I − Sλ)y,

the variance estimator based on the smoother. The parametric bootstrap also easily allows more complicated
(e.g. correlated) error structures.

An interesting question is how to determine an optimal value for the parameter c in (9). In the next
section we try to get more insight in the role of this parameter c.
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Figure 2: Simulated data according to bootstrap model (9): original data (open circles, left upper panel) and
smoothed data with c ∈ {1, 0.5, 0.25} (stars, right upper and left and right lower panels). The solid curve is
the true regression function; the dashed curve is the spline fit to the original data.
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3.2 Choice of error-control parameter c

For simplicity, we again focus on classical regression (with normal error structure). Reconsider identity (4),
and assume a ‘true’ model µ0 = X0θ0 for some design matrix X0 and an approximating model µ(θ) = Xθ

for some typically different design matrix X . Consider the true values θ0 and σ2
0 as fixed. Minimizing the

right-hand side of (4) as a function of θ and σ2 leads to the minimum

min
f

I(f, f0) =
n

2
log

(
1 +

(X0θ0)
T (I −H)X0θ0

nσ2
0

)
,

attained at
θ = (XTX)−1XTX0θ0,

and

σ2 = σ2
0 +

(X0θ0)
T (I −H)X0θ0

n
,

where H = X(XTX)−1XT is the well-known hat matrix associated with matrix X . Note that if X = X0

(so the approximating model equals the true model), then θ = θ0 and (I −H)X0 reduces to the zero-matrix
and σ2 = σ2

0 and minf I(f, f0) = 0, as expected. Note also that if the approximating model is not equal (or
does not contain) the true model, the scale on which the distance minf I(f, f0) is measured depends on the
value of σ2

0 . If σ2
0 → ∞, then minf I(f, f0) → 0, even if f is a wrong model. In other words, using the AIC

estimate for the KL distance, a large value of σ2
0 will make it more difficult to detect differences between

models. Small values of σ2
0 however magnify the distance scale and will allow AIC, for a fixed sample size n,

to more easily select a good model. This confirms the intuition that for data with little noise, better suited
models can be selected, as compared to high noise data. With respect to the choice of c in (9), this seems to
suggest taking c small.

Conditional on y, we can mimic these considerations, but now based on a ‘true’ generating (bootstrap)
model

y∗

S(c)|y
f∗

0∼ Nn(Sλy, c
2σ̂2

SIn),

and an approximating model (the same as on the original data)

y∗

S(c)|y
f∗

∼ Nn(Xθ∗, σ∗2In).

Similar calculations show that the KL distance (conditional on y) attains a minimum

min
f∗

I(f∗, f∗

0 ) =
n

2
log

(
1 +

(Sλy)
T (I −H)Sλy

nc2σ̂2
S

)
,

attained at
θ∗ = (XTX)−1XTSλy,

and

σ∗2 = c2σ̂2
S +

(Sλy)
T (I −H)Sλy

n
,

with H the same hat matrix as before.
Of course, here minf∗ I(f∗, f∗

0 ) depends on y and hence is a random variable. A crucial point is that now
minf∗ I(f∗, f∗

0 ) > 0, even if one uses the true model for f∗ (i.e. X = X0). Indeed since a smoother has finite
sample bias, it holds that Sλy 6= X0θ0 with probability one, and consequently (Sλy)

T (I −H)Sλy 6= 0 with
probability one.

Comparing minf∗ I(f∗, f∗

0 ) and minf I(f, f0), we see that this bias, the difference between Sλy and
X0θ0, plays a major role. Compared to a (relatively) simple true model (such as X0θ0 with θ0 of limited
dimension), the smooth fit Sλy may expose more local and small curvatures and complexities. Since the
bootstrap approach (9) treats model f∗

0 with Sλy as true model, small values of c would, as discussed above,
magnify the distance-scale to an extent that these little and local complexities are getting relevant, when
using the estimate AIC∗ of minf∗ I(f∗, f∗

0 ). This latter consideration indicates one should not take c too
small, in order to downplay the bias of the smoother. Moreover it indicates that ideally, c depends on the
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Table 4: Spline model µ0(x, z) as true model: the number of times each model has been selected, using the
original data and presmoothed data with controlled level of bootstrap error.

