
A Binary Adaptable Window SoC Architecture for a

StereoVision Based Depth Field Processor

Andy Motten, Luc Claesen

Expertise Centre for Digital Media

Hasselt University – tUL – IBBT

Wetenschapspark 2, 3590 Diepenbeek, Belgium

{firstname.lastname}@uhasselt.be

Abstract— This paper presents a novel binary fully adaptable

window for incorporating in a stereo matching System-on-Chip

(SoC) architecture. This architecture is fully scalable and

parameterizable to allow for custom SoC implementations, as

well as rapid prototyping on FPGAs. For each window a binary

mask window is generated which selects the supporting pixels in

the cost aggregation phase of the SAD algorithm. This selection is

performed using color similarity and spatial distance metrics.

Hardware resource utilization for a fixed window and an

adaptable window cost aggregation is compared based on FPGA

logic element use.

Keywords-component; stereo matching; adaptable window; cost

aggregation; computer vision; System-on-Chip; FPGA;

I. INTRODUCTION

Stereo matching has long been an important research topic
in computational video. Many stereo matching algorithms have
been investigated and published. A good comparison between
different algorithms can be found in the review paper of
Lazaros et al. [1], and the review paper of Scharstein and
Szeliski [2].

Local and window based methods calculate the differences
between the left and right images from a small part of the
images. They produce a decent depth image result and are
suitable for real-time applications. Selection of the ideal
window size is important: it should be large enough to contain
distinguished features, but small enough to keep depth
discontinuities.

Recently more advanced local based methods make use of
color information to select the optimal support window. A
good overview of these methods can be found in Wang [3].

The adaptive-weight algorithm proposed by Yoon [4]
adjusts the support weight of each pixel in a fixed sized
window. The support weights are depending on the color and
spatial difference between each pixel in the window and the
center pixel. Dissimilarities are computed based on the support
weights and the plain similarity scores. Their experiment
indicates that a local based stereo matching algorithm can
produce depth maps similar to global algorithms.

Tombari [5] extends the adaptive-weight algorithm of Yoon
[4] by using information from segmentation. It allows inclusion

of connectiveness of pixels and segment shapes, instead of
relying only on color and spatial distance.

Cooperative stereo algorithms optimize initially calculated
disparity matches by evaluating the disparity results of the
neighboring pixels. An example of such a cooperative
algorithm that makes use of color information can be found in
the paper of Brockers [6]. He proposes to use color information
in a local window to align support areas with local borders to
keep object boundaries while using a cooperative stereo
method.

Implementations on hardware of these methods are difficult
to find. Most stereo vision implementations on a custom SoC
or a FPGA make use of a fixed cost aggregation window ([7],
[8] and [9]) or an adaptable rectangular cost aggregation
window [10].

This paper presents a novel binary full adaptable window
for incorporating in a stereo matching System-on-Chip (SoC)
architecture. For each window a binary mask window is
generated which selects the supporting pixels in the cost
aggregation phase of the SAD algorithm. This selection is
performed using color similarity and spatial distance metrics.
The architecture is an extension on the architecture presented in
[11]. It consists of a multiple parallel on-chip memory
architecture, an adaptable window SAD matching cost
computation and a tree based minima calculation with registers
to store intermediate results. This architecture is fully scalable
and parameterizable to allow for custom SoC implementations,
as well as rapid prototyping on FPGAs.

Hardware resource utilization for a fixed window and a
binary adaptable window cost aggregation is compared based
on FPGA logic element use and depth map quality obtained
from the Tsukuba stereo pair [2].

II. STEREO MATCHING ARCHITECTURE

A. Basics and Requirements

The stereo matching algorithm takes two undistorted and
rectified images that have been taken by two cameras that have
a vertical alignment and a horizontal offset (see Fig. 1). Objects
will appear on both images on the same horizontal line (the
epipolar line). The horizontal distance between the same
objects on the left and right images is called the disparity.

The research described in this paper is directly funded by Hasselt

University through the BOF framework.

25978-1-4244-6471-5/10/$26.00 c©2010 IEEE

Objects that are close to the cameras will have a larger
horizontal disparity than objects which are far away. The goal
of the stereo matching algorithm is to measure the disparity
between all pixels in the image.

The major focus of the architecture presented in this paper
is the implementation of a fully adaptable window to replace
the fixed window cost aggregation algorithm. The architecture
that is presented has been developed in a scalable and
parameterized way. In this way a custom depth field processor
SoC module can be generated and tuned to the available
resources, the implementation technology and application at
hand.