c 1 x z x, z x, x
2

x, z x, x
2

x, x
2

x, x
2

x, x
2

x, x
2

x, x
2

x, x
2

xz z x
3

z, xz x
3
, z z, xz x

3
, z x

3
, z

x
2
z xz xz, x

2
z

Original Sample
23 14 13 3 28 1 1 8 1 1 5 0 2

Smoothed Sample + c× Parametric Bootstrap Errors
0 1 1 0 0 11 0 1 49 0 4 4 5 24

10−6 1 5 0 1 13 1 1 45 1 4 3 4 21
0.001 1 5 0 1 14 1 1 46 1 4 3 4 19
0.01 1 5 0 1 16 1 1 50 2 7 3 2 11
0.1 1 6 0 1 23 1 3 45 3 8 2 1 6
0.2 1 6 0 1 27 1 5 39 3 8 2 1 6
0.5 5 9 2 3 30 3 3 29 6 2 3 1 4
0.8 13 11 2 2 31 6 3 18 6 2 3 0 3
0.9 17 11 1 2 30 6 2 16 6 2 4 0 3
1 20 13 2 1 27 7 2 13 6 2 4 0 3

original sample y, and it should reflect the bias Sλy − X0θ0. The smaller the bias, the smaller c should
be taken. Since the bias is unknown and hard to estimate, this indicates that finding the optimal c is not
straightforward. One option is to conduct a kind of sensitivity analysis, by showing how the selection of
models change with the value of c ranging on a grid from 0 to 1. In case the sample size allows, one could
split the sample in two subsamples: a learning sample to select and build the models and a test sample to
select the optimal value of c, minimizing the prediction error. This method will be illustrated in Section 4.2.

The simulations in the next section illustrate how the smoothed data with bootstrap error lead to an
improved selection of models and give some further insights in the optimal choice of c.

3.3 Simulations

We generated 100 samples of size n = 100. As in Section 2.3, uniform[0,10] x-values were generated, together
with (independently) Bernoulli(0.5) z-values. Given x and z, response y-values were generated from the
normal distribution with standard deviation σ0 = exp(5) and with true mean function µ0(x, z) equal to
a particular nonlinear function, namely the solid line in Figure 2 corresponding to a fitted spline model.
Uniform[0,10] x-values were generated, together with (independently) Bernoulli(0.5) z-values. So, the left
upper panel of Figure 2 shows a typical data set, and the other panels show smoothed data for three different
values of c, as they are used in the simulations.

As candidate models we consider a family of 13 models, all submodels of the model with terms x, x2, x3, z, xz, x2z.
Given the true model is highly nonlinear without z-effect, the cubic model with x, x2 and x3 terms can be
considered as the best model. Table 4 shows how often each of the different models have been chosen, based
on the original data (top line) and based on smoothed data according to model (9) using presmoothing strat-
egy (3) and with the parametric bootstrap error (3.1), for different values of c. Model selection based on the
original data seems to lead often to too simple models (the constant model, the model with only a linear x
effect or a spurious z effect). The same happens for the smoothed AICS with c close to 1. This is expected
because the same level of error as in the original data is added to the mean structure. Choices of c close to 0,
coinciding with the basic implementation discussed in Section 2, leads to the selection of overly complicated
models with spurious z effects (as already noticed in Section 2). When c increases, there is a clear shift to
simpler models, with overall dominance of the best cubic model. So, based on Table 4, model selection is
optimal and stable for c-values within the range [0.1, 0.2]. Similar results were found for the nonparametric
approach (9).

Figure 3 shows results of squared bias, variance and MASE using the smoothed AICS , relative to the
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Figure 3: Spline model µ0(x, z) as true model: relative squared bias, variance and MASE-values based on
model selection using presmoothed data according to strategy 1 (bold lines) and strategy 3 (normal lines)
and using fixed error (solid lines) and bootstrap error, nonparametrically (dotted lines) and parametrically
(dashed lines). The horizontal axes indicate the level c of error structure.
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corresponding values when using AIC based on the original data. Whereas Table 4 only shows results for
strategy (3) as discussed in Section 2 and the parametric bootstrap, Figure 3 also includes results for strategy
(1) (smoothed), strategy (3) (MB smoothed), for the implementation with fixed residuals (8) (indicated by
+error) and the nonparametric and parametric bootstrap implementation (indicated by +NB and +PB
respectively). The figures show that especially the variance is reduced by using AICS . Since the normal
distribution is the right one, there is not much difference between the nonparametric and parametric bootstrap
approach. Using the correct univariate smoother leads to better results than when strategy (3) is used.
According to the short dashed curve (the setting of Table 4 in the right panel: relative MASE), the choice
c = 0.2 leads to the best results.

4 Latent Variable Approach for Categorical Data

In this section we discuss the implementation of presmoothing and bootstrapping in the case of categorical
outcomes. Of course, in this situation the additive structure of mean plus error structure no longer holds. The
approach of categorical outcomes generated by a latent continuous outcome, however, allows us to implement
a similar idea as in the previous section.

4.1 Smoothed Latent Variable

Consider a categorical variable y with ordered categories 1, . . . , J , and a latent continuous variable

y
L
− µ(x) ∼ G,

such that
y = j if αj−1 < y

L
≤ αj ,

for cutpoints
−∞ = α0 < α1 < . . . < αJ = ∞.