The architecture should be easy to pipeline in order to
balance the hardware usage with respect to the speed of the
implementation technology. This requirement is necessary to
guarantee a real time stereo vision system.

B. General Structure

The architecture consists of five processing blocks. The
first block captures the synchronized stereo pixel stream and
places it into multiple on-chip parallel memories. This stream
can result from synchronized cameras, frame buffers or
precaptured data streams on mass storage media. This data
stream is a synchronized source of pixels coming from the two
images where the first elements of the stream are the top left
pixels in the left and right images and the following elements
are corresponding pixels on the same line. The second block
uses the information in the on-chip parallel memory to place a
correctly oriented window of the image in a register. These first
two blocks can be seen as more general and applicable to many
(and more advanced) vision applications and are explained in
more detail in [11]. The third block generates support weights
for each pixel in the window using a color similarity
measurement. These weights are used in block four to adapt the
cost aggregation phase of the Sum of the window stored in the
memory architecture. The fifth and last block calculates the
minimum SAD result. This data flow can be seen on Fig. 2.

Figure 1. Stereo Vision Setup

Figure 2. General Architecture

C. Memory Architecture

Due to the sequential way in which digital video data are
presented, video signal processing architectures are
traditionally built around line buffers. In the line buffers a
number of the most recent scan lines are kept on-chip. Line
buffers could be implemented as shift registers, but are
currently efficiently implemented as on-chip memory blocks
with dedicated addressing logic, such that they are used as
FIFOs, typically one FIFO per scan line. At the outputs of the
FIFOs, corresponding column pixels for the recent scan lines
are accessed. These can then be stored in a shift register array
with the size of the area of interest for window based video
operations such as filtering, edge detection, sharpening,
resampling etc.

However, the traditional scan line based FIFO architecture
does not fully exploit the parallelism that is available with
multiple on-chip memory blocks.

In this paper, an on-chip memory architecture (see Fig. 3) is
used that allows parallel access to all pixels located in a chosen
window. A window is defined here as a rectangular region of
interest of the image. This region should be read out in one
clock cycle for real-time operation and in order to avoid that
memory access becomes a bottleneck in the data path.

On every clock cycle, exactly one on-chip memory block is
written to. An Address Management Unit (AMU) is needed to
keep track of which on-chip memory to write to (called the
base memory) and of which address to write to (called the base
address).

On every clock cycle, reading the on-chip memory contents
for a chosen window is performed in parallel.

Source of pixels

Memory Architecture (1)

Window Transformation (2)

Sum of Absolute

Differences (4)

Minima Selection (5)

Data

Flow

(L+R) pixel

Scrambled (L+R) window

Unscrambled (L+R) window

SAD results (# chosen depth)

Binary adaptable window (3)

Unscrambled (L+R) window

Binary supporting weights

26 2010 18th IEEE/IFIP International Conference on VLSI and System-on-Chip (VLSI-SoC 2010)

Figure 3. Parallel Memory Implementation

D. Window Transformation

The window retrieved from the memories is not
immediately usable for further processing. Although all
window pixels are available at the same clock cycle, they still
need to be reorganized in a way that the window orientation in
the memory represents the window orientation on the image.
Due to the addressing order of the AMU, the pixels contained
in a memory window are scrambled in comparison with the
image window.

For the architecture with a fixed window cost aggregation,
only a column transformation is needed for the complete
window. For the architecture with the binary adaptable window
cost aggregation, a column transformation is needed for the
complete window and a complete transformation is needed for
the center pixel.

E. Binary Adaptable Window

When using a fixed window shape, implicitly depth
continuity across this window is assumed. This assumption is
not correct at depth edges, where the center pixel depth is
different from some (or the majority) of the surrounding pixels
depths. A more conservative assumption is to assume depth
continuity across pixels with similar color. The adaptive weight
algorithm proposed by Yoon [4] gives a support weight to each
pixel in a fixed squared window. A derivative of this method is
implemented in this architecture. To save SoC resources, the
support weights are chosen binary, where ‘0’ means that this
pixel will give no support to the matching window and ‘1’
means that this pixel gives support to the matching window.
There is no gradient between these two extremes.

This can be seen as a masking window that selects the
pixels that will be used in the cost aggregation phase of the
SAD algorithm. Only the pixels where the masking window is
‘1’ (black) will be taken into account (see Fig. 4). Note that this
masking window can arrange for any shape possible within the
original window, connectiveness between pixels and segment
shape are not taken into account.