Then the cumulative distribution of y can be written in terms of the latent distribution G as

P (y ≤ j|x) = P (y
L
≤ αj |x) = G(αj − µ(x)).

Different choices of the latent distribution G correspond to different generalized logit models. Taking G = Φ
(the standard normal distribution function) leads to the cumulative probit model, taking G the logistic distri-
bution to the proportional odds model, and taking G(z) = 1− exp(− exp(z)) coincides with the proportional
hazards model. For more details, see Section 7.2 in Agresti (2002) or Section 10.2 in Simonoff (2003).

The analogue of the presmoothing and bootstrap approach (9) using the latent distribution is as follows.
Fit the model G−1(P (y ≤ j|x)) = αj −µ(x) using a smoother (e.g. spline), leading to µ̂S(x). Next, generate
bootstrap values of the latent variable, using the parametric bootstrap

y∗
L,i

(c) = µ̂S(xi) + ce∗i , (10)

with
e∗i ∼ G, (11)

and, as before, some value of 0 < c < 1. Finally, select the parametric model µ(x, θ) using AIC on these
smoothed and bootstrapped data y∗

L,i
(c) and taking density g (corresponding to G) in the construction of

the log likelihood. Use as a final model

G−1(P (y ≤ j|x)) = αj − µ(x, θ). (12)

Once again a sensitivity analysis can show the dependence on c, and in case a test sample is available, this can
be used to select an optimal value of c (minimizing the prediction error). In the next section this approach
is illustrated to select the best fractional polynomial to fit Hepatitis A seroprevalence data.
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4.2 Data Example: Hepatitis A Seroprevalence

Hepatitis A virus (HAV) is mainly (> 95 %) transmitted by the feco-oral route (e.g. through food and water
polluted by faeces containing the virus). Transmission is facilitated by poor hygienic living and housing
conditions, and is particularly common in developing countries (see e.g. Hadler, 1991; Beutels et al., 1997).
In these countries HAV is mainly a childhood infection, whereas in industrial countries HAV infection occurs
during adulthood as well as childhood. In the poorest developing countries, the pattern of high endemicity
is characterized by rapid infection at a very young age; over 90% of the children become infected by the age
of 5. In 1993 and early 1994 , a study of the prevalence of HAV antibodies was conducted in the Flemish
community in Belgium. The purpose of this study was to obtain data on the prevalence of hepatitis A in
Flanders and to analyze the epidemiological pattern of HAV. During the study period serum samples were
collected from hospitals (non-infectious disease wards) in the Flemish community. The dataset contains the
serological results of 3161 Belgian individuals, i.e. a binary response y = 1 if infected (and 0 otherwise);
together with their age a in years, ranging from 0.5 to 92.5 years. The study group was similar in composition
to the Flemish population in terms of age. Here we focus on Belgian males, resulting in 1646 observations,
which we consider, for illustrative purposes, as our population, and a random subset of size 200 as our
random sample (RS). This sample of size 200 is used to select the model by both methods, with and without
presmoothing, and the remaining 1446 observations form the test sample (TS) that will be used to compute
the prediction errors (number of misclassified cases) for both methods. When using AIC directly on the
original data, all 200 observations of the RS will be used as such. When using AIC on the smoothed data,
the sample of size 200 is randomly split in two subsamples of size 100, one of which we call the learning
sample (LS), and the other the validation sample (VS). The LS is used to identify the best model by the
smoothed AIC using presmoothing strategy (1), for a grid of values for the control parameter c. The VS is
subsequently used to identify the optimal value of c.

Shkedy et al. (2006) propose to model the prevalence and force of infection as a function of age, within the
framework of fractional polynomials. They discuss several parametric examples from the infectious diseases
literature and show that all of these examples can be expressed as special cases of fractional polynomial
models. Note that the choice of a parametric model facilitates an easy derivation of secondary epidemiological
parameters as the age of maximal force of infection and the basic reproduction number. Here we consider as
candidate models the family of fractional polynomials of order two with powers p1 ≤ p2, where

pi = {from -2 to 3 in steps of 0.1}, i = 1, 2,

together with the probit link function.
Using AIC on the original data from the RS leads to the optimal powers p1 = −1.3 , p2 = −1.3, which

identifies the probit model

Φ−1{P (y = 1)} = θ0 + θ1a
−1.3 + θ2a

−1.3 log(a). (13)

This model leads to 26 misclassifications on the LS, 16 on the VS, resulting in a total of 42 on the RS,
and leads to 351 misclassifications on the TS.