Figure 4. Window Content (left) and Resulting Window Mask (right)

For every sub window we want to match, a binary mask

window needs to be generated. With the first version, this mask

is generated by comparing the blue difference and red

difference chroma components (in the YCrCb colour space)

between each pixel in the window with the center pixel. If the

combined chroma differences are larger than a certain

threshold, the corresponding entry in the mask window will be

‘0’, otherwise it will be ‘1’ (1).

=
0 >

1

The second version uses the same chroma difference

combined with a distance parameter (2 and 3). This distance

parameter is a pre-calculated value stored in a look-up table. It

acts as a regulator to trim medium chroma matches from pixels

that are located further from the center. The current

implementation of this version doesn’t make use of

multiplications (2), it instead uses shift operations (3) in order

to implement this version efficiently into hardware. This way,

almost no extra resources are needed to include the distance

parameter.

=
0 () >

1

=
0 () >

1

Figure 5 presents the distance parameter for

implementation with the multiplication operator compared with

the implementation with the shift operator. In the later case, the

regulation possibility of the distance parameter becomes less

nuanced but can be implemented very efficiently.

Figure 5. Distance parameter (left: for usage with the multiplication

operator, right: for usage with the shift operator)

F. Sum of Absolute Differences

The Sum of Absolute Differences (SAD) calculates the

differences between two selected subwindows. It is a

measurement of similarity between two parts of an image. The

main building block is the calculation of the absolute difference

(AD). Different methods exist to calculate this. The method

chosen for this architecture calculates first the difference of the

M1

M2

M3

M4

M5

M6

M7

M8

M9

AMU

Streaming pixel data (left and right pixel)

Base address

Base address -1

Write enable

Memory column

R1

R2

R3

R4

R5

R6

R7

R8

R9

M3 M4 M5

M8 M9 M10

M13 M14 M15

w(3,1) w(2,1) w(1,1)

w(3,2) w(2,2) w(1,2)

w(3,3) w(2,3) w(1,3)

2010 18th IEEE/IFIP International Conference on VLSI and System-on-Chip (VLSI-SoC 2010) 27

two numbers, if this result is negative, the two’s complement of

the result is taken (Fig. 6).

Figure 6. Absolute Difference Calculation

The summation part or cost aggregation step of the SAD
uses a window and depth parallel approach to calculate the sum
of absolute differences for all depths and all windows in one
clock cycle.

Three main methods are integrated in this architecture. The

first method is a SAD block calculation (see Fig. 7). This

method calculates the SAD values immediately from the

absolute differences of the pixels in the subwindow. For a 3x3

subwindow with a depth of 2; 27 AD calculations and 24

adders are needed.

Figure 7. SAD Block Calculation

The second method calculates first the column SAD and
places these results in registers (see Fig. 8). These registers are
kept in buffers during the next processing round so that they
can be reused during several clock periods (7, 8). Second the
column SAD’s from several processing rounds are summed to
calculated the SAD values (4, 5, 6). For a 3x3 subwindow with
a disparity range of 2; 9 AD calculations, 12 adders and 3
registers files with a size equal to the window width are
needed.

Figure 8. SAD Column Calculation

 1 = (1)3
=1

 2 = (2)3
=1

 3 = (3)3
=1

_ 3 = _ 2

_ 2 = _ 1

The third method calculates first the AD and places them
directly into registers without combining them into a column
SAD (see Fig. 9). These registers are also kept in buffers
during the next processing round so that they can be reused
during several clock periods (12, 13). Second the column
SAD’s from several processing rounds are summed to
calculated the SAD values (9, 10, 11). For a 3x3 subwindow
with a disparity range of 2; 9 AD calculations, 24 adders and 3
registers files with a size equal to the window width multiplied
with the window height are needed.

Figure 9. SAD Single Calculation

 1 = 1()3
=1 + 2()3

=1 + 3()3
=1

 2 = 1()6
=4 + 2()6

=4 + 3()6
=4

 3 = 1()9
=7 + 2()9

=7 + 3()9
=7

 3 = 2

 2 = 1

Method one and three allow access to all single AD
calculations, which make them suitable to switch to a binary
adaptable cost aggregation window. Equation 14, 15 and 16
show the result of switching method three.