The upper panels of Figure 4 show the powers selected by the approach based on (10)-(12) with G = Φ,
as a function of c (using the learning sample). As c increases, the both powers gradually increase from 1.5 to
their maximal value of 3. The left middle panel shows the number of misclassifications using the validation
sample, as a function of c. It suggests to take a value c in the neighborhood of 0.5. We took c = 0.5, which
corresponds to powers 2.4 and 2.4 and probit model

Φ−1{P (y = 1)} = θ0 + θ1a
2.4 + θ2a

2.4 log(a). (14)

The number of misclassifications for this model is equal to 26 on the LS and to 14 on the VS and to 322 on
the TS, which is almost 10% less than the model based on the classical AIC. The right middle panel shows
the smoothed and bootstrapped latent observations y∗

L,i
= µ̂S(xi) + ce∗i (equation (10)) for c = 0.5. The fits

of both final models (13) and (14) on the LS, together with the (jittered) data, are shown in the left lower
panel of Figure 4. The fits are quite different. The model selected by using AIC on the classical data of the
RS (dashed line) has an unexpected rise for very small ages. The right lower panel shows the fits of both
models on the TS, together with the (jittered) data. Again there is a substantial difference between both
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Figure 4: The Hepatitis A Example. Upper panels: the first (left) and second (right) powers of the optimal
fractional polynomial, based on the smoothed and bootstrapped data, as a function of c. Left middle
panel: the prediction error using the smoothed AIC on the VS. Right middle panel: the latent smoothed
and bootstrapped observations which were used to select the optimal model. Lower left panel: fitted optimal
fractional polynomials together with the (jittered) data of the LS. Lower right panel: fitted optimal fractional
polynomials together with the (jittered) data of the TS.

15



models. As a gold standard we also selected the best fractional polynomial on the full population (all 1646
data; the unsmoothed and presmoothed choices are virtually indistinguishable on the full data set). The
selected powers were 2.0 and 2.1. The fits of this population model on the LS and the TS are shown in bold
dotted lines in the left and right lower panel respectively. These fits are remarkably close to the fits based
of the fractional polynomial selected by the smoothed and bootstrapped data from the (small) LS and VS.
These particular fits show a well-known pattern, reaching a maximum and then slightly decreasing again for
the older age group. Under conditions of so-called stationarity, cross-sectional (sero)prevalence data can be
interpreted as if they were longitudinal. One would then expect the prevalence to be monotone as a function
of age (Anderson and May, 1991). At older ages however, it is quite possible that the seroprevalence declines,
due to age-related decline in antibody levels. There is a lot of interest by infectious diseases epidemiologists to
see unconstrained and flexible fits for the seroprevalence. The selection of optimal unconstrained models for
the seroprevalence as a function of age is therefore important to get more detailed insights in this phenomenon,
and presmoothed choice of a fractional polynomial ordered probit model provides a way to do this.

5 Discussion and Further Research

We have shown that a simple application of presmoothing yields a selection criterion AICS with improved
behavior over the standard AIC criterion. Further, we have shown that using the AIC criterion AIC∗ on
smoothed and bootstrapped data y∗

S(c) = Sλy + c e∗ can lead to improved model selection, at least in a
setting with a limited number of explanatory variables. The optimal choice of c depends on the original data
y and the bias of the smoother. A data-driven method to select c = c(y) is a topic of further research. At
this point, we recommend using several values for c and to explore in which way different models are selected,
as a sensitivity analysis, or to use a test sample if available. Also note that minf∗ I(f∗, f∗

0 ) → minf I(f, f0)
as n → ∞ and that one might expect c to be taken smaller as n increases. On the other hand, for large n,
the classical AIC criterion, used on the original data y, may perform so well that it might not be worthwhile
to apply the proposed method. A more detailed study on when there is substantial benefit to use the method
(in terms of type of outcome data, sample size, number of explanatory variables, etc) is planned as further
research.

For higher dimensional problems one could opt to use a multi-dimensional smoother. However this could
lead to a loss of effectiveness because of the curse of dimensionality (see e.g. pp. 83-84 in Hastie and Tibshi-
rani, 1990). If the best approximating model does not involve too much in the way of interactions, a GAM
could prove to be more effective than a multi-dimensional smoother (and more effective than unsmoothed
AIC). The GAM should contain at least those additive terms that correspond to parametric terms included
in the most complex parametric model.

In this paper, we focused on uncorrelated data, but investigating its application to data with autocorre-
lated errors could be worthwhile too. In that case the smoothing parameter method should take autocorre-
lation into account (Opsomer et al., 2001).

Our method could be worthwhile to compare with simultaneous variable selection and outlier identification
in linear regression (Hoeting et al., 1996; Kim et al., 2008). In that case, a robust smoother, for example
based on least absolute values rather than least squares, would probably perform better, but this extension
is beyond the scope of this paper.

Finally we like to mention that presmoothing can also be applied to other criteria, such as Mallow’s Cp,
BIC, etc. Some initial analyses and simulations show similar results and conclusions. A deeper study of the
performance for other criteria and for different settings, such as multivariate and longitudinal settings, are
also topics of further research.
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