 1 = (1,) 1()3
=1 + (2,) 2()3

=1 + (3,)3
=1

 3()

 2 = (1,) 1()6
=4 + (2,) 2()6

=4 + (3,)6
=4

 3()

 3 = (1,) 1()9
=7 + (2,) 2()9

=7 + (3,)9
=7

 3()

Since the weights in this architecture are ‘0’or ‘1’, the
multiplication in (14, 15 and 16) can be replaced by an AND
operator. This will accommodate for an efficient hardware
implementation.

9th bit of subtraction (sign bit)

M1 M2 M3 M4 M5

M6 M7 M8 M9 M10

M11 M12 M13 M14 M15

Subwindow 1

M3 M4 M5

M8 M9 M10

M13 M14 M15

Reference window

Subwindow 2

Subwindow 3
SAD 1

SAD 2

SAD 3

M3 M4 M5

M8 M9 M10

M13 M14 M15

M5

M10

M15

Reference column

Column SAD 1 (1)

Column SAD 1 (2)

Column SAD 1 (3)

M3

M4

M5

M8

M9

M10

M13

M14

M15

M5

M10

M15

AD 1 (1)

AD 1 (2)

AD 1 (3)

AD 1 (4)

AD 1 (5)

AD 1 (6)

AD 1 (7)

AD 1 (8)

AD 1 (9)

M5

M10

M15

M5

M10

M15

Number 1 (8 bit)

Number 2 (8 bit)

AD+1

28 2010 18th IEEE/IFIP International Conference on VLSI and System-on-Chip (VLSI-SoC 2010)

G. Minima Selection

The minima selection is based on an iterative minima tree
calculation (see Fig. 10). The SAD results are pair wise
compared, while each time the lowest value is stored in a
register. Afterwards, these registers are pair wise compared and
stored in registers. These steps are repeated until one value
remains. Storing of the intermediate results in registers makes
this method interesting for pipelining.

Figure 10. Iterative minima tree calculation for a maximum disparity range of

eight

III. IMPLEMENTATION AND RESULTS

Matlab has been used to generate, out of the chosen
parameters and the high level architecture, a complete stereo
matching architecture for both simulation and hardware
generation from a high level description. This allows an initial
check of the stereo matching architecture in Matlab before
implementation on the actual hardware. Using this framework,
comparison between different stereo matching parameters and
architectures can be rapidly performed.

The architecture and methods presented in this paper have
been implemented on an FPGA system, based on an Altera
Cyclone II with 68.416 logic elements and 250 memory blocks.
The source of the input stream is a flash memory containing
two 24 bit RGB color images and the depth information is
stored on an external frame buffer that is connected to an LCD
screen. Both fixed window as well as binary adaptive window
SAD are compared with each other in function of their logic
elements usage and the quality of the produced depth maps.
The Quartus-II version 9.0 logic synthesis and fitter tool has
been used for the hardware implementation.

Fig. 11 show the depth maps of the Tsukuba stereo pair [2]
with a binary adaptive subwindow compared with a square
subwindow. The results indicate that the quality of the resulting
depth map increases when using a binary adaptive subwindow.
Even with smaller window sizes, small details around the edges
are noticeable improved. With larger window sizes the
smoothing effect stays while preserving small details around
the edges. This improvement comes not for free, the logic
element usage with a binary adaptive subwindow increases

linearly with the size of the subwindow (see Fig. 12). The main
reason for the large resource usage difference between the two
cost aggregation versions is the switch from SAD Column to
SAD Single calculation.

When comparing the results of a binary window
implementation using only a color metric and a binary window
implementation which a color and space distance metric (see
Fig. 11). The depth image becomes less smooth and the borders
are better preserved. Note that by using only shift operators,
almost no extra resources are needed to add the space distance
metric to the color metric.

a. 3x3 (left: fixed window, middle: adaptable window in function of colour,
right adaptable window in function of colour and spatial distance)

b. 5x5 (left: fixed window, middle: adaptable window in function of colour,
right adaptable window in function of colour and spatial distance)

c. 7x7 (left: fixed window, middle: adaptable window in function of colour,
right adaptable window in function of colour and spatial distance)

d. 9x9 (left: fixed window, middle: adaptable window in function of colour,
right adaptable window in function of colour and spatial distance)

e. 11x11 (left: fixed window, middle: adaptable window in function of
colour, right adaptable window in function of colour and spatial distance)

Figure 11. Depth map quality of the Tsukuba stereo pair [2] in function of
window size and aggregation window type

SAD 1

SAD 2

SAD 3

SAD 4

SAD 5

SAD 6

SAD 7

SAD 8

REG 1 REG 2 REG 3 REG 4

REG 5 REG 6

disparity

Step 1

Step 2

Step 3

2010 18th IEEE/IFIP International Conference on VLSI and System-on-Chip (VLSI-SoC 2010) 29

Figure 12. Logic element usage in function of window size, color resolution

and aggregation window type

The color resolution is an important parameter to reduce
hardware resource usage. Fig. 13 shows that a 6 bit luma
component with a 4 bit chroma component is sufficient to get
acceptable results while limiting resource usage. Although
pixel resolution will improve the quality of the resulting depth
map, hardware resource usage rises rapidly (see Fig. 12).

a. 4 bit Y, 4 bit C b. 6 bit Y, 4 bit C

c. 6 bit Y, 6 bit C d. 8 bit Y, 8 bit C

Figure 13. Depth map quality of the Tsukuba stereo pair [2] in function of the

color resolution with a binary adaptable window size of 11x11 in fucntion of

colour and spatial distance

IV. CONCLUSIONS

A novel binary adaptive window cost aggregation
calculation architecture is presented that allows for depth
discontinuity preservation within the reference window. For
each window a binary mask window is generated which selects

the supporting pixels in the cost aggregation phase of the SAD
algorithm. This selection is performed using color similarity
and spatial distance metrics. The results of the implementation
indicate that the binary adaptive window implementation
improves the disparity map quality with both small as large
window sizes. It is shown that this architecture can be
implemented efficiently into a SoC design, however the
resource usage rises rapidly with increased window size.

This architecture is chosen with particular attention given to
pipelining and parallelism possibilities and is fully scalable to
allow for custom SoC implementations, as well as rapid
prototyping on FPGAs.

The system reported in this paper has been implemented on
static image input from flash memory. Future work focuses on
incorporating live video streams and optimization of the
operating frequency.

REFERENCES

[1] N. Lazaros, G. C. Sirakoulis, and A. Gasteratos, “Review of stereo
vision algorithms: From software to hardware,” International Journal of
Optomechatronics, vol. 2 (4), 2008, pp. 435-462.

[2] D. Scharstein, and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” International Journal of
Computer Vision, vol. 47 (1), 2002, pp. 7-42.

[3] L. Wang, M. Gong, M. Gong, and R. Yang, “How far can we go with
local optimization in real-time stereo matching,” Proc. Third Int. Symp.
On 3D Data Processing, Visualization, and Transmission, 2006, pp. 129-
136.

[4] K.J. Yoon, and I.S. Kweon, “Adaptive support-weight approach for
correspondence search,” IEEE Trans. PAMI, vol. 28 (4), 2006, pp. 650-
656.

[5] F. Tombari, S. Mattoccia, and L. Di Stefano, “Segmentation-based
adaptive support for accurate stereo correspondence,” in Advances in
Image and Video Technology, Lecture Notes in Computer Science,
Berlin: Springer-Verlag, vol. 4872, 2007, pp. 427-438.

[6] R. Brockers, “Cooperative stereo matching with color-based adaptive
local support,” Conference on Computer Analysis of Images and
Patterns, 2009, pp. 1019-1027.

[7] C. Murphy, D. Lindquist, A. M. Rynning, T. Cecil, S. Leavitt, and M. L.
Chang, “Low-cost stereo vision on an FPGA,” International Symposium
on Field-Programmable Custom Computing Machines, 2007, pp. 333-
334.

[8] K. Ambrosch, M. Humenberger, and W. Kubinger, “SAD-based stereo
matching using FPGAs,” in Embedded Computer Vision, Advances in
Pattern Recognition, K. Branislav, ed. London: Springer-Verlag, 2009,
pp. 121-138.

[9] J. Yi, J. Kim, L. Li, J. Morris, G. Lee, and P. Leclercq, “Real-time three
dimensional vision,” in Advances in Computer Systems Architecture,
Lecture Notes in Computer Science, Berlin: Springer-Verlag, vol. 3189
2004, pp. 309-320.

[10] M. Hariyama, and M. Kameyama, “Pixel-serial and window-parallel
VLSI processor for stereo matching using a variable window size,”
Interdisciplinary Information Sciences, vol. 7 (2), 2001,pp. 289-297.

[11] A. Motten, and L. Claesen, “An on-chip parallel memory architecture
for a stereo vision system,” unpublished.

30 2010 18th IEEE/IFIP International Conference on VLSI and System-on-Chip (VLSI-SoC 2010)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

